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F1tenth: Low-Cost Open-Source Platform for 
Perception, Planning & Control
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F1tenth Course

A. Robotics and ROS basics
a. Sensors and Mechanics
b. Simulator 
c. Safe AV control basics

B. Navigation 
a. Reactive planning
b. Mapping  and Localization
c. Pure Pursuit planning
d. AV Ethics

C. AV Race Planning
a. Raceline optimization
b. RRT Planner
c. Model Predictive Control

D. Vision and Learning
a. Detection and Pose Estimation
b. RL

E. Hands-on Project
a. Drive till you MHz!

5



10th F1Tenth Autonomous Racing Competition
At ICRA 2022 in Philadelphia

100+ Participants 23 Teams
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F1tenth Race at ICRA2022
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http://www.youtube.com/watch?v=4HrYA55CxQ4&t=157


Current Racing Stack

• CPU:
– Planner: Raceline, Graph planner, etc.
– Control: Pure Pursuit, MPC, etc.

• GPU
– Localization: Particle Filter, VLAM, etc.
– FULL
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Indoor Localization with Map

• Commonly used methods --- Particle Filter
– Need to simulate lidar for each particle
– High computation and long latency
– Only possible with 2D lidars

Particle filter localization process.

https://classes.cs.uchicago.edu/archive/2022/spring/20600-1/part
icle_filter_project.html 9



Indoor Localization with Map

• Commonly used methods --- Particle Filter
– Need to simulate lidar for each particle
– High computation and long latency
– Only possible with 2D lidars

• Localization with Invertible Neural Networks
– Small NN-based method: Cheap, Fast and Low latency.
– Accurate localization and Expandable to 3D Lidar
– Fast Converge in Global Localization.
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Localization as an Ambiguous Inverse Problem
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Localization as an Ambiguous Inverse Problem
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Invertible neural networks(INN) - Normalizing Flow

Example 1

Example 2
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Invertible Structure
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Coupling Layer
• Forward:

 
• Reverse:

s() and t() are fully-connected layers with ReLU

u_in is u, u_out is v

Condition (c)
[x, y, yaw] [Lidar scan points]

Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio. "Density 
estimation using real nvp." arXiv preprint arXiv:1605.08803 (2016).



Localization as an Inverse Problem

Invertible Neural Network

X: robot pose x
Condition: previous robot pose x’
Y: lidar scans s
Z: latent variables z ~N(0, 1)

Forward: x | x’ ➛ s, z
Reverse: s, z | x’ ➛ x
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Ardizzone, Lynton, et al. "Analyzing inverse problems with invertible neural 
networks." arXiv preprint arXiv:1808.04730 (2018).



Structure
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Positional Encoding:



Structure
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Conditional Input: 



Map Reconstruction
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• Random sampling in the state space.
• Convert output lidar scans to the map coordinates.

Indoor Hallway Map

Real Reconstruction

X - Robot state
Y - Lidar scans
Z - INN Latent



2D Experiments
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2D Experiments

F1tenth Car

NVIDIA Jetson Xavier NX
Hokuyo 2D LiDAR
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2D Experiments

Hallway
Outdoor

Real-world Localization on the F1tenth Car 21

http://www.youtube.com/watch?v=OD8Pd2Z3GKc&t=4
http://www.youtube.com/watch?v=PTix1f_Hop0&t=5


2D Experiments (Local_INN vs. Particle filter)

Real-world Localization on the F1tenth Car 22

https://docs.google.com/file/d/199YvkE9Lf663O54FP77Kjwo5SiF6ApAw/preview


2D Experiments
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3D Experiments
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3D Experiments - Carla (simulation)

Reference
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http://www.youtube.com/watch?v=UwkG26VjZnw


3D Experiments - Mulran (real)

26

http://www.youtube.com/watch?v=0sVF-gshCpw


Global Localization

Fast converge 
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Global Localization with Local_INN

• During the global localization, we have multiple starting pose hypotheses, and we 
use incoming sensor measurements to narrow them down.
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Global Localization with Local_INN

• During the global localization, we have multiple starting pose hypotheses, and we 
use incoming sensor measurements to narrow them down.
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Global Localization with Local_INN

• How do we know which one is correct?
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Global Localization with Local_INN

• We can look at what the network is expecting.
• This is possible because of the invertibility of the network.
• The network not only outputs an answer, but can also be queried 

for a reason.
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Global Localization with Local_INN
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Benefits of Local_INN

• Small NN-based method:
– Cheap, Fast and Low latency.

• Accurate localization: 
– Comparable to particle filter at low speed; Higher precision than 

particle filter at high speed.
• Expandable to 3D Lidar: 

– No map file needed.
• Fast Converge in Global Localization.
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Can we use it with images?

Can we do pose regression with INN?



The Pose Regression Problem (image -> 6DoF pose)

• PoseNet: 
– CNN + average pooling + linear

• After PoseNet: 
– different architectures, 

– better optimization methods, etc.

• Recently, with NeRF
– More than 50% improvement: LENS, DFNet, etc.
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What can NeRF do?

Input Image Train a NeRF Model Render Any Angle!

 It can render photo-realistic images by interpolating between input frames.



What can NeRF do?



Pose Regression as An Inverse Problem

Sampled Pose Space

Trained NeRF

Sampled Image Space

RenderingGuided 
Sampling

Forward Path

Reverse Path
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Pose Regression as An Inverse Problem

Sampled Pose Space

Trained NeRF

Sampled Image Space

RenderingGuided 
Sampling

Forward Path

Reverse Path

Normalizing Flows
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Data Preparation

• Train a nerfacto with the training images.
• Output point cloud from NeRF model and sample 50k camera poses. 
• Render 50k 160x90 images with NeRF.
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Complete in 1 hour



Structure
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Results
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Real-world 2D Localization 154Hz on Jetson Xavier NX board



Uncertainty Estimation
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Thank you!
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