
Path Markup Language for Indoor Navigation

Yang Cai, Florian Alber, and Sean Hackett

Carnegie Mellon University, 4720 Forbes Ave., Pittsburgh, USA
ycai@cmu.edu,falber@andrew.cmu.edu,shackett@andrew.cmu.edu

Abstract. Indoor navigation is critical in many tasks such as firefighting,
emergency medical response, and SWAT response, where GPS signals are not
available. Prevailing approaches such as beacons, radio signal triangulation,
SLAM, and IMU methods are either expensive or impractical in extreme
conditions, e.g. poor visibility and sensory drifting. In this study, we develop a
path markup language for pre-planning routes and interacting with the user on a
mobile device for real-time indoor navigation. The interactive map is annotated
with walkable paths and landmarks that can be used for inertial motion
sensor-based navigation. The wall-following and landmark-checking algorithms
help to cancel drifting errors along the way. Our preliminary experiments show
that the approach is affordable and efficient to generate annotated building floor
path map and it is feasible to use the map for indoor navigation in real-time on a
mobile device with motion sensors. The method can be applied to intelligent
helmet and mobile phones, including potential applications of first responders,
tour guide for buildings, and assistance for visually impaired users.

Keywords: indoor navigation, SLAM, IMU, EMS, firefighting, markup language, map.

1 Introduction

Indoor navigation is a growing routine in modern urban lives. People need to navigate
through large infrastructures such as airports, hospitals, museums, schools, shopping
malls, subways, and factories. It is critical for extreme cases such as firefighting,
emergency medical responses, and SWAT team responses. It is logical to consider
indoor navigation like a GPS navigator, including display of the floor map, updating
current position on the map, and updating the landmarks nearby. Unfortunately, GPS
signals are normally weak or available in buildings. It is rather difficult to sense the
location of the user without infrastructure-dependent sensory systems. Furthermore,
most available floor plans contain either too much irrelevant information such as toilet
seats and furniture in the room, or too little navigational information, e.g. no
connection to the user’s location nor user’s orientation. First responders often have a
brief look at the paper drawings of a building and try to memorize it before entering.
To make the matter worse, first responders often encounter the buildings with heavy
smoke and poor visibility, where prevailing vision-based navigation methods would
fail because we virtually have to navigate in a dark environment.

Who navigate well in dark? The answer is blind people. In the 1970's, there was a
blackout in New York City. Many people had to walk to their home without any light.

2

Some blind people volunteered to guide sighted people home. In this study, we want
to explore a markup language to annotate building’s floor plan so that the user can
navigate through the building with inertial motion sensors without
infrastructure-dependent beacons.

2 Related Studies

Similar to a GPS navigation system, we need a digitally annotated map that works
with positioning system. There are many geographically tagging markup languages
and geocodes. For example, Keyhole Markup Language (KML) enables
geographically tagging buildings, streets, and events with GPS coordinates [1]. KML
has been adopted by Google Maps and Google Earth and it is a part of the Open
Geospatial Consortium (OGC) [2]. OpenStreetMap [3] is an open source for millions
of footprints of buildings, contributed by users. In addition to the GPS coordinates,
there is the Military Grid Reference System (MGRS) [4] standardized by NATO
militaries for locating points on Earth. MGRS is a multi-resolution geocode system
that consists of grid zone designator, following by the 100,000-meter square identifier
and then the numerical location with a pairs of easting and northing values. The
longer digits, the more accuracy. For example, 4QFJ 123 678 has a precision level of
100 m and 4QFJ 12345 67890 can reach a precision level of 1 m. Geocode can be also
embedded into images, for example, GeoTiff image format turns pixels into GPS
coordinates with its metadata [5]; and HDF (Hierarchical Data Format) standardizes
NASA Earth Observation System (EOS) data products, including multiple spectrum
satellite sensory data and multiple object data files [6].

Outdoor map markup languages and geocode provide starting points and context for
indoor navigation. A few indoor geocode and markup languages are extensions of
outdoor ones. OGC’s CityGML [7] is an open data model and XML-based format for
the storage and exchange of virtual 3D city models. The aim of the development of
CityML is to reach an international standardization for the basic entities, attributes,
and relations of a 3D city model. Some schematic descriptions are relevant to
emergency responses such as RoofSurfaceType, WallSurfaceType,

FloorSurfaceType, and GroundSurfaceType [9]. The three dimensional
descriptions about the buildings, bridges, streets, and grounds provide important
information about the elevation or depth of city objects and benefit to indoor
navigation. In 2014, OGC further released IndoorGML in 2014 [8], which is a data
model and exchange format for the representation of the indoor navigation aspects.
IndoorGML provides a topographic and semantic models of indoor space that
connects to related standards like CityGML, Open Floor Plan [9], and
OpenStreetMap. IndoorGML also describes multiple layers of indoor components
including topographic space, WiFi sensor space, and RFID sensor space. All of the
geocode, standards and exchange formats enable data sharing and emergency services
[10]. In addition, OGC also released Augmented Reality Markup Language 2.0
(ARML) [11] to allow users to describe virtual objects in an augmented reality (AR)
scene with their appearances and their location related to the real world. ARML 2.0

3

also defines a script language to dynamically modify the AR scene based on user
behavior and user input, e.g. turning head or raising a hand, etc. In summary, the
OGC has moved from 2D geocode to 3D geocode, and moved from cities to building,
from outdoor to indoor, and from schematic world to virtual reality, and augmented
reality worlds. Perhaps, the most valuable outcome of the OGC geocode and
standards lies in its potential of crowdsourcing for massive geocoded data about
buildings, interiors, and floor plans. However, despite a broad spectrum of indoor
facility markup languages, the existing methods are too abstract and complicated; and
there are many gaps to fill in order to be useful in indoor navigation. For example,
how to convert a floor plan drawing in PDF format into a geocoded floor plan? How
to use the floor plan interactively in real-time indoor navigation?

Localization is the most critical component in indoor navigation. We need to know
where the user is and which direction the user is heading in the building. Traditional
Dead Reckoning, or Inertial Motion Unit (IMU) sensor-based approaches can work in
totally dark environments, but they have notorious accumulative drifting problems
over a period of time [12]. Recent Renaissance of IMU sensor-based methods are
enhanced for better accuracy by placing IMU sensors on shoes [13] or fusing with
other sensors [14]. The prevailing approach is the beacon-based localization,
including ultrasound [15], LoRa [16], and WiFi [17]. Installing and calibrating
beacons in a building are expensive and there are wall-attenuation problems [18].
There are growing technologies of infrastructure-free localization by mobile beacons
[19] or collaborative positioning [20]. Rapidly growing mobile robotics technologies
bring new dimensions to indoor navigation. Simultaneous Localization and Mapping
(SLAM) algorithm [21] has been popular for 3D modeling from motion, tracking and
mapping at the same time. Single RGB camera-based visual SLAM can generate the
motion trajectory in a relative 3D space. Stereo and RGB-Depth camera-based SLAM
yield absolute 3D coordinates of the trajectory. Visual SLAM is computationally
expensive and it often fails in poor lighting, smoky, or feature-less environments such
as a painted white wall. Some RGB-D sensor-based SLAM incorporate with IMU
sensors for more accurate localization results. LiDAR-based SLAM can work in dark
by tracking the 3D point clouds but its cost is very expensive [22]. Thermal IR camera
can also be used for SLAM but its images are rather low-resolution and it’s expensive
as well [23].

In summary, there is no silver bullet in indoor localization. The technologies for
large-scale localization in normal environments or extreme conditions such as fire and
smoke are not mature yet. There are gaps between the available technologies and
applications. For example, there is little connection between the geographic markup
languages and indoor navigation technologies. Many sensors need pre-calibration.
Some of them such as magnetic field sensor needs to calibrate each time of usage.
Self-calibration methods have implemented, for example, DJI drones use a motor to
rotate the magnetic sensor before taking off [24]. A few novel concepts might pave
the way for affordable and practical indoor localization, for example, the mobile
device for helping visually impaired user to navigate indoors [25]. The assistive
technology is affordable and interactive with wall-following function. In nature, there
are also other modalities for navigation based on smell intensity, lighting, sound,

4

magnetic field, and simply tactile sensing [26]. Biomimicry teaches us to look into
novel sensors and fusion algorithms, for example, the one-dimensional LiDAR and
IMU sensor for first-person view imaging [14].

3 Path Markup Language

Although OGC’s IndoorGML includes the IndoorNavigation module, it only provides
standards and a high-level framework, rather than functional indoor navigation
solutions. In this study, we propose the Path Markup Language (PML) as a data
model and schema specifically for indoor navigation pre-incident planning and
real-time navigation guidance. Currently, PML contains the following geocode
elements: footprint, floor plan, path, landmark, and waypoint. These objects can be
expressed in XML schema.

Footprint is the boundary of a building in a polygon. It can be extracted directly
from Google Earth manually, or with machine vision. The coordinate points can also
be downloaded from Google Maps or OpenStreetMap but it is not guaranteed because
it depends on user online contributions. The coordinates are normally in GPS format
and the sequence is counter-clockwise. The XME schema of Footprint is following:

<pml:Footprint>

<pml:Polygon>
<pml:coordinates>0,0 100,0 100,100 0,100 0,0
</coordinates>

</pml:Polygon>
</pml:Footprint>

The floor plan is a hierarchical structure of anchor points, footprint, rooms, paths,

landmarks, and waypoints. It takes at least 3 anchor points to scale and align a floor
plan to a georeferenced map such as Google Maps. Normally floor plan drawings are
CAD drawings without any georeference. In PML, we overlay the floor plan to
Google Maps by scaling, rotating and translating to extract the GPS coordinates
directly.

Path is a critical element in indoor navigation. We assume a building is not an
empty stadium. Instead, it contains walls, hallways, and barriers. We assume that
humans and robots can only walk on the paths without breaking walls or barriers. This
assumption helps to reduce the IMU-based localization drifting through walls.
Instead, the estimated trajectory will be along the Paths. In the PML, a Path is
omnidirectional and it is a sequence of line segments with widths.

<pml:Path>
 <pml:Name> “Hallway” </pml:Name>
 <pml:Width> 1 </pml:Width>

 <pml:Line>
 <pml:coordinates>0,0 10,0 10,10 0,10
 </coordinates>

 </pml:Line>
</pml:Path>

5

Landmark is also a critical element in PML. Here we assume the IMU-based indoor
navigation system has the sensory drifting problem and there are landmarks along the
paths. When the user approaches the landmark nearby, the navigation system will
send a confirmation request. Once the landmark is acknowledged, the localization
track starts over again and the drift is canceled before it is accumulated further. A
Landmark can be labeled with a symbol, for example, “E” as elevator and “S” as
stairs. It also can be displayed with an icon.

<pml:Landmark>
 <pml:Name> “E” </pml:Name>
 <pml:Icon>elevatorIcon.pmg </pml:Icon>

 <pml:coordinates>5,5
 </coordinates>

</pml:Landmark>

Finally, Waypoint is the location of the user including heading and coordinates. It
will be updated in real-time to display for current position and orientation of the user.
Waypoints can be stored and displayed as a digital pheromone along the Paths. The
pheromone trace can be turned off (0), without decay (1), or with decay (2).

<pml:Waypoint>
 <pml:Name> “Me” </pml:Name>
 <pml:Icon>RedArrow.pmg </pml:Icon>
 <pml:coordinates>7,9</coordinates>
 <pml:heading>245</pml:heading>
 <pml:trace>2</pml:trace>
</pml:Waypoint>

4 Mobile System Architecture

To implement PML, we aim to combine geographic markup language with real-time
indoor navigation algorithms into a simple and affordable working system. The
system contains two modules like displayed in Fig. 1: Map Generation and
Navigation Guide. For the Map Generation module, a map can be generated for any
building with a floor plan and that can be GPS tagged using downloaded or online
Google Maps. The floor plan of the building is required in order to map the buildings
indoor features. This floor plan is imported as an image and overlaid with the
footprint of the building from Google Maps which provides the GPS coordinates for
navigation within the floor plan. The overlaid floor plan can be scaled and rotated to
match the buildings footprint on Google Maps. The map is then annotated with
important features including the rooms, hallways, flights of stairs, elevators,
doorways, etc. The annotated map is then exported as a csv file for example, which
can then be used by the navigation guide application.

The Navigation Guide module utilises the generated map as a bounded region to
navigate within. Tracking begins at the entrance to building where Android
Localisation (GPS, mobile network, etc.) is still accurate and can be used as a true
starting point. This starting position can then be confirmed or be set manually if

6

localistion is not accurate e.g. starting inside building. The use of the Android Step

Detection and Android IMU are then used to track the movement and
orientation of the user through the buildings walkable paths. The wall-following
algorithm reduces drifting by bounding the tracked path within the walkable paths and
hugging corners. The landmark-checking is a manual approach to correct drifting
when the user approaches a landmark. After reaching the landmark the user can
confirm this and the user position will be updated to this landmark.

Fig. 1. System architecture

The pseudo code for map generation is as follows:
load Google Maps API;
user imports floor plan image as overlay;
transform image to fit GPS footprint on Google Maps;
lock overlay image based on true GPS coordinates;
start mapping based on overlayed floor plan:
 draw paths;
 set landmarks;
export map;

PML also includes real-time human-computer interaction interfaces. The pseudo Code
for Indoor Navigation:
import map;
draw simple map of paths and landmarks;
set starting point based on Android Localisation;
start tracking:
 get step event from Android Step Detector;
 get imu data to calculate direction of movement;
 Wall-Following Algorithm;
 if user confirms landmark:
 update position and correct drift;

7

5 Map Annotation

For the navigation app to have a floor plan with a walkable area and identifiable
features, a geocode-annotated map must be supplied. After an image of the buildings
floor plan is overlayed with the Google Maps building footprint, all annotations that
are added will be tagged with GPS coordinates. The path of walkable areas can be
added as polygons and a number of landmarks including stairs, doors, elevators,
corners can be tagged on the map with a corresponding icon shown in Fig. 2. The left
image of Fig. 3 shows the annotated floor plan with paths and landmarks. The right
images on Fig. 3 shows the display on an Android phone during the live indoor
navigation.

Fig. 2. The floor plan (left) and overlaid floor plan on top of Google Maps building (right)

Fig. 3. Generated navigation map with footprint, paths and landmarks (left) and the display on
an Android phone (right)

8

6 Inertial Sensory Fusion for Steps and Orientation

The Navigation Guide application currently uses the built-in sensors of a standard
Android phone. For this approach data from the IMU and from the magnetic field
sensor is used to detect the relative movement inside a building. The first challenge is
to detect the movement of the user, which can be defined for a person walking over
the steps taken. This is a simple approach to track the person and enables it already to
test our navigation concept. For later use it would be necessary to detect the size of
the steps or calibrate the application for every user and its own step size. Additionally,
for a real usage scenario it's necessary to update this movement detection to a more
complex one, with which different moving styles can be tracked. Especially for the
firefighter scenario, where a variety of walking, crawling, shuffle walking and other
movement styles are frequently used. To detect the steps for a walking scenario on an
Android phone, it’s possible to detect the steps over a simple state machine based on
the peaks in the acceleration data or to use the already built-in Step Detector in the
Android SDK as described in [27]. During the first trial runs it was noticeable that the
already built-in feature can detect steps very accurately. The Step Detector analyzes
the acceleration data of the phone and based on that it detects a step movement, which
triggers an event. This event can be used to account the step and track the movement
of the person.

With the detection of the movement of the user it’s now important to detect where
the user is heading. For that the approach is to use the magnetic field sensor and
detect the direction of the movement, with the limitation that external magnetic fields
can disturb the detection. In this application the data of the magnetic field sensor gets
read out and it gets filtered by a lowpass filter in the form of an exponentially
weighted moving average like:

[i] [i] 1) [i]C = α · B + (− α · C − 1 (1)

where, B[i] and C[i] are input and output on the discrete time-domain data with
 and as the corresponding weight variable. i∈ N 0 α

Those filtered values are a relative measurement from the phone and now it’s
necessary to define the orientation of the phone to calculate the right directions. This
is already possible with built-in functions of the Android SDK. First a so called
rotation matrix can be calculated, which transforms the magnetic field measurement
based on the gravity measurement from the device coordinate system in a global
coordinate system like described in [27]. The rotation matrix can then be used to
calculate the orientation of the phone as Azimuth, Pitch and Roll. For our movement
the Azimuth is especially important, because it describes the rotation around the
gravity axis as the angle between the facing direction of the user and the direction to
the magnetic north pole. For that reason the Azimuth can directly be used to define
the orientation of the movement of the user.

9

This angle could be inaccurate if only one measurement of the direction of the
movement gets evaluated. For that reason the phone constantly measures the
orientation and whenever a step is taken, we can average the measuring values during
the step and use the average angle of the direction to place the next step. The new
location of the step at and coordinates can be calculated over the current [i]x [i]y
position and the average Azimuth to:φavg

,[i] x[i] x (φ)x = − 1 + Δ · sin avg [i] [i] y (φ)y = y − 1 + Δ · cos avg (2)

with the scaled step size and . Those scaled step sizes result from the scalingxΔ yΔ
of the step size to the geological coordinates of the steps, which converts the feet per
step to latitude and longitude per step. With that it’s possible to define the next step
and the direction of the movement.

7 Wall-Following Algorithm

Our major assumption is that the user only walk, crawl, or run along the predefined
paths. The user won’t walk through a wall, for example. This assumption helps the
indoor navigation algorithm to reduce the impact of the IMU sensory integral drifting
errors. The wall-following algorithm estimates the user’s position by the measurement
data from the accelerometers and magnetic sensors. Due to the drifting error, the
estimated position may drift away from the annotated path, for example, pass through
the wall in the hallway. Therefore, we need to detect the collision between the
estimated user location and the boundary of the path, e.g. a wall.

A collision occurs whenever the next step would be outside of a walkable path and
the line of the step intersects with the path outline. For that reason it’s possible to
check for collisions after every new calculated step, if it would be outside an allowed
path. The implementation of this check iterates over the path outline polygons and
checks if there is an intersection with the connection line between the last step to the
new one. After iterating over the path outline polygons, the result directly shows if a
collision for this new step would occur. When the collision is detected, the algorithm
corrects the trajectory and updates the user’s position along the border of the path.
Fig. 4 illustrates the wall following method.

Additionally, it could be possible that at a path crossing the tracking takes a wrong
turn and follows the wrong path like displayed in the right illustration of Fig. 4. If the
direction of those two paths diverge, then the tracking would sooner or later head into
a wall. If we now account the steps it would make in that direction and solve those
conflicts with the above described collision detection, so it could be possible that
those counted steps would reach over to the other path. If that is the case, we can cut
this corner and move the position to the other path and go from there. With that we
lose accuracy, but we can undo a potentially fatal error of the tracking approach.

10

Fig. 4. Wall following (left) and corner cutting (right)

8 Indoor Navigation Experiments

A preliminary lab experiment has been conducted at an office building on the first
floor including hallways, elevators and stairs. The length of the building is about 200
meters. The footprint and floor plan are available from Google Maps. We also
obtained the scanned floor plan with details of rooms. After aligning the scanned floor
plan with Google Maps, we obtained the geocode coordinates of the floor plan. We
then annotated landmarks on the floor plan with elevators, stairs, and doors. Fig. 6
through 7 shows the results of four tests in the building. Our tests show that the
wall-following algorithm indeed corrected the IMU drifting errors and put the
trajectories back to the path. We found that corners on the floor plan might be helpful
to be additional landmarks. The tests also show weaknesses of the algorithm to be
improved, for example, the starting point of indoor navigation. We need to start
tracking the location waypoint before entering the building when the GPS signal is
available. We also found the collision detection algorithm may get stuck at a certain
point when the walking angle is perpendicular to the wall. Besides, if the landmarks
are too far apart, or the drifting error is too large, then the navigation might fail.
Nevertheless, our initial experiments prove that this simple and affordable approach is
feasible in a realistic building environment and have a reasonable accuracy within 1 -
1.5 m, which is acceptable to many humanitarian rescue and recovery tasks.

11

Fig.6. Indoor navigation experiment at the office building (part 1)

Fig.7. Indoor navigation experiment at the office building (part 2)

9 Conclusions

In this paper, we proposed a novel Path Markup Language for indoor navigation
applications. We have shown that the mapping and navigation can be integrated into a
modular system and can be used to solve a real world problem tackling indoor
navigation without the use of expensive beacons. The Path Markup Language can be
used to intuitively create a floor plan featuring landmarks for navigation purposes.
The navigation application can then track a users position using pedometers and wall

12

following algorithms to reduce errors. Landmark polling is then used to reset this
error, allowing human supervision to overcome the inaccuracies of the system. The
technology can be used for indoor navigation in large building facilities such as malls,
airports, subways, museums, schools, office buildings, and factories for tour guidance,
and emergency services.

10 Future Work

Several features are planned to be added to the mapping and navigation applications
to further enhance their functionality. Adding multiple floors to a building in the
mapping app and the ability to transition between these floors in the navigation app.
This would be achieved through a push notification when in the location of
stairs/elevator landmark, e.g. “Up 1 floor”, “Down 1 floor”. With these features a 3D
view of the buildings floors and the users current position could be added.

Like satellite navigation systems in vehicles do not display a full road map, only a
small section that the car is currently in, and that rotates based on the orientation of
the car, this feature would improve the view and intuition of the navigation app.

Automatic sensor calibration is necessary for the future work, including walking
stride calibration, magnetic sensor calibration, as well as altimeter calibration. The
more sensors we throw in the system, the more calibration we need. Automatic
calibration can be implemented with sensory fusion, e.g. calibrating stride with laser
distance measurement and calibrating altimeter with satellite signals while the system
is outside of the building.

In addition, we are developing the indoor navigation on a helmet for first responders
to view the navigational information from a projected heads-up display (HUD). This
would free up their hands for emergency services and enhance the augmented reality
experience in harsh environments, for example, see-through smoke and walls.

Acknowledgement

This work was performed under the financial assistance award 70NANB17H173 from
U.S. Department of Commerce, National Institute of Standards and Technology,
PSCR Division and PSIA Program. This project is also funded in part by Carnegie
Mellon University’s Mobility21 National University Transportation Center, which is
sponsored by the US Department of Transportation. The authors are grateful to the
NIST PSCR Program Manager Jeb Benson for his comments and suggestions about
the technical development of the hyper-reality helmet system.

References

1. Keyhole Markup Language (KML): https://developers.google.com/kml
2. Open Geospatial Consortium (OGC): https://www.opengeospatial.org/standards/kml/
3. OpenStreetMap: https://www.openstreetmap.org/#map=5/38.007/-95.844
4. Military Grid Reference System:

 https://en.wikipedia.org/wiki/Military_Grid_Reference_System

https://developers.google.com/kml
https://www.opengeospatial.org/standards/kml/
https://www.openstreetmap.org/#map=5/38.007/-95.844
https://en.wikipedia.org/wiki/Military_Grid_Reference_System

13

5. GeoTiff, WikiPedia:
6. HDF: https://nsidc.org/data/hdfeos/intro.html
7. CityGML: https://www.opengeospatial.org/standards/citygml
8. IndoorGML: http://www.indoorgml.net/
9. Schema of OGC CityML: http://schemas.opengis.net/citygml/building/2.0/building.xsd

10. OGC Hosts Indoor Location and Floor Plan Standards Forum:
https://www.opengeospatial.org/pressroom/pressreleases/1122

11. ARML: https://www.opengeospatial.org/standards/arml
12. Dead Reckoning: https://en.wikipedia.org/wiki/Dead_reckoning
13. Xiao, Z. Wen, H., Markham, A. and Trigoni, N.: Robust Indoor Positioning with Lifelong

Learning: https://www.cs.ox.ac.uk/files/9047/Xiao%20et%20al.%202015.pdf
14. Cai, Y., Hackett, S. and Alber, F.: Heads-Up LiDAR Imaging, to appear on IS&T,

Electronic Imaging Conference, Jan. 20, 2020
15. Lin Q., An Z. and Yang L.: Robooting ultrasonic positioning systems for

ultrasound-incapable smart devices: https://arxiv.org/pdf/1812.02349.pdf
16. Indoor positioning via LoRaWAN, indoornavigation.com:

https://www.indoornavigation.com/wiki-en/indoor-positioning-via-lorawan
17. WiFi positioning system, WikiPedia:

https://en.wikipedia.org/wiki/Wi-Fi_positioning_system
18. Zafari F., Gkelias A. and Leung K. K.: A survey of indoor localization systems and

technologies. arXiv: https://arxiv.org/pdf/1709.01015.pdf
19. Wang Q., Lou H., Men A. and Zhao F.: An infrastructure-free indoor localization

algorithm on smartphone, Sensors 18(10):3317:
https://www.researchgate.net/publication/328067193_An_Infrastructure-Free_Indoor_Loc
alization_Algorithm_for_Smartphones

20. Noh Y., Yamaguchi H., Lee U.: Infrastructure-free collaborative indoor positioning
schema for time-critical team operations. IEEE Trans. on SMC. Vol. 48, No.3 (2018):
 https://ieeexplore.ieee.org/abstract/document/7747408

21. SLAM, WikiPedia: https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
22. Mathworks. Implement SLAM with Lidar Scans (2020)

https://www.mathworks.com/help/nav/ug/implement-simultaneous-localization-and-mappi
ng-with-lidar-scans.html

23. Shin YS and Kim A.: Sparse depth enhanced direct thermal-infrared SLAM beyond the
visible spectrum. arXiv:1902.10892: https://arxiv.org/abs/1902.10892

24. DJI Mavic Pro manual:
https://dl.djicdn.com/downloads/mavic/20171219/Mavic%20Pro%20User%20Manual%20
V2.0.pdf

25. Sato D., Oh U., Naito K., Takagi H., Kitani K., Asakawa C.: NavCog3: an evaluation of a
smartphone-based blind indoor navigation assistant with semantic features in a large-scale
environment. ASSET’17, Oct. 29-Nov. 1, 2017, Baltimore, MD, USA:
https://www.ri.cmu.edu/wp-content/uploads/2018/01/p270-sato.pdf

26. Barrie D. Supernavigators: exploring the wonders of how animals find their way. The
Experiment, LLC (2019)

27. Google, Android Developer API references: https://developer.android.com/reference

https://nsidc.org/data/hdfeos/intro.html
https://www.opengeospatial.org/standards/citygml
http://www.indoorgml.net/
http://schemas.opengis.net/citygml/building/2.0/building.xsd
https://www.opengeospatial.org/pressroom/pressreleases/1122
https://www.opengeospatial.org/standards/arml
https://en.wikipedia.org/wiki/Dead_reckoning
https://www.cs.ox.ac.uk/files/9047/Xiao%20et%20al.%202015.pdf
https://arxiv.org/pdf/1812.02349.pdf
https://www.indoornavigation.com/wiki-en/indoor-positioning-via-lorawan
https://en.wikipedia.org/wiki/Wi-Fi_positioning_system
https://arxiv.org/pdf/1709.01015.pdf
https://www.researchgate.net/publication/328067193_An_Infrastructure-Free_Indoor_Localization_Algorithm_for_Smartphones
https://www.researchgate.net/publication/328067193_An_Infrastructure-Free_Indoor_Localization_Algorithm_for_Smartphones
https://ieeexplore.ieee.org/abstract/document/7747408
https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
https://www.mathworks.com/help/nav/ug/implement-simultaneous-localization-and-mapping-with-lidar-scans.html
https://www.mathworks.com/help/nav/ug/implement-simultaneous-localization-and-mapping-with-lidar-scans.html
https://arxiv.org/abs/1902.10892
https://dl.djicdn.com/downloads/mavic/20171219/Mavic%20Pro%20User%20Manual%20V2.0.pdf
https://dl.djicdn.com/downloads/mavic/20171219/Mavic%20Pro%20User%20Manual%20V2.0.pdf
https://www.ri.cmu.edu/wp-content/uploads/2018/01/p270-sato.pdf
https://developer.android.com/reference

