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Abstract: We consider the problem of safe autonomous driving in the presence of occlusions.
Dealing with latent risks arising from occlusions is challenging because there does not exist
direct mapping from sensor input to visible threats; attempts to ensure safety for all worst-
case latent threats can be infeasible or overly conservative, and accounting for a multitude of
latent risks for sufficient future horizon may require prohibitive computation in real-time. To
address these issues, in this paper, we propose to use a probability-based predictive controller
to make safe decisions for autonomous vehicles. We prove that the proposed safety controller
can generate vehicle control profiles that yield the desired safety probability. Numerical and
onboard experiments on a visual occluded pedestrian crossing scenario verifies the efficacy of
the proposed method in real-time. The merits of the proposed control strategy include being
able to guarantee long-term safety under occlusions without being over-conservative, handling
latent risks caused by on-road interactions in real-time, and ease of design with transparency
to the exposed risks.

Keywords: Autonomous vehicles, Human and vehicle interaction, Occlusion-aware control, Safe
motion control, Adaptive and robust control of automotive systems.

1. INTRODUCTION

Visual occlusions impose huge challenges to autonomous
driving because most sensors can not see through opaque
objects, leading to large unobserved regions and poten-
tially unsafe behaviors of the ego vehicle (Yu et al., 2019;
Poncelet et al., 2020). Besides, the stochastic nature of
all road users (other vehicles, pedestrians, etc.) introduces
uncertainties into the system, which further increases the
difficulty of dealing with occlusions (Zhang and Fisac,
2021). Given such uncertainties caused by occlusions and
complex interactions between road users, designing a safe
controller for the ego vehicle is very difficult (Koç et al.,
2021). In this study, we focus on the problem of safe au-
tonomous driving under scenarios with visual occlusions.
The challenge of this problem includes

(1) It is hard to control the level of safety of autonomous
vehicles when there are visual occlusions and poten-
tial interactions with other road users, because the
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latent risks are difficult to measure (Kahn et al.,
2022).

(2) Considering all aspects of the uncertainties in the sys-
tem with long time horizons could be computationally
intractable, which imposes difficulties for applications
in real-world scenarios (Lyu et al., 2021).

(3) Approximately accounting for the latent risks will
lead to over-conservative behaviors which compro-
mise performance to certain extents (Brüdigam et al.,
2021).

To resolve the abovementioned issues, we propose a model-
based probabilistic safe control strategy to regulate the ve-
hicle’s speed and steering profiles under visual occlusions.
Inspired by (Gangadhar et al., 2022), the proposed method
encodes future safety information into a probability value
and imposes a linear constraint on the control input to
guarantee the long-term safety of the system. The resulting
optimization-based controller can be solved efficiently via
quadratic programs (QPs) while meeting other goals and
constraints. The technical merits of the proposed method
are

(1) Guaranteed long-term safety accounting for latent
risks that are invisible and occluded (see Theorem 1).

(2) Balancing competing for safety and performance ob-
jectives, ensuring robustness to large uncertainty



without being over-conservative (see Fig. 7 and
Fig. 8).

(3) Ease of design and transparency to the exposed risks
(see the proposed optimization-based controller (17),
remark 1 and remark 2).

(4) Fast real-time response that ensures long-term safety
using onboard resources (see section 5.2 for real-time
hardware implementation).

The rest of the paper is organized as follows. In section 2,
we discuss the related works, in section 3, we formulate
the safe control problem of interest, in section 4, we in-
troduce the proposed occlusion-aware control framework,
and in section 5 we present the numerical and on-board
simulations to validate the proposed method, and at the
end, we conclude the paper in section 6.

2. RELATED WORKS

Previous studies for the safe control of vehicles in the
presence of occlusions can be categorized into the following
approaches.

(1) External perception from infrastructures. With exter-
nal perceptions from infrastructures, the autonomous
vehicle directly gets information from other vehicles
behind the occlusion, thus can execute safe con-
trol (Müller et al., 2022). However, such pervasive
perception requires expensive infrastructure systems,
but autonomous vehicles may also need to operate in
regions when such infrastructure is unavailable. The
proposed method compasses this issue by leveraging
the system model and data to acquire the latent risk
of any given road situation with only onboard sensors.

(2) Learning-based control. The learning-based method
leverages the data from expert drivers and builds
a mapping from the vehicle sensory input to the
desired control of the vehicle (Isele et al., 2018; Sama
et al., 2020). Even if the amount of data is enormous,
generalization to the different scenarios is not guaran-
teed. The relationship between occlusion and vehicle
motion is obscure due to the black-box nature of
neural networks. In comparison, the proposed method
characterizes the exact risk of different scenarios and
can produce desired safety probability as specified.

(3) Partially observed Markov decision process (POMDP).
POMDP uses a belief state to represent the latent
dynamics of occluded vehicles and solve the opti-
mal control (Hubmann et al., 2019). This frame-
work considers the uncertainty of perception, but
the computation is expensive for continuous control
and often cannot be implemented in real-time (Zhang
and Fisac, 2021). On the other hand, the proposed
method only requires solving a quadratic program
to get the vehicle control, which has efficient online
implementation.

The features of the existing methods and the proposed
method is summarized in table 1.

3. PROBLEM FORMULATION

In this section, we introduce the general problem state-
ment, which includes the vehicle dynamics in section 3.1,

Table 1. Features of the existing methods and
the proposed method.

Method On-board Transparency Real-time
sensing in design computation

Infrastructures ✓ ✓
Learning-based ✓ ✓

POMDP ✓ ✓
Proposed ✓ ✓ ✓

interaction model in section 3.2, the occlusion model in
3.3, and the safety specifications in section 3.4.

3.1 Vehicle Dynamics and Nominal Control

We consider a general discrete-time control-affine dynam-
ical model for the vehicle as follows:

xk+1 = f(xk) + g(xk)uk (1)

where x ∈ Rn is the vehicle’s state, u ∈ Rm is the
control input, and f : Rn → Rn and g : Rn → Rn×m

encompass the system dynamics, and k is the time step.
We consider discrete-time dynamics throughout the paper
because all real-world vehicle controls are achieved with
digital systems. One can discretize any continuous dynam-
ics into the form of (1) as in (Ogata, 1995). The choice
of model can range from simple double-integrators (Liang
and Peng, 2000) to complete 6 DoF models (Kiencke and
Nielsen, 2000). The control action u is determined by a
predetermined control law N : Rn → Rm:

u = N(x) (2)

This nominal controller will satisfy desired performance
specifications, such as ensuring that the vehicle follows a
planned trajectory and can be obtained via MPC, back-
stepping, machine learning, or other techniques but may
not guarantee safety. The closed-loop vehicle dynamics
with the nominal controller will be:

xk+1 = f(xk) + g(xk)N(xk) (3)

The specific realizations of the vehicle model and the nom-
inal controller for experiments are introduced in section 5.

3.2 Interaction Model

We model road users’ behavior as a combination of
decision-making and motion dynamics. The decision-
making model characterizes the high-level decisions of the
agent based on the surrounding situation and the context.
Let X ∈ Rz be the joint state of all agents involved in
the interaction, Z be the external factors that affect the
decision-making, such as physical context, traffic charac-
teristic and social contexts, as described in (Rasouli and
Tsotsos, 2019), and D be the decision-making function
that outputs a distribution of the intentions of the agent
(e.g., go/wait, lane-keep/lane-change) with respect to the
joint state X conditioned on the context Z. The general
decision-making process can be formulated as follows:

dk ∼ D(Xk|Zk) (4)

where d is the road users’ decision, and we assume that d
can take on a finite number of decision values. In practice,
this decision-making process can be modeled as a finite
state machine (Kielar et al., 2014), a POMDP (Hubmann
et al., 2018), an interactive multiple model (IMM) filter
(Burger et al., 2020), or a neural network (Rasouli et al.,
2017).



The motion model characterizes the agents’ behavior given
the intention d. Specifically, the motion model is written
as:

Xk+1 ∼ fz(Xk | dk) (5)

where fz is the distribution of the state update function of
the agents. Previous studies have used social force model
(Helbing and Molnár, 1995) and recurrent neural network
(Camara et al., 2020) to represent the motion model fz of
the road users. For a given decision d, many models assume
that fz for each state X follows a Gaussian distribution, as
different sources of noise and uncertainties will add up to
a Gaussian due to the Central Limit Theorem (Johnson,
2004). The specific formulation of the interaction model
used for the case study is described in section 5.

3.3 Occlusion Model

Occlusion is defined by the space where the ego vehicle
is not visible. Visibility, here, broadly includes images and
videos, radars, sonars, and other sensing devices. Occlusion
Hk is defined in map spaceM, where Ot is the occupied
space by objects and V(x(k),Ok) is the visible space in the
field of view (FOV) of the ego vehicle at time k. Then the
occlusion Hk is defined as follow:

Hk = (Ōk ∩ V̄(x(k),Ok)) ∈M (6)

where Ō and V̄ are the exclusive space of O and V from
the map space M, and the occlusion Hk is the space
excluding obstacle and visible spaces in the map. In Eq.
(6), the method for identifying Ok and V(x(k),Ok) is
highly dependent on the configuration of the sensor. With
the use of LiDAR, it is typical that Ok is detected using
neural networks (Lang et al., 2019), and V(x(k),Ok) is
calculated virtually by ray casting algorithm (Zhang et al.,
2019). Although it is expected that the infrastructure-to-
vehicle (I2V) or vehicle-to-vehicle(V2V) communication
systems can compensate a part of the occlusion (Müller
et al., 2022), not all occlusions can be covered in various
driving scenes. Occlusion detection is out of scope in this
paper. However, the proposed method can incorporate the
size and shape of the detected occlusion as parameters.

3.4 Safety Specification

Our goal is to ensure the long-term safety of all road users.
We assume that there are B safety specifications for the
overall interaction system, indexed by j ∈ {1, 2, · · · , B},
and each specification is represented as follows: specifica-
tion j is defined by the event

Cj = {X ∈ Rz : ϕj(X) ≥ 0}, (7)

where ϕj(X) : Rz → R is a continuous mapping. The
definition can capture various safety requirements in au-
tonomous driving, e.g., all road users do not collide with
each other, and the vehicle’s speed should be less than a
certain value when it is close to other vehicles. Let

S = {Xτ ∈ Cj ,∀τ ∈ {k, k + 1, · · · , k + T},∀j}, (8)

where T is the outlook time horizon. The long-term safety
we aim to ensure is defined as

P(S) ≥ 1− ϵ, ∀k ≥ 0. (9)

We will present the specific choice of safe event used in the
experiments in section 5.

4. PROPOSED METHOD

In this section, we present the safe condition to ensure
long-term safety in section 4.1 and its realization as the
safe occlusion-aware control algorithm in section 4.2.

4.1 Condition for Assuring Safety

In this subsection, we present a sufficient condition for the
long-term safety specifications (9). Let

Ψ(I) := P(S|I) ∈ R (10)

be the sequence of probability of event S conditioned on
the information I. We define a new notion of conditional
discrete-time generator as below.

Definition 1. (Conditional discrete-time generator). The
conditional discrete-time generator A of a discrete-time
stochastic process {xk}k∈Z+ conditioned on another pro-
cess {yk}k∈Z+ with sampling interval ∆t evaluated at time
k is given by

Aϕ(xk|yk) =
E[ϕ(xk+1)|yk]− E[ϕ(xk)|yk]

∆t
(11)

whose domain is the set of all functions ϕ : Rn → R of the
stochastic process.

When xk = yk, this generator becomes the discrete-time
counterpart of the continuous-time infinitesimal generator.
We add the conditioning of yk to capture the ego vehicle’s
limited information due to occlusions. Although the value
of Aϕ(yk) depends on both xk and yk, with a slight
abuse of notation, for the rest of the paper, we will use
Aϕ(yk) where the discrete-time stochastic process xk in
Definition 1 is the full state of the interaction system, i.e.,
Xk in (5).

Let Qk be the information that the ego vehicle can acquire
at time k. This information Qk will be Qk = [xk, x

o
k] with

xo
k being the observed state of all other road users by the

ego vehicle at time k. Note that Qk = xk if no other road
users appear from the occlusions.

We consider the following condition at all time k:

AΨ(Qk) ≥ −γ(Ψ(Qk)− (1− ϵ)), ∀k ≥ 0. (12)

Here, γ : R → R is a function that satisfies the following
2 design requirements:

Requirement 1: γ(h) is linear and increasing in h.
Requirement 2: γ(h) ≤ h for any h ∈ R.

The probability measure of P(S|I) is taken over X, the
global state, conditioned on Q, the information that can
be accessed by the ego vehicle. Therefore, the values on
both sides of (12) can be computed using Q.

Theorem 1. Consider systems (1) and (5). We assume the
initial condition x0 = x satisfies P(S|x0 = x) ≥ 1 − ϵ. If
at each time k, the ego vehicle generates a control policy
that satisfies (12), then the following condition holds:

P(S) = E[P(S|xk)] ≥ 1− ϵ, ∀k ≥ 0. (13)

See (Jing and Nakahira, 2022; Wang et al., 2021) for the
proof. Theorem 1 says the long-term safety of the system
is guaranteed by the proposed safe condition (12) for all
time with desired probability.



4.2 Proposed Safe Occlusion-Aware Control

In this section, we propose a control strategy that im-
poses (12) to ensure long-term safety of the system. We
start by approximating AΨ(Q), the infinitesimal generator
of long-term safety. Since only the ego’s vehicle’s state can
be controlled, with a slight abuse of notation, we use Ψ(x)
to represent Ψ(Q) in the control design phase for the rest
of the paper. This Ψ(x) will refer to different Ψ(Q) under
specific situations (e.g., there are no other road users in
sight, or pedestrians are currently crossing the street). Let
D(x) ∈ Rn denote the finite-difference approximation of
the gradient ∇xΨ(x), i.e.,

Dj(x) =
Ψ(x+∆ej)−Ψ(x−∆ej)

2∆
(14)

where Dj is the jth element of D, ∆ is the step-size, and
ej denotes a vector that takes a scalar value of 1 in the jth

entry and 0 otherwise.

Lemma 1. If AΨ(x) exists, then:

AΨ(x) = lim
∆→0

DT
j (x) (f(x) + g(x)u) . (15)

Lemma 1 is a result of the chain rule, with the left-
hand side of (15) being the time derivative of Ψ(x), and
the right-hand side being the state derivative of Ψ(x)
multiplies dx/dt which is the dynamics (1). With this, we
obtain the inequality constraint on the control-action u:

−DT
j (x)g(x)u ≤ DT

j (x)f(x) + γ (Ψ(x)− (1− ϵ)) (16)

Utilizing the safety condition (16) and the nominal con-
troller N from section 3.1, we can formulate the safe
controller K : Rn → Rm as a constrained quadratic
optimization problem:

K(x) := arg min
u ∈ Rm

∥u−N(x)∥2

s.t. (16)
(17)

The optimization problem penalizes deviation from the
nominal control action (minimally invasive) while ensuring
the specified constraints are satisfied, complying with
requisite safety specifications.

Remark 1. The proposed optimization-based safe con-
trol (17) is easy to design and implement because it only
contains function γ and the desired risk tolerance ϵ as
tunable parameters and only imposes linear constraints on
control, which forms an efficient quadratic program (QP).

Remark 2. The variable Ψ(x) has the physical meaning of
the safety probability of the system in the long term. Its
value at x indicates how risky the system will be in the
future, evolving from state x. This property of Ψ(x) can
also guide the control design when necessary (e.g., one can
directly specify the expected future state and control based
on Ψ(x) when the control constraint (16) is numerically
infeasible).

4.3 Algorithm Description

We present the overall safe control strategy in Algorithm 1.
The safety probability, in procedure Ψ(x), is numerically
estimated using Monte-Carlo simulations; we loop over
the number of specified MC-episodes (NE), and at the
kth iteration, we do the following. In line 3, we initialize
the safety check pk that switches to 0 when a violation

Algorithm 1 Occlusion and interaction-aware safe con-
troller

Input: x ▷ Vehicle State
Output: u ▷ Safe Control Action
Parameters: T,NE ▷ Preview Horizon, # Episodes

1: procedure Ψ(x)
2: for k ∈ {1, 2, . . . , NE} do ▷ MC Episodes
3: pk ← 1 ▷ Initialize safety check
4: x0 ← x ▷ Initialize state
5: Solve (3) and (5) in T ▷ Forward Rollout
6: if not S then
7: pk ← 0 ▷ Safety Violation
8: end if
9: end for

10: return 1
NE

∑NE

k=1 pk ▷ Safe probability
11: end procedure
12:

13: procedure K(x)
14: uN ← N(x) ▷ Compute nominal control action
15: Obtain D(x) using (14) ▷ Gradient of Ψ
16: Obtain u by solving QP (17) with constraint (16)
17: return u
18: end procedure

is detected. In line 4, we initialize the state of vehicle
dynamics initial value problem (IVP) with the current
state estimate of the actual vehicle. Next, in line 5,
we jointly solve the time-invariant closed-loop vehicle
dynamics IVP (3) with the initial condition from line 4
and the interaction motion model (5) over the specified
time interval T = {k, k+1, · · · k+T}, giving us a forward
rollout. Since both the vehicle and the interaction models
are time-invariant, the start and end times of the interval
T are irrelevant. In line 7, we check for a safety violation in
the forward rollout. Finally, at the end of the procedure, we
compute and return the mean of pk over all the episodes.
Since Ψ(x) gives the safety probability of the system over
the time horizon T , it encodes information of prediction
on the future as well as the levels of uncertainty.

ProcedureK(x) encompasses the constrained optimization
controller outlined in (17), which involves evaluating the
nominal control action uN in line 14, computing the finite
difference approximation of the gradient of safe probability
D(x), and finally obtaining the safe control action by
solving the QP (17). This control action ensures that
condition (9) is met.

Therefore, Algorithm 1 can account for long-term safety
and guarantees to steer system trajectories toward the
direction of non-decreasing long-term safe probability in
the presence of latent risks, eliminating potential myopic
decision-making, typically seen in traditional safe control
techniques (Ames et al., 2019), that may result in unsafe
behaviors in the future.

5. SIMULATIONS AND EXPERIMENTS

For the remainder of this paper, we focus on a case
study of the safe control strategy on a pedestrian-vehicle
interaction scenario at occluded crossing intersections. We
introduce the design of the simulation in section 5.1,
the experiments on a 1/10th scale autonomous vehicle in
section 5.2, and present the results in section 5.3. We point
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Fig. 1. Occluded crosswalk scenario of interest.

out that even though we have chosen to examine the safety
of pedestrian-vehicle interactions at crossing intersections
as the case study, the proposed control strategy can be
applied to different road scenarios without redesign.

5.1 Case Study Scenario

We consider a case of an intersection with an unsignalized
marked crosswalk (zebra crossing) as seen in Fig. 1. We use
local coordinates whose origin is D away from the edge of
the crosswalk. Here, the vehicle’s position is (xc, yc) , the
distance from the car to the crosswalk is D − xc, and the
ith pedestrian’s position along the crosswalk is denoted

by y
(i)
p . We assign a bounding box to each pedestrian

with dimensions (δx, δy), centered around the pedestrian’s
position, as seen in Fig. 1. The obstruction, which is a
parked truck, has size o and occludes pedestrians’ presence
from the field of view of the vehicle until they have moved
past it.

1) Vehicle Model: For the simulation, we start by setting
up the dynamics of the vehicle based upon (Liang and
Peng, 2000). Assuming the vehicle is a point-mass moving
along a straight line, we get the following dynamics

m
dv

dt
= Ft − Fr, (18)

where m is the mass of the vehicle, v is the longitudinal
velocity of the vehicle, Ft is the tire force generated by
the engine/motor, and Fr is the net drag force due to
the tire’s rolling resistance and aerodynamic drag. Here,
we assume Ft to be our control input. With this, we
can write down the governing equations of motion as an

ODE. Let x = [x1 x2]
T
, where x1 is the vehicle’s position,

and ẋ1 = x2 = v the longitudinal velocity. With this,
assuming a time-step of ∆t, we get the following discrete-
time system dynamics using the forward-Euler method

xk+1 = xk +∆t

[
x2k

− 1

m
Fr

]
︸ ︷︷ ︸

f(xk)

+∆t

[
0
1

m

]
︸ ︷︷ ︸

g(xk)

uk. (19)

2) Nominal Cruise Controller: The cruise controller
maintains a set cruising speed while ensuring comfortable
acceleration/deceleration. When a pedestrian is visible in
the vehicle’s field of view, the cruise controller attempts to
reduce the vehicle’s speed based on the calculated time-to-
collision TTTC to that pedestrian

TTTC =
r

max (−ṙ, 0+) , (20)

where 0+ is a small positive constant and r is the estimated
range to the pedestrian, note that the vehicle’s auxiliary

automatic emergency braking system will take precedence
over the nominal cruise controller in a catastrophic situa-
tion.

3) Pedestrian Model: In our study, we model the behaviors
of pedestrians as the combination of decision-making and
motion dynamics described in section 3.2. Specifically, in
the scenario shown in Fig. 1, we model that the pedestrians
keep crossing without detecting the ego vehicles with a
certain probability. This pedestrian model allows us to
account for the worst-case scenarios when evaluating safety
(e.g., distracted pedestrian keeps crossing even as a car
approaches them).

The decision process for pedestrian i, assumes that after
the pedestrian has crossed the occlusion, they will recog-
nize the oncoming vehicle and stop with a probability α:

d(k) ∼ D(y(i)p | Zk) =

{
Bernoulli(α) if yip ≥ o

0 if yip < o
(21)

where Zk is the event of a vehicle currently approaching
the crosswalk at time step k and d(k) ∈ {0, 1} is a
Bernoulli stochastic process, indicating whether or not the
pedestrian recognizes the vehicle and stops.

For the pedestrian motion model, we have that when
pedestrian i begins crossing, they travel at a fixed speed

sampled from a normal distribution v
(i)
ped ∼ N (vped, σ

2
ped)

(Onelcin and Alver, 2017) till they’ve reached the end of
the crosswalk or stop after recognizing the oncoming car:

yp
(i)
(k+1) ∼ fz(yp

(i)
(k) | d(k))

=

{
0 if d(k) = 1

v
(i)
ped∆t+ yp

(i)
(k) if d(k) = 0

(22)

Further, we assume that pedestrians arrive at the crossing
independently of each other and at random with a mean
interarrival time Ta (Cox, 2020; Lartey et al., 2014). That
is to say, within an infinitesimally small time interval dt,
the probability of a pedestrian arriving at the crossing is
dt/Ta. As a consequence, the time interval ∆T between
two successive pedestrians arriving at the crosswalk will
follow an exponential distribution, and the number of
pedestrians Np that arrive within a time interval ∆t will
follow a Poisson distribution:

∆T ∼ Exponential (1/Ta) (23)

Nped ∼ Poisson (∆t/Ta) (24)

5) Safety Specification: For this case study, we define the
safety criteria in terms of the set Bi ⊂ R2, which is set of
the ith pedestrian’s bounding box as seen in Fig. 1:

Bi =
[
x(i)
p − δx, x

(i)
p + δx

]
×
[
y(i)p − δy, y

(i)
p + δy

]
(25)

with this, we specify the safe event Cit at time t as the set
of outcomes wherein the vehicle is not present in Bi, i.e.,
(xc, yc) /∈ Bi.

5.2 Hardware Experimental Setup

We evaluate the feasibility and efficacy of the proposed
safe control algorithm in a real-world scaled setting of our
case-study environment. In particular, we implement the
proposed method on a 1/10th scale autonomous vehicle
(AV) (see (O’Kelly et al., 2020) for specific details on the



Fig. 2. Precomputed lookup table of Ψ(x).

Fig. 3. Case-study environment for hardware experiments.

hardware platform). We used an NVIDIA Jetson Xavier
NX with a CPU SPEC2006 score of 18.9 GFLOPS as our
mobile-embedded computing platform and ROS-2 in C++
for software. The computing capability of our platform is
relatively limited. One major challenge of the hardware
experiments includes added stochasticity due to imperfect
state estimation, which in our case, comes from a particle
filter. Another challenge is that most autonomous driving
stacks rely on kinematic control inputs, i.e., velocity and
not acceleration. To account for this, we use an online
double integrator model of the vehicle dynamics (19) to
translate our proposed controller’s acceleration outputs
into velocity commands, allowing seamless integration into
existing state-of-the-art platforms.

1) Hardware Nominal Controller: For path tracking, we
use a kinematic model-based linear time-varying MPC
(Kong et al., 2015). We use the cruise controller outlined
in section 5.1 for speed control.

2) Proposed Controller Implementation: The limited com-
pute capability of the embedded platform poses a chal-
lenge to real-time implementation. To address this issue,
we propose modifying procedure Ψ(x) in Algorithm 1 as
follows. First, we offline precompute the values of Ψ(x)
with a mesh grid of x to form a lookup table as shown in
Fig. 2. We then store this lookup table and use it to build
a sinc interpolator. With the interpolator, it is possible to
achieve real-time performance.

3) Experiment Setup: Fig. 3 shows the experimental setup
for the hardware evaluation. The goal of the nominal
controller, in this case, would be to drive the vehicle along
the corridor and through the occluded intersection (blue
bin) as seen in Fig. 3.
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Fig. 4. Long-term safe probability of proposed method for
three parameter cases. The top subplot shows the
effect of varying the mean interarrival time Ta, the
middle varies in occlusion size o, and the bottom-most
varies in pedestrian awareness probability α.
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Fig. 5. Safe vehicle velocity generated for three parameter
cases. The top subplot shows the effect of varying
the mean interarrival time Ta, the middle varies
in occlusion size o, and the bottom-most varies in
pedestrian awareness probability α.

5.3 Results and Analyses

In this section, we present empirical results of proposed
method’s performance with numerical simulations and
hardware experiments. These serve to quantify and corrob-
orate the technical merits of the proposed method, specif-
ically the guaranteed long-term safety, balancing opposing
safety and performance objectives and robustness to large
uncertainties. For all experiments, we pick an outlook
horizon of T = 10 s and a baseline cruising velocity of
vcruise = 35 mph.

1) Long-term safety guarantee: We choose a risk tolerance
of ϵ = 0.10. We run the proposed controller with different
pedestrian interarrival time Ta, occlusion size o, and pedes-
trian awareness α. We choose Ta = 25 s, o = 2.25 m, and
α = 0.4 as the baseline parameter values and vary one
of the parameter values for ablation experiments. Fig. 4
shows the proposed controller’s ability to guarantee long-
term safety under all tested circumstances. In the first
subplot of Fig. 4, the safety probability drops earlier in re-
sponse to shorter interarrival times, larger occlusion sizes,
or lower pedestrian awareness, thereby demonstrating the
algorithm’s predictive capabilities.

Fig. 5 shows the vehicle velocities generated with the
proposed safe controller on different parameter settings.
We see that the proposed method modulates the vehicle’s
velocity tantamount to perceived latent risks. For cases
with higher perceived latent risk, we see that the speed
reduces well ahead of the occlusion’s position and main-
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Fig. 7. Performance v/s safety tradeoff.

tains that speed until past it, showcasing the proposed
controller’s ability to look into the future and impose a
more effective safe control on the system once the safety
probability tends to drop. Further, when perceived risks
are lower, the controller does not slow down more than nec-
essary, not compromising the desired performance. This
phenomenon is made more evident in Fig. 6, where we
compare the minimum safe speeds of the vehicle with
varying risk tolerance values ϵ.

2) Safety v/s Performance Trade-off: We begin by quan-
tifying safety, performance, and uncertainty in the con-
text of our case study. We use the distance traveled by
the vehicle over 2 minutes as the performance metric;
for safety, we use the minimum safe probability achieved
over the run, and for uncertainty in the pedestrian ar-
rival process, we evaluate the Shannon Entropy of (24).
To obtain the trade-off, in the case of the nominal con-
troller, we vary the desired cruising speed, and for the
proposed controller, we range over the risk tolerance ϵ
with baseline parameters. In this case, we have chosen
[6.433, 8.467, 10.411, 12.223, 14.258] mph as the desired
speeds for the nominal controller to match the risk levels
achieved by the proposed method closely. For the pro-
posed controller, we choose [0.1, 0.125, 0.150, 0.175, 0.200]
as values for the risk tolerance parameter ϵ. And finally,
we also consider H∞ control to demonstrate the effects
of using a deterministic worst-case safe controller. Fig. 7
exhibits our proposed method’s ability to fulfill the desired
safety requirements while not being excessively conserva-
tive, and Fig. 8 shows that the proposed method’s per-
formance degrades gracefully with increasing uncertainty.
Furthermore, we see that accounting for all possible worst-
cases without considering causality, as in the case of the
H∞, produces overly conservative behaviors that compro-
mises performance or in some cases induces infeasibility.
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Fig. 8. Performance v/s uncertainty in pedestrian arrival
process. Matching colors for plots of the nominal and
proposed controller correspond to equivalent safety
probabilities.

Fig. 9. Experimental results of long-term safe probability
(top) and safe vehicle velocities (bottom) for five cases
of ϵ.

3) Hardware Experiment Results

A video of the experiments can be found at https://youtu-
.be/bII1aARKA-o. We run repeated identical experiments
on the 1/10th scale AV over five values of the risk tolerance
parameter ϵ and record estimated state and sensor data.
Fig. 9 demonstrates that the performance of the proposed
controller on hardware is consistent with our simulation
results. Further, benchmarking the proposed algorithm
on the embedded platform yields the following statistics
for computational throughput: average rate of 67.924 Hz,
maximum rate of 166.67 Hz, minimum rate of 52.631
Hz, with a standard deviation of 0.02661 Hz, over 61130
samples.

6. CONCLUSION

This paper proposes an occlusion- and interaction-aware
safe control strategy that ensures long-term safety in the
presence of latent risks without overly compromising per-
formance. We demonstrate its reliability and computa-
tional efficiency via numerical simulations and hardware
experiments. Finally, we show that the proposed controller
is modular and can seamlessly integrate into existing con-
trol frameworks, vastly improving its applicability. Future
work includes conducting real-world experiments with the
proposed method, and comparing the results with human
driving behaviors.
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