

Local_INN: Implicit Map Representation and Localization with Invertible Neural Network

Zirui Zang, Hongrui Zheng, Johannes Betz, Rahul Mangharam

About our lab at UPenn

Rahul Mangharam

Hongrui Zhang (Billy) Multi-agent Interaction, Game-theoretic Learning

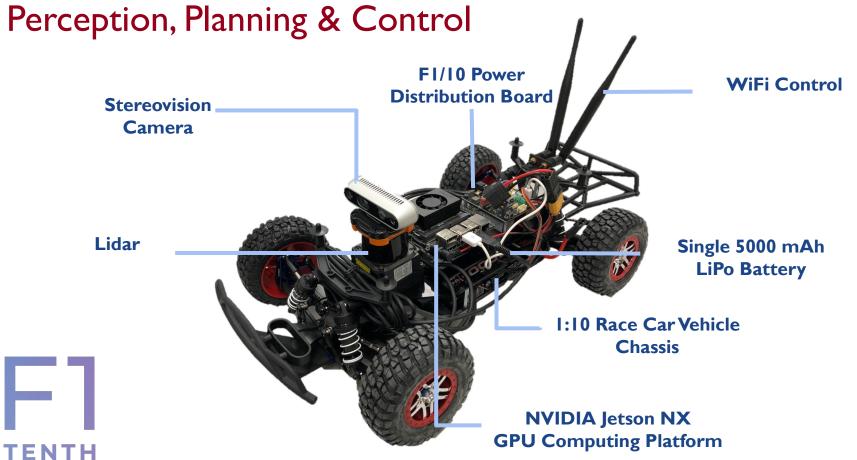
Zirui Zang Localization, Perception

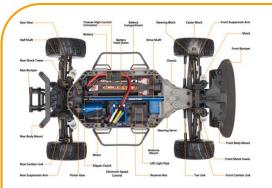
xlab for safe autonomous systems

Nandan Tumu Motion Prediction

Ahmad Amine Model Predictive Control

FItenth: Low-Cost Open-Source Platform for





Chassis Design

Software Architecture

:::ROS2

Filters

generation

Computer

Fltenth **Powerboard**

2D

Lidar

Stereo

Mono Camera

VESC Wifi Controller

NVIDIA Jetson NX **GPU Compute Platform**

System Integration

Research Enabled

Secure Autonomy Coordinated Autonomy

Efficient Autonomy

F1/10 Simulator

Lane Keeping Assist AV Data Collection

Control

Model-Predictive Simultaneous Localization

And Mapping (SLAM)

DNN Racing

GPU

Acceleration

Localization Path planning Controller

Steering

Drive

Perception

Z zuncinii

Planning

Control

TENTH

FItenth Course

A. Robotics and ROS basics

- a. Sensors and Mechanics
- b. Simulator
- c. Safe AV control basics

B. Navigation

- a. Reactive planning
- b. Mapping and Localization
- C. Pure Pursuit planning
- d. AV Ethics

C. AV Race Planning

- a. Raceline optimization
- b. RRT Planner
- c. Model Predictive Control

D. Vision and Learning

- a. Detection and Pose Estimation
- b. RL

E. Hands-on Project

a. Drive till you MHz!

Lecture	Lecture Topic	Tutorial	Assignments Out			
	Module A: Introduction to ROS, F110 & the Simulator					
1	Introduction to Autonomous Driving: Perception, Planning Control	T1: Intro to Docker & ROS 2	Lab 1: ROS 2 (individual)			
2	Automatic Emergency Braking	T2: Intro to F1Tenth Sim	Lab 2: Automatic Emergency Braking			
3	Rigid Body Transforms	T3: ROS2 and tf2				
	Module B: Reactive Methods & RACE!					
4	Wall Following	T4: Race car hands-on	Lab 3: Wall Following			
5	Follow the Gap: Obstacle Avoidance	THE TRANSPORT	Lab 4: Follow the Gap			
6	Vehicle State and Dynamics					
7	Scan matching		Lab 5. Scan Matching			
8	Race Preparation					
9	Race 1: Reactive					
	Module C: Mapping & Localization					
10	Localization: Particle Filter	T5: Running Particle Filter				
11	SLAM: Cartographer	T6: Cartographer/HectorSLAM	Lab 6: Carto & Pure Pursu			
12	Pure Pursuit					
	Module D: Planning & Control					
13	Global Planning: Maps, A*, Djikstra					
14	Local Planning: RRT, Spline Based Planner		Lab 7: Motion Planning			
	SPRING BREAK					
15	Path Tracking: MPC					
	Module E: Vision					
16	Classical Perception and Vision - Lane Detection & Optical Flow		Lab 8: Perception & Vision			
17	ML Perception and Vision - Object Detection and Tracking		Lab 9: Ethics for AVs			
18	Race Prep					
19	Race 2: With Map					
20	Final Project Overviews		Final Project Proposal			
21	Ethics					
	Module F: Special Topics					
22	Raceline Optimization: Minimum Curvature, Minimum Time, Tunercar		Final Project			
23	Theme 1: Autonomous Racing in the Real World					
24	Theme 2: AV Perception					
25	Theme 3: AV Middleware, OS					
	Flex					
	Module G: F1TENTH Grand Prix!!					
26	Project Demos					
27	Race Prep					
28	Final Race Day					
29	Final Project Documentation Submission Deadline					

10th F1Tenth Autonomous Racing Competition At ICRA 2022 in Philadelphia

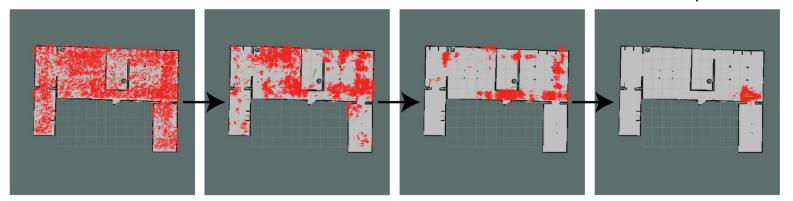
Current Racing Stack

- CPU:
 - Planner: Raceline, Graph planner, etc.
 - Control: Pure Pursuit, MPC, etc.
- GPU
 - Localization: Particle Filter, VLAM, etc.
 - FULL

Indoor Localization with Map

- Commonly used methods --- Particle Filter
 - Need to simulate lidar for each particle
 - High computation and long latency
 - Only possible with 2D lidars

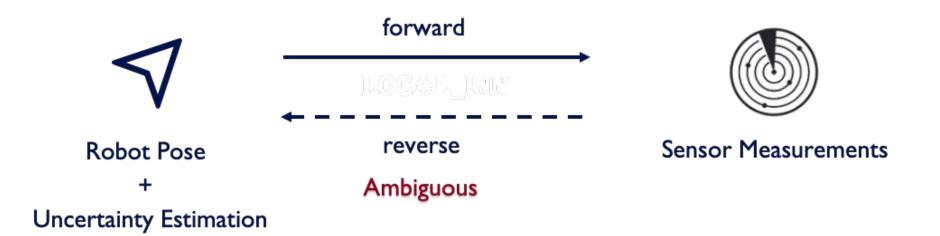
Particle filter localization process.



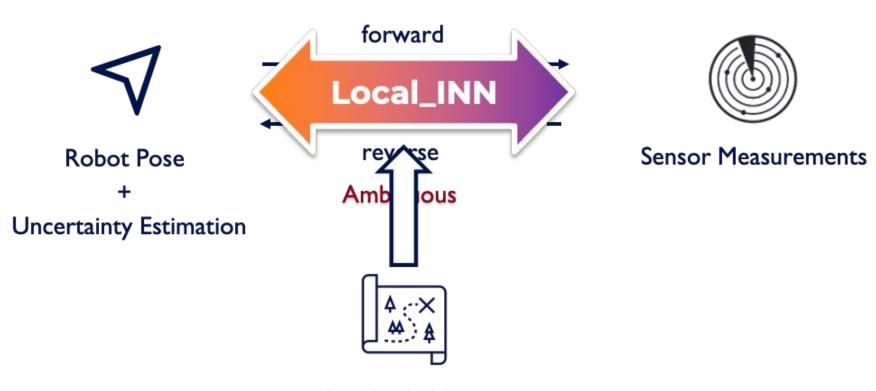
Indoor Localization with Map

- Commonly used methods --- Particle Filter
 - Need to simulate lidar for each particle
 - High computation and long latency
 - Only possible with 2D lidars
- Localization with Invertible Neural Networks
 - Small NN-based method: Cheap, Fast and Low latency.
 - Accurate localization and Expandable to 3D Lidar
 - Fast Converge in Global Localization.

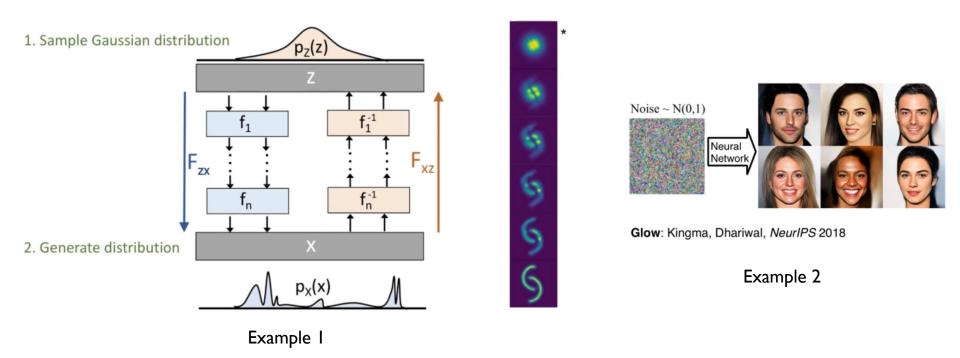
Localization as an Ambiguous Inverse Problem



Localization as an Ambiguous Inverse Problem



Invertible neural networks(INN) - Normalizing Flow



Invertible Structure

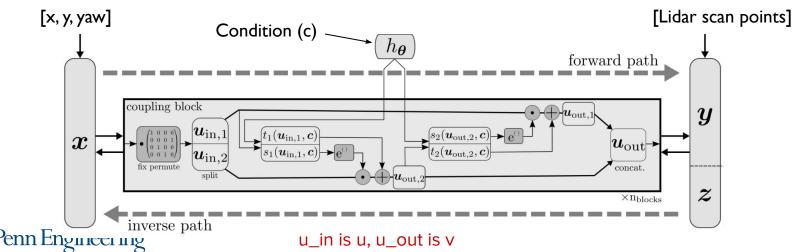
Coupling Layer s() and t() are fully-connected layers with ReLU

Forward:

$$\mathbf{v}_1 = \mathbf{u}_1 \odot \exp(s_2(\mathbf{u}_2)) + t_2(\mathbf{u}_2), \qquad \mathbf{v}_2 = \mathbf{u}_2 \odot \exp(s_1(\mathbf{v}_1)) + t_1(\mathbf{v}_1).$$

Reverse:

$$\mathbf{u}_2 = (\mathbf{v}_2 - t_1(\mathbf{v}_1)) \odot \exp(-s_1(\mathbf{v}_1)), \qquad \mathbf{u}_1 = (\mathbf{v}_1 - t_2(\mathbf{u}_2)) \odot \exp(-s_2(\mathbf{u}_2)).$$



Localization as an Inverse Problem

X: robot pose x

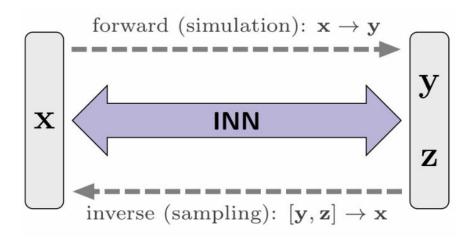
Condition: previous robot pose x'

Y: lidar scans s

Z: latent variables $z \sim N(0, 1)$

Forward: $x \mid x' \rightarrow s, z$

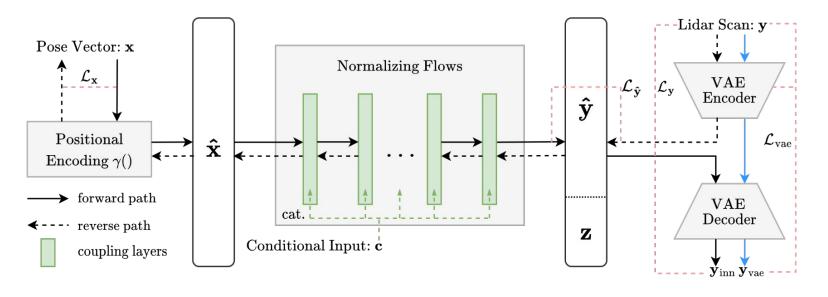
Reverse: s, z | $x' \rightarrow x$



Invertible Neural Network

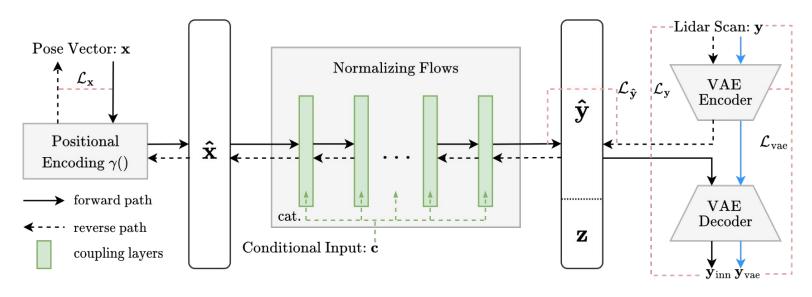
Ardizzone, Lynton, et al. "Analyzing inverse problems with invertible neural networks." arXiv preprint arXiv:1808.04730 (2018).

Structure



Positional Encoding:
$$\gamma(p)=(\sin(2^0\pi p),\cos(2^0\pi p),\ldots,\\ \sin(2^{L-1}\pi p),\cos(2^{L-1}\pi p)).$$

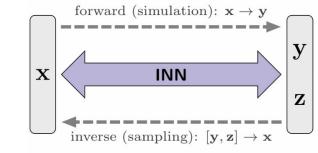
Structure



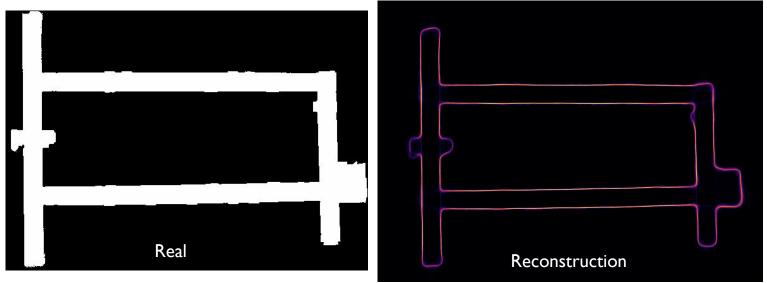
Conditional Input:
$$\mathbf{c} = \frac{\lceil N\mathbf{x}^{\text{pre}} \rfloor}{N}, \hat{\mathbf{c}} = h_{\text{cond}}(\gamma(\mathbf{c}))$$

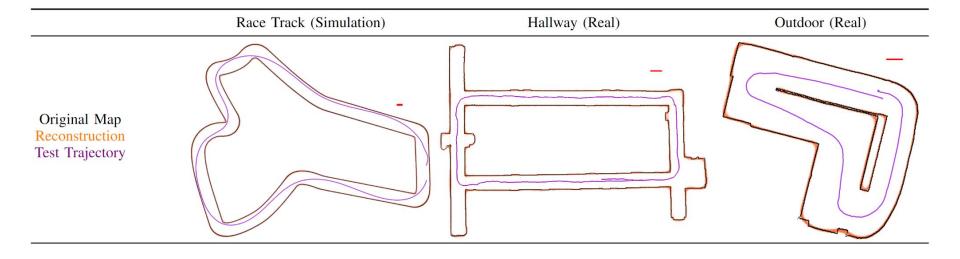
Map Reconstruction

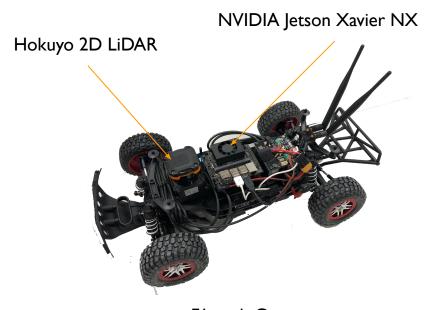
- Random sampling in the state space.
- Convert output lidar scans to the map coordinates.



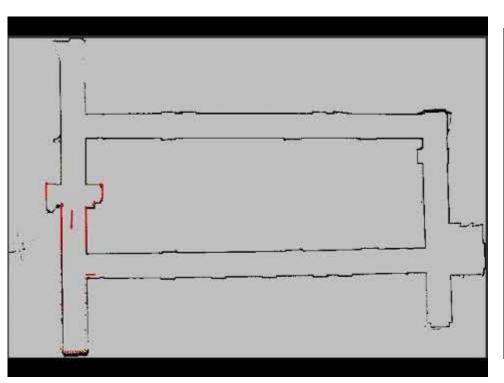
- X Robot state
- Y Lidar scans
- Z INN Latent

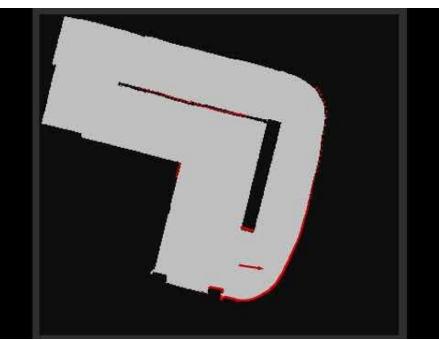






FItenth Car





Outdoor

Hallway

2D Experiments (Local_INN vs. Particle filter)

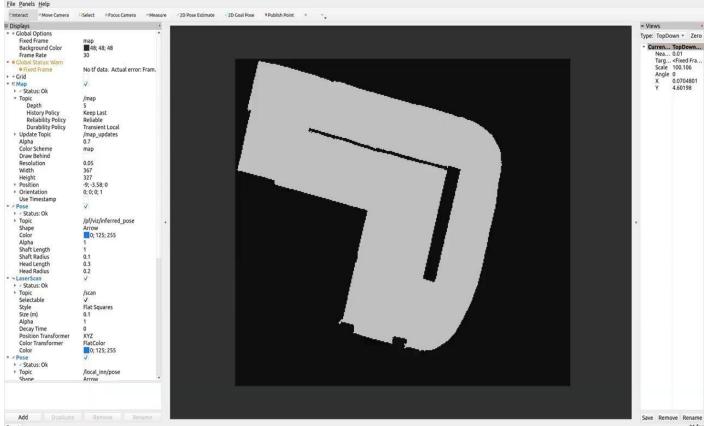


TABLE I
MAP RECONSTRUCTION AND LOCALIZATION ERRORS WITH 2D LIDAR

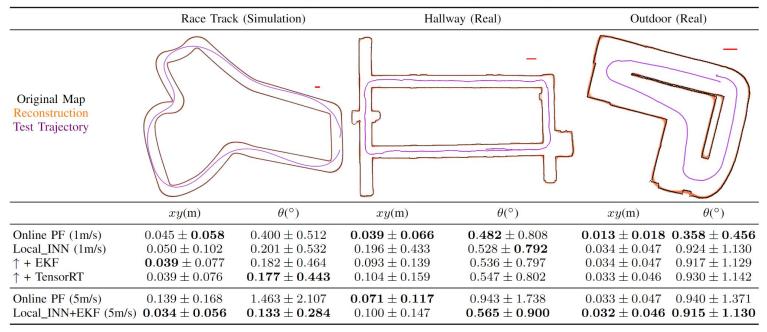


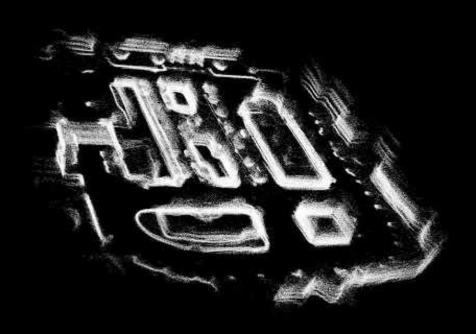
TABLE II
RUNTIME COMPARISONS ON NVIDIA JETSON NX

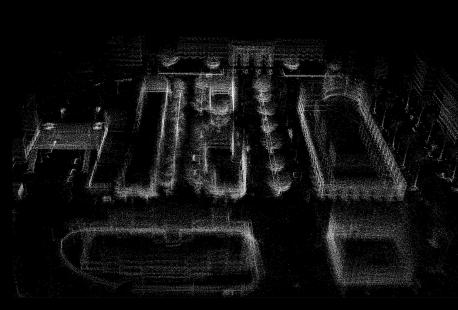
Online PF	45 Hz
Local_INN (Pytorch)	48 Hz
Local_INN+TensorRT	270 Hz

TABLE III
COMPARISON OF LOCALIZATION RMS ERRORS WITH 3D LIDAR

Methods $(xy[m], \theta[^{\circ}])$	CARLA	Mulran	Apollo
Local_INN in-session	0.27, 0.12	0.29, 0.24	0.50, 0.26
Local_INN out-session Chen et al.	$\begin{bmatrix} -, - \\ 0.48, 3.87 \end{bmatrix}$	1.41, 1.00 $0.83, 3.14$	$1.22, 0.53 \\ 0.57, 3.40$
RaLL (Yin et al.)	_,_	1.27, 1.50	-,-

3D Experiments - Carla (simulation)

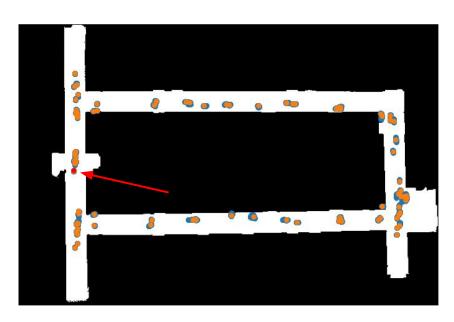




Reference

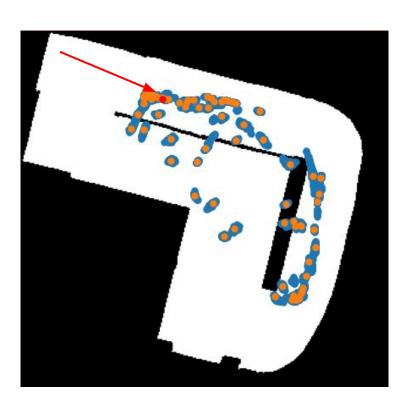
3D Experiments - Mulran (real)

Global Localization



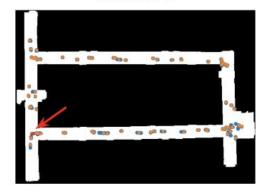
(Tracking)

Red: Correct Pose Cyan: Converged Pose

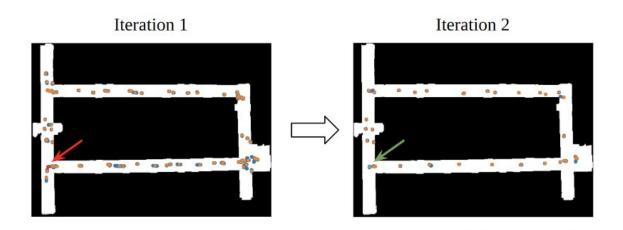


During the global localization, we have multiple starting pose hypotheses, and we
use incoming sensor measurements to narrow them down.

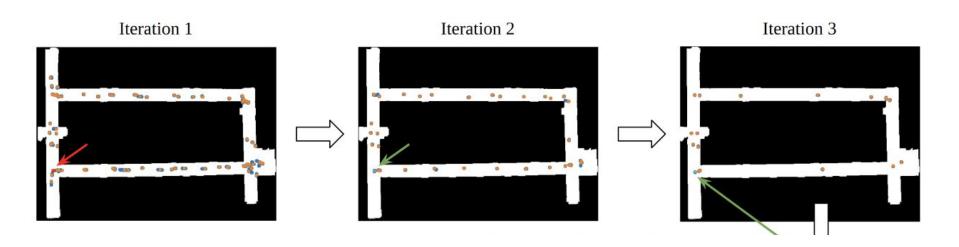
Iteration 1



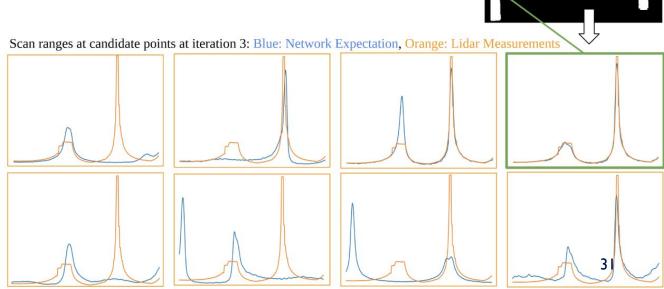
• During the global localization, we have multiple starting pose hypotheses, and we use incoming sensor measurements to narrow them down.



How do we know which one is correct?



- We can look at what the network is expecting.
- This is possible because of the invertibility of the network.
- The network not only outputs an answer, but can also be queried for a reason.



Iteration 3

Algorithm 1 Local_INN Global Localization

```
1: n \leftarrow N, m_i \leftarrow M, w_i \leftarrow 1/M \text{ for } i = 1 \dots n
 2: \mathcal{X}^{\text{rand}} \leftarrow \text{random sample}(\mathcal{S}, n)
 3: C_0 \leftarrow \text{convert to cond inputs}(\mathcal{X}^{\text{rand}})
 4: while new LiDAR scan y_{t+1} coming do
 5:
            for i=1\ldots n_t do
                   \mathbf{x}_{t+1,i} \leftarrow \text{Local\_INN\_reverse}(\mathbf{y}_{t+1}, \mathbf{c}_i, m_i)
 6:
                   \mathcal{X}_{t+1}.append(\mathbf{x}_{t+1,i})
                   \mathbf{y}_{\text{inn},i} \leftarrow \text{Local\_INN\_forward}(\mathbf{x}_{t+1,i},\mathbf{c}_i)
                   w_i \leftarrow 1/\|\mathbf{y}_{\text{inn},i} - \mathbf{y}_{t+1}\|_1
           end for
10:
            \mathcal{C}_{t+1} \leftarrow \text{convert\_to\_cond\_inputs}(\mathcal{X}_{t+1})
11:
12:
          n_{t+1} \leftarrow |\mathcal{C}_{t+1}|
          for i = 1 ... n_{t+1} do
13:
                   m_i \leftarrow \text{normalized}(w_i) n_{t+1} M
14:
             end for
15:
16: end while
```

GLOBAL LOCALIZATION SUCCESS RATES IN DIFFERENT ENVIRONMENTS
AT ITERATION 10

Map	Converged	Tracking	Δ_{xy} , Δ_{θ}
Race Track	79.5%	99.5%	0.075, 0.274
Hallway	66.4%	91.1%	0.258, 0.538
Outdoor	98.5%	100%	0.049, 0.911
Mulran	93.5%	95.0%	0.884, 0.454
Apollo	82.5%	83.0%	1.569, 0.122

Benefits of Local_INN

- Small NN-based method:
 - Cheap, Fast and Low latency.
- Accurate localization:
 - Comparable to particle filter at low speed; Higher precision than particle filter at high speed.
- Expandable to 3D Lidar:
 - No map file needed.
- Fast Converge in Global Localization.

Can we use it with images?

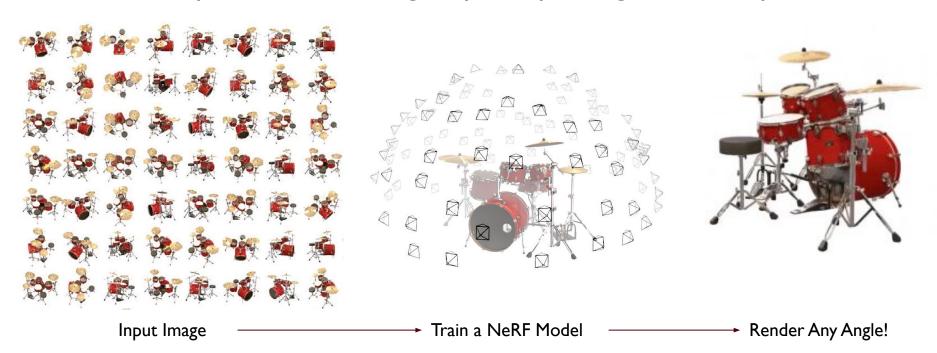
Can we do pose regression with INN?

The Pose Regression Problem (image -> 6DoF pose)

- PoseNet:
 - CNN + average pooling + linear
- After PoseNet:
 - different architectures,
 - better optimization methods, etc.
- Recently, with NeRF
 - More than 50% improvement: LENS, DFNet, etc.

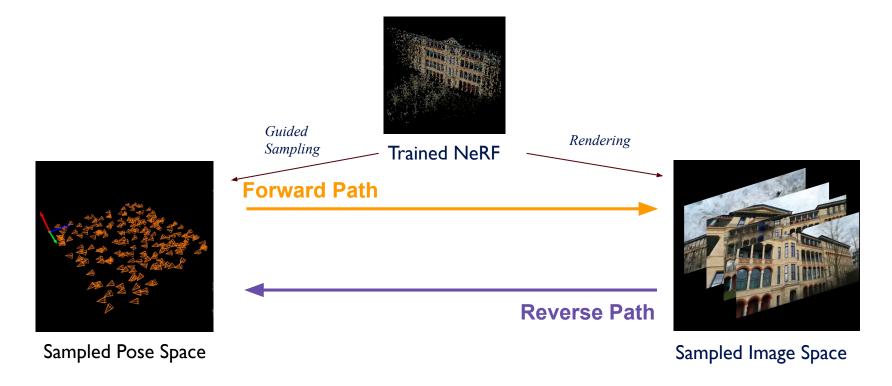
What can NeRF do?

It can render photo-realistic images by interpolating between input frames.

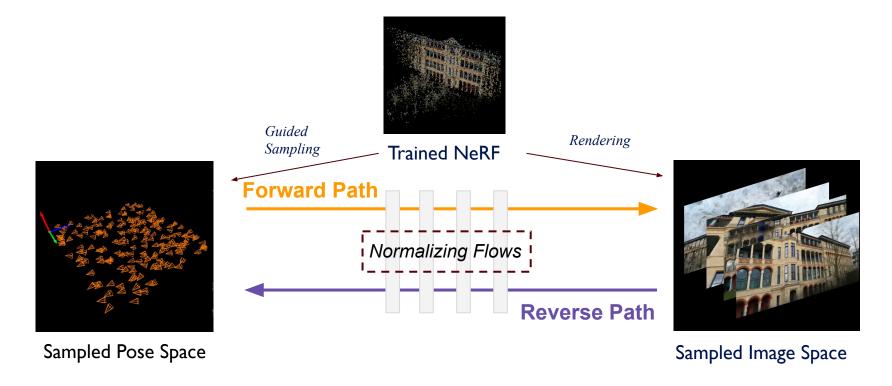


What can NeRF do?

Pose Regression as An Inverse Problem

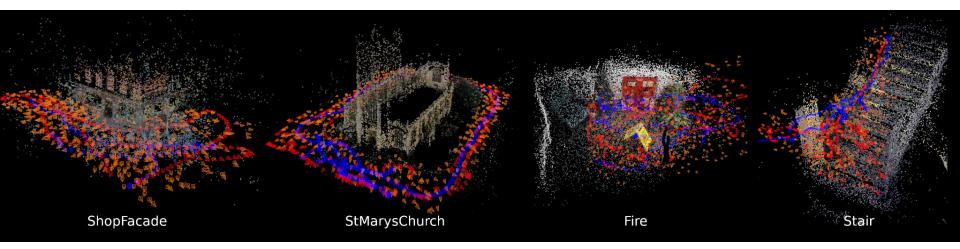


Pose Regression as An Inverse Problem



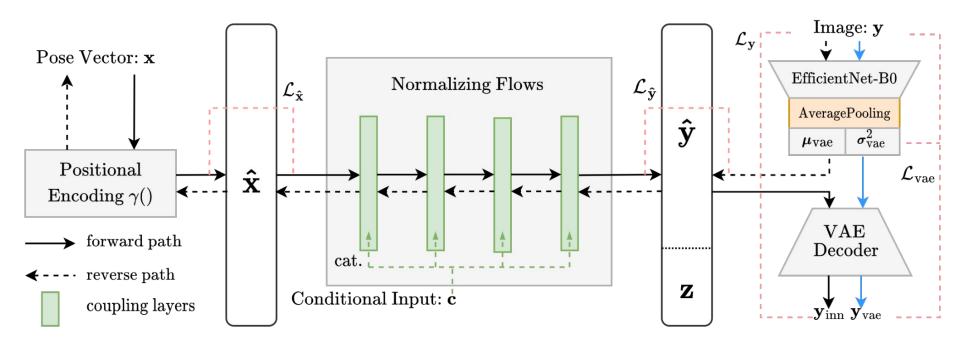
Data Preparation

- Train a nerfacto with the training images.
- Output point cloud from NeRF model and sample 50k camera poses.
- Render 50k 160x90 images with NeRF.



Small pyramids represent training poses, testing poses, and sampled poses.

Structure



Results

Table 1. Comparison of Median Errors of Camera Regression with Other State-of-the-Art Methods					
$(xy[m], \theta[^{\circ}])$	Active Search[20]	SPPNet[19]	LENS[15]	$DFNet_{dm}[5]$	Pose_INN
Kings	0.42, 0.60	0.74, 1.00	0.33, 0.50	0.43, 0.87	0.52, 0.75
Hospital	0.44, 1.00	2.18, 3.90	0.44 , 0.90	0.46, 0.87	0.47, 0.83
Shop	0.12, 0.40	0.59, 2.50	0.27, 1.60	0.16, 0.59	0.25, 1.04
Church	0.19, 0.54	1.44, 3.35	0.53, 1.60	0.50, 1.49	0.47 , 1.58
Average	0.29, 0.63	1.24, 2.74	0.39, 1.25	0.39, 0.96	0.43, 1.06
Chess	0.04, 2.00	0.12, 4.40	0.03, 1.30	0.04, 1.48	0.05, 1.60
Fire	0.03, 1.50	0.22, 8.90	0.10, 3.70	0.04, 2.16	0.10, 2.61
Heads	0.02, 1.50	0.11, 8.30	0.07, 5.80	0.03, 1.82	0.06, 4.20
Office	0.09, 3.60	0.16, 5.00	0.07, 1.90	0.07, 2.01	0.09, 3.16
Pumpkin	0.08, 3.10	0.21, 4.90	0.08 , 2.20	0.09, 2.26	0.09, 1.86
Kitchen	0.07, 3.40	0.21, 4.80	0.09, 2.20	0.09, 2.42	0.10, 2.35
Stairs	0.03, 2.20	0.22, 7.20	0.14, 3.60	0.14 , 3.31	0.18, 2.80
Average	0.05, 2.50	0.18, 6.20	0.08, 3.00	0.07, 2.21	0.09, 2.65

	Table 2. Data Generation Strategy Comparison (Error Data from 7Scene)					
,	Model	Backbone Top-1 Acc.	Pose Error (m/°)	Synthetic Resolution	Rendering Cost	Generation Mode
	LENS(EB3)	81.1%	0.08/3.00	High	Expensive	Offline
	DFNet(EB0)	76.3%	0.08/3.47	Low	Cheap	Online
U	Pose_INN(EB0)	76.3%	0.09/2.65	Low	Cheap	Offline

Table 3. Median Localization Errors with 2D LiDAR vs. Camera Indoor Outdoor train trajectory test trajectory sampled points 1m $(xy[m], \theta[^{\circ}])$ $(xy[m], \theta[^{\circ}])$ Online PF **0.01**, 0.23 0.02, 0.360.12, 0.72Pose_INN 0.02, 0.31 $0.02, \mathbf{0.22}$ 0.10, 0.65Pose_INN + EKF

Uncertainty Estimation

Table 4. Output Filtering with Uncertainty Estimation

$(xy[m], \theta[^{\circ}])$	Raw Mean Error	With Filtering
Kings	0.93, 1.02	0.58, 0.96
Hospital	0.87, 1.14	0.64 , 0.97
Shop	0.59, 5.00	0.20, 1.04
Church	0.81, 2.43	0.52, 1.21
Average	0.84, 2.55	0.68, 1.87

Thank you!