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ABSTRACT1
As cities aim to improve their holistic transportation networks, emerging mobility options are be-2
ing integrated at a rapid pace. These modes provide commuters with greater flexibility to construct3
more convenient trips and reach a larger set of essential service destinations. However, a way to4
quantify their respective impacts on accessibility across time and space has not yet been introduced5
in a large-scale network that allows for general cross-modal trips. Moreover, most classical metrics6
of accessibility in single-mode networks have considered the single trip cost of travel time while7
also assuming a homogeneous population. To address this challenge of measuring time-dependent8
accessibility in a multimodal transportation network associated with a diverse set of travel costs,9
this paper develops a multimodal network modeling framework that accounts for five major factors10
across all travel modes: day-to-day average travel time, price, reliability represented by day-to-day11
travel time variability, safety risks, and discomfort. The generalized travel cost of the least-cost12
path in the multimodal network serves as a metric of accessibility, where the full set of travel13
modes includes personal vehicle, transportation network companies, car share, public transit, per-14
sonal bike, bike share, scooter, and walking. The network design was tested with four examples,15
which showed how shared mobility options have the potential to improve accessibility and provide16
more reliable travel relative to the status quo of the public transit/walking combination. Using17
this modeling framework, policymakers can gain insights into spatio-temporal mobility disparities18
across different populations with different needs.19

20
Keywords: emerging mobility, mobility service, accessibility, micromobility, reliability21
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INTRODUCTION1
The proliferation of shared transportation modes and micromobility infrastructure has changed the2
way that people travel within urban areas. Commuters are no longer constrained to riding their3
personal vehicle or using the fixed-schedule public transit network to reach their final destination.4
Rather, they may use emerging mobility options to construct convenient trips from end-to-end. By5
harnessing the full extent of the multimodal network, commuters can access a larger set of essential6
resource destinations, such as workplaces, grocery stores, and hospitals.7

As the mobility landscape evolves, several cities including Austin, Boston, and Portland8
have developed plans to make their multimodal transportation networks more efficient, affordable,9
reliable, safe, and equitable, all with the goal of improving accessibility to locations that pro-10
vide goods and services (1–3). Ensuring successful implementation requires a way for the cities11
to measure the ability of different communities to access these points of interest. To address this12
measurement challenge, this paper develops a multimodal network modeling framework that quan-13
tifies time-dependent accessibility in a transportation network. The mobility options included are14
personal vehicle, transportation network companies (TNC), car share, public transit, personal bike,15
bike share, scooter, and walk. Planners can use the framework to compare the accessibility of16
different origin-destination (O-D) pairs across time and space and evaluate where, when, and why17
mobility is underserved. The proposed method can also be used to determine how changes to the18
network, such as the addition of micromobility services or a decrease in public transit fare, affect19
accessibility of points of interest for different neighborhoods.20

The stated research goal is related to the objective of the literature in Table 1, which also21
seeks to measure point-of-interest accessibility for the purpose of planning. However, the analysis22
in these papers neglects three factors that impact an assessment of accessibility: multimodal travel,23
a more comprehensive travel cost function, and time-dependency. This research aims to fill that24
gap by including all relevant transportation options, accounting for multiple travel cost factors, and25
incorporating travel costs that vary by departure time.26

In these papers and others (11), accessibility is quantified in different ways. Frequently27
used accessibility metrics are contour measures, which count the number of “opportunities” (i.e.28
points of interest) within some travel time contour relative to an origin, and gravity measures,29
which calculate the sum of opportunities discounted by their travel time relative to an origin. Of30
note is the fact that these accessibility metrics, among others, require a determination of the shortest31
path by travel time between O-D pairs. Consequently, this paper chooses to measure accessibility32
as the cost of the shortest path between an O-D, where cost is defined with respect to travel time,33
price, reliability, safety, and discomfort.34

This work thereby bridges the aforementioned literature on accessibility analysis with35
the body of research concerned with least-cost multimodal route-finding in large-scale networks.36
Much of the previous multimodal route-finding research, summarized in Table 2, is focused on the37
process of efficiently finding optimal paths with respect to the commonly used criteria of travel38
time and number of transfers. This process-driven research, which mostly centers on improving39
algorithmic efficiency, is necessary for the development of mobile applications such as Moovit40
and Citymapper that people use for real-time navigation in an increasingly multimodal world (12).41
Unlike this type of routing research, this paper does not concentrate on the algorithmic or runtime42
efficiency components of pathfinding, nor does it outline a data-gathering procedure for finding a43
multimodal route in real-time. Instead, the research objective is to design a comprehensive multi-44
modal network including all possible mobility options for the purpose of examining possible path45
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TABLE 1: Literature Review: Accessibility Evaluation

Study Objective Population
Considered

Accessibility
Metric(s)

Travel Modes Travel Cost Time-
depen-
dent
Analysis

Tribby and Zand-
bergen (4)

measure and
compare
accessibility by way
of PT

– TT of SP PT, walk TT ✓

Djurhuus et al.
(5)

determine
individual-based
accessibility areas
by way of PT

– total
accessible
area

PT, walk,
personal bike

TT ✓

El-Geneidy et al.
(6)

measure and
compare
accessibility by way
of PT

socially
disadvan-
taged

cumulative
opportunities

PT, walk TT, price ✓

Chen et al. (7) measure and
compare
accessibility by way
of PT

– 1. gravity
metric
2. TT of SP,
weighted by
destination
importance

PT, walk TT –

Järv et al. (8) measure and
compare
accessibility to
services by time of
day

– TT of SP PT, walk TT ✓

Carpentieri et al.
(9)

measure
accessibility of
elderly people to
healthcare services

elderly gravity metric PT, walk TT –

Yu et al. (10) evaluate multimodal
accessibility with
resepct to TT and
price budgets and
under TT uncertainty

– cumulative
opportunities

TNC, PT,
walk

TT, price,
reliability

–

This paper measure and
compare
accessibility
between
heterogeneous
regions in a
time-dependent
multimodal network

Population
character-
ized by
time,
location
and
socio-demo

total cost of
SP

personal
vehicle, TNC,
car share, PT,
personal bike,
bike share,
scooter, walk

TT, price,
reliability,
risk,
discomfort

✓

Notes: “TNC” = transportation network company; “PT” = public transit; “TT” = travel time; “SP” = shortest path;
“✓” indicates that time-dependent analysis is possible with the proposed method; “–” indicates that time-dependent
analysis is not possible
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TABLE 2: Literature Review: Multimodal Route-finding

Included Travel Modes Case Study

Study Use Case Travel Cost Shared Mi-
cromobility

On-
demand
Service

Network Size Data
Type

Delling et al.
(13)

RTRP TT – – >1 million nodes real

Zhang et al. (14) RTRP TT + price +
effort +
discomfort

– – >10,000 nodes real

Delling et al.
(15)

RTRP TT, price,
inconvenience

✓ ✓ >250,000 nodes real

Hrnčíř and
Jakob (16)

RTRP TT ✓ ✓ >100,000 nodes real

Dibbelt et al.
(17)

RTRP TT – – >1 million nodes real

Georgakis et al.
(18)

RTRP TT ✓ ✓ N/A N/A

Huang et al.
(19)

RTRP TT – ✓ >6,500 nodes real

This paper accessibility
analysis

TT + price +
reliability + risk
+ discomfort

✓ ✓ >7,500 nodes real

Notes:
“RTRP” = real time route planning; “TT” = travel time; shared micromobility” includes bike share and scooter;
“on-demand service” includes TNC and demand-responsive transit; “generalized travel cost” is a travel impedance
that includes additional elements beyond just travel TT; “✓” indicates inclusion by the study; “–” indicates not
included by the study; “Network Size” does not include time event nodes from the time-expanded public transit
network model

choices for individual travelers. With this network model, transportation planners can quantify the1
accessibility of relevant points of interest for different communities to gain insight into where net-2
work improvements can be made. This paper uses elements of the literature of Table 2 in designing3
a connected multimodal network model that permits a determination of the shortest path between4
points.5

The rest of this paper is structured as follows. First, the design of the multimodal net-6
work, assignment of travel costs, and process for measuring accessibility between an O-D pair is7
presented. Second, the proposed method is demonstrated using a subset of the transportation net-8
work in Pittsburgh, PA, and the results of the study are discussed. The final section highlights key9
conclusions and identifies opportunities for future work.10

METHODOLOGY11
The process of measuring accessibility in a regional multimodal network involves three stages:12
designing the multimodal network, defining an edge cost function, and finding the least-cost path13
between selected O-D pairs based on characteristics of travelers. The first step to constructing the14
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TABLE 3: List of Notation

Gm graph associated with travel mode m
Nm set of graph nodes associated with Gm
Am set of graph edges associated with Gm
Ndr set of road intersection nodes in the driving network
Adr set of road segment edges in the driving network
Npk set of parking nodes

Apk,cnx set of edges that connect parking nodes to their nearest neighbor node in the driving
network

Nb set of road intersection nodes in the bikeable network
Ab set of road segment edges in the bikeable network

Nps set of public transit physical stop nodes
Nrt set of public transit virtual route nodes

Aboard set of edges from physical stop nodes to associated virtual route nodes, which repre-
sent the process of waiting and boarding

Aalight set of edges from virtual route nodes to associated physical stop nodes, which repre-
sent the process of alighting

Art set of edges between virtual route nodes
Nbsd set of bike share depot nodes

Absd,cnx set of edges that connect bike share depot nodes to their nearest neighbor node in the
bikeable network

Absd set of precomputed edges that connect bike share depot nodes
Ncsd set of car share depot nodes

Acsd,cnx set of edges that connect car share depot nodes to their nearest neighbor node in the
driving network

Atx set of transfer edges
NOD set of origin nodes and destination nodes

AOD,cnx set of edges that connect the origin and destination nodes to the component networks

multimodal network is to model each single-mode transportation network as a graph consisting of1
road intersection nodes and road edges. These graphs are then connected to each other by transfer2
edges at relevant nodes where transfers are likely to take place, which results in a single multimodal3
graph, or “supernetwork” (20, 21). Once the network topology is determined, a time-varying travel4
cost is assigned to each edge. In this work, the travel cost is given by the weighted sum of travel5
time, price, reliability, and risk. A time-dependent shortest path algorithm is subsequently used to6
find the least-cost path between selected O-D pairs for different departure times. Table 3 specifies7
the notation used in this paper.8

Multimodal Network Design9
This work considers an exhaustive list of possible travel modes: personal vehicle (PV), transporta-10
tion network company (TNC), car share (CS), public transit (PT), personal bike (PB), bike share11
(BS), scooter (S), and walking (W). The component network for each travel mode m is modeled12
separately and represented by a graph Gm = (Nm,Am). Whereas some modes (e.g., TNCs) allow13
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travelers to hail a ride or exit at any point in that mode’s network, others such as public transit1
and bike share require that commuters only move between fixed points. The supernetwork consists2
of these component networks joined together by transfer edges. Origin and destination nodes are3
joined to certain points in the component networks by connector edges. It is important to note that4
this network only models outbound trips where a person commutes from their neighborhood to a5
point of interest. This distinction is necessary because modeling the inbound trip would require6
the reversal of some transfer edges and connection edges within the personal vehicle and car share7
component networks.8

Personal Vehicle9
The personal vehicle network GPV = (Ndr,Npk,Adr,Apk,cnx) consists of the typical street map used10
by drivers. Road intersections comprise the graph’s core set of intersection nodes, which are11
connected by road segment edges. A parking connector edge joins each parking node to its nearest12
nearest neighbor street intersection node in the driving network. The directional connector edge13
goes from the street intersection node to the parking node since this network model only considers14
the outbound trip; once a person parks their car, they do not use their personal vehicle again on the15
outbound trip.16

TNCs17
The TNC network GT NC = (Ndr,Adr) is created by duplicating the personal vehicle network and18
removing parking nodes and their connector edges. Riders in the TNC network can choose their19
point of entry and exit at their convenience.20

Car Share21
Commuters using a car share rental vehicle, which they must pick up at a depot, use the personal22
vehicle network to drive and park their shared vehicle. The car share component network can be23
thus modeled as GCS = (Ndr,Npk,Ncsd,Adr,Apk,cnx,Ncsd,cnx,Acsd,cnx). In this model, Ncsd specifies24
the set of all car share depot locations and Acsd,cnx denotes the set of connector edges that join the25
each depot to its nearest neighbor node in the rest of the network. Modeling only the outbound26
trip requires that these directional edges go from the depot to the street intersection node; after a27
commuter rents a vehicle, they do not return the vehicle on the same outbound trip (the vehicle is28
returned on the inbound trip).29

Public Transit30
A time-dependent network GPT = (Nps,Nrt ,Aboard,Aalight ,Art) is used to model the public transit31
network (22). This model contains two types of nodes: physical stop nodes Nps and route nodes32
Nrt . Physical stop nodes represent actual locations in the network where travelers board or alight33
a bus. Since more than one bus route can pass through a physical stop, each stop is also linked34
to one or more route nodes. The edge from a stop node to a route node represents the cost of35
waiting and boarding, whereas the edge from a route node to a stop node represents the cost of36
alighting. Hence, it is possible to switch routes at one physical stop by using an alighting edge37
tied to one route node and a boarding edge tied to a different route node. The graph also consists38
of route traversal edges in the set Art which connect route nodes, where the weight of each route39
edge corresponds to the cost of traveling along that particular bus segment. The time-dependent40
model of public transit was selected over the time-expanded model for its smaller size and easier41
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integration with other component graphs.1

Personal Bike2
The personal bike network GPB =(Nb,Ab) includes road edges that are considered bikeable accord-3
ing to the OSMnx package in Python (23). Per the OSMnx package definition, a road is considered4
bikeable unless it is a highway, private road, or a street specifically marked for pedestrians.5

Bike Share6
The original bike share network GBS = (Nb,Nbsd,Ab,Absdcnx) is formed by duplicating the per-7
sonal bike network and then adding bike share depot nodes and bike share connector edges. The8
depot nodes represent the locations where travelers can pick up or drop off a shared bicycle. A9
bidirectional bike share connector edge joins each depot node to its nearest neighbor intersection10
node in the bike share network, similar to how parking and car share depot connector edges are11
implemented.12

Since a traveler using a shared bike must pick up and drop off the bicycle at a depot,13
it is possible to consolidate the bike share network into a set of depot nodes and depot edges.14
Shortcut bidirectional depot edges connect depot nodes directly to each other, where a short-15
cut edge between nodes represents the least-cost path between them. The precomputed network16
GBS,pre = (Nbsd,Absd) is useful for simplifying the graph and expediting processing time when17
evaluating shortest paths in the full multimodal network.18

FIGURE 1: An example showing how precomputing shortcut bike share edges can reduce the size
of the network.

Scooter19
The scooter network GS = (Nb,Ab) is modeled as a duplicate of the personal bike network. The20
inherent assumption is that scooters may use the same roads as a bicycles. Explicitly modeling21
the location of a scooter pickup node is not possible since riders may leave scooters in any valid22
parking spot in the network. Given that this network model is being used for planning purposes as23
opposed to real-time navigation, it is also not necessary to identify exact scooter locations. Instead,24
data can be used to estimate the average distance that a person must walk in order to pick up the25
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nearest scooter. This estimation process, which is embedded in the procedure for building transfer1
edges, is explained in section 3.1.92

Walk3
The full walking network is not explicitly modeled in this design. Rather, only certain relevant4
walking segments are included. The relevant walking segments pertain to the following scenarios:5
transfers between two component networks, connections from the origin to the component net-6
works, and connections from the component networks to the destination. For example, a transfer7
between a bike share depot and a public transit physical stop is modeled as a single walking seg-8
ment whose approximate distance is equivalent to the Haversine distance between the depot and9
stop node. This modeling decision removes the need to include the full walking network, which10
simplifies the design.11

Transfer Edges12
After modeling each component network, transfer edges are created to connect component net-13
works to each other. Transfer edges that form the set Atx are directional and assumed to be traversed14
by walking. Locations in a component network where a mode change may take place are called15
switch points, following the approach of (24). If the switch point is at a predetermined location16
(e.g bus stop, bike share depot, parking node), it is denoted a “fixed pickup” or “fixed drop-off”17
node; if the switch point changes depending on the commuter’s needs (e.g., TNC pickup point), it18
is considered a “flexible pickup” or “flexible drop-off” node. Each transfer link is constructed by19
joining a switch point in one component network to a switch point in another. A multimodal graph20
with transfer edges is depicted in Figure 2, which demonstrates a small example network that in-21
cludes the bike share, public transit, and TNC modes. The component networks in this figure are22
slightly offset for visualization purposes, since they physically overlap.23

Building transfers efficiently requires the specification of constraints on allowable switches24
between travel modes. Figure 3 enumerates the plausible mode changes, where the arrows indicate25
the direction of the change. This list of allowable changes between modes is based on practical26
considerations. One such assumption is that travelers using a personal or car share vehicle can27
switch from the driving mode to another mode only after dropping their vehicle in a parking zone.28
In addition, changing modes from personal bike to public transit is enabled by the presence of a29
bike rack on a bus. It is also assumed that intermediate bike parking is not available and bike racks30
do not exist on other vehicles, which implies that travelers who ride their personal bike on any part31
of a path can use only a combination of the personal bike, public transit, and walking networks.32
In addition, any modal transfer can be associated with a specific generalized cost that influence33
the optimal path finding, e.g., convenience, cost, fare discount or discomfort. This is achieved by34
imposing node-based generalized cost to associate any specific edge-to-edge movement. The cost35
can be set arbitrarily small to imply seamless connection, negative to imply fare discount offered36
to use two specific modes sequentially, or arbitrarily large to imply prohibition between any two37
modes.38

An additional assumption in this network design is that travelers are willing to walk a39
distance less than or equal to W when transferring modes. The implication is that for every fixed40
drop-off node in any component network, there exists a “walking catchment zone” (WCZ) which41
contains all surrounding nodes within a Haversine distance of W . Though this approximation42
underestimates true network walking distance, it is assumed to closely represent actual distance43
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FIGURE 2: Example supernetwork with transfer edges for bike share, public transit, and TNC
networks.

FIGURE 3: Allowable Mode Changes
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due to the presence of walking shortcuts. However, it is not necessary to build a WCZ for flexible1
pickup/drop-off networks. The reason is that, when given a choice of where to be dropped off in2
a flexible network, travelers would logically always choose the drop-off node is that nearest the3
next pickup node they wish to use. Thus, if the transfer is allowed, a transfer edge is drawn from a4
fixed drop-off node to the nearest node in flexible pickup network and vice versa for a fixed pickup5
node.6

In previous research (13)(14), transfer edges are created by joining switch points in one7
component graph to their nearest neighbor in the reference walking network. Constraints relating to8
the mode sequence are then enforced at runtime by the use of a specific label-constrained algorithm9
or by the inclusion of a only a subset of component graphs. The approach in this paper, which is10
similar to (24), is different in the sense that transfer links embed mode sequence constraints. This11
eliminates the need to use a label constrained shortest path algorithm.12

Origin and Destination Connectors13
Transportation planning analysis is typically conducted on an aggregated geographic level, where14
the geographic entity is selected to represent the travel patterns of many people within the entity15
(25). Common geographic units include traffic analysis zones and census block groups. The16
proposed network model uses the centroids of the geographic unit as both origins and destinations17
so that accessibility between regions can be measured. The set of origin and destination nodes is18
called by NOD. Each origin is connected to nearby pickup nodes by origin connector edges and19
each drop-off node is connected to nearby drop-off nodes by destination connector edges. An O-D20
pair and its associated connector edges, denoted by AOD,cnx, is added to the network on the fly at21
the time of evaluation to minimize network size.22

The procedure to build O-D connector edges is similar to the process of creating transfer23
edges. The idea is that a traveler can transfer from the origin to any component graph that has24
a fixed pickup node within the origin’s WCZ, and vice versa for fixed drop-off nodes within a25
destination’s WCZ. However, if there is no fixed pickup node within an origin’s WCZ for a specific26
mode, an edge is instead created from the origin to the nearest fixed pickup node in the mode’s27
component network. This modeling choice reflects the reality of a commuter’s decision-making28
process, as they are they are more likely to walk a longer distance on the first leg of their journey29
rather than at an intermediate stage. The same exception is made if all fixed drop-off nodes of30
a specific mode type exist outside a destination’s WCZ. An origin connector edge also joins the31
origin to its nearest neighbor in flexible pickup networks, and a destination connector edges joins32
the destination to its nearest neighbor in flexible drop-off networks.33

Supernetwork34
The multimodal graph is defined as the union of all component networks, transfer edges, O-D35
nodes, and O-D connector edges:36

GMM = GPV
⋃

GT NC
⋃

GCS
⋃

GPT
⋃

GPB
⋃

GBS
⋃

GS
⋃

Atx
⋃

NOD
⋃

AOD,cnx (1)

Cost Assignment37
Transportation planners can use this network model to measure accessibility between points by38
departure time. This paper defines accessibility from an origin to a destination as the total cost39
of the least-cost path between them in a multimodal network. Finding the least-cost path requires40
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a cost determination for each edge and node in the graph, followed by the process of running a1
shortest path algorithm.2

Generalized Cost Function3
One way that the proposed method distinguishes itself from previous research is by defining the4
edge cost function as a combination of five time-dependent factors: price, average travel time,5
reliability, risk, and discomfort. The total cost C of an edge e is defined as a linear combination of6
the five individual attributes as a function of departure time t, given by equation 2.7

Ce(t) = βp · pe(t)+βT T ·T Te(t)+βr · re(t)+βk · ke(t)+βD ·De(t) (2)
8

where p is the price, T T is the average travel time, r is the reliability, k is the risk, and D is the9
perceived discomfort value. All cost factors are defined with respect to edge e and departure time t.10
Reliability is measured by the edge’s 95th percentile travel time, following common practice in the11
transportation engineering field (26). The edge’s risk ke is quantified by its unitless risk index xe12
multiplied by its average travel time T Te, where the risk index considers the road segment’s vehicle13
crash rate for vehicle networks or the road segment’s availability of micromobility infrastructure14
for micromobility networks. The discomfort attribute of an edge represents the level of physical15
exertion required for its traversal. This model assumes that an edge’s discomfort attribute is zero16
for all inactive commuting modes, which includes all modes that use vehicle travel. Active modes,17
which include biking, walking, and scooter-riding according to the Department the Energy’s Alter-18
native Fuels Data Center (27), are associated with some degree of physical difficulty. In this work,19
the discomfort value of an edge De is quantified by a discomfort weight parameter d multiplied20
by the edge’s average travel time T Te. The benefit of defining reliability, risk, and discomfort in21
terms of travel time is that the attributes are on the same scale such that no single factor completely22
dominates the cost function.23

The β parameters can be interpreted as the dollar value that a person assigns to a single24
unit of the cost factor. The parameter βp thus takes on the unitless value of 1, while βp has units of25
dollars per minute and is representative of a person’s value of time. When conducting analysis, the26
β parameters can be adjusted based on the population group under consideration or the goals of the27
transportation planner. For example, a planner interested in bike safety may choose to give higher28
weight to βk. A planner may also choose to assign a higher value of time βT T when evaluating29
path options during commuting hours vs. off-peak hours.30

Regarding time dependency, inactive modes are assumed to be unaffected by traffic flow31
such that all associated edge costs are constant with time. The travel time and reliability of the32
traversal edges of the personal vehicle, TNC, and car share modes vary with time in accordance33
with traffic flow, while price is constant. For TNC and car share edges, however, price also changes34
with time because their price is correlated with usage time. The travel time and reliability of35
public transit edges are time-dependent as a result of both the fixed schedule and traffic conditions.36
The risk index and discomfort weight associated with an edge are assumed to remain constant37
regardless of departure time.38

Transfer Edge Costs39
The cost vector of a transfer edge consists of the cost attributes that are associated with the shortest40
walking path between the two nodes that define the edge, in addition to a dollar-valued inconve-41
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nience cost that is associated with the act of transferring. The distance of the shortest path can be1
estimated as the Haversine distance between the two nodes, an approximation that simplifies the2
transfer edge cost calculation. The price attribute of a transfer edge is considered to be $0, which3
is consistent with the price associated with a walking path, unless parking or other fixed costs are4
embedded into the edge.5

FIGURE 4: An example of 10 historical daily scooter observations (red) for a given time interval
shown relative to a specified fixed node (blue). The average and 95th percentile distance to the
nearest scooter are used to assign scooter transfer edge costs.

For directional transfer edges that connect fixed drop-off nodes to the nearest intersection6
node in the flexible scooter network, the time-dependent cost vector is estimated based on historical7
observations of physical scooter locations. If given the actual location data of all scooters by date8
and departure time, one can find the distance between any fixed drop-off node and its nearest9
physical scooter for the specified date and departure time pair. Repeating this process for n days10
results in a distribution of the distance, which can be converted to walking travel time, from each11
fixed node to its nearest scooter. From this distribution, the average and 95th percentile walking12
time from a fixed node to its nearest scooter can be derived. This procedure, which is depicted with13
an example in Figure 4, can also be used to model the average and 95th percentile waiting time for14
a TNC vehicle.15

Node Costs16
In addition to edge costs, movement-based node costs are added to the model. These node costs17
represent a penalty on moving from one link to another via a particular node. For this network18
model, movement-based node costs can be used to prevent or discourage certain behavior, such as19
the usage of two consecutive transfer edges. Without node costs, the least-cost route may consist of20
several connected transfer edges that effectively create a longer transfer edge whose length exceeds21
the parameter W defined in the Transfer Edges section. This situation could arise if βT T is low.22
Since transfer edges are traversed by walking, they have a price of zero and minimal risk and23
discomfort costs; hence they are desirable from a cost standpoint if value of time is low.24
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Accessibility Analysis1
Once costs are assigned to the multimodal network, it can be used to evaluate accessibility on an2
O-D level in addition to an origin level or a destination level. On the O-D level, accessibility is3
defined as the cost of the least-cost path between two points. This use-case will be explored in the4
next section. This framework also enables an assessment of origin-level accessibility, where the5
quantity of essential service destinations reachable by a given origin within some cost threshold can6
be compared. Destination-based accessibility can be evaluated in a similar manner; policymakers7
can determine the number of origins able to reach a particular destination to better understand its8
value to the network. The time-dependent least-cost path necessary for this analysis can be found9
with the decreasing order of time algorithm presented in (28).10

CASE STUDY11
The proposed methodology is demonstrated on a group of demographically-different neighbor-12
hoods in Pittsburgh, PA. In all test cases, the personal vehicle network is excluded from the super-13
network since the population of interest is assumed to not have access to private vehicles. The final14
supernetwork, inclusive of all traversal, transfer, and O-D connector edges, has 7,924 nodes and15
53,988 edges. To test the multimodal route-finding capability, census block group centroids are16
used as origin and destination nodes. A two-hour departure window divided into thirteen time in-17
tervals is considered, and the time-dependent algorithm is provided by open-source code on Github18
1 detailed in (29).19

Network Settings and Data20
The area’s driving and biking networks are extracted from the Python package OSMnx, which21
downloads geospatial data from OpenStreetMap and then simplifies the network topology (23).22
Locations of bike share depots, bike lanes, parking meters, and parking rates are obtained from23
the Western Pennsylvania Regional Data Center (30). For simplicity, the parking nodes are con-24
solidated into one representative node per parking zone, represented by the average location of a25
parking meter within a zone. The cost of parking is calculated as the product of the hourly parking26
rate and the number of parking hours, which is assumed to be eight hours in accordance with a full27
work day. Public transit stop locations and route information are provided by the General Transit28
Feed Specification (GTFS), and the locations of Zipcar (31) depots are found by querying Google29
My Maps (32) and downloading the coordinate pairs returned. While this method for extracting car30
share locations is not entirely accurate, it serves the purpose for testing the model. In the Pittsburgh31
region, Zipcar runs the car sharing service, POGOH (33) operates the bike share system, Spin (34)32
manages the scooter fleet, and Pittsburgh Regional Transit (35) acts as the public transit agency.33

Assigning cost attributes to the edges requires the specification of several parameters,34
which are listed in Table 4. Prices for a Zipcar car share, POGOH bike share, Spin scooter, and35
Port Authority bus ride are obtained from various company or agency websites. Travel speed pa-36
rameters for bicycles, personal vehicle operating costs, TNC prices, and waiting time for TNC37
vehicles are based on previous research (36–40), with presumed equivalence between scooter and38
bike speeds. The traversal time between bus stops and average headway between bus trips are both39
based on GTFS schedule data, and the average waiting for a bus, regardless of the commuter’s40
arrival time at the stop, is assumed to be half of the bus headway time per convention (41). To41

1https://github.com/psychogeekir/MAC-POSTS
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calculate the risk index, the factors considered for the micromobility networks are road type and1
bike lane presence, while the single factor considered for the driving networks is vehicle crash rate.2
Movement-based node costs are also added to prevent a route that uses two consecutive transfer3
edges. Finally, the walking catchment zone parameter W is set at 0.5 miles to prevent transfer or4
O-D connection edge lengths greater than this value.5

Data that was not available for this case study is estimated. The unavailable information6
includes actual historical travel time data for any of the vehicle networks, as well as historical7
scooter observations. For average traversal time between transit stops, GTFS schedule data is used8
instead. The average travel time for edges in the driving networks is assumed to be the product of9
its speed limit, length, and a travel multiplier used to represent the ebb and flow of morning traffic.10
This multiplier function is generated as a bell-shaped curve with a value of 1 at the start and end of11
the departure window and a value of 1.5 in the middle of the window. In the time-dependent vehicle12
networks, each edge’s reliability attribute, which is represented by its 95th percentile travel time,13
is approximated as its average travel time multiplied by a factor of 1.5. Edges traversed by active14
modes are assumed to have time-invariant travel times such that their reliability attributes equate15
to their average travel times. Finally, data pertaining to historical scooter locations is generated16
artificially for 30 days for each time interval by distributing 100 scooters throughout the region in17
a random uniform way.18

For the subsequent examples, the β parameters are defined as βp = 1, βT T = $10/minute,19
βk = $1/minute, and βd = $0.5/minute. The value of βr is adjusted in the fourth case to show how20
this parameter affects the selection of the least-cost route.21

Results22
To show the flexibility of the proposed framework, the example for this case study compares the23
accessibility between the same O-D pair for four separate cases. The first three cases (Case 1,24
Case 2, and Case 3) use βr = $0.75/minute and the other parameters detailed above. In Case 1,25
all modes of travel are available, whereas the scooter network is removed in Case 2, and both26
the scooter and bike share networks are removed in Case 3. The fourth case (Case 4) models27
the situation where the traveler places a higher value on reliability, indicated by βr = $5/minute,28
which could be representative of a commuter’s mindset en route to work. All modes of travel are29
permitted in Case 4. To further test the importance of reliability to the commuter, the reliability30
cost attribute of a public transit boarding edge is increased from 1.5 ·T T to 2 ·T T . All examples31
use the same O-D pair, where the origin and destination are the centroids of block groups with32
FIPS codes 420035623001 and 420031402001, respectively. Comparisons of path costs are made33
in relative terms since absolute costs do not have physical significance.34

The resulting least-cost paths are shown in Figure 5. When all modes are available, the35
traveler characterized by this set of β parameters has an optimal route that begins the trip with a36
scooter and finishes with a bike share. The transfer to the bike share network in the middle of the37
trip can be rationalized by the bike share’s cheaper price; the price of a bike share edge is $0.06638
per minute whereas the scooter cost is $0.39 per minute. This optimal route shows the potential39
of shared micromobility modes to reduce overall travel costs and improve accessibility for those40
capable of using active modes of travel.41

From Case 1 to Case 2, the generalized travel cost increases by 11.4% as commuters switch42
from a scooter on the first leg of their trip to public transit. Still, the path includes a bike share for43
the final segment. The fact that the bike share network is used at the end of the trip in both cases44
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TABLE 4: Specification of parameters used for the Pittsburgh case study

Travel Mode Price Travel Time Waiting
Time

Risk Index Discomfort
Weight

Personal Vehi-
cle

$0.64/mile (speed limit) ·
(road length)

0 min 1 + α · (crashes/meter) 0

TNC $2.55/ride
+
$1.75/mile
+
$0.35/min

(speed limit) ·
(road length)

7 min 1 + α · (crashes/meter) 0

Car Share $11/60
min

(speed limit) ·
(road length)

0 min 1 + α · (crashes/meter) 0

Public Transit $2.75/ride GTFS traversal
time

(GTFS
headway
time) / 2

1 0

Personal Bike $0.00/ride (15 km/hr) · (road
length)

0 min 1 if bike lane or bike
only, else 100,000 if
major road, else 1.2

0.30

Bike Share $20/300
min

(15 km/hr) · (road
length)

0 min 1 if bike lane or bike
only, else 100,000 if
major road, else 1.2

0.30

Scooter $1/ride +
$0.39/min

(15 km/hr) · (road
length)

walk time
to nearest
scooter

1 if bike lane or bike
only, else 100000 if
major road, else 1.2

0.10

Walk $0.00/min (1.3 m/s) · (road
length)

0 min 1 0.10

Note: α is a risk parameter that weights the value of the vehicle crash rate. The parameter α = 5 was
selected for scaling purposes.

indicates that the destination is in close proximity to a depot, which helps improve the destination’s1
accessibility at least with respect to this particular origin.2

In Case 3, the scooter and bike share networks are removed to model the travel preferences3
of travelers for whom active modes are not a feasible alternative, such as the elderly or disabled.4
From Case 1 to Case 3, the generalized travel cost increases by 68.6% as these travelers take their5
full trip using public transit. The least-cost route requires a transfer, which leads to a sizeable6
increase in travel cost likely due to a waiting penalty. A public transit agency aiming to improve7
accessibility between this O-D pair specifically for this population group may consider increasing8
the frequency of the bus line used for the second leg of the trip.9

Case 4 results in a route exclusively in the TNC network, even when all other modes are10
available. Although micromobility modes are reliable in the sense that the 95th percentile travel11
time for each edge is equivalent to the edge’s average travel time, it still takes longer to commute12
by active modes as opposed to a private ride share vehicle in the driving network. This means that13
it could still be the case that the 95th percentile travel time in a driving network is lower than the14
average travel time in an active mode network. For a commuter who is highly sensitive to the 95th15
percentile travel time between this O-D pair, the TNC network provides an optimal route choice. It16
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(a) Case 1: Least-cost route between O-D pair with personal vehicle network excluded.

(b) Case 2: Least-cost route between O-D pair with personal vehicle and scooter net-
works excluded.

(c) Case 3: Least-cost route between O-D pair with personal vehicle, scooter, and bike
share networks excluded.

(d) Case 4: Least-cost route between O-D pair with βr = $5/minute and personal ve-
hicle network excluded.

FIGURE 5: Four different least-cost routes are found between the same O-D pair depending on
the presence of the micromobility networks and the value of the βr parameter. “org” = origin, “s”
= scooter node, “bs” = bike share depot node, “ps” = physical stop node, “rt” = route node (the
number refers, “tnc” = TNC node

.

is worthwhile to note that the TNC option provides a reliable route due to the assumed reasonable1
pickup waiting time of 7 minutes. If it were the case that the region had limited TNC drivers and a2
longer wait time or a high surge price, the optimal path could change.3

CONCLUSION4
In this paper, a modeling framework to evaluate time-dependent accessibility in a multimodal5
network was proposed. This framework builds upon previous literature in several ways. First,6
it incorporates all relevant mobility options including personal vehicle, TNC, car share, public7
transit, personal bike, bike share, scooter, and walking. In addition, it defines a generalized travel8
cost function that accounts for average travel time, price, reliability, risk, and discomfort, as well9
as a movement-based node cost that can impose additional (dis)incentives for any multimodal10
trip. Since each factor is assigned a weight that represents its value to the traveler, these weights11
can be tailored to different population groups. This framework can be used by transportation12
planners as they evaluate where to add and improve mobility services with the goal of creating a13
more accessible and equitable mobility system. Planners can also use this model to examine how14
any change to mobility services can potentially impact individual travelers with different starting15
points, departure times, or socio-demographics.16

To demonstrate this model in real-world large-scale network, four scenarios are explored in17
the Pittsburgh metropolitan network. The results exhibit the potential of micromobility to improve18
access between a specific O-D pair by leading to a sizable reduction in generalized travel cost19
relative to the baseline public transit and walking case. The case study also highlights the ability to20
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account for different population groups via parameter adjustment, which points to an opportunity1
for future work in sensitivity analysis of the various parameters and cost functions.2

Additional future work includes more careful consideration of the discomfort and risk index3
definitions, as well as the use of actual historical data to more accurately determine the travel time4
and reliability attributes. Another application of this modeling framework is estimation of the5
pattern of network usage for each mode and facility in high granularity. This can be accomplished6
by aggregating least-cost paths for all individuals across multiple O-D pairs to find commonly-used7
nodes and links. Such an assessment could inform a decision on when, where, and how to improve8
mobility services.9
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