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1. Project Abstract

This project explores novel approaches to robot localization and visual pose regression using
Invertible Neural Networks (INNs). Addressing the critical need for efficient and accurate pose
estimation in robotics, we propose two frameworks: Local_INN and PoseINN. Local_INN
tackles the inverse problem of robot localization by providing an implicit map representation in
its forward path and performing localization in the inverse path. It uniquely offers uncertainty
estimation through latent space sampling and addresses the kidnapping problem with a
global localization algorithm. PoselNN extends this work to real-time visual-based pose
regression from camera data. By leveraging INNs and normalizing flows, PoselNN achieves
state-of-the-art performance with significantly reduced computational costs, enabling faster
training with low-resolution synthetic data and real-time deployment on mobile robots. Both
frameworks demonstrate that INNs can effectively solve ambiguous inverse problems in
robotics, providing robust and efficient solutions with inherent uncertainty quantification.

2. Project Overview

Robot localization, the process of determining a robot's pose (position and orientation) using
sensor measurements and a map, is fundamental for autonomous navigation and interaction
with the physical world. Similarly, visual pose regression, finding camera poses from images, is
crucial for applications ranging from mobile robotics to augmented reality. Traditional
geometric-based methods often incur high computational costs and latency, while many
learning-based approaches suffer from low accuracy or long training times. This project
investigates the application of Invertible Neural Networks (INNs) to overcome these
limitations. INNs offer a unique advantage by providing bijective mappings between different
data spaces, making them well-suited for inverse problems like localization and pose
regression, and inherently allowing for uncertainty estimation through their probabilistic
nature. The project aims to develop efficient, accurate, and robust solutions for these
challenges, demonstrating their practical applicability in real-world robotic systems.
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Fig. 1. Local_INN is a framework of localization with invertible neural
networks. Compared to current localization methods, Local_INN stores map
information within the neural network. Evaluation of Local_INN in forward
direction gives compressed map information, and in the reverse direction gives
accurate localization with fast runtime and uncertainty estimation.

3. Main Contributions

This project's core contributions are encapsulated in two distinct, yet complementary,
frameworks: Local_INN and PoselNN, both leveraging the power of Invertible Neural Networks.

3.1. Local_INN: Implicit Map Representation and Localization

Local_INN introduces a novel framework for robot localization by formulating it as an inverse
problem solved with Invertible Neural Networks.

3.1.1. Inverse Problem Formulation for Localization:

Local_INN frames robot localization as an inverse problem, where the INN's forward path
learns an implicit map representation from robot poses, and its inverse path performs
localization, mapping sensor measurements (e.g., LIDAR scans) back to robot poses. This
contrasts with traditional methods that often rely on explicit map representations and
complex probabilistic filters.

3.1.2. Implicit Map Representation:

A key innovation of Local_INN is its ability to learn and represent a map implicitly within the
forward pass of the INN. This allows for a compact and flexible map representation that can
be reconstructed in detail, even for poses exterior to the training set, demonstrating its
generalization capabilities. The implicit nature avoids the need for explicit storage of large
map structures.
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Fig. 2. Network Structure of the Local_INN. The forward path (solid arrows) is from pose to LiDAR scan. The reverse path (dashed arrows) is from LiDAR
scan to robot pose. Conditional input is calculated from the robot’s previous pose. The INN used in this paper has 6 coupling layers and the VAE encoder
and decoder have 2 layers of MLPs for 2D LiDARs and plus 6 layers of 2D convolutions for 3D LiDARs.

3.1.3. Uncertainty Estimation with Latent Space Sampling:

By sampling the latent space during evaluation, Local_INN provides not just a single pose
estimate, but also an associated covariance. This enables a robust estimation of the
localization uncertainty, a crucial aspect for reliable autonomous navigation, which is often
difficult to obtain directly from many learning-based methods.

3.1.4. Global Localization for Kidnapping Problem:

The framework includes a global localization algorithm designed to address the "kidnapping
problem," where a robot loses its sense of location. By leveraging the INN's ability to map
diverse inputs to corresponding poses, Local_INN can re-localize the robot effectively in
previously unseen or ambiguous situations.

3.2. PoselNN: Realtime Visual-based Pose Regression and Localization

PoselNN extends the application of INNs to
real-time visual-based pose regression,
focusing on efficiency and practical
deployment.

3.2.1. Visual Pose Regression using INNs:  sampled Pose Space e TisNWEE Beideiy Semoled luaga Spos
PoselNN utilizes INNs to establish a mapping

between the latent space of images and
corresponding camera poses for a given
scene. This allows for direct regression of
ego-pose from camera inputs, bypassing
the need for computationally expensive
geometric pipelines. Laiaeed Fose Test Images

Distributions

—— — — —
Reverse path

Fig. 1. We propose to learn a mapping between the latent space of the images
and camera poses in an environment with an invertible neural network.
‘We use NeRF to guide camera pose sampling and render synthetic images.
Evaluating the reverse path of the INN outputs the full posterior distribution
of camera poses given a test image.



3.2.2. Efficiency through Low-Resolution Synthetic Data Training:

A significant contribution is the model's ability to achieve high performance while being
trained on offline rendered low-resolution synthetic data. This drastically reduces training
time and computational resources, making the development and deployment of visual pose
regression models more accessible and faster.
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Fig. 3. Network Structure of the PoseINN. The forward path (solid) is from pose to image. The reverse path (dashed) is from image to pose.

3.2.3. Uncertainty Estimation via Normalizing Flows:

Similar to Local_INN, PoselNN leverages normalizing flows, an integral component of INNs, to
inherently provide uncertainty estimation for the output poses. This allows the system to
quantify its confidence in the pose predictions, which is vital for safety-critical applications.

3.2.4. Mobile Robot Deployment and Efficiency:

The efficacy and efficiency of PoselNN are demonstrated through its successful deployment
on a mobile robot. The model's low latency and computational requirements make it suitable
for real-time applications on edge devices, paving the way for practical integration into
robotic systems.

4. Results

The performance of both Local_INN and PoselNN frameworks was rigorously evaluated,
demonstrating their effectiveness and efficiency.

4.1. Local_INN Results

Local_INN demonstrated localization performance on par with current state-of-the-art
methods, but with significantly lower latency. This highlights its computational efficiency
without sacrificing accuracy. Furthermore, the framework's ability to provide detailed 2D and
3D map reconstruction from learned implicit representations, even for poses outside the
training set, showcased its robust generalization capabilities. The successful implementation
of a global localization algorithm further validated its ability to handle challenging scenarios
like the kidnapping problem.



TABLE I

MAP RECONSTRUCTION AND LOCALIZATION ERRORS WITH 2D LIDAR

Race Track (Simulation)

Hallway (Real)

Outdoor (Real)

Original Map

Test Trajectory

zy(m) 6(°) zy(m) 6(°) zy(m) 6(°)
Online PF (1m/s) 0.045+0.058 0.400+0.512 0.039+0.066 0.4821+0.808 0.013+0.018 0.358 +0.456
Local_INN (1m/s) 0.050 £0.102 0.201+£0.532 0.196 £0.433 0.528+0.792 0.034+0.047 0.924+1.130
T + EKF 0.039+0.077 0.182+0.464 0.093+0.139 0.536 £0.797 0.034+0.047 0.917 +£1.129
T + TensorRT 0.039+£0.076 0.177+0.443 0.104+0.159 0.547+0.802 0.033 +£0.046  0.930 + 1.142
Online PF (Sm/s) 0.139+£0.168  1.463+£2.107 0.071+0.117 0.943+1.738 0.033+0.047 0.940 +1.371
Local_INN+EKF (5m/s) 0.034+0.056 0.133+0.284 0.100+£0.147 0.565+0.900 0.032+0.046 0.915+1.130

4.2. PoselNN Results

PoselNN achieved performance comparable to state-of-the-art visual pose regression
models. Crucially, it accomplished this with considerably faster training times, primarily due to
its ability to leverage low-resolution synthetic data. The real-time performance of PoseINN, as
evidenced by its successful deployment on a mobile robot, underscored its efficiency and
practical utility for on-device applications. The inherent uncertainty estimation provided by
the normalizing flows also proved valuable, offering a measure of confidence in the regressed

poses.

TABLE II
MEDIAN LOCALIZATION ERRORS WITH 2D LIDAR Vvs. CAMERA

Experiment Platform Indoor Outdoor

train trajectory
test trajectory

uuuuuuuuuuuu

Nvidia Jetson TX2
GPGPU Computer Platform

(zy[m], 6[°])

(zylm], 6[°])

Online PF (45Hz) 0.01,0.23 0.02,0.36
PoscINN (154Hz) 0.02,0.31 0.12,0.72
PoseINN + EKF 0.02,0.22 0.10,0.65
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