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Abstract. Indoor navigation is critical in many tasks such as firefighting,           
emergency medical response, and SWAT response, where GPS signals are not           
available. Prevailing approaches such as beacons, radio signal triangulation,         
SLAM, and IMU methods are either expensive or impractical in extreme           
conditions, e.g. poor visibility and sensory drifting. In this study, we develop a             
path markup language for pre-planning routes and interacting with the user on a             
mobile device for real-time indoor navigation. The interactive map is annotated           
with walkable paths and landmarks that can be used for inertial motion            
sensor-based navigation. The wall-following and landmark-checking algorithms       
help to cancel drifting errors along the way. Our preliminary experiments show            
that the approach is affordable and efficient to generate annotated building floor            
path map and it is feasible to use the map for indoor navigation in real-time on a                 
mobile device with motion sensors. The method can be applied to intelligent            
helmet and mobile phones, including potential applications of first responders,          
tour guide for buildings, and assistance for visually impaired users. 
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1 Introduction 

Indoor navigation is a growing routine in modern urban lives. People need to navigate              
through large infrastructures such as airports, hospitals, museums, schools, shopping          
malls, subways, and factories. It is critical for extreme cases such as firefighting,             
emergency medical responses, and SWAT team responses. It is logical to consider            
indoor navigation like a GPS navigator, including display of the floor map, updating             
current position on the map, and updating the landmarks nearby. Unfortunately, GPS            
signals are normally weak or available in buildings. It is rather difficult to sense the               
location of the user without infrastructure-dependent sensory systems. Furthermore,         
most available floor plans contain either too much irrelevant information such as toilet             
seats and furniture in the room, or too little navigational information, e.g. no             
connection to the user’s location nor user’s orientation. First responders often have a             
brief look at the paper drawings of a building and try to memorize it before entering.                
To make the matter worse, first responders often encounter the buildings with heavy             
smoke and poor visibility, where prevailing vision-based navigation methods would          
fail because we virtually have to navigate in a dark environment.  

Who navigate well in dark? The answer is blind people. In the 1970's, there was a                 
blackout in New York City. Many people had to walk to their home without any light.                
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Some blind people volunteered to guide sighted people home. In this study, we want              
to explore a markup language to annotate building’s floor plan so that the user can               
navigate through the building with inertial motion sensors without         
infrastructure-dependent beacons.  

2 Related Studies 

Similar to a GPS navigation system, we need a digitally annotated map that works              
with positioning system. There are many geographically tagging markup languages          
and geocodes. For example, Keyhole Markup Language (KML) enables         
geographically tagging buildings, streets, and events with GPS coordinates [1]. KML           
has been adopted by Google Maps and Google Earth and it is a part of the Open                 
Geospatial Consortium (OGC) [2]. OpenStreetMap [3] is an open source for millions            
of footprints of buildings, contributed by users. In addition to the GPS coordinates,             
there is the Military Grid Reference System (MGRS) [4] standardized by NATO            
militaries for locating points on Earth. MGRS is a multi-resolution geocode system            
that consists of grid zone designator, following by the 100,000-meter square identifier            
and then the numerical location with a pairs of easting and northing values. The              
longer digits, the more accuracy. For example, 4QFJ 123 678 has a precision level of               
100 m and 4QFJ 12345 67890 can reach a precision level of 1 m. Geocode can be also                  
embedded into images, for example, GeoTiff image format turns pixels into GPS            
coordinates with its metadata [5]; and HDF (Hierarchical Data Format) standardizes           
NASA Earth Observation System (EOS) data products, including multiple spectrum          
satellite sensory data and multiple object data files [6].  

Outdoor map markup languages and geocode provide starting points and context for             
indoor navigation. A few indoor geocode and markup languages are extensions of            
outdoor ones. OGC’s CityGML [7] is an open data model and XML-based format for              
the storage and exchange of virtual 3D city models. The aim of the development of               
CityML is to reach an international standardization for the basic entities, attributes,            
and relations of a 3D city model. Some schematic descriptions are relevant to             
emergency responses such as RoofSurfaceType, WallSurfaceType,      

FloorSurfaceType, and GroundSurfaceType [9]. The three dimensional       
descriptions about the buildings, bridges, streets, and grounds provide important          
information about the elevation or depth of city objects and benefit to indoor             
navigation. In 2014, OGC further released IndoorGML in 2014 [8], which is a data              
model and exchange format for the representation of the indoor navigation aspects.            
IndoorGML provides a topographic and semantic models of indoor space that           
connects to related standards like CityGML, Open Floor Plan [9], and           
OpenStreetMap. IndoorGML also describes multiple layers of indoor components         
including topographic space, WiFi sensor space, and RFID sensor space. All of the             
geocode, standards and exchange formats enable data sharing and emergency services           
[10]. In addition, OGC also released Augmented Reality Markup Language 2.0           
(ARML) [11] to allow users to describe virtual objects in an augmented reality (AR)              
scene with their appearances and their location related to the real world. ARML 2.0              
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also defines a script language to dynamically modify the AR scene based on user              
behavior and user input, e.g. turning head or raising a hand, etc. In summary, the               
OGC has moved from 2D geocode to 3D geocode, and moved from cities to building,               
from outdoor to indoor, and from schematic world to virtual reality, and augmented             
reality worlds. Perhaps, the most valuable outcome of the OGC geocode and            
standards lies in its potential of crowdsourcing for massive geocoded data about            
buildings, interiors, and floor plans. However, despite a broad spectrum of indoor            
facility markup languages, the existing methods are too abstract and complicated; and            
there are many gaps to fill in order to be useful in indoor navigation. For example,                
how to convert a floor plan drawing in PDF format into a geocoded floor plan? How                
to use the floor plan interactively in real-time indoor navigation? 

Localization is the most critical component in indoor navigation. We need to know              
where the user is and which direction the user is heading in the building. Traditional               
Dead Reckoning, or Inertial Motion Unit (IMU) sensor-based approaches can work in            
totally dark environments, but they have notorious accumulative drifting problems          
over a period of time [12]. Recent Renaissance of IMU sensor-based methods are             
enhanced for better accuracy by placing IMU sensors on shoes [13] or fusing with              
other sensors [14]. The prevailing approach is the beacon-based localization,          
including ultrasound [15], LoRa [16], and WiFi [17]. Installing and calibrating           
beacons in a building are expensive and there are wall-attenuation problems [18].            
There are growing technologies of infrastructure-free localization by mobile beacons          
[19] or collaborative positioning [20]. Rapidly growing mobile robotics technologies          
bring new dimensions to indoor navigation. Simultaneous Localization and Mapping          
(SLAM) algorithm [21] has been popular for 3D modeling from motion, tracking and             
mapping at the same time. Single RGB camera-based visual SLAM can generate the             
motion trajectory in a relative 3D space. Stereo and RGB-Depth camera-based SLAM            
yield absolute 3D coordinates of the trajectory. Visual SLAM is computationally           
expensive and it often fails in poor lighting, smoky, or feature-less environments such             
as a painted white wall. Some RGB-D sensor-based SLAM incorporate with IMU            
sensors for more accurate localization results. LiDAR-based SLAM can work in dark            
by tracking the 3D point clouds but its cost is very expensive [22]. Thermal IR camera                
can also be used for SLAM but its images are rather low-resolution and it’s expensive               
as well [23].  

In summary, there is no silver bullet in indoor localization. The technologies for              
large-scale localization in normal environments or extreme conditions such as fire and            
smoke are not mature yet. There are gaps between the available technologies and             
applications. For example, there is little connection between the geographic markup           
languages and indoor navigation technologies. Many sensors need pre-calibration.         
Some of them such as magnetic field sensor needs to calibrate each time of usage.               
Self-calibration methods have implemented, for example, DJI drones use a motor to            
rotate the magnetic sensor before taking off [24]. A few novel concepts might pave              
the way for affordable and practical indoor localization, for example, the mobile            
device for helping visually impaired user to navigate indoors [25]. The assistive            
technology is affordable and interactive with wall-following function. In nature, there           
are also other modalities for navigation based on smell intensity, lighting, sound,            
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magnetic field, and simply tactile sensing [26]. Biomimicry teaches us to look into             
novel sensors and fusion algorithms, for example, the one-dimensional LiDAR and           
IMU sensor for first-person view imaging [14]. 

3 Path Markup Language 

Although OGC’s IndoorGML includes the IndoorNavigation module, it only provides          
standards and a high-level framework, rather than functional indoor navigation          
solutions. In this study, we propose the Path Markup Language (PML) as a data              
model and schema specifically for indoor navigation pre-incident planning and          
real-time navigation guidance. Currently, PML contains the following geocode         
elements: footprint, floor plan, path, landmark, and waypoint. These objects can be            
expressed in XML schema.  

Footprint is the boundary of a building in a polygon. It can be extracted directly                
from Google Earth manually, or with machine vision. The coordinate points can also             
be downloaded from Google Maps or OpenStreetMap but it is not guaranteed because             
it depends on user online contributions. The coordinates are normally in GPS format             
and the sequence is counter-clockwise. The XME schema of Footprint is following:  
 
<pml:Footprint> 

<pml:Polygon> 
<pml:coordinates>0,0 100,0 100,100 0,100 0,0 
</coordinates> 

</pml:Polygon> 
</pml:Footprint> 

  
The floor plan is a hierarchical structure of anchor points, footprint, rooms, paths,              

landmarks, and waypoints. It takes at least 3 anchor points to scale and align a floor                
plan to a georeferenced map such as Google Maps. Normally floor plan drawings are              
CAD drawings without any georeference. In PML, we overlay the floor plan to             
Google Maps by scaling, rotating and translating to extract the GPS coordinates            
directly. 

Path is a critical element in indoor navigation. We assume a building is not an                
empty stadium. Instead, it contains walls, hallways, and barriers. We assume that            
humans and robots can only walk on the paths without breaking walls or barriers. This               
assumption helps to reduce the IMU-based localization drifting through walls.          
Instead, the estimated trajectory will be along the Paths. In the PML, a Path is               
omnidirectional and it is a sequence of line segments with widths.  
 
<pml:Path> 
      <pml:Name> “Hallway” </pml:Name> 
      <pml:Width> 1 </pml:Width> 

    <pml:Line> 
 <pml:coordinates>0,0 10,0 10,10 0,10 
 </coordinates> 

    </pml:Line> 
</pml:Path> 
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Landmark is also a critical element in PML. Here we assume the IMU-based indoor               
navigation system has the sensory drifting problem and there are landmarks along the             
paths. When the user approaches the landmark nearby, the navigation system will            
send a confirmation request. Once the landmark is acknowledged, the localization           
track starts over again and the drift is canceled before it is accumulated further. A               
Landmark can be labeled with a symbol, for example, “E” as elevator and “S” as               
stairs. It also can be displayed with an icon.  
 
<pml:Landmark> 
      <pml:Name> “E” </pml:Name> 
      <pml:Icon>elevatorIcon.pmg </pml:Icon> 

 <pml:coordinates>5,5 
 </coordinates> 

</pml:Landmark> 
 

Finally, Waypoint is the location of the user including heading and coordinates. It              
will be updated in real-time to display for current position and orientation of the user.               
Waypoints can be stored and displayed as a digital pheromone along the Paths. The              
pheromone trace can be turned off (0), without decay (1), or with decay (2).  
 
<pml:Waypoint> 
      <pml:Name> “Me” </pml:Name> 
      <pml:Icon>RedArrow.pmg </pml:Icon> 
      <pml:coordinates>7,9</coordinates> 
      <pml:heading>245</pml:heading> 
      <pml:trace>2</pml:trace> 
</pml:Waypoint> 

4 Mobile System Architecture 

To implement PML, we aim to combine geographic markup language with real-time            
indoor navigation algorithms into a simple and affordable working system. The           
system contains two modules like displayed in Fig. 1: Map Generation and            
Navigation Guide. For the Map Generation module, a map can be generated for any              
building with a floor plan and that can be GPS tagged using downloaded or online               
Google Maps. The floor plan of the building is required in order to map the buildings                
indoor features. This floor plan is imported as an image and overlaid with the              
footprint of the building from Google Maps which provides the GPS coordinates for             
navigation within the floor plan. The overlaid floor plan can be scaled and rotated to               
match the buildings footprint on Google Maps. The map is then annotated with             
important features including the rooms, hallways, flights of stairs, elevators,          
doorways, etc. The annotated map is then exported as a csv file for example, which               
can then be used by the navigation guide application.  

The Navigation Guide module utilises the generated map as a bounded region to              
navigate within. Tracking begins at the entrance to building where Android           
Localisation (GPS, mobile network, etc. ) is still accurate and can be used as a true                
starting point. This starting position can then be confirmed or be set manually if              
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localistion is not accurate e.g. starting inside building. The use of the Android Step              

Detection and Android IMU are then used to track the movement and            
orientation of the user through the buildings walkable paths. The wall-following           
algorithm reduces drifting by bounding the tracked path within the walkable paths and             
hugging corners. The landmark-checking is a manual approach to correct drifting           
when the user approaches a landmark. After reaching the landmark the user can             
confirm this and the user position will be updated to this landmark.  

Fig. 1. System architecture 
 
The pseudo code for map generation is as follows: 
load Google Maps API; 
user imports floor plan image as overlay; 
transform image to fit GPS footprint on Google Maps; 
lock overlay image based on true GPS coordinates; 
start mapping based on overlayed floor plan: 
        draw paths; 
        set landmarks; 
export map; 

 
PML also includes real-time human-computer interaction interfaces. The pseudo Code          
for Indoor Navigation: 
import map; 
draw simple map of paths and landmarks; 
set starting point based on Android Localisation; 
start tracking: 
        get step event from Android Step Detector; 
        get imu data to calculate direction of movement; 
        Wall-Following Algorithm; 
        if user confirms landmark: 
                update position and correct drift; 
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5 Map Annotation 

For the navigation app to have a floor plan with a walkable area and identifiable               
features, a geocode-annotated map must be supplied. After an image of the buildings             
floor plan is overlayed with the Google Maps building footprint, all annotations that             
are added will be tagged with GPS coordinates. The path of walkable areas can be               
added as polygons and a number of landmarks including stairs, doors, elevators,            
corners can be tagged on the map with a corresponding icon shown in Fig. 2. The left                 
image of Fig. 3 shows the annotated floor plan with paths and landmarks. The right               
images on Fig. 3 shows the display on an Android phone during the live indoor               
navigation.  

        

Fig. 2. The floor plan (left) and overlaid floor plan on top of Google Maps building (right) 

         

Fig. 3. Generated navigation map with footprint, paths and landmarks (left) and the display on               
an Android phone (right)  
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6 Inertial Sensory Fusion for Steps and Orientation 

The Navigation Guide application currently uses the built-in sensors of a standard            
Android phone. For this approach data from the IMU and from the magnetic field              
sensor is used to detect the relative movement inside a building. The first challenge is               
to detect the movement of the user, which can be defined for a person walking over                
the steps taken. This is a simple approach to track the person and enables it already to                 
test our navigation concept. For later use it would be necessary to detect the size of                
the steps or calibrate the application for every user and its own step size. Additionally,               
for a real usage scenario it's necessary to update this movement detection to a more               
complex one, with which different moving styles can be tracked. Especially for the             
firefighter scenario, where a variety of walking, crawling, shuffle walking and other            
movement styles are frequently used. To detect the steps for a walking scenario on an               
Android phone, it’s possible to detect the steps over a simple state machine based on               
the peaks in the acceleration data or to use the already built-in Step Detector in the                
Android SDK as described in [27]. During the first trial runs it was noticeable that the                
already built-in feature can detect steps very accurately. The Step Detector analyzes            
the acceleration data of the phone and based on that it detects a step movement, which                
triggers an event. This event can be used to account the step and track the movement                
of the person. 

With the detection of the movement of the user it’s now important to detect where                
the user is heading. For that the approach is to use the magnetic field sensor and                
detect the direction of the movement, with the limitation that external magnetic fields             
can disturb the detection. In this application the data of the magnetic field sensor gets               
read out and it gets filtered by a lowpass filter in the form of an exponentially                
weighted moving average like: 
 

[i] [i] 1 ) [i ]C = α · B + ( − α · C − 1  (1)

where, B[i] and C[i] are input and output on the discrete time-domain data with              
 and  as the corresponding weight variable. i∈ N 0 α  

Those filtered values are a relative measurement from the phone and now it’s              
necessary to define the orientation of the phone to calculate the right directions. This              
is already possible with built-in functions of the Android SDK. First a so called              
rotation matrix can be calculated, which transforms the magnetic field measurement           
based on the gravity measurement from the device coordinate system in a global             
coordinate system like described in [27]. The rotation matrix can then be used to              
calculate the orientation of the phone as Azimuth, Pitch and Roll. For our movement              
the Azimuth is especially important, because it describes the rotation around the            
gravity axis as the angle between the facing direction of the user and the direction to                
the magnetic north pole. For that reason the Azimuth can directly be used to define               
the orientation of the movement of the user. 
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This angle could be inaccurate if only one measurement of the direction of the               
movement gets evaluated. For that reason the phone constantly measures the           
orientation and whenever a step is taken, we can average the measuring values during              
the step and use the average angle of the direction to place the next step. The new                 
location of the step at and coordinates can be calculated over the current     [i]x   [i]y         
position and the average Azimuth  to:φavg  

,[i] x[i ] x (φ )x =  − 1 + Δ · sin avg  [i] [i ] y (φ )y = y − 1 + Δ · cos avg  (2)

with the scaled step size  and . Those scaled step sizes result from the scalingxΔ yΔ  
of the step size to the geological coordinates of the steps, which converts the feet per 
step to latitude and longitude per step. With that it’s possible to define the next step 
and the direction of the movement. 

7 Wall-Following Algorithm 

Our major assumption is that the user only walk, crawl, or run along the predefined               
paths. The user won’t walk through a wall, for example. This assumption helps the              
indoor navigation algorithm to reduce the impact of the IMU sensory integral drifting             
errors. The wall-following algorithm estimates the user’s position by the measurement           
data from the accelerometers and magnetic sensors. Due to the drifting error, the             
estimated position may drift away from the annotated path, for example, pass through             
the wall in the hallway. Therefore, we need to detect the collision between the              
estimated user location and the boundary of the path, e.g. a wall. 

A collision occurs whenever the next step would be outside of a walkable path and                
the line of the step intersects with the path outline. For that reason it’s possible to                
check for collisions after every new calculated step, if it would be outside an allowed               
path. The implementation of this check iterates over the path outline polygons and             
checks if there is an intersection with the connection line between the last step to the                
new one. After iterating over the path outline polygons, the result directly shows if a               
collision for this new step would occur. When the collision is detected, the algorithm              
corrects the trajectory and updates the user’s position along the border of the path.              
Fig. 4 illustrates the wall following method. 

Additionally, it could be possible that at a path crossing the tracking takes a wrong                
turn and follows the wrong path like displayed in the right illustration of Fig. 4. If the                 
direction of those two paths diverge, then the tracking would sooner or later head into               
a wall. If we now account the steps it would make in that direction and solve those                 
conflicts with the above described collision detection, so it could be possible that             
those counted steps would reach over to the other path. If that is the case, we can cut                  
this corner and move the position to the other path and go from there. With that we                 
lose accuracy, but we can undo a potentially fatal error of the tracking approach. 
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Fig. 4. Wall following (left) and corner cutting (right) 

8 Indoor Navigation Experiments 

A preliminary lab experiment has been conducted at an office building on the first              
floor including hallways, elevators and stairs. The length of the building is about 200              
meters. The footprint and floor plan are available from Google Maps. We also             
obtained the scanned floor plan with details of rooms. After aligning the scanned floor              
plan with Google Maps, we obtained the geocode coordinates of the floor plan. We              
then annotated landmarks on the floor plan with elevators, stairs, and doors. Fig. 6              
through 7 shows the results of four tests in the building. Our tests show that the                
wall-following algorithm indeed corrected the IMU drifting errors and put the           
trajectories back to the path. We found that corners on the floor plan might be helpful                
to be additional landmarks. The tests also show weaknesses of the algorithm to be              
improved, for example, the starting point of indoor navigation. We need to start             
tracking the location waypoint before entering the building when the GPS signal is             
available. We also found the collision detection algorithm may get stuck at a certain              
point when the walking angle is perpendicular to the wall. Besides, if the landmarks              
are too far apart, or the drifting error is too large, then the navigation might fail.                
Nevertheless, our initial experiments prove that this simple and affordable approach is            
feasible in a realistic building environment and have a reasonable accuracy within 1 -              
1.5 m, which is acceptable to many humanitarian rescue and recovery tasks. 
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Fig.6. Indoor navigation experiment at the office building (part 1) 

 

             

Fig.7. Indoor navigation experiment at the office building  (part 2) 

9 Conclusions 

In this paper, we proposed a novel Path Markup Language for indoor navigation             
applications. We have shown that the mapping and navigation can be integrated into a              
modular system and can be used to solve a real world problem tackling indoor              
navigation without the use of expensive beacons. The Path Markup Language can be             
used to intuitively create a floor plan featuring landmarks for navigation purposes.            
The navigation application can then track a users position using pedometers and wall             
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following algorithms to reduce errors. Landmark polling is then used to reset this             
error, allowing human supervision to overcome the inaccuracies of the system. The            
technology can be used for indoor navigation in large building facilities such as malls,              
airports, subways, museums, schools, office buildings, and factories for tour guidance,           
and emergency services. 

10 Future Work 

Several features are planned to be added to the mapping and navigation applications             
to further enhance their functionality. Adding multiple floors to a building in the             
mapping app and the ability to transition between these floors in the navigation app.              
This would be achieved through a push notification when in the location of             
stairs/elevator landmark, e.g. “Up 1 floor”, “Down 1 floor”. With these features a 3D              
view of the buildings floors and the users current position could be added.  

Like satellite navigation systems in vehicles do not display a full road map, only a                
small section that the car is currently in, and that rotates based on the orientation of                
the car, this feature would improve the view and intuition of the navigation app. 

Automatic sensor calibration is necessary for the future work, including walking            
stride calibration, magnetic sensor calibration, as well as altimeter calibration. The           
more sensors we throw in the system, the more calibration we need. Automatic             
calibration can be implemented with sensory fusion, e.g. calibrating stride with laser            
distance measurement and calibrating altimeter with satellite signals while the system           
is outside of the building. 

In addition, we are developing the indoor navigation on a helmet for first responders               
to view the navigational information from a projected heads-up display (HUD). This            
would free up their hands for emergency services and enhance the augmented reality             
experience in harsh environments, for example, see-through smoke and walls. 

Acknowledgement 

This work was performed under the financial assistance award 70NANB17H173 from           
U.S. Department of Commerce, National Institute of Standards and Technology,          
PSCR Division and PSIA Program. This project is also funded in part by Carnegie              
Mellon University’s Mobility21 National University Transportation Center, which is         
sponsored by the US Department of Transportation. The authors are grateful to the             
NIST PSCR Program Manager Jeb Benson for his comments and suggestions about            
the technical development of the hyper-reality helmet system.  

References 

1. Keyhole Markup Language (KML): https://developers.google.com/kml 
2. Open Geospatial Consortium (OGC): https://www.opengeospatial.org/standards/kml/ 
3. OpenStreetMap: https://www.openstreetmap.org/#map=5/38.007/-95.844 
4. Military Grid Reference System: 

 https://en.wikipedia.org/wiki/Military_Grid_Reference_System 

https://developers.google.com/kml
https://www.opengeospatial.org/standards/kml/
https://www.openstreetmap.org/#map=5/38.007/-95.844
https://en.wikipedia.org/wiki/Military_Grid_Reference_System


13 

5. GeoTiff, WikiPedia:  
6. HDF: https://nsidc.org/data/hdfeos/intro.html 
7. CityGML: https://www.opengeospatial.org/standards/citygml  
8. IndoorGML: http://www.indoorgml.net/ 
9. Schema of OGC CityML: http://schemas.opengis.net/citygml/building/2.0/building.xsd 

10. OGC Hosts Indoor Location and Floor Plan Standards Forum:  
https://www.opengeospatial.org/pressroom/pressreleases/1122  

11. ARML: https://www.opengeospatial.org/standards/arml 
12. Dead Reckoning: https://en.wikipedia.org/wiki/Dead_reckoning 
13. Xiao, Z. Wen, H., Markham, A. and Trigoni, N.: Robust Indoor Positioning with Lifelong              

Learning: https://www.cs.ox.ac.uk/files/9047/Xiao%20et%20al.%202015.pdf 
14. Cai, Y., Hackett, S. and Alber, F.: Heads-Up LiDAR Imaging, to appear on IS&T,              

Electronic Imaging Conference, Jan. 20, 2020 
15. Lin Q., An Z. and Yang L.: Robooting ultrasonic positioning systems for            

ultrasound-incapable smart devices: https://arxiv.org/pdf/1812.02349.pdf  
16. Indoor  positioning via LoRaWAN, indoornavigation.com:  

https://www.indoornavigation.com/wiki-en/indoor-positioning-via-lorawan 
17. WiFi positioning system, WikiPedia:  

https://en.wikipedia.org/wiki/Wi-Fi_positioning_system 
18. Zafari F., Gkelias A. and Leung K. K.: A survey of indoor localization systems and               

technologies. arXiv: https://arxiv.org/pdf/1709.01015.pdf  
19. Wang Q., Lou H., Men A. and Zhao F.: An infrastructure-free indoor localization             

algorithm on smartphone, Sensors 18(10):3317:  
https://www.researchgate.net/publication/328067193_An_Infrastructure-Free_Indoor_Loc
alization_Algorithm_for_Smartphones 

20. Noh Y., Yamaguchi H., Lee U.: Infrastructure-free collaborative indoor positioning          
schema for time-critical team operations. IEEE Trans. on SMC. Vol. 48, No.3 (2018): 
 https://ieeexplore.ieee.org/abstract/document/7747408 

21. SLAM, WikiPedia: https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping  
22.  Mathworks. Implement SLAM with Lidar Scans (2020) 

https://www.mathworks.com/help/nav/ug/implement-simultaneous-localization-and-mappi
ng-with-lidar-scans.html 

23. Shin YS and Kim A.: Sparse depth enhanced direct thermal-infrared SLAM beyond the             
visible spectrum. arXiv:1902.10892: https://arxiv.org/abs/1902.10892  

24. DJI Mavic Pro manual: 
https://dl.djicdn.com/downloads/mavic/20171219/Mavic%20Pro%20User%20Manual%20
V2.0.pdf 

25. Sato D., Oh U., Naito K., Takagi H., Kitani K., Asakawa C.: NavCog3: an evaluation of a                 
smartphone-based blind indoor navigation assistant with semantic features in a large-scale           
environment. ASSET’17, Oct. 29-Nov. 1, 2017, Baltimore, MD, USA:         
https://www.ri.cmu.edu/wp-content/uploads/2018/01/p270-sato.pdf  

26. Barrie D. Supernavigators: exploring the wonders of how animals find their way. The             
Experiment, LLC (2019) 

27. Google, Android Developer API references: https://developer.android.com/reference 
 
 
 

https://nsidc.org/data/hdfeos/intro.html
https://www.opengeospatial.org/standards/citygml
http://www.indoorgml.net/
http://schemas.opengis.net/citygml/building/2.0/building.xsd
https://www.opengeospatial.org/pressroom/pressreleases/1122
https://www.opengeospatial.org/standards/arml
https://en.wikipedia.org/wiki/Dead_reckoning
https://www.cs.ox.ac.uk/files/9047/Xiao%20et%20al.%202015.pdf
https://arxiv.org/pdf/1812.02349.pdf
https://www.indoornavigation.com/wiki-en/indoor-positioning-via-lorawan
https://en.wikipedia.org/wiki/Wi-Fi_positioning_system
https://arxiv.org/pdf/1709.01015.pdf
https://www.researchgate.net/publication/328067193_An_Infrastructure-Free_Indoor_Localization_Algorithm_for_Smartphones
https://www.researchgate.net/publication/328067193_An_Infrastructure-Free_Indoor_Localization_Algorithm_for_Smartphones
https://ieeexplore.ieee.org/abstract/document/7747408
https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
https://www.mathworks.com/help/nav/ug/implement-simultaneous-localization-and-mapping-with-lidar-scans.html
https://www.mathworks.com/help/nav/ug/implement-simultaneous-localization-and-mapping-with-lidar-scans.html
https://arxiv.org/abs/1902.10892
https://dl.djicdn.com/downloads/mavic/20171219/Mavic%20Pro%20User%20Manual%20V2.0.pdf
https://dl.djicdn.com/downloads/mavic/20171219/Mavic%20Pro%20User%20Manual%20V2.0.pdf
https://www.ri.cmu.edu/wp-content/uploads/2018/01/p270-sato.pdf
https://developer.android.com/reference

