20XX-01-XXXX

Leveraging the Internet to drive a real car in the Virtual Earth 3D Model

Author, co-author (Do NOT enter this information. It will be pulled from participant tab in

MyTechZone)

Affiliation (Do NOT enter this information. It will be pulled from participant tab in MyTechZone)

Abstract

Digital mapping tools have become indispensable for road
navigation. Applications like Waze and Google Maps harness the
power of satellite imagery to provide precise visualization of GPS
coordinates. The field advanced significantly in May 2023 with the
introduction of dynamic 3D representations of the Earth. Companies
such as Cesium now offer Unity3D and Unreal Engine Application
Programming Interface that can be applied to geospatial applications.
These images are no longer static and offer the opportunity to provide
seamless continuous navigation.

Driving simulation has been widely used for training and research.
We investigate with this project the potential of this new geospatial
database as a tool for scenario development to study manual and
autonomous driving. We present an in-vehicle driving simulation
integration that employs a real steering wheel and pedals from a
stationary vehicle as controls. The visual experience is delivered
through the Meta Quest Headset through an overlay in a Mixed
Reality environment.

Two case scenarios are examined. The first case involves navigating
downtown Denver. The use of photorealistic representations of
Denver's buildings offers an immersive experience, although the 3D
topology presents some irregularities. These irregularities result from
the limited number of polygons used for the digital modeling,
especially on flat surfaces like roads and pavements.

The second scenario leverages the hilly landscapes outside Denver.
These areas, characterized by arid, treeless terrain typical of
Colorado, offer a smooth driving experience. Still, the technology
incorporates projection such as phantom cars, flat images of vehicles
on the roadway that were captured during satellite data acquisition.
We explore opportunities to address these inaccuracies and enhance
the environment for a more realistic and immersive driving
experience.

Introduction

In recent years, incredible advancements in computing technology,
marked by enhanced processing capabilities and increased portability,
have opened the door to a multitude of applications. Three key
research areas have seen significant progress: ride-hailing, vehicle
automation, and electrification. Furthermore, the widespread
availability of the Internet and the rise of 5G technologies have
facilitated seamless ride-hailing via platforms like Uber and Lyft,

Page 1 of 9

while also providing real-time weather and traffic updates through
applications such as Waze.

Despite the rapid progress in various technological domains, the
realm of driving education has seen limited evolution. Efforts to
introduce driving simulation as an educational tool have been met
with skepticism from driving instructors. Conventional tabletop
driving simulators equipped with game-oriented hardware such as
steering wheels have seen limited adoption in driving schools due to
their inherent lack of immersion [1]. However, the recent
advancements in MR offer a paradigm shift in this field. Achieving
increasing levels of immersion has become more cost-effective than
ever before. In the following section, we elaborate on a novel
approach that involves the use of an actual vehicle to provide a
comprehensive driving simulator experience. This innovative
platform employs a series of non-invasive sensors attached to the
vehicle's controls, including the steering wheel, gas pedal, and brake
pedal, to ensure a robust mechanical immersion. The simulation is
delivered through a Mixed Reality Headset, affording drivers a
realistic 360-degree view of both their vehicle and the surrounding
driving environment.

The paper's first section outlines the simulation hardware, while the
subsequent sections delve into the software integration of the Cesium
3D geospatial platform. Given a stable internet connection, this
software facilitates the incorporation of GPS coordinates, enabling
users to navigate within that specific environment.

Driving Simulator Design

Real vehicle as framework

Our driving simulator leveraged an actual stationary vehicle to
increase immersion. Previous work on driving simulator development
was published in [2], [3], and [4]. The guiding principle was to
provide an intuitive experience to users by using an actual car. Two
vehicles were used to deliver the driving experience: a 2011 Toyota
Prius and a 2018 Tesla 3. None of the vehicles were running during
the simulation. The front vehicle tires sat on rotating platforms to free
the steering wheel.

Non-invasive sensors, based on Inertial Measurement Unit (IMU)
technology were strapped to the vehicle steering wheel, gas, and
brake pedals. A calibration procedure allowed us to position the zero
for car controls (centered steering wheel, relaxed position for both
pedals) and range (steering wheel from -450 degrees to +450 degrees)
and pedal deflection range. A dedicated companion app allowed for
this calibration (figure 2).

Mixed reality provides the appropriate blending of real and virtual
worlds to deliver scenarios inside of this car framework. Virtual
windows are overlaid on top of the car windshields and windows.

Non-invasive IMU sensors

Three identical sensors were built to acquire steering wheel angle,
gas, and brake pedal information. These sensors, which consist of an
IMU board, a small processor, and a rechargeable battery, were
encased in a small enclosure. The gas and brake sensors were
strapped under the car’s pedals. The steering wheel sensor was
affixed to the center of the steering wheel. An external dedicated
router was used to create a dedicated wifi network for the sensors.
Each of the three sensors was assigned a dedicated IP address. The
firmware establishes an automatic connection through the TCP
protocol server and sends data read by IMU modules at a high
frequency (60Hz).

The Mixed Reality Headset

The simulation was developed using the Unity3D engine and relies
on the Meta Quest suite. Specifically, Meta’s Quest 2 and Quest Pro
were used. While the Quest 2 provides a more reliable user
experience, its grayscale passthrough is limiting. The Quest Pro
features a color passthrough that is more suitable to the Mixed
Reality experience sought by the research team. During the
simulation, the test users enjoyed a fully immersive view of the
driving environment through the car's windshield and windows.
Simultaneously, they were able to see their extended hands with an
outline that reacts to interactive objects, their body for corporal
presence, and the interior details of the vehicle. The sensory
experience is realistic: users sit in an actual car seat, wear a seatbelt,
and use real car controls. It is visually immersive in the sense that
they can see the inside of the vehicle, their hands, and body, while
enjoying driving virtual scenarios.

The headset was connected to the wifi network, allowing for data
streaming through the internet. The headset was tetherless and did not
require any wired connection to a computer. The resolution of the
Quest Pro headset is 1800 x 1920 pixels per eye with an average
refresh rate of 60Hz.

Implementing virtual objects

The Unity3D engine provided a large number of commercial, free,
and open source plug-ins and tools to facilitate the creation of
environments and physical controllers for the simulation experience.
A virtual car framework was used. All car mirrors were fully
functional and behaved as actual physical mirrors to the user wearing
the MR Headset.

To deliver enough flexibility to the virtual controls, additional virtual
car components were added. A virtual gear allowed the user to
intuitively shift from Park to Neutral to Drive to Reverse (figure 1).
A virtual turn signal was also implemented on the left side of the
steering wheel (figure 3). These virtual objects facilitated intuitive
interactions with the driving simulation. The Quest headset’s hand
tracking ability delivered an intuitive interaction with the virtual
objects. The user could simply grab the virtual gear to go from Park
to Neutral, Reverse or Drive.

Page 2 of 9

To demonstrate virtual objects versatility, an additional virtual red
button was incorporated (figure 2). This virtual button, which can
also be intuitively pressed through a simple hand gesture, allowed for
a reset of the driving scene in case of any undesired state such as an
accident.

Figure 1. Mixed Reality Driving. Sensors affixed to the steering wheel and
pedals of the vehicle allow the driver to use his real vehicle (on the left) to
drive the Google Earth Environment (right).

Software Development

Mixed Reality with Unity 3D

Unity 3D is a widely recognized tool for developing Augmented
Reality (AR), Mixed Reality (MR), and Virtual Reality (VR)
applications. Its popularity can be attributed to its supportive user
community and a diverse range of native add-ons.

This ecosystem of add-ons offers versatility and expedites the
creation of Extended Reality (XR) prototypes. These extensions
enable the integration of additional processes, such as managing
virtual vehicle behavior and conducting complex physics simulations.

Unity 3D is compatible with the Quest platform, which runs on an
adapted Android operating system. This compatibility streamlines the
process of building and testing XR applications on the Quest headset.
Developers can use Unity's tools in conjunction with the Quest's
user-friendly Integration SDK to efficiently create and assess
immersive experiences. Unity serves as a valuable platform for both
XR development and deployment on the Quest, making it a
noteworthy tool in the field of AR, MR, and VR application
development.

Meta's Oculus Integration SDK for Unity provides a crucial interface
for effortless access to Quest device-specific features and a wide
array of services offered by Meta. These include Hand Tracking,
advanced VR rendering techniques, seamless interaction with virtual
objects, spatial sound enhancements, and a cloud-based
Text-to-Speech (TTS) service, among others. Notably, Meta's SDK is
built upon the robust OpenXR backend API, which not only ensures
seamless Quest compatibility but also extends support to various
other headset devices with minimal codebase updates.

Network topology and Internet requirements

In the context of network topology and internet requirements for the
integration of proprietary sensors into our XR simulation, a
specialized intermediary system becomes essential. This consists of a
laptop equipped with Wi-Fi and Ethernet network adapters, enabling
dual connectivity to fulfill the demands of the Internet Access Point
(typically a regular router) and the customized router specifically
designed for our sensors. Fortunately, such network configurations
are readily supported by most modern laptops.

The companion application, running on this intermediary laptop,
serves to manage connections between Metadrive XR and the IMU
sensors. Meanwhile, the VR headset is linked to the Internet Access
Point, ensuring that internet connectivity needs are met. The network
configuration is illustrated in Figure 2, providing a clear visual
representation of the system. Our XR application hinges on three
primary components: the sensors, securely affixed to the car's
steering wheel, gas and brake pedals, the XR headset itself, and the
companion application, which facilitates calibration and acts as a
communication bridge between the various elements.

These components engage in seamless communication via two
distinct local Wi-Fi networks, meticulously arranged in a specialized
topology. This network topology comprises a generic Internet Access
Point to cater to internet-related requirements, and a dedicated,
customized router (as depicted in Figure 2) designed to fulfill the
specific needs of the sensors. This dual-network approach ensures the
smooth and reliable operation of our XR simulation system.

Metadrive Network Topology

)) Metadrive XR
Metadrive XR Companion
« Receives Input
« Displays reak-time Information from
dashboard. Companion.
« Manages IMU Sensors Data Syncronizing « Provides Mixed
connection, calibration and using Companion App Reality experience.
settings.

[Captop needs two Network) = Meta Quest

Adapters, ususly they have: (StandaloneVR Headset)
« 1 Wired (Ethemet)
« 1 Wireless (WiF])

IMU Sensor Firmware
« Connects automatically to the
JitsikSimulator access point.

« Package parsing and sending
repeatedly with a 25 ms rate.

Currently implemented:

Figure 2.Metadrive network topology
The Cesium Geospatial libraries

In May 2023, Cesium partnered with the Google Maps Platform for
an experimental release of Photorealistic 3D Tiles available through a
platform. This service offers integration for multiple game engines
and simulation platforms such as Unity3D and the Unreal game
engines, combines photogrammetry, BIM, and/or other 3D data
sources to offer a dynamic 3D representation that can be rendered
efficiently for Virtual Reality applications [S], [6], [7]. Drone and
flying applications are a natural fit for this type of top-level view of
Cesium’s 3D terrain representations, leading to spatially realistic

Page 3 of 9

flight simulator applications. This technology’s suitability for driving
simulation — a ground-level view — is still an unexploited topic.

Previous work

Previous efforts to integrate the Cesium workflow in driving
applications can be traced to the VectorZero RoadRunner Unreal
Engine Plugin developed by Gabby Getz [8], [9]. Given the great
need for auto-manufacturers to test autonomous driving algorithms in
a myriad of conditions, simulation has become a major tool for
testing. The ability to use real terrain with various weather and
lighting conditions can accelerate testing and facilitate the
development of self-driving cars. The simulation workflow can
provide input for cameras and lidars that can feed into the
self-driving car’s algorithm. Our project is a continuation of this
work. It aims at assessing the quality of Digital Twins and the Virtual
Driving scene for driving applications.

Software integration and API

Our research team leveraged the Cesium for Unity Application
Programming Interface for the development of MetaDrive XR [10].
The general steps necessary for this software integration are detailed
in this paper’s appendix. The prerequisites for the software
integration are:

e Aninstalled version of Unity 2021.3.2f1 or later. The latest
version of Unity 2021.3+ LTS is recommended.

e A Cesium ion account to stream terrain and building assets
into Unity.

Memory and Processing Requirements

Cesium provides a high-performance service for 3D Tile streaming
compatible with a range of devices. These include those built on the
Unity Engine whether they run on Windows, macOS, Android, or VR
platforms such as the Quest 2 and Quest Pro.

It is important to note that while Cesium SDK supports Quest 2, we
must be mindful of performance considerations when integrating
vehicle and physics frameworks. To ensure a seamless experience, it
is crucial that the simulation maintains a consistent frame rate above
60 frames per second (FPS). This level of performance ensures that
essential functions like hand tracking, networking, rendering, and
other resource-intensive processes remain unhindered.

Scenario 1: Driving in Downtown Denver

Our initial Cesium geospatial integration targeted Downtown Denver.

Table 1.GPS coordinates for Downtown Denver

Latitude Longitude Height

39°45'11" N 105° 00' 04" W 1581 m

https://unity3d.com/unity/qa/lts-releases

The software integration leveraged Cesium’s API and the
implementation was immediate. As a result, the research team could
immediately drive in Downtown Denver.

City highlights, such as the Denver Train Station, can easily be
recognized (see figure 3). The neighborhood, however, was however
challenging for our driving simulation [12], We encountered two
types of issues. The first issue, which is the less problematic one, is
the rendering of buildings. In Downtown Denver, a large number of
building facades were depicted at a low resolution. We attribute this
to the difficulty of recording high resolution data on high rise
building through satellite imagery. Smaller artifacts, such as trees,
traffic lights, stop signs, or parked cars, while visible in the Unity
model, present a poor rendering, although they are still recognizable.
More importantly for our driving application, roads in between high
rise buildings are bumpy and do not present a flat surface for driving.
When driving, the car follows this uneven surface, resulting in the
feeling of driving over a pothole. This feeling is purely visual, as the
user does not experience any actual acceleration/deceleration. Going
over this terrain with the Virtual Reality Headset also exacerbates the
feeling of motion sickness which often accompanies the VR
experience. This uneven terrain is a direct result of the low resolution
for flat surfaces (road and pavements) from the satellite imagery in
this specific neighborhood. In its present form, and in this specific
high rise neighborhood, these roads are impractical for a driving
application.

Figure 3.Driving in the Google Earth Model of Downtown Denver, Colorado.
Scenario 2: Driving on Colorado Roads

Given the limitation for driving applications posed by inner city
neighborhoods, our research team turned its focus to a less
challenging scenario. We chose to drive in Colorado.

Page 4 of 9

Table 2. GPS coordinates for targeted Colorado roads.

Latitude Longitude Height

39° 44' 20" -105° 15' 36" 1789 m

The desert terrain allows for better road resolution. This resulted in
smooth driving on a road with far better defined markings [11]. This
terrain did not include the presence of phantom cars, ‘flat images of
cars’ that are present on the road but do not have any volume and do
not exist as Unity entities. It just appears as if the road itself is
imprinted with the image of a car—they can be driven over as if they
do not exist. This is in contrast to the parked cars in the Denver
model which have an actual collider and create an obstruction to
driving. Our findings are therefore, that while ‘driving out of the box’
is technically possible in some neighborhoods, an editing phase will
be needed to fully leverage the satellite images for driving. The Unity
3D environment is fully editable. Manual or automated techniques
can be developed to make the environment more realistic and better
suited for driving simulation.

Figure 4. Driving on Colorado roads.

Mixed Reality constraints

Our in-car set up leverages a Mixed Reality environment. We discuss
here the hardware and software constraints and limitations associated
with this framework.

Our preliminary results showed that users are comfortable using the
car as a simulator. There is indeed no hardware learning curve, as it
comes to the steering wheel and pedals.

Hardware constraints may relate to the specific car used. For our
study, a Toyota Prius was used. The vehicle’s tires were placed on
rotating platforms which freed the steering wheel. This setup might

not be possible with other cars which lock the steering wheel when
the car engine is off. For a wide implementation on other vehicles, we
propose the use of a clip-on steering wheel, which will free the
steering wheel. Our IMU sensors were attached under the pedals.
This setup might not be possible with all cars. For some vehicles, the
hydraulic system locks the pedals if the engine is off. An additional
constraint is the need for a robust wifi network connection. This was
discussed above in the Network Topology and Internet Requirements.
It is also important that the IMU sensors not introduce latency. A lag
of 50 ms or less is required so the driver can easily control the
vehicle.

Other constraints relate to the Mixed Reality environment itself. Hand
recognition gets degraded when lighting conditions in the vehicle are
poor, e.g. by night, or when the headset is in direct sunlight. Our
preliminary tests were developed in a garage with regular indoor
light. When designing the software, special consideration must be
given to the design of the User Interface. The Red Virtual Reset
button (figure 1) must be positioned so that there are no physical
barriers (such as the physical dashboard) to access it. For our next
iteration, we plan to place menus and virtual buttons above the
driver’s head. Since different cars have different configurations, with
the example of the central console, a wide implementation of the
Mixed Reality framework requires the use of the commonality

between vehicles, for example, the free space under the roof.

Limitations and future work

The proof of concept for driving in Downtown Denver and Colorado
roads show that while some environments will be ready for driving
‘as is’, other environments will require considerable work before they
can be used for a proper driving simulation. We anticipate tasks will
include cleaning up the environment (phantom cars), smoothing the
road (filtering), and adding signals and traffic. In addition, some
models such as tunnels will need to be created from scratch as they
are absent from satellite imagery.

An alternative approach involves generating 3D representations of
semantic road data based on well-established specifications. Several
tools, including OpenDRIVE (ASAM), RoadRunner (Mathworks),
and Lanelet2 (Autoware), can be instrumental in accomplishing this
task. While the transformation from semantic data to a 3D
representation can be automated, it is advisable to seek a supervised
output to mitigate potential issues similar to those encountered with
Cesium. Relying on human-readable semantic descriptions, this
method guarantees enhanced control and precision throughout the
translation process.

Our immediate future work will involve Roosevelt Blvd in
Philadelphia, which has been repeatedly listed by Farm Insurances as
one of the most dangerous roadways in the country. Between 2016
and 2021, 77 people died in car crashes on Roosevelt Boulevard,
accounting for 11% of the total traffic fatalities in Philadelphia.
Several factors make it so deadly; The Roosevelt Boulevard consists

Page 5 of 9

of 12 lanes with speed limits of 40 mph and passes through densely
populated neighborhoods. The road also has numerous intersections
with local streets and connects to major high-speed highways and
arterials throughout Philadelphia. Our next steps in Virtual Reality
driving will consist of developing a robust model of the Roosevelt
Blvd to test for its suitability for driving education.

Creating a digital model of the world is a colossal project. As cars
continue to integrate cameras and lidar technology for self-driving
and drones become even more ubiquitous, this Earth model will
benefit from a myriad of new data sources that will incrementally
enhance the 3D Earth Model. We anticipate the growth of the
geographical Digital Twin ecosystem which will contribute to the

safety and development of our roads.

Summary/Conclusions

Driving simulators can be traced back as far back as 1967 when the
drivetrain was introduced [13]. They range from basic tabletop
systems such as a steering wheel and set of pedals that are easily
deployable to costly alternatives like the National Advanced Driver
Simulator (NDAS) that provide high-level mechanical immersion.
Such simulators have been widely used in research [13]. While
hardware implementations differ widely between products, software
implementation has, until now, always required the designing, from
scratch, of driving scenarios through dedicated software such as
Unity3D or Unreal Engine. In all cases, the driving scenario must be
carefully planned and built to suit the specific application.

The advent of a Dynamic Model of the Earth presents phenomenal
opportunities, especially relating to urban development and driving
safety. While most driving simulator scenarios have used synthetic
environments that are not grounded in actual geography, it is now
possible to build and even drive virtually real scenarios that originate
from Earth satellite images. Our project has ties with the growing
field of Digital Twin development. Our research study demonstrated
that some environments, like those void of high buildings or trees, are
‘ready to drive’ out of the box, while others like city environments
need a substantial editing phase before they can be integrated into a
driving scenario. Our preliminary ‘out of the box’ driving highlighted
the need to develop metrics to assess the smoothness of virtual roads.
These metrics will need to be tested in a large number of urban and
rural settings to assess the system’s versatility and reliability. A
second editing phase will be needed to restore traffic lights and stop
signs. Finally, a third editing phase will be needed to add traffic so the
simulator can truly become a tool for testing manual or autonomous
driving. As the Earth Virtual Models get more elaborate, we
anticipate they can better be used to complement driving education,
increasing the safety of our roads.

References

1. Michael, Despina, Marios Kleanthous, Marinos Savva,
Smaragda Christodoulou, Maria Pampaka, and Andreas
Gregoriades. "Impact of immersion and realism in driving
simulator studies." International Journal of Interdisciplinary
Telecommunications and Networking (IJITN) 6, no. 1 (2014):
10-25.

2. Qiao, Zhijie, Xiatao Sun, Helen Loeb, and Rahul Mangharam.
"Drive Right: Shaping Public’s Trust, Understanding, and
Preference Towards Autonomous Vehicles Using a Virtual
Reality Driving Simulator." In 2023 IEEE Intelligent Vehicles
Symposium (IV), pp. 1-8. IEEE, 2023.

3. Qiao, Zhijie, Helen Loeb, Venkata Gurrla, Matt Lebermann,
Johannes Betz, and Rahul Mangharam. "Drive Right:
Autonomous Vehicle Education through an Integrated
Simulation Platform." SAE International Journal of Connected
and Automated Vehicles 5, no. 12-05-04-0028 (2022).

4. Mangharam, Rahul, Helen Loeb, and Zhijie Qiao. "Training
Drivers to Automated Vehicles." (2023).

5. Lee, Ahyun, Kang-Woo Lee, Kyong-Ho Kim, and Sung-Woong
Shin. "A geospatial platform to manage large-scale individual
mobility for an urban digital twin platform." Remote Sensing 14,
no. 3 (2022): 723.

6. Jeddoub, Imane, Gilles-Antoine Nys, Rafika Hajji, and Roland
Billen. "Digital Twins for cities: Analyzing the gap between
concepts and current implementations with a specific focus on
data integration." International Journal of Applied Earth
Observation and Geoinformation 122 (2023): 103440.

7. Sermet, Yusuf, and Ibrahim Demir. "Geospatial VR: A
web-based virtual reality framework for collaborative
environmental simulations." Computers & geosciences 159
(2022): 105010.

8. https://www.youtube.com/watch?v=y6pl.qsFXV3Y

9. https://cesium.com/blog/2018/09/17/autonomous-driving-bof-si
ggraph-2018-trip-report/

10. https://cesium.com/learn/unity/unity-quickstart/

1. https:/vimeo.com/830296548

12. https: h?v=YFGI ZSy5{t4
13. Stack, H. J. (1966). History of Driver Education in theUnited
States.

14. Marshall, D., Dow, B., & Brown, T. (2010). Validation of the
National Advanced Driving Simulator for the Study of Young
Driver Risk for the Center for Child Injury Prevention Science
I/UCRC.

Contact Information

Helen Loeb, Ph.D., Corresponding Author
Jitsik LLC

276 Barwynne Rd, Wynnewood PA 19096
Tel: (610) 731-3960

helen.loeb @jitsik.com
Acknowledgments

This work was funded, in part, by a grant from Mobility21 University
Transportation Center at the University of Pennsylvania and Carnegie
Mellon University (Project 342) which provided support through the
US Department of Transportation (USDOT). The Department
specifically disclaims responsibility for any analyses, interpretations
or conclusions. The content is solely the responsibility of the authors
and does not necessarily represent the official views of the US DOT.
We thank Rahul Mangharam from University of Pennsylvania,
Mike Peretz, and for their efforts.

Page 6 of 9

Definitions/Abbreviations

API Application Programming Interface
IMU Inertial Measurement Unit

VR Virtual Reality

MR Mixed Reality

BIM Building Information Modeling

https://www.youtube.com/watch?v=y6pLqsFXV3Y
https://cesium.com/blog/2018/09/17/autonomous-driving-bof-siggraph-2018-trip-report/
https://cesium.com/blog/2018/09/17/autonomous-driving-bof-siggraph-2018-trip-report/
https://vimeo.com/830296548
https://www.youtube.com/watch?v=YFGLZSy5ff4
mailto:helen.loeb@jitsik.com

Appendix: Cesium for Unity

Cesium for Unity Quickstart

This is a quickstart guide to building a Cesium for Unity app with
Cesium World Terrain and Cesium OSM Buildings.

A Cesium for Unity scene with Cesium World Terrain and Cesium
OSM Buildings, set in Chicago.

Prerequisites

e Aninstalled version of Unity 2021.3.2f1 or later. The latest
version of Unity 2021.3+ LTS is recommended. For
instructions on installing Unity, visit the Unity download
page and refer to the Installing Unity guide.

o A Cesium ion account to stream terrain and building assets
into Unity. Sign up for a free Cesium ion account if you
don’t already have one.

Cesium ion is an open platform for streaming and hosting 3D content,
and includes global, curated data that you can use to create your own
real-world applications.

1 Create a new project and import the Cesium For Unity package

1. Create a new Unity project. Unity recommends creating projects
with the Unity Hub, which you can download here. This tutorial was
written with Unity Hub 3.3.0.

Create a new project from the Projects tab by clicking the New
project button.

A new window should open, allowing you to configure your project.
This tutorial uses the 3D (URP) template, but the 3D (HDRP)
template will also work. Give your project a name and choose its file
location. Then, press Create project. Your new project will open
momentarily.

Cesium for Unity works with both the Universal Render Pipeline
(URP) and High Definition Render Pipeline (HDRP). However, it
does not support Unity’s built-in renderer. If you choose the empty
3D project as your template, the datasets loaded by Cesium will not
render properly.

2. Once the project has fully loaded, open the Project Settings by
going to Edit > Project Settings in the menu.

3. Click the Package Manager section on the left.

4. Add a new Scoped Registry with the following settings and click
Save:

Name: Cesium
URL: https://unity.pkg.cesium.com

Scope(s): com.cesium.unity

5. Close the project settings and then open the Package Manager by
going to Window > Package Manager in the menu.

6. In the Package Manager, click on the Packages drop-down and
select My Registries.

Page 7 of 9

7. Cesium for Unity will appear in the package list. Click on it, and
then click Install. Cesium for Unity and its dependencies will be
downloaded and installed.

2 Connect to Cesium ion

1. Open the Cesium window by selecting Cesium > Cesium from the
menu.

2. Click the Connect to Cesium ion button.

3. A pop-up browser window will open. If you are not logged in, log
in to your Cesium ion account. You can also sign in with your Epic
Games, Github, or Google account.

4. Once you are logged in, you'll see a prompt asking you to allow
Cesium for Unity to access your assets. Select Allow, then return to
Unity to continue.

5. Now you'll create a default access token for your project. Every
asset that you stream from Cesium ion requires an access token. In
this tutorial, you'll set a project-wide access token that all your assets
will use.

Click on the Token button at the top of the Cesium window.

6. A new window will appear to configure the token. Select the
Create a new token option, and rename the token if you wish. Then,
press the Create New Project Default Token button.

The new token you created will be added to your Cesium ion account.
If you already have a token in your Cesium ion account that you
would like to use, you can select it from the "Use an existing token"
drop-down instead of creating a new one.

Tokens created by Cesium for Unity access only the assets that you
allow. This follows security best practices for your Cesium ion
account. Whenever you use the Cesium panel or Cesium ion Assets
panel to add an asset to your scene, Cesium for Unity will
automatically update the appropriate permission for the token.

You may choose to manually configure your token and add or remove

assets using the Access Tokens page on Cesium ion.

3 Add a globe to your scene

Unity creates a new SampleScene whenever you create a new project.
Feel free to rename your scene. Verify that it contains a Main Camera
and a Directional Light in the Hierarchy window.

If either of these objects is missing, you can add it from the menu by
clicking GameObject > Camera or GameObject > Light > Directional
Light, respectively. You may have additional objects in your scene
depending on which render pipeline you chose, which is fine.

With these basic objects in your scene, you are ready to add an asset
from Cesium ion.

https://unity3d.com/unity/qa/lts-releases
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://docs.unity3d.com/Manual/GettingStartedInstallingUnity.html
https://cesium.com/ion/signup
https://unity.com/unity-hub
https://cesium.com/ion/tokens?page=1

1. From the Cesium window, add "Cesium World Terrain + Bing
Maps Aerial imagery" by clicking the button next to that entry.

Terrain will start to appear in the scene.

2. Take a look at the Hierarchy window. You should see two new
game objects. One of them, Cesium World Terrain, is the tileset you
just created. The parent of the tileset, CesiumGeoreference, is created
automatically the first time you add a 3D Tileset to the scene.

3. If Cesium World Terrain is not already selected, select it now. In
the Inspector window, you'll see more information about this game
object.

This is a Cesium3DTileset component. When attached to a game
object, it streams 3D Tiles data into Unity and provides ways to
configure that tileset.

You'll learn about many of the available settings in future tutorials.
For now, feel free to explore and try out the different settings
yourself. Hover over any setting with your mouse to learn more about
what it does.

Once you're ready, continue to the next section.

4 Configure the Main Camera

In your scene, you should have a game object named Main Camera
with a Camera component attached. If you added a camera to the
level yourself, it may be called Camera instead. This camera will
capture your scene during Play Mode. You can preview this by
clicking the Game tab.

You may notice that the terrain on the horizon is strangely cut off.
This clipping can also happen in the Scene view while moving the
Editor camera around, though it is usually less obvious.

This happens because cameras in Unity can only see a limited range
in front of them. If you view your camera from the Scene view, you
can see its range visualized as a frustum, like below.

The start and end of the camera’s frustum are defined by the clipping
planes. These represent the distances from the camera at which
objects will show up. It is clear that the camera cannot see very far in
the distance.

Cesium World Terrain is a full-scale globe, so Unity is rendering
terrain that spans hundreds of thousands of miles, just from this
camera view! However, Unity’s cameras are not configured to see
objects this far by default. Fortunately, you can manually adjust the
clipping planes so the camera can properly view the scene in Play
Mode.

1. Select your camera from the Hierarchy window, and go to the
Camera settings in the Inspector. Find the values of the Clipping
Planes.

Page 8 of 9

The Near clipping plane is the minimum distance from the camera
where objects start to appear. If this is a large value, objects close to
the camera will not show up. On the other hand, the Far clipping
plane is the maximum distance from the camera that objects will
appear. Anything farther than the Far plane will not appear.

It is clear that the camera cannot see very far in the distance.
However, this can be easily changed in the Camera component.

2. Set the Near value to 1 and the Far value to a large value, at least
100,000. This will significantly extend the sight of the camera and
prevent the terrain from being clipped in-game.

In your own applications, these values can change depending on your
use cases. For example, you can set the Near plane to a larger value if
you plan to show data only from far away. Try not to let the Far plane
get too far away from the Near plane, or you may run into rendering
issues. See the Unity documentation for the Camera component for
more details.

Now that your camera can see more of the scene, feel free to position
the camera to get the best view of the terrain. You can use the Move
and Rotate tools in the Scene view to move the camera to the perfect
spot. You can also switch to these tools by pressing the W and E keys
on your keyboard respectively.

The Unity Editor’s camera works a bit differently than the in-game
cameras. You can view its settings by clicking the camera icon from
the Scene view.

The editor camera has an option for Dynamic Clipping, which
automatically adjusts the Near and Far values of the camera
depending on what is visible in your scene. When this option is
checked, the Near and Far planes cannot be manually adjusted.

This setting is useful when working with Cesium for Unity, especially
when zooming in and out on the globe. However, the automatic
adjustments are not always precise, and clipping may still occur. If
necessary, you can disable this option and set the Near and Far values
yourself. You can also change the Camera Speed if you want to travel
around the globe faster in the Editor.

5 Add global 3D buildings to your scene

Now that you’ve adjusted your camera to render more of the Unity
scene, let’s return to adding content to the world. Cesium for Unity
can visualize more than just terrain, which we can demonstrate with a
global dataset of city buildings.

1. Select the CesiumGeoreference game object in the
Hierarchy window. This object determines where in the
world your Unity scene is set. The scene's current latitude,
longitude, and height can be changed with this game object.

2. In the Inspector window, look for the Latitude, Longitude,
and Height variables under the Origin (Longitude Latitude
Height) header.

These coordinates currently point to the hills outside Denver,
Colorado, USA.

https://docs.unity3d.com/Manual/class-Camera.html

3. Change these variables to the coordinates of your favorite city. This
tutorial uses the following coordinates for Chicago, Illinois, USA.

Latitude: 41.878101
Longitude: -87.59201
Height: 1000.0

After entering these coordinates, the scene will have shifted to the
new location.

4. The city looks very flat because Cesium World Terrain doesn't
include building details. Fortunately, the Cesium OSM Buildings
dataset can be added to fill the empty space.

In the Cesium window, locate the Cesium OSM Buildings option
underneath Quick Add Cesium ion Assets. Click to add the data to
the scene.

The buildings should now appear on top of the terrain. You may be
able to recognize some of the buildings that make up the Chicago
skyline!

6 Explore your scene

Now that you have added global real-world content to your scene,
let’s learn how to navigate it. You’ll learn multiple ways to move the
Editor camera through your scene. You’ll also learn about the
Dynamic Camera, a controller included in the Cesium for Unity
package that will help you navigate the Earth's immense size during
play mode.

The Editor camera can be controlled by using your keyboard and
mouse. With the Scene View selected, use the arrow keys to move the
camera forward, backward, left, or right. You can pan the camera by
either selecting the hand icon in the Tools menu or holding the
middle mouse button, then dragging across the Scene View window.

To look around with the camera, hold the right mouse button and drag
the mouse across the Scene View. You can also rotate the camera by
holding Alt and dragging with the left mouse button. Lastly, you can
use the mouse’s scroll wheel, or hold Alt while dragging with the
right mouse button, to zoom in and out of the scene.

If the Editor camera is moving too slowly, you can adjust the Camera
Speed as described in the previous step.

For play mode, Unity provides a Character Controller component that
you can attach to your camera to move it through the scene. However,
you may need a controller that accounts for the scale of real-world
data and can efficiently navigate the globe at any altitude. This is
where Cesium for Unity’s Dynamic Camera comes in.

Cesium's DynamicCamera is a globe-aware camera controller that
can adjust its orientation based on where it is on the globe. The
DynamicCamera is able to dynamically adjust its clipping planes so
the globe is not clipped as it zooms out. It also offers easier
navigation of the globe by allowing users to adjust its movement
speed with the mouse wheel, and providing the ability to fly between
global locations along a curved path.

1. Using the Cesium panel, add a Dynamic Camera to your scene.

Page 9 of 9

The DynamicCamera should appear under the existing
CesiumGeoreference in the Hierarchy window.

2. Disable the Main Camera by selecting it in the Hierarchy window
and unchecking the box next to its name in the Inspector. The
DynamicCamera will become the new main camera of the scene. You
can also remove the Main Camera object from the scene entirely.

3. Since the DynamicCamera is a georeferenced object, it will
maintain its position relative to its coordinates on the globe, and not
the standard Unity world coordinates. This means that if the
CesiumGeoreference’s Origin is changed to a different location, the
DynamicCamera will stay behind.

If you'd like to move it to your new location, select it in the Hierarchy
window and find its Transform in the Inspector. Change its Position’s
X, Y, and Z coordinates to 0 to move it to the Unity origin. You can
also right-click the three dots on the Transform component and select
Reset from the drop-down menu.

4. You're ready to test out your scene! Press the Play button at the top
toolbar.

You can use the W, A, S, and D keys and the mouse to fly around.
You can also use the Q and E keys to move the camera vertically with
respect to the globe. Use the mouse scroll wheel if you need to
change your speed.

You've created your first scene with Cesium for Unity. Feel free to
explore and check out the world!

