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Problem Description 
 
Connected autonomous vehicles (CAVs) are gradually advancing towards widespread 
deployments. CAVs promise to improve transportation safety by operating more 
efficiently and avoiding incidents like crashes due to human driver error. However, they 
may cause crashes or other safety incidents themselves, especially when interacting 
with humans. For example, Cruise famously was forced to pause its testing of driverless 
vehicles when one such vehicle appeared to severely injure a pedestrian in San 
Francisco. On a systemic level, CAVs may encourage more risky behavior, as CAVs may 
not be able to accurately predict human actions, or humans may overestimate CAVs’ 
capabilities of avoiding safety incidents, leading to their taking riskier actions. 
 
As CAVs advance towards larger-scale deployments, we can expect that they will share 
the road with human-driven vehicles and human bicyclists and pedestrians. Thus, from 
a safety perspective, it is important to understand how CAVs will interact with humans 
and in particular whether their presence will have a significant effect on safety. These 
effects can be both direct and indirect: for example, if CAVs increase the density of 
vehicles on roads, then these vehicles (both CAVs and human-driven vehicles) may be 
more likely to get into accidents themselves, due to the increased density of traffic. 
Conversely, if CAVs can facilitate smoother flow of traffic, thus reducing the overall 
likelihood of traffic accidents, then they may have indirect positive benefits on the 
overall rate of vehicular accidents and thus safety. The goal of this project is to evaluate 
the potential safety benefits of CAVs in mixed-autonomy settings, in which CAVs and 
human vehicles share the road. 
 
Approach and Methodology 
 
Our work has three parts: (i) estimating the effective incident rates of CAVs and how 
they are distributed across a city; (ii) incorporating CAVs’ and human drivers’ ability to 
react to human pedestrians; and (iii) evaluating our models and analysis in our mixed-
autonomy simulator for a variety of road topologies. 
 
Our approach is fundamentally simulation-based, as it is difficult to accurately model 
the dynamics of human and CAV interactions at the scale of a city with hundreds or 
thousands of vehicles operational at any given time. We draw from existing models of 
vehicle flow, which typically use microscopic models for individual vehicle behavior and 
macroscopic models to model a network of interacting vehicles. Neither are a good fit 
for our work, as we would like to model how individual vehicle decisions (whether made 
by human drivers or CAVs) affect the overall dynamics of vehicular traffic and thus 
vehicular safety. We therefore take a hybrid, hierarchical approach that divides the 
road network into smaller “cells.” Figure 1 illustrates this cell-based approach. Vehicles 
in the same cell are in close physical proximity and thus may directly interact with each 



other. Since there are relatively few vehicles in each cell, we can use microscopic 
models for their interactions. These interactions can then be summarized with cell-level 
statistics (e.g., average speed, number of vehicles) that determine how each cell is 
affected by its neighboring cells and thus the overall dynamics of the road network. 
 

While our cell-level model is more tractable than using microscopic models of each 
individual vehicle and extrapolating to the overall road network, it is still difficult to 
directly track each vehicle’s actions in this model. Thus, instead of seeking closed-form 
solutions, we utilize reinforcement learning simulations to model the states, actions, 
and rewards experienced by individual vehicles and cell-level dynamics. Using 
simulations allows us to model a much larger-scale network, with many distinct cells 
along different roads. Reinforcement learning provides a flexible decision framework 
that allows us to define different notions of “safety” by changing the reward function, 
e.g., we can compare outcomes if vehicles aim to optimize their own safety or overall 
travel times compared to whether they selfishly aim to minimize their individual travel 
times. We can further model human pedestrians by incorporating their presence into 
the states of individual vehicles, which then affects those vehicles’ actions. 
 
Findings 
 
To estimate the effective incident rates of CAVs given how they are distributed around 
a city, we built on the mixed autonomy simulator that we created in a previous 
Mobility21 project. We aimed to incorporate safety concerns into the simulator, and in 
particular to evaluate how CAVs could change their behavior in mixed-autonomy 
settings with human-driven vehicles. 
 

Figure 1: Illustration of our cell-driven model that we use to simulate the actions of connected 
autonomous vehicles and human-driven vehicles sharing a road. 



Towards our first objective of estimating 
effective incident rates of CAVs, we found 
that there is little reliable data on CAV-
involved traffic accidents, due to their 
limited deployment. Thus, we decided to 
make our simulator flexible to different 
vehicle incident statistics, allowing them to 
be input into the simulation. 
 
Towards our second and third objectives, 
our original mixed-autonomy simulator 
assumed that CAVs chose their movements 
around a city so as to minimize congestion 
and that human-driven vehicles took fixed 
routes with random perturbations. We 
extended the simulator to incorporate 
arbitrary CAV objectives, which will enable 
us to include different forms of safety. We 
have also added the ability to discretize CAV 
and human-driven vehicles’ actions, which 
will allow us to have CAVs more easily learn how to optimize more complex objectives, 
including safety concerns, in environments that include complex safety-relevant 
characteristics like vehicle incident frequency. 
 
We used this simulator to evaluate whether our simulated vehicular behavior matches 
known behavior that has been observed in practice. For example, Figure 2 illustrates 
Braess’s paradox, in which decreasing traffic volume leads to increased travel time for 
vehicles, given that each vehicle acts so as to myopically minimize its individual travel 
time. We find that our simulator is able to reproduce this behavior, but that introducing 
CAVs whose goal is to minimize collective travel times for all vehicles, can resolve the 
paradox as long as a sufficient proportion of the vehicles are CAVs, as one would 
intuitively expect. Thus, our simulation results are consistent with prior findings, 
lending credence to its ability to simulate CAV actions. 
 
Conclusions 
 
The main conclusion of our project is that safety dynamics with CAVs are complex and 
difficult to predict, requiring sophisticated simulators that are flexible enough to model 
a range of CAV and human driver behavior. Even complex reinforcement learning 
models, which can theoretically capture different vehicle objectives and complex 
decision-making, can struggle to accurately capture vehicle behavior and traffic 
dynamics, due to the complexity of training such models. Thus, having more data to 

Figure 2: Illustration of a network satisfying 
Braess's paradox, in which lower traffic 
volumes can increase travel time from the 
origins (A, B, C) to destination D. 



train these models is essential to developing realistic, safety-aware mixed-autonomy 
simulators. Finding such data in practice, however, is challenging, due to the low 
current CAV penetration rate. The dynamics of vehicle traffic can also depend heavily 
on specific road topologies, making it difficult to generalize findings on safety from one 
environment to another. Future work may include characterizing the types of road 
networks that have similar safety and vehicular traffic characteristics in mixed-
autonomy settings. 
 
Project Team 
 
PI: Carlee Joe-Wong, https://orcid.org/0000-0003-0785-9291 
Co-PI: Osman Yağan, https://orcid.org/0000-0002-7057-2966 
PhD Student: I-Cheng Lin, https://orcid.org/0000-0002-5306-3262  




