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1 Introduction and Overview 

Traffic volume estimates for given time-of-day periods are important inputs for a variety of transportation 

planning, operations, and monitoring purposes. Traffic volume, by definition, is the number of vehicles 

passing a point on a roadway over a specified time period (FHWA, 2022). Traffic volumes are 

traditionally determined from vehicle counts collected at a fixed location on the roadway, either 

automatically with permanent (e.g., inductive loop detectors) or temporary (e.g., pneumatic tube 

detectors) sensors, or manually by human observers. It is infeasible to deploy fixed-location sensors or 

human observers on every roadway segment in a network over the period of interest. Therefore, many 

segment volumes must be estimated, often by sampling the segments for a short time period and imposing 

on these “coverage counts” a temporal pattern derived from a few “control” segments where the traffic 

counts are obtained during the entire period (Kumapley and Fricker, 1997; Roess et al., 2004; Jiang et al., 

2006; FHWA, 2022). Inaccuracies resulting when superimposing temporal patterns obtained from control 

counts on coverage count samples and the large resources required to obtain traffic counts across the 

entire network on a continuing basis have led to different attempts to obtain accurate, ongoing traffic 

volume estimates in a cost-effective manner. 

Video-imagery obtained from cameras mounted on transit buses can conceivably be used to obtain traffic 

volumes across urban networks on an ongoing basis. Cameras are already mounted on many transit buses 

for safety, security, and liability reasons. Outward looking cameras image roadway traffic while the buses 

are in regular service. The public nature of transit agencies could make the data available at little marginal 

cost. Since transit buses cover most major streets in an urban network day after day, this approach would 

allow extensive geographic coverage on an ongoing basis. A method presented in McCord et al., (2020) 

has been developed to produce the equivalent of a traditional, fixed location traffic count from imagery 

obtained from an individual bus traversal over a roadway segment. Any one bus pass would provide the 

equivalent of a very short-duration traffic count. However, the repeated traversals of transit buses over the 

same segments would lead to many counts, and the aggregation of these counts is expected to allow for 

accurate estimates of traffic volumes on the segments for specified time-of-day intervals. 

In the study covered in this report, modifications to the methodology previously developed to estimate 

traffic volumes for a given time-of-day interval from video imagery obtained from transit buses in regular 

service are developed. Empirical evaluation of the modifications illustrate that they improve estimation 

accuracy. In addition, regression models are estimated that indicate general characteristics that lead to 

better or worse estimation accuracy. An empirical study is also conducted that demonstrates very good 

accuracy in estimating network-level vehicle miles traveled (VMT) from traffic volumes obtained from 

bus-based video imagery. The study also demonstrates that the bus-based VMT estimates accurately 

depict important changes in aggregate and temporal traffic patterns over time and that a presently popular 

data source does not allow such temporal monitoring and produces very poor VMT estimates.  

The VMT study and validation studies in the previous sections are based on estimating traffic volumes for 

a time-of-day interval on a specific day. For off-line planning applications, it is generally of more interest 

to estimate a time-of-day traffic volume for an “average day.” An empirical study is therefore also 

conducted that demonstrates very good accuracy in estimating average time-of-day volumes, compared to 

estimating the volume on a specific day. In addition, an analytical framework is developed to investigate 

the quality of the average estimate as a function of the number of days on which time-of-day volumes are 

sampled. Application of the framework with the empirical data collected indicate that accurate average 

time-of-day volumes can result from only a few days of bus-based data collection. 

The empirical studies are centered on concurrently collected video-based imagery and ground truth traffic 

volume data on roadway segments across the campus of The Ohio State University (OSU). The OSU 
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campus is one of the largest university campuses in the world and contains multiple land uses. Therefore, 

the campus serves as a “living lab” that is representative of many elements of urban areas. Video imagery 

is collected from OSU operated buses while they are in regular transit service. The ground truth data are 

obtained from targeted road tube and manual traffic count data collections. 

In addition to researching the potential of using video imagery from transit buses in regular service to 

estimate and monitor time-of-day traffic volumes and derive related network measures, this study 

included important educational and outreach components. The concept of replacing or complementing 

traffic volumes obtained from costly and resource-intensive traditional traffic counts with volume 

estimates obtained from available bus-based imagery formed the basis of the term project in an annually 

offered transportation data collection OSU course. Term project tasks were modified with each offering, 

but each semester students collected and processed both traditional traffic count data and video-based 

traffic imagery, and analyzed and compared the resulting volumes and network related measures. In 

addition, the term projects provided the students with the opportunity to work in teams and communicate 

assumptions, approaches, results, interpretations, and conclusions, aspects that are important to emphasize 

and have been increasingly emphasized in engineering education in general. 

From an outreach perspective, the actual VMT estimates obtained in the research effort, the trends in 

these network travel estimates over the years, and the time-of-day patterns determined were presented 

annually to OSU transportation planners and administrators. Although the university has undertaken 

long-term transportation planning and ascribes to environmental sustainability principles, it has no 

ongoing program to directly monitor motorized VMT, and while the OSU community is surveyed through 

questionnaires that ask for socioeconomic and travel information, these VMT values are the only in situ 

traffic flow estimates available for the roadways on and around the OSU campus. 

The rest of this report is organized as follows.  

The data sources and roadway network used in the empirical studies are presented in Section 2. 

In Section 3, the previously developed estimation methodology and software-based implementation of the 

methodology are described, and modifications to the methodology and additional automated 

implementation components developed in this project are described. Empirical studies demonstrate the 

improved performance of the methodological modifications. 

Estimation errors associated with video-based estimates of hourly and 10-hour volumes are presented in 

Section 4. As expected, 10-hour estimation is seen to be much more accurate than hourly estimation. 

Moreover, hourly estimation is seen to be statistically more accurate on what would likely be considered 

more important roadway segments, those with higher volume and with longer lengths. 

Estimated video volumes are used in Section 5 to determine values of network-wide vehicle miles 

traveled (VMT) over a 10-hour period. Very good accuracy is seen when the video-based VMT estimates 

are compared to VMT estimates obtained from volumes determined from road tube data representing the 

ground truth. VMT estimates are also calculated from volumes available from a popular Location Based 

Service (LBS) data aggregator and provider. When these LBS-based VMT estimates are compared to the 

road tube-based ground truth estimates, much worse, and unacceptable, accuracy is observed. 

Video-based and LBS-based VMT estimates are also used to monitor VMT over four years. Yearly 

changes seen in the video-based VMT values are reasonable, whereas those seen in the LBS-based VMT 

values are not. In addition, time-of-day VMT patterns obtained from video-based volumes are seen to be 

much more accurate and meaningful than patterns obtained from LBS-based volumes, which do not 

exhibit any interpretable patterns. 
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In Section 6, an empirical study is presented that is designed to investigate the ability of video-based 

hourly volumes obtained over multiple days to estimate representative average time-of-day hourly traffic 

volumes. Average hourly video volumes are seen to be very close to average volumes determined from 

manual traffic counts in each of multiple time-of-day periods. An analytical approach is then developed to 

model the accuracy of a sample average time-of-day volume with respect to the underlying true average 

time-of-day volume as a function of the number of days sampled, both when the sample average is based 

on video-based volumes and when the sample average is based on true traffic volumes. The empirical 

data collected are used to estimate values of input variables to the analytical framework developed. The 

results indicate that very good accuracy can be obtained with a relatively small number of daily estimates 

of the video-based hourly volume.  

The use of the concepts developed in this research as the focus of OSU course term projects is presented 

in Section 7. In addition, the provision of annual empirical estimates of vehicle miles traveled on the OSU 

roadway network to campus transportation planners and administrators is described. 

A summary of findings and conclusions drawn are presented in Section 8. 

2 Data 

Large, concurrent data collections were central to empirical investigations and validating the 

improvements offered by methodological developments of this project and to enabling the associated 

educational and outreach aspects The validation and empirical investigation studies in subsequent sections 

are based on the traffic data sets obtained over time on a network of roadways on the campus of The Ohio 

State University. The “supernetwork” of all the roadways considered is depicted in Figure 2-1. The 

numbers in the figure correspond to the segment numbers used in this report. When needed for clarity, the 

northbound or eastbound traffic direction of segment S is referred to by segment-direction S.1, whereas 

the southbound or westbound traffic direction of segment S is referred to by segment-direction S.2. In 

subsequent sections, traffic volumes in each direction of a segment are considered separately unless 

otherwise noted.  
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Figure 2-1: Illustration of “supernetwork” consisting of the union of all segments considered              

across the five years (source for background map: esri, ArcGIS World Topographic Map, 

https://www.arcgis.com/home/item.html?id=7dc6cea0b1764a1f9af2e679f642f0f5) 

 

A list of the segments and their lengths is presented in Table 2-1. Four different types of volume data 

were obtained for subsets of the segments at different times. These types of data are described next, and 

indications of when the various types of data were collected on the various segments are provided in 

Table A-1 of Appendix A. 

Table 2-1: Segment description and lengths of segments in “supernetwork” considered in empirical 

studies 

Segment Number Segment Name Segment length (mi) 

1 Woody/Kenny to Woody/JohnHerrick 0.256 

2 Woody/JohnHerrick to Woody/Fyffe 0.100 

3 Woody/Fyffe to Woody/Coffey 0.111 

4 Woody/Coffey to Woody/Cannon 0.326 

5 Woody/Cannon to Woody/Tuttle 0.120 

6 Woody/Tuttle to Woody/College 0.343 

7 College/19th to College/Woody 0.039 

8 College/18th to College/19th 0.070 

9 College/AnnieJohn to College/18th 0.063 

10 College/Hagerty to College/AnnieJohn 0.232 

11 College/12th to College/Hagerty 0.092 

12 12th/Neil to 12th/College 0.291 
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Table 2.1 (continued): Segment description and lengths of segments in “supernetwork” considered in 

empirical studies 

   

Segment Number Segment Name Segment length (mi) 

13 Neil/12th to Neil/JohnHerrick 0.048 

14 JohnHerrick/NeilDr to JohnHerrick/Neil 0.084 

15 JohnHerrick/Cannon to JohnHerrick/HUBdepart 0.194 

16 Cannon/JohnHerrick to Cannon/ShoePark1 0.210 

17 Cannon/ShoePark1 to Cannon/ShoePark2 0.102 

18 Cannon/ShoePark2 to Cannon/ShoePark3 0.101 

19 Cannon/ShoePark3 to Cannon/Woody 0.112 

20 Fyffe/Woody to Fyffe/Lane 0.134 

21 JohnHerrick/HUBarrive to JohnHerrick/NeilDr 0.115 

22 JohnHerrick/Vernon to JohnHerrick/Woody 0.160 

23 JohnHerrick/Olentangy to JohnHerrick/Vernon 0.316 

24 JohnHerrick/Olentangy to JohnHerrick/Cannon 0.202 

25 Tuttle/Woody to Tuttle/Neil 0.084 

26 Tuttle/Ives to Tuttle/Woody 0.063 

27 Tuttle/Neil to Tuttle/Lane 0.071 

28 Fyffe/Lane to Fyffe/Boror 0.050 

 

2.1 Video Data 

The project team has a close association with The Ohio State University (OSU) Transportation and 

Traffic Management (TTM) and collaborates with its leadership, management, and staff on a number of 

initiatives. TTM is responsible for all transportation planning and operations on the OSU campus 

excluding parking operations. Among other functions, TTM manages the OSU Campus Area Bus Service 

(CABS), which operates a fleet of approximately fifty 40-foot transit buses serving close to 3.5 million 

passengers per year (approximately 5 million per year, pre-pandemic) on fixed route, scheduled services.  

Like many transit agencies, TTM has installed cameras on its CABS buses for safety, security, and 

liability purposes. (Project investigators worked with TTM on camera selection and installation, in part to 

allow the type of video imagery used in this project.) TTM does not archive the CABS bus video 

imagery, but only uploads pertinent video files saved on a bus’s hard-drive when a need arises for TTM 

or when a request is received by TTM for incident investigations. Given the finite storage capacity of a 

bus’s hard-drive, the latest recorded video imagery regularly overwrites the oldest imagery saved on the 

hard-drive. Depending on the total number of cameras on each bus, their resolutions, the storage capacity 

of a bus’s hard-drive, and the length of time a bus is in service, all of which vary across the bus fleet, a 

given video file typically remains on a bus’s hard-drive between two to four weeks before it is 

overwritten.  

Because of the history of collaboration between project investigators and TTM, the investigators were 

able to request and receive video files for specified days, times-of-day, and bus routes on several 

occasions. Video imagery used in the studies reported in this document were obtained from a forward-
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looking camera mounted outside the bus on the driver’s side at the rear of the bus (see Figure 2.1-1) 

Requests were made to the TTM Transportation Systems Coordinator, who is the staff member 

responsible for operations, use, and upkeep of the video cameras on the CABS fleet. After receiving these 

requests, the coordinator would upload the specified video files from the buses’ hard-drives before the 

video files were overwritten from ongoing video recording. He would then share the files with the project 

team.  

 

Figure 2.1-1: Driver’s side exterior camera used to record imagery used in empirical studies with  

sample frame of video imagery shown in project’s Graphical User Interface 

In conjunction with a course project (see Section 7), video imagery from CABS buses in regular 

operations was obtained for 10-hour periods and subsets of the segments of the supernetwork illustrated 

in Figure 2-1 on five days, 10/25/2018, 10/24/2019, 11/05/2020, 11/04/2021, and 11/01/2022. Video data 

collected on two of these days, 10/25/2018 and 10/24/2019, were collected and reported on in a previous 

project (McCord et al., 2020). However, the video data are used again and in different ways in the project 

covered by this report. Video imagery was also obtained for segment-direction 4.1 (see Figure 2-1 and 

Table 2-1) on a series of days in 2022. The days and hours for which video data were obtained on the 

various segments are indicated in Table A-2 of Appendix A.  
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2.2 Manually Collected Traffic Counts 

Students conducted manual traffic counts on segments of the Figure 2-1 supernetwork. The “short-break” 

method (Roess, et al., 2004) was used, where students would count for four minutes, take a one-minute 

break from counting to reduce the monotony and to make sure data were being recorded properly, then 

repeat the four-minute count and one-minute break sequence for the duration of their assigned traffic 

count period. A volume for the five-minute period encompassing the four-minute count and the following 

one-minute break was estimated by linearly expanding the four-minute count to the five-minute period.  

Attempts were made to cover most segments of predefined subnetworks of the Figure 2-1 supernetwork 

with manual counts for an hour or more in conjunction with the course projects discussed in Section 7 on 

10/25/2018, 10/24/2019, 11/05/2020, 11/04/2021, and 11/01/2022. As with the video day, manual data 

collected on 10/25/2018 and 10/24/2019 were collected and reported on in McCord e al., (2020), but like 

the video data, these data are again used in different ways in the project covered by this report. On these 

days, traffic counts were taken with an “alternating count” approach (Roess, et al., 2004), where the 

direction of the segment for which the traffic counts were taken was alternated every five minutes. The 

five-minute volumes for the intervals when counts were not taken were determined as the average of the 

preceding and following five-minute interval volumes, where, as discussed above, the five-minute 

volumes used for the interpolation were estimated by expanding the four-minute counts taken in that 

direction during the interval to a five-minute volume estimate. 

As discussed in Section 6, a targeted study was undertaken based on the traffic on segment-direction 4.1. 

Traffic counts were systematically taken on this segment-direction for specified hours over the Spring 

2022 and Autumn 2022 academic semesters. These counts were again taken for four minutes, followed by 

a one-minute break, but since only one traffic direction was of interest, counts were always taken in the 

same eastbound direction. Therefore, volume estimation only needs to address the one-minute break gaps. 

The tables in Appendix A indicate the date and segment-hour-directions for which manual volumes were 

estimated. 

2.3 Road Tube Counts 

The Mid-Ohio Regional Planning Commission (MORPC), which serves as the Metropolitan Planning 

Organization for the Central Ohio area, placed road tubes on both directions (separate tubes in each 

direction to obtain directional counts) of a few segments of the supernetwork on 10/25/2018, 10/24/2019, 

and 11/05/2020. Five, four, and five segments, respectively, were selected, on the days in 2018, 2019, and 

2020.  (As with the video and manual data, the 10/25/2018 and 10/24/2019 road tube data were collected 

and reported on in McCord et al., 2020). Like those data, the road tube data collected previously are used 

again and for different studies in the project covered by this report.) The MORPC road tube data consist 

of 15-minute traffic volumes in each segment-direction for the entire day. Hourly volumes were 

determined by adding the 15-minute volumes during the intervals corresponding to the hour of interest. 

The segment-directions on which road tubes were collected are indicated in Appendix A. 

2.4 Location Based Services Volumes 

Location based services (LBS) data resulting from the use of services that rely on the use of the Global 

Positioning System are becoming an increasingly popular source of obtaining traffic volumes. Recently 

established companies are accessing LBS data from communication, information, and mobility service 

providers and aggregating them to provide on-demand traffic volume information to public agencies and 

private organizations for statewide or metropolitan planning, analysis, and design purposes (MacFarlane, 
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2020; Koupal et al., 2022). LBS data were obtained for a targeted study described in Section 5. The 

segments and days on which the LBS data were obtained are indicated in Appendix A. 

3 Time Interval Volume Estimation Methodology 

 

The overall focus of the research concept related to this project is estimating traffic volumes on roadway 

segment-directions for specified time-of-day (TOD) periods using video imagery obtained from transit 

buses in regular service and using these volume estimates to derive representative segment or network 

traffic measures. The approach developed consists of the following: 

 

• Processing the bus-based imagery into vehicle observations on roadway segments  

• Using the processed observations to estimate traffic volumes for a time-of-day (TOD) period of 

interest for the day on which the imagery was collected 

• Using the TOD traffic volumes as input to determine aggregate traffic measures of interest 

 

A review of the imagery processing previously used and automated developments for this processing are 

presented in Section 3.1. Similarly, a review of the volume estimation methodology previously developed 

and improvements to this methodology developed in the context of the project are presented in Section 

3.2 along with validations studies supporting the improvements. Additional improvements to the 

estimation methodology that show promise, but where results are considered preliminary, are presented in 

Section 3.3.  

 

3.1 Processing of Imagery  

 

The approach presented in McCord, et al. (2020) forms the basis of the approach presently used to 

process the video imagery into vehicle observations that are used to estimate traffic volumes on a 

roadway segment-direction. The approach is applied to video imagery obtained from Ohio State 

University (OSU) Campus Area Bus Service (CABS) busses while in regular service. The video imagery 

is received from OSU’s Transportation and Traffic Management (TTM). The TTM videos are first 

converted from the .avi file format to the .mp4 file format. After converting the video files, the following 

steps are used to associate vehicle observations in the imagery to roadway segments during a time period 

of interest (see McCord et al., 2020): 

 

• “Clipping”: This step involves “clipping” the video files to identify long stretches of imagery 

recorded by the bus’s camera when the bus traveled on segments not of interest for the analysis.  

• “Segmenting”: This step involves determining the video frame numbers when the bus on which the 

camera in installed entered and exited a specified sequence of roadway segment-directions so that the 

frame numbers associated with vehicles detected in the next step can be mapped to the segment-

directions where the vehicles are detected. 

• “Vehicle detection”: This step involves identifying the frame number in which a vehicle travelling on 

a roadway segment in the direction opposite to the bus direction of travel crosses a specified location 

approximately midway along the length of the bus. 

 

As reported in McCord et al. (2020), these steps were previously implemented in a “semi-automated” 

manner with the assistance of a specialized Graphical User Interface (GUI) which had previously been 

developed for these tasks. To “clip” the videos, a trained graduate student would visually identify the 

sections of the video files of interest by beginning and end frame numbers, which are subsequently used 
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as inputs to the GUI to only playback the sections of interest during the vehicle detection step. To 

segment the clipped videos, graduate and undergraduate students who were trained and familiarized with 

the campus roadway segments would watch the videos and press a virtual button on the GUI when the 

bus is seen to enter a roadway segment of interest and when it is seen to exit the roadway segment, and to 

do so for all sequenced segments that are seen to be traversed in the video clip. Pressing the GUI’s virtual 

button records the video frame number associated with the bus’s segment entrance or exit. To “detect” 

vehicles in the imagery, trained students supported by this project and in course projects (see Section 7) 

watched the video and pressed a GUI virtual button to record the frame number when a vehicle in the 

imagery is observed to pass a line superimposed on the imagery perpendicular to the bus direction and 

approximately midway along the length of the bus. Comparing the recorded frame number of the detected 

vehicle against the frame numbers indicating the entrance and exit of a bus on a specified roadway 

segment recorded in the segmenting step allowed a detected vehicle to be associated with a segment-

direction and time. 

 

In the context of the project reported here, the clipping and segmenting steps were fully automated. The 

latitude and longitude coordinates of the beginning and end of each roadway segment-direction along a 

CABS route are identified. These static coordinates, the video files, the timestamps of the beginnings and 

ends of the video files, and the Automatic Vehicle Location (AVL) data (which include timestamps and 

the corresponding bus location coordinates) for the buses on which the videos were recorded are 

processed by a Python code written by a project team member to automatically identify the sections of the 

videos that are of interest (i.e., automatic “clipping”), to identify the frame numbers that define the 

beginning and end of each segment-direction (i.e., automatic “segmenting”), and to determine the time it 

takes each bus to traverse the segment-direction (which is used in estimating the segment-direction traffic 

volume from the number of detected vehicles associated with each bus pass). The results of this 

automation are identical to what was previously done semi-automatically up to the beginning of the 

“vehicle detection” step, which continued to be applied using the GUI as described above.  

 

In a parallel project, an approach was developed to detect and record vehicles fully automatically in the 

imagery using machine vision methods (Redmill, et al. 2023). Preliminary results show the promise of 

developing such algorithms into a software tool that could replace the semi-automatic vehicle detection 

step with a fully automated approach. However, additional testing, validation, and refinement are needed 

before the fully automated approach can be considered reliable under a wide set of conditions. In the 

empirical studies described in this report, the automated clipping and segmenting steps described above 

were used when processing imagery, and as noted above, vehicles continued to be detected using the 

previously developed GUI. 

 

For each bus pass over a roadway segment of interest, the output of these three steps are the frame 

numbers of detected vehicles and the frame numbers associated with bus’s entering and exiting segments 

of interest while traveling in the opposite direction of the detected vehicles. Comparing the frame 

numbers of the detected vehicles and the frame numbers delineating the entrance and exit of the bus to 

and from the segment allows an automatic determination of the number of vehicles n detected on each 

segment-direction of interest for each bus pass over the segment (travelling in the opposite direction). All 

vehicles detected on the segment after the bus entered the segment (travelling in the opposite direction) 

and before it exited the segment in a single bus pass are presently considered to be associated with the 

time the bus entered the segment. An estimate of the times the vehicles were actually detected could be 

determined using the recorded frame numbers associated with the vehicle detection. However, given the 

small time for a bus to traverse a segment (one or two minutes at most), the temporal resolution 



 

10 
 

associated with the time the bus entered the segment is sufficient for the volume estimations considered in 

this research. 

3.2 Volume Estimation Methodology 

The “modified moving observer” approach presented in McCord, et al. (2020) again forms the basis of the 

time-of-day volume estimation used in this project, but methodological improvements discussed in 

Section 3.2.2 were developed, and the empirical results presented in Section 3.2.3 demonstrate the 

improved quality of the volume estimations obtained. A review of the modified moving observer 

approach previously used is first presented in Section 3.2.1. 

3.2.1 Review of Previously Developed Volume Estimation Approach 

The investigators developed the approach described in detail in McCord, et al., (2020) to estimate a traffic 

volume for a specified time-of-day interval on a given day from vehicle observations obtained from a 

“moving observer” such as a transit bus in regular service. The approach consists of estimating the 

equivalent of a traditional traffic volume of short duration from the vehicle detections obtained on an 

individual bus pass over the roadway segment and then aggregating the estimated traffic volumes 

obtained from different bus passes occurring during the specified time-of-day interval. 

Traffic volumes on a segment are traditionally estimated from a fixed-location sensor or from human 

observers counting the number of vehicles that pass a point on the segment over the period of interest. 

Sensors, such as cameras, on mobile sensing platforms traverse the entire road segment and detect 

vehicles at different locations on the segment at different times. To convert the vehicles observed at 

different locations on the segment at different times to an estimate of the traditional traffic volume past a 

fixed location, consider a mobile platform that traverses “Direction 1” (e.g., northbound) of a roadway 

segment in t1 time units, and while doing so, “observes” n vehicles travelling in the opposite “Direction 2” 

(e.g., southbound in this example). For simplicity, the expression “the platform observes the vehicles” is 

used rather than “vehicles are digitized from the sensed data to produce an identification of vehicle 

presence.”  

A hypothetical “virtual vehicle” travelling in Direction 2 (the direction opposite of the platform travel 

direction and in the direction of the observed traffic) is considered to enter the Direction 2 upstream end 

of the segment at the instant the platform leaves the segment (travelling in Direction 1) at this location. At 

this time, which occurs t1 time unis after the platform enters the segment, the platform stops observing 

vehicle presence or absence on the segment.  

A hypothetical “virtual observer” situated at the Direction 2 downstream end of the segment is considered 

to begin counting vehicles passing a fixed location in Direction 2 at the instant the platform enters the 

segment. Assuming that all n Direction 2 vehicles the platforms observes while traversing the segment 

travel the entire segment (an assumption made when estimating segment volume from vehicles passing a 

fixed segment location with traditional methods) and that the hypothetical virtual vehicle does not 

overtake any of the vehicles before it reaches the virtual observer at the downstream end of the segment, 

the virtual observer would count the n vehicles observed by the platform over a time period t1 + t2, where 

t2 is the time the virtual vehicle would require to traverse the segment in Direction 2. That is, the end of 

the stationary virtual observer’s observation period occurs t2 time units after the mobile platform leaves 

the segment, which, as stated above, is t1 time units after the platform enters the segment, the beginning of 

the virtual observer’s observation period. 
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The equivalent traffic volume for vehicles traveling in Direction 2 from this individual platform pass is, 

therefore, n vehicles in t1 + t2 time units. As discussed in Section 3.1, in this project the n vehicles and 

time t1 taken by the platform – i.e., the bus – to traverse the segment are obtained from the segmenting 

and vehicle detection steps when processing the imagery. The time t2 that is assumed for the virtual 

vehicle to traverse the segment could be determined in several ways. Presently, t2 is set to the length of 

the segment divided by the posted speed limit. 

In this way, each platform pass (traversal) leads to an estimated volume of n vehicles in t1 + t2 time units 

for the time interval beginning when the platform enters the segment and ending t1 + t2 time units after the 

platform enters the segment. In McCord et al., (2020), the traffic volumes for different bus passes 

occurring in a given time period were aggregated by expanding each traffic volume to a volume 

corresponding to the duration of interest – e.g., if t1 + t2 is measured in minutes and a 60-minute (hourly) 

volume V60 is desired, 𝑉60= 60 ×
𝑛

𝑡1 + 𝑡2
 – and then taking a simple (arithmetic) average of all the 

expanded volumes obtained from bus passes that occurred during the specified time-of-day period. 

 

3.2.2 Modifications to Volume Estimation Approach 

 

In this project, modifications were made to the previously developed approach summarized above. These 

modifications consist of adjusting video volumes for an individual bus pass where unreasonably low or 

high bus volumes would be estimated and of aggregating the volumes from the individual bus passes 

differently to provide an estimate of a volume for the specified time-of-day period on the day the bus pass 

videos were collected. 

 

Modifications to volumes from individual bus passes: When investigating the empirical video volume 

estimates, it was noticed that some bus passes led to estimates of zero vehicles and that some other bus 

passes led to estimates that were too high to be reasonable. 

 

It is reasonable that a bus might traverse a segment when no vehicles were travelling in the opposite 

direction, for example, during a very low volume period or between passage of vehicle platoons. 

Although it would make sense that some short duration (t1 + t2) observation periods would in reality result 

in no vehicles observed, if this observation is to represent a traffic volume for an extended time period, a 

volume of zero vehicles would be unreasonable. Therefore, it was decided to consider adjusting a bus 

pass volume of zero to a positive volume. The following adjustments of zeros (AZ) for bus pass volumes 

were considered: 

 

• AZ1: Replace an empirical video bus pass volume of 0 vehicles by a volume that is the equivalent 

of a flow of 30 vehicles/hour/lane 

• AZ2: Replace an empirical video bus pass volume of 0 vehicles by a volume that is the equivalent 

of flow of 60 vehicles/hour/lane 

• AZ3: Replace an empirical video bus pass volume of 0 vehicles by the average of all other bus 

pass volumes in the hour (beginning on HH:00) that are greater than 0 and less than the volume 

corresponding to an estimate of capacity (see below) 

• AZ4: Replace an empirical video bus pass volume of 0 vehicles by the average of all other bus 

pass volumes in the hour (beginning on HH:00) that are greater than 0 and less than the volume 

corresponding to an estimate of capacity (see below) and one additional volume that is the 

equivalent of 30 vehicles/hour/lane 
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For surface streets between intersections, a rough estimate of capacity as 600 vehicles/hour/lane was 

considered based on  TRB (2000). Video volume estimates for some bus passes were greater than an 

hourly directional volume (summed across lanes) determined by this capacity flow rate. Manual 

observations of some videos of bus passes that led to these greater-than-capacity volume estimates 

indicated that these estimated large volumes were a result of including queued vehicles (usually at the 

downstream intersection where the bus enters a segment) in the number of vehicles counted. Approaches 

to explicitly handle queued vehicles are presented in Section 3.3. To allow an expedient solution for 

studies in this project, ad hoc adjustments to capacity (AC) of greater-than-capacity video volumes were 

considered. These adjustments are similar in spirit to the adjustments of zeros made for zero-volume bus 

passes, but in this case the video volumes are decreased, rather than increased. The following adjustments 

to capacity (AC) were considered for bus pass volumes that are greater than 600 vehicles per hour per 

lane:  

• AC1: Replace the volume on a bus pass with an equivalent hourly volume greater than that 

corresponding to a flow of 600 vehicles/hour/lane by a volume that is the equivalent of 600 

vehicles/hour/lane 

• AC2: Replace the volume on a bus pass with an equivalent hourly volume greater than that 

corresponding to a flow of 600 vehicles/hour/lane by a volume that is the equivalent of 500 

vehicles/hour/lane 

• AC3: Replace the volume on a bus pass with an equivalent hourly volume greater than that 

corresponding to a flow of 600 vehicles/hour/lane by the average of all other bus pass volumes in 

the hour (beginning on HH:00) that are greater than 0 and less than the equivalent of 600 

vehicles/hour/lane 

• AC4: Replace the volume on a bus pass with an equivalent hourly volume greater than that 

corresponding to a flow of 600 vehicles/hour/lane by the average of all other bus pass volumes in 

the hour (beginning on HH:00) that are greater than 0 and less than the equivalent of 600 

vehicles/hour/lane and one additional volume that is the equivalent of 600 vehicles/hours/lane  

 

Iterative, preliminary empirical investigations were conducted with these adjustments (both AZ and AC) 

by comparing resulting video volumes to road-tube or manual-count volumes (see below), and it was 

decided  to consider the following combinations of adjustments more systematically. These combinations 

are termed Adjustment Cases. 

• Adjustment Case 1: Do not adjust either zero or greater-than-capacity bus pass volumes, i.e., “do 

nothing” compared to the previously used approach 

• Adjustment Case 2: Discard zero or greater-than-capacity bus pass volumes, i.e., consider these 

volumes as “bad data” that are to be “deleted” 

• Adjustment Case 3: Combine AZ1 and AC1 

• Adjustment Case 4: Combine AZ2 and AC2 

• Adjustment Case 5: Combine AZ3 and AC3 

• Adjustment Case 6: Combine AZ4 and AC4  

• Adjustment Case 7: Combine AZ1 and AC3 

 

Modifications to aggregation of individual bus pass volumes: As discussed in Section 3.1, individual bus 

pass volumes were previously aggregated to determine a volume for the time-of-day interval on the day 

the bus pass video imagery was collected by expanding each individual bus pass volume to a volume for 

common duration (e.g., one hour), and taking the arithmetic average of all the expanded volumes obtained 
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from bus passes that entered the segment during the time-of-day interval considered. This approach is 

referred to as a Simple Average aggregation. 

 

A second way considered to aggregate bus pass volumes is the use of a Weighted Average aggregation. In 

this approach, the individual bus pass volumes are again expanded to volumes for a common duration, 

and the average of all these expanded volumes each weighted by the t1 + t2  duration of the pass is taken. 

The time t1 + t2  represents the duration of time that the virtual observer would conduct the traffic counts 

(see Section 3.1), and it would seem reasonable to give more weight to volumes obtained from longer 

observation periods. It can be shown that this weighted average is equivalent to determining the volume 

as the sum across all bus passes i in the time-of-day interval of the vehicles ni observed during the bus 

passes, divided by the sum across the bus passes of the virtual observation periods (t1 + t2)i . This 

equivalent interpretation would represent the total number of vehicles observed during the period 

associated with the multiple bus passes, divided by the total time of (virtual) observations. 

 

The simple and weighted average approaches consider all bus pass volumes occurring during the time 

interval for which the volume estimate is being sought, and only those volumes. Doing so can lead to 

considering volumes further apart in time to be more similar than estimates closer together in time. For 

example, consider short-duration bus pass volumes beginning at 8:00 am, …, 8:50 am, 9:01 am and an 

interval between 8:00 am and 9:00. The volume obtained at 8:00 am and 8:50 am would be considered in 

the averaging procedure for this interval, whereas the volume obtained at 9:01 am would not be 

considered, and the volume at 8:00 am is implicitly assumed to be representative of the unobserved period 

after the 8:50 am observation until the end of the hour, whereas the volume at 9:01 am is considered 

irrelevant. 

 

To address this issue, a third aggregation approach, termed Flow Rate Integration, is considered. In this 

approach, volumes are considered to represent observations of flow rates as a function of continuous time. 

Specifically, the volume of n vehicles in virtual observation time t1+t2 yields a flow rate: 

 

𝑞(𝑡)  =  
𝑛

 𝑡1+𝑡2 
 (3.2.2-1) 

where the assumed instantaneous time t of the estimated flow rate is set to the time the bus enters the 

segment. This time could be set at the midpoint, the end, or any other time the bus is on the segment, but 

compared to other assumptions, this aspect is expected to have little effect on the estimated volume, given 

the small duration of 𝑡1 + 𝑡2. The multiple bus passes provide different q(t) values at different times, 

which are considered to depict the flow rate as a function of time. The volume V during time interval  

[T, T + ΔT] is found by integrating the flow rate function between T and T + ΔT: 

𝑉[𝑇, 𝑇 + Δ𝑇]  =  ∫ 𝑞(𝑡)𝑑𝑡
𝑇+Δ𝑇

𝑇
 (3.2.2-2) 

Presently, linear interpolation is assumed between consecutive q(t) values, although other assumptions 

could be considered (Charmchi Toosi, 2021). 
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3.2.3 Empirical Investigation of Modifications to Volume Estimation Approach 

 

Adjustment Cases 1-7 were combined with each of the three aggregation methods to estimate the 

corresponding video volumes for all segment-direction-hour-days on 10/25/2018, 10/24/2019, and 

11/05/2020 for which both video and road tube data are available (see Table A-1 in Appendix A). 

Denoting the video-based volume estimate for segment-direction by S.x (see Section 2), hour h, and date 

d as Vvid
s.x, h, d and the corresponding road tube volume as Vtub

s.x, h, d which is considered the ground truth, 

the absolute value of the relative “error” ARE is determined as follows: 

 

𝐴𝑅𝐸𝑠.𝑥,ℎ,𝑑 = |
𝑉𝑠.𝑥,ℎ,𝑑 

𝑣𝑖𝑑 − 𝑉𝑠.𝑥,ℎ,𝑑 
𝑡𝑢𝑏

𝑉𝑠.𝑥,ℎ,𝑑 
𝑡𝑢𝑏 |  (3.2.3-1) 

 

The ARE represents the magnitude (absolute value) of the error in the video volume estimate (difference 

between the video and ground truth, road tube volumes), scaled by the ground truth volume to allow 

similar comparisons across a range of low to high true volumes that would result from different segment-

directions (spatial differences in volumes), hours of the day (daily temporal differences in volumes). and 

days (temporal differences across years, e.g., days during COVID-induced conditions and pre-COVID 

conditions; see Section 5).  The average ARE values, taken across all segment-direction-hour-days by 

Adjustment Case-Aggregation Method combination are presented in Table 3.2.3-1. 

 

Table 3.2.3-1: Average absolute relative error (average ARE) by Adjustment Case-Aggregation Method 

combination; Average taken across all segment-direction-hour-days where video and road tube data were 

available; N is the number of segment-direction-hour-days in the Adjustment Case and is the same for all 

Aggregation Methods used 

 Aggregation Method  

Adjustment      

Case (AC) 

Simple 

Average 

Weighted 

Average 

Flow Rate 

Integration N 

AC1 0.244 0.243 0.238 280 

AC2 0.224 0.224 0.213 277 

AC3 0.228 0.228 0.220 280 

AC4 0.223 0.222 0.214 280 

AC5 0.224 0.228 0.215 277 

AC6 0.225 0.222 0.216 280 

AC7 0.216 0.215 0.207 277 

 

From Table 3.2.3-1, it is seen that using Adjustment Case 7 with the Flow Rate Integration method leads 

to the lowest average ARE of all Adjustment Case-Aggregation Method combinations. Moreover, for 

each Aggregation Method (column) Adjustment Case 7 results in lowest average ARE, and for each 

Adjustment Case (row), the Flow Rate Integration method results in lowest average ARE. Therefore, in 

Sections 4 onward, Adjustment Case 7 is used with the Flow Rate Integration method to estimate video 

volumes for specified time-of-day intervals from a series of bus pass video volumes on a given day.  

It is noted that the averages were taken across all segment-direction-hour-days where video and road tube 

volumes are available, not just segment-direction-hour-days that contain bus passes whose video volumes 

were subject to an Adjustment Case. Moreover, even for segment-direction-hour-days that contain bus 

passes with adjusted volumes, the hourly volume was determined by integrating over multiple flow rate 

estimates, most of which are determined from volumes that did not need to be adjusted. Therefore, the 
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improvements seen in Table 3.2.3-1 as a result of the adjustments would underestimate the improvements 

offered for any individual bus pass that was adjusted. 

 

3.3 Explicitly Handling Queued Vehicles in Estimation Methodology: Promising Extensions 

 

As discussed in Section 3.2.2, unreasonably large (“greater-than-capacity”) video volume estimates were 

derived from the imagery on some bus passes over some segment-directions. The videos for a subset of 

bus passes that led to these larger-than-capacity volumes were reexamined and seen to contain vehicles 

queued at a downstream intersection where the bus enters the segments that were included in the vehicle 

count for the bus pass. These vehicles would have much lower spacing when queued than when in the 

nonqueued state and would, therefore, increase the overall vehicle count per time of bus observation. This 

increased count per time would then result in an increased flow rate estimate for the bus pass when using 

Equation (3.2.2-1). In the previous section, ad hoc downward adjustments of the volumes (flow rates) of 

these greater-than-capacity bus pass volumes improved the resulting volume estimates. In this section, 

preliminary approaches to explicitly address queued vehicles are described and evaluated. Empirical 

results show that these approaches are promising. 

 

In the video imagery observed, the queues occurred at the downstream traffic end of the segment-

direction, i.e., at the downstream intersection. The following two approaches were developed and 

evaluated to determine better volume estimates in the presence of queued vehicles. 

 

Queue Approach 1: In this approach, the portion of the segment-direction that contains the queued 

vehicles is eliminated from consideration to form a “shortened” segment. Specifically, the number of 

queued vehicles nq is subtracted from the number of vehicles n previously recorded on the bus pass to 

determine the number of nonqueued vehicles n’ observed on the shortened segment, the time t1’ incurred 

by the bus in traversing the shortened segment is determined, and the time t2’ for the virtual vehicle to 

traverse the shortened segment is determined. Then, Equation (3.2.2-1) is used to calculate the 

segment-direction flow rate on the bus pass as n’ / (t1’+ t2’). 

 

Queue Approach 2: This approach assumes that the queued vehicles would have already departed the 

segment when the bus entered the segment. That is, if the traffic signal had been green when the vehicles 

arrived at the intersection, they would not have been observed on this segment by the entering bus. 

Therefore, the number of nonqueued vehicles n’ determined as in Queue Approach 1 is used with the 

original bus traversal time t1 and virtual vehicle time t2 with Equation (3.2.2-1) to determine the 

segment-direction flow rate on the bus pass as n’ / (t1+ t2). 

 

In the empirical investigations conducted, the queues were manually observed in the imagery, and the 

numbers nq-l of long vehicles (buses and trucks) and nq-s of short vehicles (passenger cars, motorcycles) in 

the queue were manually counted. The sum nq = nq-l + nq-s results in the number of queued vehicles, which 

is the only additional input needed for Queue Approach 2, and is also needed as one input for Queue 

Approach 1. For Queue Approach 1, lengths of 50 feet for long vehicles and 20 feet for short vehicles 

were assumed to calculate a total queue length ql for the longest lane queue observed. The bus traversal 

time t1’ and virtual vehicle time t2’ on the shortened segment were then estimated assuming that the times 

are proportional to the segment lengths: t1’ = t1 × (lengthseg – ql) / lengthseg, and t2’ = t2 × (lengthseg – ql) / 

lengthseg, where lengthseg is the entire length of the (original) segment. 
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To assess the potential of the two Queue Approaches, segment-direction-hour-days with ARE (see 

Equation 3.2.3-1) on 10/25/2018, 10/24/2019, 11/05/2020 that are greater than 0.5 were identified. The 

video volumes were obtained using Adjustment Case 7 (see Section 3.2). The segment-directions all 

correspond to approaches to an intersection between segments 15 and 24. In Figure 3.3-1, the location of 

this intersection with respect to the supernetwork of Figure 2-1 and an overhead view of the intersection 

are presented. All bus pass videos during the segment-direction-hour-day were visually inspected for 

queues. Select video frames from the bus pass videos depicting queues are shown in Figure 3.3-2.  

 

 
 

(a) Location of the intersection on supernetwork of Figure 2-1 

 

 
 

(b) Aerial image of intersection (source: Google Maps accessed 06/10/2023) 

Figure 3.3-1: Intersection between segments 15 and 24 where large overestimation by video volumes 

were observed that were seen to be associated with queues 
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Figure 3.3-2: Screen shots from 11/05/2020 video imagery showing queued vehicles at downstream      

end of segment-direction 24.1 at 14:06:57 (from bus 1903) on left and  at downstream end of        

segment-direction 15.2 at 14:17:35 (from bus 1706) on right 

 

The flow rates corresponding to bus passes where queues were observed were recalculated using Queue 

Approach 1 and Queue Approach 2, and the hourly volumes were recalculated using the revised bus pass 

flow rates and the flow rates of the other bus passes aggregated by the Flow integration Method. In Table 

3.3-1, the segment-direction-day-hours used in this empirical evaluation are listed, along with the 

estimated video hourly volumes and ARE values obtained when using ad hoc “Adjustment Case 7” from 

Section 3.2.2 and when using Queue Approaches 1 and 2 from this section. The road-tube hourly 

volumes, considered as ground truth, are also listed. 

 

Table  3.3-1: Hourly volumes and ARE values obtained in empirical investigation of approaches to 

explicitly address queued vehicles in determining video-based volumes 

 Hourly volume obtained from ARE when using 

Segment-

Direction 
Day Hour 

Road 

Tube 

Video 

with 

ad hoc 

adjust’t1 

Video 

with 

QA12 

Video 

with 

QA23 

Video 

with   

ad hoc 

adjust’t1 

Video 

with 

QA12 

Video 

with 

QA23 

24.1 10/24/2019 12 221.5 360.66 291.46 246.36 0.63 0.32 0.11 

24.1 10/24/2019 15 252.5 402.79 377.25 360.13 0.60 0.49 0.43 

15.2 11/05/2020 9 114 209.86 166.12 161.09 0.84 0.46 0.41 

15.2 11/05/2020 14 202 330.92 261.22 236.50 0.64 0.29 0.17 

24.1 11/05/2020 13 134.5 205.99 119.09 114.17 0.53 0.11 0.15 

24.1 11/05/2020 14 148 267.38 155.07 150.33 0.81 0.05 0.02 
1Adjustment Case 7 from Section 3.2 
2Queue Approach 1 
3Queue Approach 2 

 

The results in Table 3.3-1 demonstrate that the approaches developed to explicitly address queued 

vehicles when estimating bus pass flow rates greatly improved the estimated hourly volumes compared to 

those resulting from the improvements offered by the ad hoc adjustments presented in the previous 

section. Both Queue Approaches 1 and 2 show substantial improvement for every segment-direction-

hour-day considered, with Queue Approach 2 leading to lower ARE than Queue Approach 1 for all but 

one segment-direction-hour-day. Once again, the estimated hourly video volumes were obtained from 

multiple bus passes, some of which would not be subject to these modifications. Therefore, the 

improvement that would be obtained on an individual bus pass would be underestimated. 
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The empirical results demonstrate the promise of improving video-based volume estimation by explicitly 

addressing queued vehicles. The GUI used to record data for volume estimation could be modified to 

allow semi-automatic determination of the number of long and short queued vehicles in the queue for use 

in Approach 1, or simply the total number of queued vehicles for use in Queue Approach 2. The GUI 

could also be modified to allow identification of the frame number associated with the end of the queue, 

which would lead to a better determination of t1’ for use in in Queue Approach 1. Recording these values 

would, however, increase the time required for the semi-manual processing of the imagery. It is also 

noted that Queue Approach 2 would need to be reconsidered for queues that occur other than at the 

downstream traffic end of the section, for example, queues that result from pedestrian crossings or from 

bus stops without pullouts.  

 

Since large quantities of imagery were already processed before these Queue Approaches were evaluated, 

it was not feasible to reprocess all the imagery for the empirical studies of this report. Therefore, the 

subsequent empirical studies are based on video volumes determined from the ad hoc adjustments of the 

previous section which were easily programmed for automatic adjustments of already processed data. It is 

also noted that the promise of being able to automatically detect vehicles in the imagery discussed in 

Section 3.2 is encouraging because all the values needed for Queue Approach 1, Queue Approach 2, or 

other related approaches could eventually be determined automatically. 

 

4 Evaluation of Time-of-day Volume Estimation for a Specific Day 

 

Hourly video volumes were estimated on multiple segments of the supernetwork of Figure 2-1 between 8 

am and 6 pm on 10/25/2018, 10/24/2019, and 11/05/2020 (see Table A-1). On these days, hourly volumes 

were also determined from road tube data over the 10-hour period for small subsets of segment-directions 

and from manual traffic counts for various segment-direction (see Table A-1). The “road tube volumes” 

and “manual volumes” are considered as ground truth for comparison with the “video volumes” estimated 

on these days. (As stated at the end of Section 3.3, video volumes in this and subsequent sections are 

estimated using the ad  hoc Adjustment Case 7 and Flow Rate Integration aggregation method described 

in Section 3.2.2) Paired (video-vs.-road tube or video-vs.-manual) segment-direction-day-hour volumes 

are pooled across the three days and across the use of either road tube volumes or manual volumes as the 

ground truth, and the absolute value of the relative error ARE is computed using the equivalent of 

Equation (3.2.3-1) with either road-tube or manual volume substituting for 𝑉𝑠.𝑥,ℎ,𝑑 
𝑡𝑢𝑏  as the ground truth. 

Values of ARE are also determined for comparisons of 10-hour video volumes to 10-hour road tube 

volumes for the segments where road tube data are available. Recall that manual volumes are only 

available for at most a few hours on a given day. The empirical cumulative distribution functions (ecdfs) 

of the 1-hour and 10-hour volumes are presented in Figure 4.1, and summary statistics of the distributions 

are presented in Table 4.1. 
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Figure 4.1: Ecdfs of ARE values obtained when comparing hourly or 10-hour video volumes estimated on 

10/25/2018, 10/24/2019, and 11/05/2020 to ground truth 

 

Table 4.1: Summary statistics of distributions from Figure 4.1  

Statistic Hourly Volume ARE 10-hour Volume ARE 

Mean 0.273 0.121 

Standard Deviation 0.280 0.121 

Min 0.000 0.003 

25%-ile 0.080 0.029 

50%-ile 0.203 0.069 

75%-ile 0.355 0.185 

Max 1.730 0.410 

 

Not surprisingly, the distributions indicate that the 10-hour video volume estimates are much closer to the 

ground truth volumes than are the hourly volumes. All the 10-hour percentile ARE values are less than 

the corresponding hourly percentile values, with the mean (median) decreasing from an approximate 27% 

(20%) error to an approximate 12% (7%) error. As expected, the longer 10-hour estimation period allows 

the mix of the over- and under-estimation errors to “balance out” in the more aggregate estimation. As 

also expected, the standard deviation associated with the 10-hour ARE values (0.121) is less than that of 

the hourly ARE values (0.280). Both distributions contain ARE values taken across the same multiple 

segment-directions and the same multiple days, but the hourly distribution also contains ARE values 

taken across the additional dimension of hour of the day. 

 

There are additional contributing factors to the nature of the 10-hour and 1-hour distributions of the ARE 

values. The distributions of 10-hour ARE values are determined only from comparison between video and 

road tube volumes, since manual traffic counts were only taken for an hour or so on the data collection 

days, while the distributions of hourly ARE values are determined from comparisons between video 

volumes and either road tube or manual volumes. Volumes from road tubes and manual counts would be 

subject to different types of errors. Perhaps more importantly, road tubes were placed on segments of 

particular interest to the Mid-Ohio Planning Commission, which serves as the Metropolitan Planning 
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Organization for the area, whereas the manual counts were scheduled to “cover” the other segments in the 

network. As such, the road tube and manual count segments would likely not be homogeneous in terms of 

characteristics that are likely to contribute to the quality of estimating traffic volumes from video 

imagery. Indeed, as seen in Figures 4.2 and 4.3 and Table 4.2 and 4.3, the road tube segments generally 

have larger volumes and longer lengths. Moreover, from Figure 4.4 and Table 4.4, it is seen that the ARE 

values obtained when using manual volumes as the ground truth are noticeably larger than those obtained 

when using road tube volumes as the ground truth.  

 

 
 

Figure 4.2: Ecdfs of “true” hourly traffic volumes on segments with true volumes determined from 

manual traffic counts, from road tube data, and the pooled distribution across the two types of data 

collection; Data collected on 10/25/2018, 10/24/2019, and 11/05/2020 

 

Table 4.2: Summary statistics of distributions from Figure 4.2  

 Data Serving as Ground Truth 

Statistic Road Tube Manual 
Pooled Road Tube 

and Manual 

Mean 187.6 161.9 176.3 

Standard Deviation 78.1 92.4 85.5 

Min 42.5 36.6 36.6 

25%-ile 129.0 96.4 113.0 

50%-ile 174.5 143.0 161.8 

75%-ile 235.0 195.8 219.0 

Max 461.0 581.5 581.5 
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Figure 4.3: Ecdfs of segment lengths, in miles, of segments with volumes determined from manual traffic 

counts, from road tube data, and the pooled distribution across the two types of data collection; Data 

collected on 10/25/2018, 10/24/2019, and 11/05/2020 

 

Table 4.3: Summary statistics of distributions from Figure 4.3  

 Data Serving as Ground Truth 

Statistic Road Tube Manual 
Pooled Road Tube 

and Manual 

Mean 0.21 0.16 0.21 

Standard Deviation 0.06 0.10 0.09 

Min 0.11 0.04 0.11 

25%-ile 0.13 0.09 0.13 

50%-ile 0.21 0.12 0.20 

75%-ile 0.26 0.23 0.26 

Max 0.33 0.34 0.33 

 

The volume comparisons comprising the hourly ecdf in Figure 4.1 are decomposed to form separate 

distributions based on using road tube or manual volumes as the ground truth. The resulting ecdfs are 

presented in Figure 4.4 along with the pooled distribution from Figure 4.1. Summary statistics are 

presented in Table 4.4.  
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Figure 4.4: Ecdfs of ARE values obtained when comparing hourly video volumes estimated on 

10/25/2018, 10/24/2019, and 11/05/2020 to road tube, manual, and pooled ground “true” volumes 

 

Table 4.4: Summary statistics of distributions from Figure 4.4 

 Data Serving as Ground Truth 

Statistic Road Tube Manual 
Pooled Road Tube 

and Manual 

Mean 0.207 0.357 0.273 

Standard Deviation 0.197 0.338 0.278 

Min 0.000 0.000 0.000 

25%-ile 0.061 0.110 0.080 

50%-ile 0.156 0.250 0.203 

75%-ile 0.282 0.500 0.354 

Max 1.444 1.730 1.730 

 

From Figure 4.4 and Table 4.4, it is seen that the ARE values obtained when using manual volumes as the 

ground truth are noticeably larger than those obtained when using road tube volumes as the ground truth. 

To investigate the possibility that the difference in the overall ARE values obtained when using road tube 

volumes or manual volumes as ground truth are partially a result of different volumes and segment 

characteristics in the two groups, the ARE values for video volume-vs.-true volume comparisons i are 

regressed against the corresponding true hourly volumes 𝑉𝑜𝑙𝑖
𝑡𝑟𝑢 (as determined from either the road tube 

volume or manual volume) for the comparisons and lengths of the segment-directions 𝐿𝑒𝑛𝑖 in the 

comparison using the following model specification: 

 

𝐴𝑅𝐸𝑖  =  𝛽0 +  𝛽1𝑉𝑜𝑙𝑖
𝑡𝑟𝑢 + 𝛽2𝐿𝑒𝑛𝑖  (4-1) 

 

The regression estimation results, presented in Table 4.5, show very low p-values for the coefficients of 

the two explanatory variables (as well as for the intercept). The negative sign of the estimated 𝛽2 

coefficient indicates that, all else equal, longer segments would tend to have lower ARE than shorter 

segments. This indication is reasonable, since longer segments would be associated with longer 
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equivalent observation times t1+t2 for individual bus passes. Moreover, the impacts of any queued 

vehicles (see Section 3.3) would tend to be diminished on longer segments.   

 

Table 4.5: Summary regression results using specification (4-1) investigating the association of the true 

volume and segment length with ARE value in hourly estimates when pooling data from all comparisons 

between video volumes and either road tube or manual volumes on 10/25/2018, 10/24/2019, and 

11/05/2020  

Variable 
Coefficient 

Estimate 
Std. Error t-stat p-value 

Intercept 0.559 0.037 14.930 < 2e-16 

Manual (True) 

Volume, Voltru 
-0.001 0.000 -4.827 1.86e-06 

Segment Length, Len -0.915 0.139 -6.589 1.14e-10 

R2 = 0.119 

N = 493 

 

The very significant (p-value =1.86E-06) associated with the estimated 𝛽1coefficient may be surprising at 

first. The scaling of the difference between the estimated video volume and the true volume by the 

magnitude of the true volume in the ARE metric (see Equation (3.2.2-1)) is motivated by allowing 

comparisons of estimation errors across segment-direction-day-hours involving volumes of various 

magnitudes. As such, little if any effect of volume on this metric is originally expected. A scatter plot of 

the ARE values as a function of the true volume (either road tube or manual volume) is presented in 

Figure 4.5.  

 

 
Figure 4.5: Scatter plot of ARE values versus true volume involved in the comparison associated with the 

ARE value; Comparison with manual volumes in red and with road tube volumes in blue 
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Figure 4.5 indicates a much larger proportion of large ARE values at low values of volume than at higher 

values of volume, which would explain the negative slope (negative value of 𝛽1) in the ARE-vs.-volume 

relation. From the discussion in Section 3.3, larger ARE values are generally believed to be associated 

with queued vehicles during some of the bus passes used in estimating the video volume. Queued vehicles 

can be observed during times of either high or low true volume, but since the true volumes are used in the 

denominator of the ARE metric, the ARE value would tend to be higher when queues occur at times of 

low true volumes (smaller denominator), compared to when queues occur at times of high true volumes 

(larger denominator). Very large ARE values, defined to be greater than 0.5 and which are likely to be 

associated with observations involving queued vehicles, are not considered in a subsequent regression 

where  the remaining data are used again with the specification in Equation (4.1). The results, presented in 

Table 4.6, show that the effect of the segment length is still negative (𝛽2< 0) and very significant (p-value 

= 0.000796), but that the p-value associated with the coefficient associated with the true volume ( 𝛽1) 

increases to 0.753, indicating that it would be likely to observe the empirical relation between ARE and 

true volume if there really was no volume effect, and where no effect of true volume on ARE partially 

motivates the use of the ARE metric. 

 

It is also seen in Figure 4.2 and Figure 4.5 that the comparisons between video volumes and manual 

volumes appear to be overrepresented, relative to the comparison between video volume and road tube 

volumes, for lower values of true volumes. As discussed above, road tubes were placed on segments of 

relative interest to the Mid-Ohio Regional Planning Commission (MORPC). Such segments would tend 

to be higher volume segments. Since the lower volume comparisons appear to have larger ARE values, 

this overrepresentation of comparisons with manual volume at lower volumes could explain the greater 

ARE values in the manual distributions than in the road tube volumes seen in Figure 4.4 and Table 4.4. 

Moreover, longer length segments, which are statistically associated with lower ARE values according 

the negative and highly significant estimated values of 𝛽2 in both Table 4.5 and Table 4.6, would tend to 

be segments of more interest to MORPC. 

 

Table 4.6: Summary regression results using specification (4-1) investigating the association of the true 

volume and segment length with ARE value in hourly estimates when pooling data from comparisons 

between video volumes and either road tube or manual volumes on 10/25/2018, 10/24/2019, and 

11/05/2020 with ARE values less than 0.5 

Variable 
Coefficient 

Estimate 
Std. Error t-stat p-value 

Intercept 0.227 2.01e-02 11.298 < 2e-16 

Manual (True) 

Volume, Voltru 
-1.99e-05 6.33e-05 -0.315 0.753 

Segment Length, Len -0.243 7.34e-02 -3.310 0.001 

R2 = 0.026  

N = 417 
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To investigate the hypothesis that the larger ARE values seen in the empirical manual distribution are 

partially a result of overrepresentation of segments that have smaller true volumes and shorter segment 

lengths, the true volumes and segment lengths involved in each segment-direction-day-hour comparison 

are used in Equation (4-1) with the estimated coefficient values presented in Table 4.5 to determine 

“model-predicted” ARE values. The “model-predicted” ARE values determined in this way are plotted as 

to whether the video volume was compared to a manual or road tube volume in the empirical distributions 

of Figure 4.4 and Table 4.4. The ecdfs plotted in Figure 4.6 and the corresponding summary statistics 

presented in Table 4.7 indicate that the empirical comparisons comprising the manual distributions of 

Figure 4.4 and Table 4.4 would be expected to result in larger ARE values than the comparisons 

comprising the road tube distributions because of differences in true volumes and segment lengths in the 

segment-direction-day-hours for which comparison were made in the two distributions.  

 

 
Figure 4.6: Ecdfs of “model-predicted” ARE values, using Equation (4.1) and Table 4.5, for 

segment-direction-day-hours considered in Figure 4.4 and Table 4.4 

 

Table 4.7: Summary statistics of distributions from Figure 4.6  

 Data Serving as Ground Truth 

Statistic Road Tube Manual 
Pooled Road Tube 

and Manual 

Mean 0.245 0.309 0.273 

Standard Deviation 0.076 0.106 0.096 

Min ---1 0.006 ---1 

25%-ile 0.197 0.231 0.204 

50%-ile 0.2446 0.331 0.266 

75%-ile 0.297 0.384 0.346 

Max 0.408 0.499 0.499 
1 A negative minimum value resulted from applying Equation 4-1; since ARE values cannot be negative by 

definition, the negative minimum value output from the model is not reported  
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The model-based results presented in Figure 4.6 and Table 4.7 support the statistical results seen in Table 

4.5 that higher volumes and longer length segments are associated with lower ARE values. The very low 

R2 values when using all the data (Table 4.5) and when attempting to avoid comparisons where queues 

may be responsible for particularly large ARE values (Table 4.6) indicate that other factors likely have a 

large effect on the quality of the video-based volume estimation. Determining these factors would be 

helpful both in providing clues to improve the estimation methodology and in indicating the degree of 

confidence one would have in a specific estimate. Investigating these other factors would be an interesting 

topic of future research. 

 

5 Estimation and Monitoring of Vehicle Miles Traveled  

 

5.1 Vehicle Miles Traveled  

 

Vehicle distance traveled is arguably the most fundamental metric of network-wide vehicular travel 

(Kumapley and Fricker, 1997; Fricker and Kumapley, 2002; Roess et al., 2004; FHWA, 2022; Williams 

et al., 2016). By definition, vehicle distance traveled is the sum, over all vehicles traveling on the network 

during a specified time period, of the distance traveled by each vehicle on the network during the time 

period. Distances are usually considered in kilometers or miles, leading to measures of Vehicle 

Kilometers Traveled (VKT) or Vehicle Miles Traveled (VMT). VMT is used in this report. 

It is impractical to track the travel of all vehicles on a network over a time period, and there have been 

various proposals to estimate VMT (Kumapley and Fricker, 1997; Fricker and Kumapley, 2002; Roess et 

al., 2004; FHWA, 2022; Williams et al., 2016; Fan et al., 2019). The most common approach based on 

direct measurements, and that which has proven practical for both statewide and “smaller” roadway 

networks (Roess et al., 2004; FHWA, 2022), disaggregates the roadway network into segments and sums, 

across all segments, the vehicle miles traveled on each segment during the time period. Denoting the 

traffic volume on segment i during the time period by Vi and the length of the segment (in miles) by 𝐿𝑖, 

the vehicle miles traveled on segment i during the time period is 𝐿𝑖 × 𝑉𝑖, and the network VMT during the 

time period is therefore:  

𝑉𝑀𝑇 =  ∑ 𝐿𝑖 × 𝑉𝑖∀𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠,𝑖   (5.1-1) 

 

Accurate, static segment lengths are readily available in public roadway databases. Therefore, the 

accuracy of estimated VMT depends largely on the accuracy of the estimated traffic volumes during the 

specified time period, and the ability to monitor or update VMT estimates depends on the ability to 

readily obtain traffic volumes. The ability to estimate accurate volumes on an ongoing basis using 

available bus-based video imagery is the focus of the research covered in this report, and in this section 

empirical investigations of the accuracy in determining VMT from the volumes estimated using the 

methodology of Section 3 are presented.  

5.2 Empirical Comparisons of Video-based and LBS-based VMT to Road-tube VMT  

Ten-hour VMT, between 8:00 am and 6:00 pm, is estimated for 10/25/2018, 10/24/2019, and 11/05/2020 

across “subnetworks” of segment-directions on the day. (These are the three days of data on which road 

tube data were collected.)  These subnetworks are subsets of the supernetwork presented in Section 2 and 

consist of the (unconnected) segment-directions on which road-tube data were collected on the day. The 

segments included in the subnetworks, the lengths of the networks, and the numbers of bus passes 

obtained over the ten hours can be obtained from Table A.1 in Appendix A (data table), but this 
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information is summarized in Table 5.2-1 for convenience. VMT is estimated separately from segment-

direction volumes obtained from video, road-tube, and Location Based Service (LBS) data (see Section 2) 

collected on the day.  

Table 5.2-1: Segments comprising road tube-equipped subnetworks and number of bus-passes on day of 

VMT estimation 

Day 
Segment numbers1 (No. of bus passes 

obtained for 10-hr video estimation) 

Total Network 

Length of 

Segment-

directions [mi] 

10/25/2018 1(35/35), 4(90/91), 10(51/33), 15(53/26); 

19(36/42) 2.240 

10/24/2019 5(39/65); 16(20/47); 20(38/39); 

24(32/29) 1.333 

11/05/2020 1(86/88); 4(94/161); 15(88/106); 

20(118/61); 24(47/43) 2.224 
1Volumes obtained on both directions of the segments 

The 10-hour volumes obtained from the video, LBS, and road tube data are used with segment lengths to 

determine the 10-hour VMT by each data source for the road-tube equipped subnetwork. These VMT 

values are presented in Table 5.2-2. The video-based VMT values are seen to be much closer to the road-

tube VMT values than are the LBS-based VMT values. Note that because the road-tubes were placed on 

different segments in the different years, the VMT values are not comparable across years. To quantify 

differences from the ground truth, the absolute relative errors (ARE) between the VMT determined from 

either video- or LBS-based volumes (indicated by superscript data) and the VMT determined from road-

tube volumes (considered as ground truth and indicted by tub)  

𝐴𝑅𝐸(𝑉𝑀𝑇𝑑𝑎𝑡𝑎) = |
𝑉𝑀𝑇𝑑𝑎𝑡𝑎 − 𝑉𝑀𝑇tub

𝑉𝑀𝑇𝑡𝑢𝑏 |  (5.2-1) 

are calculated for each day. These ARE values, also presented in Table 5.2-2, indicate that using volumes 

derived from the video imagery to estimate VMT leads to differences from the ground truth, road-tube-

based VMT of at most 10% and as low as 0.2%, whereas using LBS-based volumes leads to differences 

greater than 36% in all cases and over 123% on one day. 

Table 5.2-2: Ten-hour VMT on road-tube subnetworks when using video, LBS, and road-tube data by 

day, and corresponding absolute relative errors (ARE) in VMT estimates compared to road-tube VMT 

Day Video VMT LBS VMT Tube VMT ARE(VMTvid) ARE(VMTLBS) 

10/25/2018 7,592 13,445 7,610   0.23% 76.68% 

10/24/2019 5,570 6,914 5,054 10.21% 36.80% 

11/05/2020 5,210 11,039 4,929 5.72% 123.96% 

In addition to determining the 10-hour VMT, VMT time-of-day patterns are determined using volumes 

from each of the sets of video, LBS, and road tube data. Specifically, the VMT across the road-tube 

network is determined from each hour h of the 10-hour period on day d using Equation (5.1-1) with static 
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segment-direction lengths and volumes determined with data in h of d for segments on which road-tubes 

were placed in the year. Denoting the hourly VMT as 𝑉𝑀𝑇ℎ,𝑑
𝑑𝑎𝑡𝑎, the proportion 𝑃ℎ,𝑑

𝑑𝑎𝑡𝑎 of the 10-hour 

VMT in hour h and day d with respect to the 10-hour VMT is determined as: 

 

𝑃ℎ,𝑑
𝑑𝑎𝑡𝑎 =

𝑉𝑀𝑇ℎ,𝑑
𝑑𝑎𝑡𝑎

∑ 𝑉𝑀𝑇𝜉,𝑑
𝑑𝑎𝑡𝑎

∀𝜉
  (5.2-2) 

The 𝑃ℎ,𝑑
𝑑𝑎𝑡𝑎 values for the 10/25/2018, 10/24/2019, and 11/05/2020 “road-tube networks” are graphed by 

data source in Figure 5.2-1.  

 

 
(a) 10/25/2018 

 
(b) 10/24/2019 

 
(c)11/05/2020 

Figure 5.2-1: Proportion of 10-hour road-tube network VMT carried in each hour as determined when 

using video, LBS, and road-tube data by day 

In Figure 5.2-1, the time-of-day VMT patterns obtained when using video volumes appear to be more 

similar to the patterns obtained when using the ground truth road-tube volumes than do the patterns 

obtained when using LBS volumes. To quantify the differences in the patterns, the absolute value of the 

differences between the 𝑃ℎ,𝑑
𝑑𝑎𝑡𝑎 determined when using either the video or LBS volumes (i.e., data = vid or 

LBS) and that determined when using the road-tube volumes (i.e., 𝑃ℎ,𝑑
𝑡𝑢𝑏) are determined for each hour on 
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the day of estimation, and the average of the absolute value of the differences across the 10 hours of the 

day 𝐴AD(Pd
𝑑𝑎𝑡𝑎) is taken: 

𝐴𝐴𝐷(𝑃𝑑
𝑑𝑎𝑡𝑎) =

∑ |𝑃ℎ,𝑑
𝑑𝑎𝑡𝑎−𝑃ℎ,𝑑

𝑡𝑢𝑏
∀ℎ |

10
  (5.2-3) 

These average absolute value of time-of-day pattern differences from the road-tube patterns in each year 

are presented in Table 5.2-3. The AAD values obtained when using road-tube data are approximately one-

half the AAD values obtained when using LBS data, indicating that the time-of-day patterns determined 

when using video data are much closer to those determined using road-tube data than are the time-of-day 

patterns determined when using LBS data, regardless of the year. Recall that different “road-tube-

networks” are present in the different years. 

 

Table 5.2-3: Average absolute value of differences (AAD) from road-tube VMT time-of-day patterns of 

VMT time-of-day patterns on road-tube networks determined when using video- and LBS-based VMT 

 

 

 

5.3 Empirical Comparisons of Video-based VMT and LBS-based VMT on Expanded Networks 

Ten-hour VMT, between 8:00 am and 6:00 pm, is also estimated for 10/25/2018, 10/24/2019, 11/05/2020, 

and 11/04/2021 on an “expanded” network, consisting of segments where both video and LBS data were 

obtained for all four days. This common expanded network consists of the segments listed in Table 5.3-1, 

where also are listed the static lengths of the segments and numbers of bus passes used to estimate video-

based volumes for the segment-direction during the 10-hour period. VMT is again estimated separately 

from segment-direction volumes obtained from video and from LBS data collected on those days. The 10-

hour VMT values for the expanded networks are presented in Table 5.3-2. The LBS-based VMT values 

are seen to be very different from the video-based values. 

When considering VMT estimated for the expanded network, there is no ground truth value to which the 

estimated VMT values can be compared. However, the days on which the VMT is estimated are all 

Thursdays at approximately the same time of the academic term. Therefore, patterns in the estimated 

VMT over the years (represented by the VMT for the late October/early November dates) can be 

compared to a priori expectation of how traffic changed over these years. Therefore, in Table 5.3-2, and 

subsequent tables and figures for the expanded network, the designation of the days on which the VMT is 

estimated is replaced by a designation of the year corresponding to late October/early November day. The 

2018 and 2019 days correspond to what are called “pre-pandemic conditions.” The 2020 day corresponds 

to “full pandemic” conditions, when almost all classes were conducted remotely and discretionary travel 

to campus was discouraged. The 2021 day corresponds to “recovering” conditions, when most classes 

were back to being offered in person, but when pandemic awareness (e.g., mandatory mask wearing 

indoors on campus) was strong and many meetings were still conducted remotely.  

 

Day AAD(Pvid) AAD(PLBS) 

10/25/2018 0.0054 0.0104 

10/24/2019 0.0027 0.0052 

11/05/2020 0.0059 0.0121 
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Table 5.3-1: Segments, segment lengths, and number of and number of bus-passes of expanded network 

by year (date) of VMT estimation 

Segment 

Number 

Segment   

Length [mi] 

No. of bus passes for 10-hour video estimation: 

Segment-direction s.1/s.21 

10/25/2018 10/24/2019 11/05/2020 11/04/2021 

1 0.256 35/35 79/78 86/88 142/143 

2 0.100 36/37 48/47 40/41 47/47 

3 0.111 90/89 88/83 96/163 130/131 

4 0.326 90/91 84/84 94/161 130/132 

5 0.120 36/53 39/65 56/102 45/83 

6 0.343 32/53 42/49 58/38 49/92 

7 0.039 56/36 44/38 36/58 82/45 

8 0.070 56/36 45/42 38/60 82/48 

9 0.063 53/34 45/38 37/60 84/45 

10 0.232 51/33 44/18 40/60 87/51 

11 0.092 50/36 45/19 38/100 85/47 

12 0.291 48/34 47/19 40/60 35/50 

13 0.048 36/32 18/43 60/39 47/80 

14 0.084 55/37 45/20 40/60 80/46 

15 0.194 53/26 74/47 88/106 174/140 

16 0.210 33/56 20/47 59/39 46/85 

17 0.102 37/53 18/47 59/39 46/81 

18 0.101 37/56 18/46 60/39 45/82 

19 0.112 36/42 18/46 60/39 45/81 

20 0.134 51/56 38/39 118/61 83/80 

21 0.115 56/33 45/19 40/60 81/46 
1Direction s.1 refers to EB or NB traffic direction; direction s.2 refers to WB or SB traffic direction 

 

Table 5.3-2: Ten-hour VMT on expanded networks determined from video- and LBS-based volumes, 

derived growth factors, and ODOT growth factors, using 2018 as reference  

Year1 Video VMT LBS VMT Video GF LBS GF ODOT GF 

2018 18,268 34,269    

2019 18,303 38,230 1.00 1.12 1.02 

2020 9,431 32,883 0.52 0.96 0.92 

2021 14,378 37,322 0.79 1.09 0.98 
1Video and LBS 10-hour VMT are obtained on one Thursday in late October or early November in the 

indicated year, namely, 10/25/2018, 10/24/2019, 11/05/2020, 11/04/2021  

“Growth factors” (Jiang et al., 2006; FHWA 2022) representing the ratio of VMT values in year y to the 

VMT in 2018 as determined from video- or LBS-based VMT (designated by data) are given by: 

𝐺𝐹𝑦
𝑑𝑎𝑡𝑎 =

𝑉𝑀𝑇𝑦
𝑑𝑎𝑡𝑎

𝑉𝑀𝑇2018
𝑑𝑎𝑡𝑎 (5.3-1) 

The calculated growth factor (GF) values are also presented in Table 5.3-2. In addition, the annual growth 

factors with respect to 2018 travel as determined from Ohio Department of Transportation (ODOT) 
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state-wide traffic monitoring statistics for urban collector/local roads (ODOT, 2022) are presented. 

There were no major demographic, infrastructure, or transportation-related policy changes on the OSU 

campus that would substantially affect overall vehicular traffic between 2018 and 2019. In Table 5.3-2, 

the video-based 2019 growth factor (1.00) is quite remarkable in reflecting this expectation. This video-

based 2019 growth factor is also close the 2019 ODOT growth factor (1.02). The small difference 

between the two growth factors may be a result of more stability in campus traffic from year to year than 

in general statewide traffic on the same functional class of roadways. The LBS-based 2019 growth factor 

(1.12) gives a very different, and erroneous, indication of difference in travel on the campus between 

2018 and 2019. There is no causal reason that traffic would have increased by 12% between 2018 and 

2019, and observations by those regularly experiencing campus traffic on weekdays in autumn semester 

in the in the two years would rule out a 12% difference. 

The 2020 VMT is estimated for conditions when the pandemic greatly affected travel to and from the 

OSU campus, what is considered the “full pandemic” condition. Therefore, the 2020 VMT is expected to 

be much less than the 2018 VMT. The 2020 video-based growth factor (0.52) in Table 5.3-2 indicates that 

there was approximately half as much travel in 2020 (i.e., after the onset of the pandemic) compared to 

2018. This video-based 2020 growth factor is much less than the 2020 ODOT factor (0.92), which is 

expected. Statewide traffic monitoring factors are based on travel over the entire year. The first few 

months of 2020 were before the pandemic changed travel patterns and, therefore, the 2020 annual ODOT 

factor would reflect a combination of pre-pandemic and during pandemic conditions. Moreover, the 

change to remote instruction for the OSU campus in autumn 2020 severely affected almost all academic 

campus travel, an impact that would be expected to be greater than the impact on general, statewide urban 

collector/local roads travel during these “full pandemic” conditions. The 2020 LBS-based growth factor 

(0.96) indicates a decrease in travel during the full pandemic condition (GF2020 < 1), but much less of a 

decrease than that indicated by the video-based factor and even less than the decrease indicated by the 

ODOT growth factor for traffic on urban collector/local roads across the entire state and during both pre-

pandemic and pandemic conditions in 2020. Recall that the LBS data-based volumes are specific to the 

dates on which video imagery data were collected, specifically the “full pandemic” conditions in 2020. In 

short, the video-based growth factors are in line with a priori expectations, whereas the LBS-based 

factors contradict these expectations. 

Similarly, the 2021 video-based growth factor (0.79) is much more reasonable than the 2021 LBS-based 

factor (1.09). Based on familiarity with local conditions, there was more roadway traffic in the 2021 

“recovering” conditions – when most, but not all classes were in person – than under the “full pandemic” 

conditions of 2020, but still noticeably less traffic than in 2018. In autumn 2021, in-class attendance was 

noticeably reduced compared to 2018, and many meetings were still held remotely. The 2021 video-based 

growth factor (0.79) is still noticeably less than 1.00 but also noticeably greater than the 2020 video-based 

factor (0.52). Again, the video-based 2021 factor is less than the ODOT 2021 factor (0.98), supporting the 

expectation that campus traffic was still affected by pandemic conditions more than general, statewide 

travel on urban collector/local roadways. Conversely, the 2021 LBS-factor (1.09) unreasonably indicates 

that 2021 VMT was greater than 2018 VMT and that campus travel was proportionately higher than 

statewide travel in 2021.  

Time-of-day patterns obtained from the video- and LBS-based VMT are again determined for each year 

using the 𝑃ℎ,𝑑
𝑑𝑎𝑡𝑎 metric of Equation (5.2-2) but when considering VMT for the expanded network. These 

values are plotted for the various years in Figures 5.3-1 when using video- and LBS-based data. As 

discussed above, there were no factors that would be expected to affect campus travel patterns between 

2018 and 2019. Therefore, the time-of-day pattern would be expected to be similar in these two years and 
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more similar than when the pandemic substantially affected class-related and discretionary travel in 2020. 

The plots in Figure 5.3-1(a) appear to support this expectation. To quantify the differences in the time-of-

day patterns across years, a metric analogous to the Equation (5.2-3) average absolute difference in hourly 

proportions is used, but this time considering difference in time-of-day proportions across consecutive 

years as follows: 

𝐴𝐴𝐷(𝑃𝑦,𝑦+1
𝑑𝑎𝑡𝑎 ) =

∑ |𝑃ℎ,𝑦+1
𝑑𝑎𝑡𝑎 −𝑃ℎ,𝑦

𝑑𝑎𝑡𝑎
∀ℎ |

10
 (5.3-2) 

The absolute average differences obtained when using video- and LBS-based VMT values are presented 

in Table 5.3-3.  

When using video-based VMT, the much smaller AAD value (0.0044) determined from comparing 2018 

and 2019 time-of-day patterns than that (0.0132) determined from comparing 2019 and 2020 patterns is 

consistent with expectations, whereas the similarity in the values (0.0110 for 2018-2019 and 0.0130 for 

2019-2020) obtained when using LBS-based VMT is not. Moreover, the 2018-2019 AAD value is much 

smaller when using video data than when using LBS data (0.0044 vs. 0.0110), indicating that the LBS 

data are leading to much larger differences in the temporal patterns between two years where the patterns 

are expected to be similar.   

The comparisons of the 2018 and 2019 plots to the 2020 plot in Figure 5.3-1(a) indicate lower 

percentages of travel in the traditional morning commute time (8-9 am) and higher percentage of travel in 

the lunchtime and midday periods (11am – 4 pm) during the 2020, “full pandemic” conditions than during 

the 2018 and 2019 pre-pandemic conditions. Although no strong hypotheses were formed for these trends 

beforehand, they make ex post sense after seeing the patterns where travel to campus did not follow the 

conventional commute hours. These trends are not apparent when looking at the LBS-based time-of-day 

patterns in Figure 5.3-1(b). 

 
(a) Video-based VMT 

 

 
(b) LBS-based VMT 

Figure 5.3-1: Proportion of 10-hour expanded network VMT in each hour by year as determined when 

using video- and LBS-based VMT 
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Table 5.3-3: Average absolute value of differences (AAD) in time-of-day patterns for consecutive years 

determined when using video- and LBS-based VMT 

Year, Year + 1 Video AAD  LBS AAD 

2018-2019 0.0044 0.0110 

2019-2020 0.0132 0.0130 

2020-2021 0.0051 0.0114 

Similarly, no a priori hypotheses were formed about the time-of-day patterns during the “recovering” 

2021 conditions. Indeed, investigating such patterns is one motivation for the type of regular monitoring 

presented here. When using the video-based VMT values, the 2020-2021 AAD value (0.0051) is much 

smaller than the 2019-2020 value (0.0132) and similar to the value (0.0044) obtained when comparing 

what are believed to be steady-state pre-pandemic 2018 and 2019 time-of-day patterns. That is, it appears 

that the time-of-day pattern under the “recovering” 2021 conditions is similar to that under the “full 

pandemic” conditions. The AAD values obtained when using LBS-based VMT values are also smaller 

when comparing 2018 and 2019 and 2020 and 2021 patterns than when comparing 2019 and 2020 

patterns. However, the differences in the values are smaller, and the large difference in the patterns 

represented by the much larger 2018-2019 value would not make this observation apparent. 

6 Average Day Volume Estimation 

 

The time-of-day vehicle volumes used in the studies reported in previous sections are all volumes for 

specified time intervals on a single day, the day on which the data used to estimate the volumes were 

collected. Although off-line estimates of traffic volumes on a specific day could be useful in some 

instances, the purpose of general traffic monitoring is to determine traffic volumes on a typical day, where 

measures such as Average Annual Daily Traffic (AADT) or Average Daily Traffic (ADT) (FHWA, 2022) 

are sought. Since transit buses cover the same road segments on a daily basis, the video imagery available 

from daily coverage by transit buses would be particularly attractive for estimating time-of-day volumes 

on a typical day. In Section 6.1 the data collection design and the data collected for the purpose of 

estimating traffic volume for a typical day are described. In Section 6.2, an empirical study is presented 

that illustrates how averaging multiple volume estimates for a given time-of-day period yields very good 

estimates of the average of the actual volumes on the sampled days for that time-of-day period. In Section 

6.3, it is recognized that the average of sample volumes, even if error free, is only an estimate of the true 

underlying average day volume. An analytical framework is presented to investigate the differences 

between estimating the average day volume for a time-of-day period from video volumes compared to 

sampling true volumes. In addition, empirical results are obtained using this framework and empirical 

data.  

 

6.1 Data Collection 

 

Segment-direction 4.1 (see Figure 2.1) was considered for the empirical study. This segment-direction is 

0.326 miles long and has two traffic lanes, with a traffic signal at the downstream traffic end of the 

segment. At approximately 75% of the distance along this segment-direction (in the direction of traffic 

flow), vehicles can turn left, crossing segment-direction 4.2, into a small parking lot. Vehicles exiting this 

parking lot can turn left, after crossing segment-direction 4.2, onto segment-direction 4.1. There are no 

other “vehicle leakage” points along the segment. Near the small parking lot there is a pedestrian 

cross-walk that is not heavily used. Approximately 85% of the distance along this segment direction, 

there is a bus stop that does not have a pullout, with buses stopping in the right lane of the two directional 

travel lanes. 
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The segment is used by commuting traffic and caries a large amount of inbound traffic in the morning 

and, to a lesser extent, at the end of the lunch hour. Based on video-based volumes, Segment 4.1 had the 

11th, 9th, and 4th highest segment-direction 10-hour volume on the “non-pandemic affected” days of 

10/25/2018, 10/24/2019,  and11/01/2022, respectively. Interestingly, Segment 4.1 had the 38th and  33rd 

largest 10-hour segment-direction volumes on the “full pandemic” and “recovering” days of 11/05/2020 

and 11/04/2021 (see Section 5.3). 

 

Students associated with the research project conducted manual data counts on segment-direction 4.1 

throughout Spring and Autumn academic semesters in 2022. Attempts were made to conduct counts on 

two different days of the week during the same two hours on each day in both semesters, but course 

schedules did not allow implementation of this desired design. After accommodating student schedules, 

the day-hour-semesters indicated in Table 6.1-1 were settled upon. 

 

Table 6.1-1: Data collection schedule for average day volume studies 

Day of week Spring 2023 Autumn 2023 

Monday 11:30-12:30 13:00-14:00 

Wednesday 9:30-10:30 9:30-10:30 

Thursday 9:30-10:30 

11:30-12:30 

9:30-10:30 

13:00-14:00 

 

The manual counts were to be collected during the day-hour on a weekly basis unless some reason, such 

as inclement weather or last-minute data collector illness, resulted in cancelling or reducing the data 

collection period. Manual data were collected using the short-break method (see Section 2.2) with counts 

taken for four minutes followed by a one-minute break. All counts were taken in the eastbound traffic 

direction given the focus of this study on one direction. Expanding the four-minute counts, as described in 

Section 2.2, allowed determination of five-minute and, subsequently, hourly “manual volumes”. These 

manual values are considered as ground truth in the empirical studies reported in this study. 

 

Video imagery was obtained from the OSU transit buses traversing Segment 4.2 (westbound direction) to 

allow observation of vehicles travelling in the eastbound 4.1 direction. The bus-based imagery was used 

with the estimation methodology described in Section 3. Bus passes were obtained during the hour of data 

collection and for at least 15 minutes before and 15 minutes after the hour to allow for use of the Flow 

Integration method (see Section 3.2.2) to estimate hourly “video volumes” from the flow rates determined 

from the individual bus passes. The empirical hourly and video volumes by date, day-of-week, and hour 

are presented in Table A-2, in Appendix A. The numbers of bus passes used to estimate the hourly 

volumes are also shown.  

 

6.2 Sampled Average Video vs. Sampled Average Manual Volumes 

Data were collected during the eight semester-day-of-week(dow)-hour periods of Table 6.1-1. The 

average hourly volumes obtained from the daily video-estimates 𝑉𝑠𝑒𝑚−𝑑𝑜𝑤−ℎ𝑟
𝑣𝑖𝑑,𝑎𝑣𝑔

 and the average hourly 

volumes obtained from the average manual data 𝑉𝑠𝑒𝑚−𝑑𝑜𝑤−ℎ𝑟
𝑚𝑎𝑛,𝑎𝑣𝑔

 are presented in Table 6.2-1. The 

differences DifAvg between these two averages  

𝐷𝑖𝑓𝐴𝑣𝑔𝑠𝑒𝑚−𝑑𝑜𝑤−ℎ𝑟 = 𝑉𝑠𝑒𝑚−𝑑𝑜𝑤−ℎ𝑟
𝑣𝑖𝑑,𝑎𝑣𝑔

 −  𝑉𝑠𝑒𝑚−𝑑𝑜𝑤−ℎ𝑟
𝑚𝑎𝑛,𝑎𝑣𝑔

 (6.2-1) 
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and absolute relative errors ARE(DifAvg) in the average video volumes, relative to the average manual 

volumes  

𝐴𝑅𝐸(𝐷𝑖𝑓𝐴𝑣𝑔)𝑠𝑒𝑚−𝑑𝑜𝑤−ℎ𝑟  =  |
𝑉𝑠𝑒𝑚−𝑑𝑜𝑤−ℎ𝑟

𝑣𝑖𝑑,𝑎𝑣𝑔
 − 𝑉𝑠𝑒𝑚−𝑑𝑜𝑤−ℎ𝑟

𝑚𝑎𝑛,𝑎𝑣𝑔

𝑉𝑠𝑒𝑚−𝑑𝑜𝑤−ℎ𝑟
𝑚𝑎𝑛,𝑎𝑣𝑔 | (6.2-2) 

are also presented. In addition, for all days d during the semester-dow-hr period on which data were 

collected, the absolute relative error of the video volumes relative to the manual volumes  

𝐴𝑅𝐸(𝐷𝑎𝑦)𝑠𝑒𝑚−𝑑𝑜𝑤−ℎ𝑟,𝑑  =  |
𝑉𝑠𝑒𝑚−𝑑𝑜𝑤−ℎ𝑟,𝑑

𝑣𝑖𝑑  − 𝑉𝑠𝑒𝑚−𝑑𝑜𝑤−ℎ𝑟,𝑑
𝑚𝑎𝑛

𝑉𝑠𝑒𝑚−𝑑𝑜𝑤−ℎ𝑟,𝑑
𝑚𝑎𝑛  | (6.2-3) 

are calculated. The average Avg(ARE(Day)) of these values is also presented in the table for each period. 

Note that the average of the daily differences between the video and manual volumes when not taking 

absolute value would equal the difference between the average video and average manual volumes 

DifAvg). 

 

Table 6.2-1: Average hourly manual (𝑉
𝑚𝑎𝑛,𝑎𝑣𝑔

) and video ( 𝑉
𝑣𝑖𝑑,,𝑎𝑣𝑔

) volumes, difference in average 

volumes (DifAVG), absolute relative error of the average volumes (ARE(DifAvg)), and average of daily 

absolute relative errors (Average(ARE(Day)), assuming manual volume as ground truth;  N is the number 

of days on which data are available for the sem-dow-hr period 

Sem-Dow-Hr N 𝐕
𝐦𝐚𝐧,𝐚𝐯𝐠

 𝐕
𝐯𝐢𝐝,𝐚𝐯𝐠

 DifAvg 
ARE 

(DifAvg) 

Average 

ARE(Day) 

SP-Th-9:30 6 173.75 156.28 – 17.47 0.10 0.14 

SP-We-9:30 6 185.52 179.94 – 5.58 0.03 0.11 

SP-Mo-11:30 11 160.51 154.53 – 5.98 0.04 0.12 

SP-Th-11:30 8 154.77 145.26 – 9.51 0.06 0.09 

AU-Th-9:30 8 160.66 173.76 13.09 0.08 0.13 

AU-We-9:30 5 209.46 202.25 – 7.21 0.03 0.10 

AU-Mo-13:00 12 154.73 164.69 9.96 0.06 0.13 

AU-Th-13:00 6 145.05 148.74 3.69 0.03 0.21 

 

The results in Table 6.2-1 show that, as expected, the magnitude of the error (ARE) between the average 

volumes ARE(DifAvg) is less than the average of the daily ARE values Average ARE(Day). However, the 

results also show that the magnitude of the error between the average volumes is substantially less than 

the average of the daily error magnitudes for all sem-dow-hr periods, and less than 10% in all periods – 

and much less than 10% in most periods – except the SP-Th-9:30 period, where the ARE(DifAvg) is 10%.  

In determining volumes for a time period on a typical day, different groups of days are often combined. 

For example, weekdays may be combined and treated separately than weekends. The different 

semester-dow-hour periods of Table 6.2-1 are investigated for grouping into sets of periods similar in 

volume. Given the consistency in course schedules across semesters at OSU, it was expected that that the 

volumes in the same day-of-week and hour would be similar in the two semesters. Therefore, t-tests of 

differences in means were first conducted between the manual volumes for the SP-Th-930 and 
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AU-Th-930 periods and between the manual volumes for the SP-We-930 and AU-We-930 periods. The 

null hypothesis underlying these tests, and the subsequent tests in this section, is that the difference in 

means of the manual volumes (assumed to represent the true volumes) in the two periods is zero. The 

degrees of freedom and the p-values resulting from these tests are presented in Table 6.2-2. Consistent 

with expectations, one could not reject the equality of the Spring semester and Autumn semester means in 

the Thursday 9:30 hour (p-value = 0.38). Therefore, it was decided to group these two periods. However, 

the p-value of 0.09 associated with the comparison in the Wednesday 9:30 hour in the two semesters is 

surprising. The test shows a significant difference (at the 10% level) between the two means, with the 

Autumn semester mean being noticeably larger than the SP semester mean as seen in Table 6.2-1. No 

explanation for this difference has yet been identified, but it was decided not to group the Wed-:930 

period across the two semesters. 

Grouping for the same hour across different days of the week is investigated next. Prior expectations are 

not as strong on these investigations. Monday and Wednesday course schedules are different than 

Tuesday and Thursday course schedules, but vehicular traffic on this segment at these time periods would 

be only partially affected by course schedules. To investigate a day-of-week difference at the 9:30 hour, 

the data from the Spring and Autumn Thursday 9:30 periods are pooled as a result of the previous “across 

semester” test and compared to the Spring Wednesday 9:30 hour, which is not pooled with the Autumn 

Wednesday 9:30 hour based on the previous “across semester” test. Based on the 0.18 p-value, it was 

decided to group these periods into a group that consisted of SP-Th-9:30, AU-Th-9:30, and SP-We-9:30. 

The pooled Autumn and Spring Thursday 9:30 data were tested against the Autumn Wednesday 9:30 

data. The AU-We-9:30 mean volume is considered statistically different (p-value = 0.088) from the 

SP/AU-Th-9:30 mean volume and greater than the mean volumes at 9:30 for the other semester-dows (see 

Table 6.2-1). The means of the Spring 11:30 volumes on Thursday and Wednesday are not statistically 

different (p-value 0.5914), and it was decided to group the 11:30 period across the days of week. 

Similarly, the p-value (0.1965) resulting from the tests of means of the Autumn 13:00 volumes on 

Thursday and Monday was large enough that it was decided to group these two periods. 

Table 6.2-2: P-values and degrees of freedom for tests of means between manual volumes in different 

data collection periods  

Periods Compared 
Degrees of 

Freedom 
P-value 

Grouping 

Decision 

SP-Th-9:30 AU-Th-9:30 11.778 0.3805 Group periods 

SP-We-9:30 AU-We-9:30 7.1698 0.0835 Do not group 

periods 

Th-9:30 , SP and 

AU combined  

SP-We-9:30 9.7269 0.1710 Group periods 

Th-9:30 , SP and 

AU combined 

AU-We-9:30  15.863 0.0002 Do not group 

periods 

SP-Th-11:30 SP-Mo-11:30 14.379 0.5914 Group periods 

AU-Th-13:00 AU-Mo-13:00 8.3084 0.1965 Group periods 

9:30, SP-Th, AU-

Th, SP-We comb.  

SP-11:30, Th and 

Mo combined 

35.754 0.0881 Do not group 

periods 

9:30, SP-Th, AU-

Th, SP-We 

combined 

AU-13:00, Th and 

Mo combined  

27.829 0.0062 Do not group 

periods 

SP-11:30, Th and 

Mo combined 

AU-13:00, Th and 

Mo combined  

29.953 0.2720 Do not group 

periods1  
1 Decision not to group based on a combinator of factors as explained in text 



 

37 
 

It is expected that the mean volumes would be different in the different hours of the day, reflecting 

time-of-day variability in demand that is recognized in general transportation systems. The p-values in the 

second and third last rows of Table 6.2-2 (0.0881 and 0.0062, respectively) are sufficiently supportive of 

this expectation, whereas the p-value in the final row (0.2720) does not lend strong support for the 

difference in the mean 11:30 and 13:00 volume. However, because of the usual approach of considering 

volumes by time of day to differ, the recognition that not rejecting the null hypothesis does not imply that 

it should be accepted, and the strong support for treating the other two time-of-day periods separately, it 

was decided to maintain three separate time-of-day periods rather than combine the 11:30 and13:00 hours 

in the subsequent studies.  

From these grouping decisions, four distinct periods are identified. These periods, along with the 

corresponding average hourly volume and differences measures similar to those in Table 6.2-1, are 

presented in Table 6.2-3. The fourth period in Table 6.2-3 consists of the AU-We-9:30 period presented 

in Table 6.2-1 when considering the most disaggregate sem-dow-hr periods. As explained above, the tests 

of means did not lead to grouping this period with any other. It is presented in Table 6.2-3 for 

completements, but because of the small number of days, it is not considered in the empirical analyses of 

Section 6.3. The results in Table 6.2-3 confirm the results in Table 6.2-1, namely, that the error between 

the average video and manual volumes (ARE(AvgDif)) for the hourly period is much less than the average 

of the daily errors (Avg(ARE(Day)). In Table 6.2-3, it is seen that the error between the average volumes 

is not larger than 5%. The increased number of days in the sample improves the correspondence between 

the average video volumes and average manual volumes. 

Table 6.2-3: Average hourly manual (𝑉
𝑚𝑎𝑛,𝑎𝑣𝑔

) and video ( 𝑉
𝑣𝑖𝑑,,𝑎𝑣𝑔

)  volumes by grouped period, 

differences in average volumes (DifAVG),  absolute relative error of the average volumes 

(ARE(DifAvg)), and average of daily absolute relative errors (Average(ARE(Day)), assuming manual 

volume as ground truth; N is the number of days on which data are available for the sem-dow-hra in the 

group 

Grouped 

Period 

Indicator 

Grouped 

Period 
N 𝑽

𝒎𝒂𝒏,𝒂𝒗𝒈
 𝑽

𝒗𝒊𝒅,𝒂𝒗𝒈
 DifAvg ARE(DifAvg) 

Average 

ARE(Day) 

1 

9:30: 

 AU-Th, 

SP- Th, 

SP-We  

20 172.05 170.37 – 1.68 0.01 0.13 

2 

11:30: : 

SP-Thu, 

SP-Mo 

19 158.09 150.63 – 7.47 0.03 0.10 

3 

13:00: 

AU-Th, 

AU-Mo 

18 151.51 159.38 7.87 0.05 0.15 

4 
9:30:  

AU-We 
5 209.46 202.25 – 7.21 0.03 0.10 

 

6.3 Video Volumes vs. Average Day Volume 

The results in the previous section show that the averages of the multiple days of hourly volume estimates 

obtained from video imagery for a given time-of-day period when using the approach developed in this 
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project are very close to the averages of the hourly volumes obtained from the ground truth manual counts 

for the same time-of-day periods on the same days. As expected, the results also show that the ARE 

(magnitude of error) between the average video-based average and manual average is markedly less than 

the average of the daily ARE values between the video-based and ground truth manual volumes. As 

mentioned above, in typical traffic monitoring, one would be interested in the hourly volume on the 

“average day”. Even if there is no measurement or estimation error in the manual counts, the average of 

the finite number of volumes obtained from manual counts would not necessarily represent the true 

average day volume because of day-to-day variability in traffic volumes. 

To investigate the ability of the average video volumes to estimate the true average day volume, let 𝜇𝑋 

represent the true average day volume on the segment-direction during the time-of-day period considered 

and Vi and Xi, respectively, represent the video and true volumes obtained on day i during this time-of-day 

period. Of interest is how the sample mean Avg[V;Nv] of the video volumes over Nv days approximates 

the true average day volume 𝜇𝑋 and how this approximation compares to the approximation to 𝜇𝑋 offered 

by the sample mean Avg[X;Nx] of the true volumes over the same or a different number of days Nz.  

A difference di = Vi – Xi between the video and true volume on day i during the hour of interest is 

considered so that: 

Vi = Xi + di(Xi) (6.3-1) 

where the difference di is indicated as possibly depending on the value of the true volume Xi. For 

example, the use of relative error when summarizing errors across different segment-directions and 

time-of-day periods is motivated by the hypothesis that it would be more likely to have a large difference 

between video and true volumes when the segment-direction-hour volume is large than when it is small.  

By definition, the expected value of the true values E[Xi] equals the true mean, that is E[Xi] = 𝜇𝑋. Since 

E[Vi] = E[Xi] + E[di(Xi)] (the expectation of a sum equals the sum of the expectations), one can write: 

E[Vi] = E[Xi] + E[di(Xi)]= 𝜇𝑋+ E[di(Xi) (6.3-2) 

It is assumed that the manual count on day i during the hour considered leads to an error-free volume Xi 

on the day-hour (i.e., the ground truth for that day). That is, it is assumed that there is no important 

measurement error when manually counting vehicles and no important estimation error associated with 

expanding the four-minute counts obtained with the short-break method to five-minute volumes (see 

Section 2.2). Therefore, the manual and true volumes on day-hour i can be used interchangeably, and one 

can investigate differences di = Vi – Xi between video and true volumes by investigating empirical 

differences between video and manual volumes on the day-hours. To investigate the impact of the true 

volume Xi on the difference between video and true volumes di, differences are formed on each day and 

hour for which video and manual volumes were obtained, and the manual volumes on the day and hour 

are regressed against the difference in the same day and hour as follows: 

di = βo +β1Xi (6.3-3) 

The regression estimation results are provided in Table 6.3-1.  
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Table 6.3-1: Summary regression results using specification (6.3-3) investigating the effect of true 

volume on difference between video and true volumes for ranges of values in empirical study  

Variable 
Coefficient 

Estimate 
Std. Error t-stat p-value 

Intercept 25.164    20.475 1.229 0.224 

Manual (True) 

volume X 
-0.160 0.123 -1.300 0.199 

Number of Observations: 62   

R2 : 0.0274  

 

The results indicate that, at least for the range of volumes obtained on segment-direction 4.1 during the 

days and hours investigated, one cannot reject the null hypothesis that the difference between the video 

and true (manual) hourly volumes does not depend on the true volume. Not rejecting the null hypothesis 

does not imply that it should be accepted, but because of a lack of evidence of a dependence, to proceed, 

Equation (6.3-1) is rewritten as follows: 

Vi = Xi + di (6.3-4) 

and Equation (6.3-2) is rewritten as follows: 

E[Vi] =  𝜇𝑋+ E[di] (6.3-5) 

To investigate E[di] for the empirical study conducted in this project, the empirical di values are pooled 

across all days in the first three periods indicated in Table 6.2-3. (As discussed near the end of Section 

6.2, the fourth period indicated is not considered in the empirical study of this section because of the 

small sample size. A t-test indicates that the means of the differences are not significantly different from 

zero (p-value = 0.726). Again, not rejecting the null hypothesis does not imply that it should be accepted, 

but without evidence to the contrary it is assumed that E[di] = 0, and Equation (6.3-5) can be written as 

follows: 

E[Vi] = 𝜇𝑋 (6.3-6) 

That is, the expected value of the video volumes would equal the true volume mean, i.e., the true average 

day volume. 

Even though E[Vi] = 𝜇𝑋 – the expected value of the video volumes equals the true average day volume – 

sampling over a finite number of days Nv would generally not lead to a sample mean of the video 

volumes Avg[V;Nv] equal to 𝜇𝑋 because of the variance σV
2 in the Vi volumes that results from day-to-day 

variation in the true daily volumes – i.e., because of variance σX
2 in the true day-to-day volumes – and 

because of variance in the video-based measurement and estimation error – i.e., because of σd
 2. 

Specifically, σV
2 = σX

 2  + σd
 2 + 2σX,d

2 , where σX,d
2  is the covariance between the true volumes X and the 

differences d between the video and true volumes. The assumed independence of di on Xi resulting from 

the regression results using specification (6.3-3) would imply σX,d
2 = 0, and the variance of the video 

volume on day i would therefore be given by the following: 

σV
2 = σX

 2  + σd
2 (6.3-7) 
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Since different average volumes are considered for the periods in Table 6.2-3, different 𝜇𝑋 values are 

considered for each period. F-tests of equality of variances in the true volumes σX
2
  among the periods lead 

to rejecting the null hypothesis of equality of σX
2 between Periods 1 and 3 and between Periods 2 and 3 in 

Table 6.2-3, but not between Periods 1 and 2 in the table. Again, Period 4 is not considered in the 

empirical study in this section because of the small number of daily volumes in the periods. Because of 

the difference in variances in two of the three combinations of compared periods and because different 

means 𝜇𝑋 are considered for each of the three periods, different σX
2 are also considered for each period. 

Based on the regression estimation results of Table  6.3-1, the di values are assumed not to depend on the 

Xi values. Therefore, a single σd
2 value, which is estimated to be 596.07, is considered for each period. 

The resulting estimated means and variances of a volume on a given day for each of the three periods are 

presented in Table 6.3-2. In the table, the estimated video variance σV
2 in the period is calculated as the 

sum of the variance in the true volumes σX
2 and the variance in the difference of the video volume from 

the true volume σd
2 based on Equation (6.3-7). 

Table 6.3-2: Means and variances of individual day true (X) and video (V) hourly volumes and 

differences (d) by period estimated from empirical data 

Grouped 

Period 

Indicator 

Grouped 

Period 

E[Xi] 

= 

E[Vi] 

= 𝝁𝑿 

σX
2 σd

2(1) σV
2(2) 

1 

9:30: 

 AU-Th, 

SP- Th, 

SP-We  

172 769.01 

596.07 

1365.08 

2 

11:30: 

SP-Thu, 

SP-Mo 

158 473.37 1069.44 

3 

13:00: 

AU-Th, 

AU-Mo 

152 174.87 770.95 

1Variance of differences estimated from data pooled across periods 
2σV

2 calculated as σX
2 + σd

2 from Equation (6.3-7) 

As stated above, the interest is in how the sample mean Avg[V;Nv] of the video volumes over Nv days 

approximates the true average day volume 𝜇𝑋 and how this approximation compares to the approximation 

to 𝜇𝑋 offered by the sample mean Avg[X;Nx] of the true (manual) volumes as a function of the number of 

days Nx on which volumes are obtained. The expectation of the average is equal to the average of the 

expectations. Therefore, the following holds: 

E[Avg[X;Nx]] = Avg[E[X;Nx]] = Avg[𝜇𝑋] = 𝜇𝑋  (6.3-8a) 

and using Equation (6.3-6), the following can be written: 

E[Avg[V;Nv]] = Avg[E[V;Nv]] = Avg[𝜇𝑋] = 𝜇𝑋  (6.3-8b) 

That is, the expectations of the average true (X) and video (V) volumes from a sample of N days are equal 

to the true average volumes. 

The variance of an average of N independent and identically distributed observations, the following is 

obtained:  
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Var[Avg[X;Nx]]  = Var[Xi] / Nx = σX
2/ Nx  (6.3-9a) 

and  

Var[Avg[V;Nv]]  = Var[Vi] / Nv = σV
2/ Nv  (6.3-9b) 

The variances of the average true and average video volumes – Var[Avg[X;Nx]] and Var[Avg[V;Nv]], 

respectively – for each period can, therefore, be calculated as a function of the number of days N using 

Equations (6.3-9a) and (6.3-9b) and the values from Table 6.3-2. Graphs of these variances as a function 

of the number of days sampled are presented for each period in Figure 6.3-1. 

 

 

(a) Period 1, 9:30 – 10:30 Wednesday and Thursday 
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(b) Period 2, 11:30 – 12:30 Monday and Thursday 

 

(c) Period 3, 13:00 – 14:00 Monday and Thursday 

Figure 6.3-1: Variance of average hourly volumes taken across number of days sampled as a function of 

number of days sampled for true (manual) and video volume samples for specified time-of-day periods 

The video volume functions in Figure 6.3-1 are all above the corresponding true volume functions, 

indicating that for a sample of Nx = Nv days, the video volume sample average has larger variance than 

the true volume sample average. The larger variance of the video volume average results from the added 

single day variance associated with the accuracy of the video estimation, as represented by 𝜎𝑑
2, when 

determining the single-day variance 𝜎𝑉
2 compared to the true single day true variance 𝜎𝑋

2. For a given 

number of days N (for both video and true samples) of sampled hourly volumes, Equations (6.3-7) and 

(6.3-8), the vertical distance between the two curves is σV
2 / N – σX

2 / N = σd
2 / Nv. 

For all three time-of-day periods – depicted by Figures 6.3-1 (a), (b), and (c) – both the video and true 

volume functions show that the variance decreases rapidly with an increase in the number of days 

sampled when the number of days is small, but then levels off after a few days. The “bends” in the 

functions occur between approximately 5 and 15 days for the video volume functions and between 2 and 

7 days for the true volume functions. The 2 to 7 day range of the true volume functions is interesting, 

since this is typically the range of “short-term” or “coverage” sample counts taken in traditional practice 

(see, e.g., FHWA 2022). 

The video volume curves can also be considered to lie to the right of the true volume functions, indicating 

that compared to the number of days of true hourly volumes required to obtain a given variance value, 

additional days of sample video hourly volumes are required. The additional number of video sample 

days required, represented by the horizontal distance between the functions, depends on the value of 

variance (y-axis) and on the time-of-day period considered (Figures 6.3-1 (a), (b) and (c)), with the 

13:00-14:00 Monday and Thursday period (Figure 6.3-1(c)) requiring the greatest increased number of 

days. This makes sense, since 𝜎𝑑
2 is considered to be constant across the three time-of-day periods, while 

𝜎𝑋
2 (representing the daily variation in true volumes) is smallest for this period (see Table 6.3-2). 
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Although the functions allow one to determine the increased numbers of days of video hourly volumes to 

be sampled compared to the number of days of manual hourly volumes sampled, the motivation for using 

bus-based video imagery is that this imagery is available, whereas manual data collection requires special 

effort and costs. Therefore, the number of true and video volume days required to obtain equal variance 

are not directly comparable based on the effort and cost involved. 

To provide a more meaningful interpretation of the relation between the number of days for which the 

time-of-day period volumes are obtained and the ability to represent the true average day volume, the 

probability of obtaining an average volume that is within a specified interval of the true average day 

volume 𝜇𝑋 is considered as a function of the number of days sampled. Specifically letting  

𝐴𝑅𝐸𝑁𝑥  =  |
𝐴𝑣𝑔[𝑋𝑖;𝑁𝑥] − 𝜇𝑋

𝜇𝑋
|  (6.3-9a) 

and  

𝐴𝑅𝐸𝑁𝑣  =  |
𝐴𝑣𝑔[𝑉𝑖;𝑁𝑣] − 𝜇𝑋

𝜇𝑋
|  (6.3-9b) 

represent the absolute value of the relative error of the sample average with respect to the true average 

day volume when the average is obtained, respectively, with Nx true daily volumes and Nv video 

volumes, the probability P’ that the sample averages are less than a specified ARE (denoted ARE’) can be 

written as follows:  

P’(X,Nx) = Prob{|
𝐴𝑣𝑔[𝑋𝑖; 𝑁𝑥]− 𝜇𝑋

𝜇𝑋
|< ARE′} = Prob{–ARE′ < 

𝐴𝑣𝑔[𝑋𝑖; 𝑁𝑥] − 𝜇𝑋

𝜇𝑋
 < ARE′}   

                                                  = Prob{(1 − 𝐴𝑅𝐸′) 𝜇𝑋  ≤ Avg[𝑋𝑖, 𝑁𝑥]  ≤  (1 + ARE′)𝜇𝑋} (6.3-10a) 

and  

P’(V,Nv) = Prob{|
𝐴𝑣𝑔[𝑉𝑖;𝑁𝑣] − 𝜇𝑋

𝜇𝑋
|< ARE′} = Prob{–ARE′ < 

𝐴𝑣𝑔[𝑉𝑖; 𝑁𝑣] − 𝜇𝑋

𝜇𝑋
 < ARE′}  

                                                = Prob{(1 − 𝐴𝑅𝐸′) 𝜇𝑋  ≤ Avg[𝑉𝑖, 𝑁𝑣]  ≤  (1 + ARE′)𝜇𝑋} (6.3-10b) 

Tests of normality on the true daily volumes Xi and the differences di lead to p-values of 0.3014 and 

0.1545, respectively, indicating that there is not sufficient evidence to reject the null hypothesis that these 

values are normally distributed. Therefore, these variables are assumed to be normally distributed, and 

since the sum of normally distributed variables is normally distributed, Vi = Xi + di is also assumed to be 

normally distributed. Moreover, since the average of normally distributed variables is normally 

distributed, Avg[Xi;Nx] and Avg[Vi;Nv] are assumed to be normally distributed. Subtracting the mean and 

dividing by the standard deviation in the inequalities of Equations (6.3-10), the equations can be written 

as: 

P’(X,Nx) = P𝑟𝑜𝑏{
(1−𝐴𝑅𝐸′)𝜇𝑋−𝜇𝑋

[σ𝑥
2/𝑁𝑥]0.5  ≤ 

𝐴𝑣𝑔[𝑋𝑖;𝑁𝑥]  −𝜇𝑋

[σ𝑥
2/𝑁𝑥]0.5    ≤  

(1+𝐴𝑅𝐸′) 𝜇𝑋  − 𝜇𝑋 

[σ𝑥
2/𝑁𝑥]0.5 } 

                           =  P𝑟𝑜𝑏{
−𝜇𝑋 𝐴𝑅𝐸′  

[σ𝑥
2/𝑁𝑥]0.5  ≤ 

𝐴𝑣𝑔[𝑋𝑖;𝑁𝑥]  −𝜇𝑋

[σ𝑥
2/𝑁𝑥]0.5    ≤  

𝜇𝑋 𝐴𝑅𝐸′ 

[σ𝑥
2]/𝑁𝑥]0.5}     (6.3-11a) 

and  

P’(V,Nv) = P𝑟𝑜𝑏{
(1−𝐴𝑅𝐸′) 𝜇𝑋  −𝜇𝑋

[σ𝑣
2/𝑁𝑣]0.5  ≤ 

𝐴𝑣𝑔[𝑉𝑖;𝑁𝑣]  −𝜇𝑋

[σ𝑣
2/𝑁𝑣]0.5    ≤  

(1+𝐴𝑅𝐸′) 𝜇𝑋  − 𝜇𝑋 

[σ𝑣
2/𝑁𝑣]0.5 }  
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 =  P𝑟𝑜𝑏{
−𝜇𝑋 𝐴𝑅𝐸′  

[σ𝑣
2/𝑁𝑣]0.5  ≤ 

𝐴𝑣𝑔[𝑉𝑖;𝑁𝑣]  −𝜇𝑋

[σ𝑣
2/𝑁𝑣]0.5    ≤  

𝜇𝑋 𝐴𝑅𝐸′ 

[σ𝑣
2/𝑁𝑣]0.5}     (6.3-11b) 

where 
𝐴𝑣𝑔[𝑋𝑖;𝑁𝑥]  −𝜇𝑋

[σ𝑥
2/𝑁𝑥]0.5  and 

𝐴𝑣𝑔[𝑉𝑖;𝑁𝑣]  −𝜇𝑋

[σ𝑣
2/𝑁𝑣]0.5  are now standard normal random variable. Equations (6.3-11) can 

then be written as follows: 

P’(𝑋, 𝑁𝑥) = Φ (
𝜇𝑋𝐴𝑅𝐸′ 

[σ𝑥
2/𝑁𝑥]

0.5) − Φ (
−𝜇𝑋𝐴𝑅𝐸′ 

[σ𝑥
2/𝑁𝑥]

0.5)= Φ (
𝜇𝑋𝐴𝑅𝐸′ 

[σ𝑥
2/𝑁𝑥]

0.5) − (1 − Φ (
𝜇𝑋𝐴𝑅𝐸′ 

[σ𝑥
2/𝑁𝑥]

0.5)) 

                   =  2 Φ(
𝜇𝑋𝐴𝑅𝐸′ 

[σ𝑥
2/𝑁𝑥]0.5)  − 1   (6.3-12a) 

and 

P’(V,Nv) = Φ (
𝜇𝑋𝐴𝑅𝐸′ 

[σ𝑣
2/𝑁𝑣]

0.5) − Φ (
−𝜇𝑋𝐴𝑅𝐸′ 

[σ𝑣
2/𝑁𝑣]

0.5)= Φ (
𝜇𝑋𝐴𝑅𝐸′ 

[σ𝑣
2/𝑁𝑣]

0.5) − (1 − Φ (
𝜇𝑋𝐴𝑅𝐸′ 

[σ𝑣
2/𝑁𝑣]

0.5)) 

                   =  2 Φ(
𝜇𝑋𝐴𝑅𝐸′ 

[σ𝑣
2/𝑁𝑣]0.5)  − 1   (6.3-12b) 

where Φ(∙) is the cumulative standard normal function.  

These relations can be evaluated using the estimated means and variances from Table 6.3-2 in the 

expression of the argument of the cumulative standard normal function. Since the empirical variances are 

estimated from relatively small sample size data sets (i.e., N is not greater than 20 – see Table 6.2-3), the 

cumulative standard normal distribution is replaced by the cumulative t-distribution with N – 1 degrees of 

freedom. The probabilities P’(X,Nx) and P’(V,Nv) as functions of the number of days sampled are plotted 

for ARE’ = 0.10 (10% error), ARE’ = 0.05 (5%) error, and ARE’ = 0.01 (1% error) in Figure 6.3-2 for 

each of Periods 1, 2, and 3 from Table 6.2-3. 
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(a) Period 1, 9:30 – 10:30 Wednesday and Thursday 

 

(b) Period 2, 11:30 – 12:30 Monday and Thursday 
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(c) Period 3, 13:00 – 14:00 Monday and Thursday 

Figure 6.3-2: Probability P’ of the sample average hourly volume being within +/– ARE’ of the true 

average hourly volume as a function of the number of days N in which hourly volumes are sampled when 

volumes are determined from video imagery and from true (manual) counts 

 

The plots for all the time-of-day periods (i.e., each of Figures 6.3-2 (a)-(c)) show that even at a very large 

number of days sampled (N = 100 in the plots) the probability of obtaining a sample average volume with 

error less than 1% (ARE’< 0.01) is small, even when true volumes are sampled. Specifically, the 

probability is approximately 0.75 at N = 100 days for the 13:00-14:00 Monday and Thursday period 

(Figure 6.3-2(c)) when sampling true volumes and less than 0.52 at N = 100 days when sampling true 

volumes in the other periods and when sampling video volumes for all three periods. Targeting 10% or 

perhaps 5% error (ARE’ level) is much more reasonable than targeting 1% error. As mentioned above, 

traffic counts are traditionally taken to sample volumes on a few days at most. For true volume samples of 

seven days, the probabilities of obtaining a 5% error (ARE’ = 0.05) is approximately 0.60 and 0.65 in 

Figures 6.3-2(a) and (b), respectively, and even though greater, the probability is only approximately 0,85 

in Figure 6.3-2(c). These results would tend to support the 10% error target typically considered in traffic 

monitoring (see, e.g., FHWA 2022). 

As in Figure 6.3-1, the video volume curves in Figure 6.3-2 are to the right of the true volume curves, 

indicating in this case an increased number of daily hourly video volumes that must be sampled to obtain 

the same probability P’ level and targeted error ARE’.  Compared to the number of true days sampled, the 

additional number of video days that must be sampled to obtain an equivalent probability P’ of obtaining 

a specified error ARE’ level is represented by the horizontal distance between the solid and dashed curves 

of the same color (ARE’ value). From the figures, it is seen that the additional number of days increases 
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for higher P’ levels and for lower ARE’ levels. As in Figure 6.3-1, the additional number of days required 

is greatest for the 13:00-14:00 Monday and Thursday period (Figure 6.3-2(c)). Again, this largest increase 

is because this period has the lowest daily variation in true volumes 𝜎𝑥
2 and because the additional 

component of variance 𝜎𝑑
2 included in the determination of video volume variance 𝜎𝑣

2 is determined to be 

constant among the periods.  

Analogous to the pattern seen in Figure 6.3-1, where the variance decreases rapidly with numbers of days 

sampled for small number of days sampled and then levels off, in Figure 6.3-2 the probably of obtaining a 

specified error level (ARE’) increases rapidly with number of days sampled for small number of days 

sampled and then levels off.  To provide an easier representation of the number of sample days of hourly 

volumes required to obtain a probability P’ of at most a specified error ARE’ of  0.05 and 0.10, the 

corresponding curves are reorganized by combining all three time-of-day periods in the same plot and 

separating by whether true volumes (Figure 6.3-3(a)) or video volume ( Figure 6.3-3(b)) are sampled. 

 

(a) True volume samples 
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(b) Video volume samples 

Figure 6.3-3: Probability P’ of the sample average hourly volume being within +/- ARE’ of the true 

average hourly volume as a function of the number of days N in which hourly volumes are sampled  for 

different time-of-day periods 

Both the true (Figure 6.3-3(a)) and video (Figure 6.3-3(b)) volume plots illustrate relatively tight 

clustering of the three time-of-day period curves for 10% error and more spread in the 5% error curves. 

The differences in the time-of-day period curves for a given ARE’ result from difference in the true 

average day hourly volume and the true day-to-day variations, which would not be known beforehand and 

must be estimated from samples. The tight clustering of the curves for the 10% errors indicates that a 

general range of prescribed number of days to sample might be available for this level of error, which as 

mentioned above is a typical error considered in practice. Specifically, the true volumes curves (Figure 6-

3.3(a)) imply required sampling approximately in the 2 to 7 day range mentioned above to achieve a 

probability P’ = 0.90 to achieve at most a 10% specified error (ARE’ = 0.10). To achieve  P’ = 0.90 with 

ARE’ = 0.10 when sampling video volumes, Figure 6-3.3(b) indicates that approximately 10 to 15 days of 

hourly video volumes must be sampled.  Again, the 10 to 15 days of imagery required for the sampling of 

video volumes is already available from buses in tegular transit service, whereas the 2 to 7 days of true 

sampling requires additional deployment costs. 

7 Education and Outreach  

The manual and video data collections on 10/25/2018, 10/24/2019, 11/05/2020, 11/04/2021, and 

11/01/2022 were undertaken in conjunction with an annual term project in CIVILEN 5720: 

Transportation Engineering Data Collection Studies. The term projects in 2018 and 2019 were reported 

on in McCord et al. (2020), but these two projects are referenced in this report to illustrate the continuity 

and evolution of the projects. 
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CIVILEN 5720 is an elective Civil Engineering course that focusses on understanding, collecting, and 

processing traditional and emerging types of transportation data. The course is co-taught by two of the 

investigators of the project covered in this report and is taken by Civil Engineering undergraduate 

students and by Civil Engineering graduate students and City and Regional Planning graduate students 

specializing in transportation. Semester enrollments by undergraduate and graduate student status are 

presented in Table 7-1. 

Table 7-1: Enrollments in CIVILEN 5720 by semester, 2018-2022 

Semester 
Undergraduate 

Students 

Graduate 

Students 
Total Students 

Autumn 2018 27 3 30 

Autumn 2019 24 8 32 

Autumn 2020 25 2 27 

Autumn 2021 26 3 29 

Autumn 2022 25 3 28 

 

A major component of the technical content of this course relates to traffic volume data collection and 

analysis across small, regional, and statewide roadway networks. In addition to lecture materials, field 

data collections are used as laboratory type exercises to reinforce technical concepts and to offer practical 

empirical experience. Before 2018, students would use traditional data collection techniques to estimate 

traffic volumes on three or four OSU campus roadway segments for an hour or two to gain field 

experience with manual data collection and processing. They would then analyze the estimated segment 

volumes and vehicle miles traveled (VMT) for the very small network of segments and limited time 

period of data collection. The research project summarized in McCord et al. (2022), which led to the 

research project document in this report, inspired the co-instructors of the course to add a term project 

involving estimating hourly volumes for an extended period of times (12 hours for the data collection day 

in 2018, 6 hours for the data collection in 2020, and 10 hours each for the data collection days in 2019, 

2021, and 2022) over an extended network of campus roadway segments using both traditional methods 

and the video-based estimation methods being developed in the effort documented in this report. The 

segments of the supernetwork  of Figure 2-1 and Table 2-1 considered in each semester (year) were 

modified slightly throughout the different semester (yearly) offerings of the course, but data from 

previous semesters were also used to investigate changes in traffic over time on a common network, 

namely the “semester network” of 2018. The segments of the supernetwork considered in each year are 

presented in Table 7-2. 

In the context of each semester term project, students conducted manual traffic counts with the 

short-break, alternating count method (see Section 2.2) and converted the manually collected counts to 

segment-direction hourly volumes. The students also used the Graphical User Interface (see Section 3.1) 

to record vehicle detections in the video imagery received from TTM (see Section 2.1) during the 

semester. In the 2018-2020 semesters, the students used the processed manual and video data for the day 

on which they collected data. In some term project tasks, they also used data processed in previous 

semesters for comparison purposes. Because of the time needed to collect and process both manual and 

video data, beginning in 2021 the instructors designed the term projects so that student would analyze 

only data collected and processed in the previous semesters. However, students would still collect and 

process manual and video data in the concurrent semester for use in term projects in following semesters. 

As explained in Section 2.3, the Mid-Ohio Regional Planning Commission also placed road tubes on a 

few segments in 2018, 2019, and 2020 (see Appendix A). 



 

50 
 

Table 7-2: Segments comprising “semester networks” considered in CIVILEN 5720 term projects 

Semester Segments 1,2 

Total Segment-

direction 

Network Miles 

Autumn 20183 1-21 6.3 

Autumn 2019 1-24; 26.1 7.7 

Autumn 2020 1- 28 (only 25.2, 27.2) 8.0 

Autumn 2021 1-24; 28 7.7 

Autumn 2022 1-11; 13-15; 20-21; 4.7 
1Segment-directions illustrated in Figure 2-1 and described in Table 2-1 
2Volumes on both directions of segments were considered unless otherwise noted 
3Autumn 2018 was network used for comparisons through the years 

 

The term project tasks were modified each semester. The descriptions and tasks of the term projects for 

each semester are presented in Appendix B. In general, the focus of each project was on estimating 

segment volumes by hour of day using volumes estimated from traditional traffic counts and again from 

bus-based video imagery. In addition, the students also used the estimated hourly volumes to determine 

network vehicle miles travelled. As in practice, the traditional traffic count approach used in the projects 

requires sampling (“covering”) segment-direction-hours across space and time because of limited 

personnel and equipment, whereas the bus-based video approach provides comprehensive spatial and 

temporal coverage. Graduate students associated with the overall research project covered in this report 

prepared the video imagery obtained from campus buses operating on the data collection day so that the 

students in the course could conduct the vehicle detection step during class time and as an additional out-

of-class assignment. The students were trained during class time on the logic and protocols associated 

with this vehicle detection step. The techniques associated with estimating volumes from both the 

traditional and mobile sensing platform, video-based approaches were previously presented as 

fundamental course content, where the video-based approaches in Section 3.2.1 are those presented in the 

course. The methodological developments presented in Section 3.2.2 were made relatively recently, and 

the subtleties of the developments are considered to be beyond what the general population of students in 

this fundamental course could understand without sacrificing too much coverage of other topics. 

The following changes to scope involving estimation of volumes from videos were made from one 

semester to the next: 

• Autumn 2019: Given the success of the first project in 2018, additional roadway segments were 

included in Autumn 2019, compared to Autumn 2018, although the 12-hour data collection 

period was reduced to a 10-hour period. Volumes obtained in Autumn 2018 and Autumn 2019 

were considered samples of volumes on two days of homogeneous traffic volume periods. 

• Autumn 2020: In Autumn 2020, course instruction took place online because of COVID 

pandemic lockdown-related policies, although manual data collection was possible because of the 

outdoor setting and large physical distances separating data collectors. In part because of the 

online instruction, video-based volumes were only processed and analyzed during online class 

time for a total of six hours, consisting of three two-hour time-of-day periods representing what 

would typically be morning, midday, and afternoon peak periods. (Video volumes for the 

remaining hours were processed after the course was finished by students funded by the overall 

research project covered in this report. For the term project, the students calculated differences in 

video-based volumes from ground truth (road tube or manually collected) hourly volumes and 

differences in six-hour vehicle miles travelled (VMT), with the intent of indicating that 
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differences in more aggregated traffic measures (VMT) would tend to be smaller than differences 

in the more disaggregated hourly volumes. In addition, VMT estimated using video volumes for 

the same six-hour period but for the semester network used in Autumn 2018 were determined for 

2018, 2019, and 2020. The students compared these VMT values to indicate the ability of the 

video-based estimates to clearly show the reduction in travel associated with the 2020 COVID 

pandemic-related restrictions on campus. 

• Autumn 2021: As discussed above, video and manual data were collected and processed in 

conjunction with the term project, but analysis was conducted only using processed data from 

Autumn 2018, Autumn 2019, and Autumn 2020. Changes in video-based segment-direction 

volumes and in network VMT from 2018 to 2019 and from 2019 to 2020 were calculated by the 

students to highlight the ability of the video-based volumes to show stability between 2018 and 

2019 network-wide motorized travel and COVID pandemic-induced decreases in this travel from 

2019 to 2020. In addition, these changes were compared to “subjective estimates” in growth 

factors previously elicited from the students to indicate the concept of quantification of what 

could be considered “general domain knowledge”. In addition, the students calculated differences 

between video-based and ground truth volumes and VMT and compared the results to “errors” 

associated with network volume estimation using traditional methods that they quantified using 

empirical data collected and analyzed in the semester before the term project was assigned. Doing 

so allowed the students to appreciate ways to meaningfully assess the magnitudes of errors 

associated with new sensing technologies. 

• Autumn 2022: Video-based growth factors obtained using the video volumes were compared to 

Ohio Department of Transportation-published growth factors, which were discussed previously in 

the semester. Differences between video and ground truth volumes were again quantified by the 

students and then used as a basis for the students to discuss the relative potential of using video 

data to accurately depict hourly volumes, longer-term (10-hour) volumes, network VMT, and 

qualitative changes in motorized travel over the years. 

 

Although the video vehicle detection tasks were conducted individually, as was manual data collection 

beginning in Autumn 2020, the analysis and writing of the term project reports were conducted in groups 

of four to six students. Periodic oral updates on project progress were also made by the groups or by a 

randomly selected imember of each group. The term project written reports documented approaches, 

assumptions, results, and interpretations using technical communication techniques emphasized in the 

course. 

The technical focus of the course relates to traditional and new approaches to data collection, processing, 

estimation, and analysis, and interpretation of empirically determined travel patterns over space and time. 

This focus was also at the center of the term projects. However, the term projects also incorporated more 

general objectives that have been increasingly emphasized in engineering programs, namely, working in 

teams, effectively communicating technical materials, and analyzing complex laboratory data, where in 

this case the laboratory comprises the actual campus roadways. Conducting this project in the campus 

setting, where students are familiar with general traffic flow patterns, had the advantage of making this 

project much more understandable and relatable to the students. No formal evaluation of the students’ 

satisfaction with the term project was conducted. However, students seemed more engaged in the term 

project than in other aspects of the course.  

In addition to the research covered in this report forming the basis of the CIVILEN 5720 term project, the 

annual estimates (as calculated by the research project team, not by the course students) of vehicle miles 
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travelled (VMT) determined across the campus roadways on a “typical weekday while the semester is in 

session” (see Section 6) were provided to The Ohio State University’s Transportation and Traffic 

Management (TTM). As mentioned previously, TTM is responsible for all transportation planning and 

operations, excluding parking operations, at the university. Although the university has undertaken 

long-term transportation planning and ascribes to environmental sustainability principles, it has no 

ongoing program to directly monitor motorized VMT. While the OSU community is surveyed through the 

use of questionnaires that ask for socioeconomic and travel information, these are the only in situ traffic 

flow estimates available to TTM for the roadways on and around the OSU campus. 

8 Summary and Conclusions 

This project focused on investigating the potential to use video imagery available from transit buses in 

regular service to accurately estimate time-of-day traffic volumes across urban networks. Transit buses 

regularly cover most major roadways of the urban network, so there would be no additional cost 

associated with deploying the sensing bus platform. Since video cameras are now regularly installed on 

buses in many transit fleets for safety, security, and liability reasons, there would also be no additional 

cost associated with deploying the camera sensors. And, since fleets of transit buses repeatedly cover the 

same roadways several times per hour, many hours per day, and day after day, the repeated observations 

obtained could lead to very good estimates of time-of-day traffic volumes and monitoring of these 

volumes. 

A method previously developed by the investigators was modified and applied in multiple empirical 

studies using video imagery obtained from transit buses operating in regular service on the campus of The 

Ohio State University (OSU), a large campus with multiple land uses that serves as a living lab 

representative of urban areas. Concurrent data were obtained from manual traffic counts, road tubes, and a 

presently popular Location Based Service (LBS) data aggregator for comparative purposes. Descriptions 

of the data sets and the roadway network were presented in Section 2. 

In Section 3, the methodology previously developed to estimate traffic volumes from a mobile platform, 

such as a bus, that repeatedly passes roadway segments was presented. Improvements made to the 

software-based implementation of the methodology during this project are then described, and 

modifications to the estimation methodology are proposed. The modifications consist of adjusting 

excessively low-volume or excessively high-volume estimates from an individual bus pass in what is 

considered an ad hoc manner and changing the approach to aggregating the volume estimates from 

multiple bus passes into a volume estimate for a specific time-of-day interval. Empirical comparisons of 

the estimates obtained with these modifications to traffic volumes obtained from road tube data 

demonstrate the improvements offered by the modifications. 

The imagery associated with many of the bus passes that led to excessively large volume estimates were 

seen to contain queued vehicles at intersections, and two approaches were subsequently developed to 

explicitly address queued vehicles. Limited empirical comparisons with volumes determined from road 

tube data demonstrate greatly improved accuracy compared to the ad hoc modifications. At this point, 

these results are considered preliminary, and the approaches to addressing queued vehicles would require 

additional effort in implementation on a large-scale basis. Therefore, the ad hoc adjustments are used for 

the subsequent empirical studies in this report. 

Distributions of errors associated with estimating time-of-day volumes using bus-based imagery are 

presented in Section 4. The errors were assessed by comparing the volume estimates to volumes obtained 

from road tube or manual count data. A mean error on the order of 27% was observed for hourly volume 
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estimates, but the mean error was approximately 12% for 10-hour volume estimates. The median errors 

were smaller, approximately 20% and 7% for hourly and 10-hour estimates, respectively. A few very 

large errors could increase the mean error with respect to the median error. As noted in Section 3, it is 

likely that many of these large errors are a result of including queued vehicles in the volume estimates, 

and the approaches developed to address queued vehicles could eventually greatly reduce these large 

errors.  

Moreover, it was seen that very different error distributions occurred when decomposing the comparisons 

as to the whether the video-based volumes were compared to volumes obtained from road tubes or to 

volumes obtained from manual traffic counts. The road tube volumes were associated with higher 

volumes and longer segments than were the manual count volumes. When considering only the errors 

determined from comparisons with volumes obtained from road tubes, which are generally placed on 

roads of more interest to transportation agencies, the mean and median errors in the hourly volumes are 

only 20% and 15%, respectively, rather than the 27% and 20% mentioned above for the pooled 

comparisons involving tube and manual data. These results indicate that video-based estimation of a 

specific hourly volume would be better on more important roadway segments, namely, segments that are 

longer and carry higher volumes. A 20% average error associated with estimating a specific hourly 

estimate on a specific day may still be unacceptable, but the potential to reduce this average error by 

addressing queued vehicles is noteworthy. Moreover, the substantially better accuracy observed in 10-

hour volume estimates and observed in the applications of Sections 5 and 6 indicate that even the present 

volume estimation approach could be useful in multiple applications. 

In Section 5, video-based volume estimates were used to estimate 10-hour, network-level vehicle miles 

traveled (VMT) on a typical weekday over four consecutive years. On subnetworks equipped with road 

tubes, the difference in video-based VMT estimates and road tube-based VMT estimates range from less 

than 1% to 10%. By comparison, differences in VMT estimates obtained when using volumes from a 

popular Location Based Services (LBS) data aggregator to road-tube based VMT estimates range from 

35% to 124%. In addition, differences in VMT time-of-day patterns derived from video and road tube 

volumes are less than half the differences in VMT time-of-day patterns derived from LBS and road tube 

volumes. VMT and VMT time-of-day patterns are also determined for larger networks, where many 

segments were not equipped with road tubes. The absence of road tubes on many segments does not allow 

comparisons to ground truth results for these expanded networks. However, comparisons were made with 

respect to local knowledge of traffic changes over the years, which involved greatly reduced traffic as a 

result of COVID pandemic restrictions and increasing, but not “back to normal”, traffic when pandemic 

restrictions were eased. Comparisons were also made with Ohio Department of Transportation (ODOT) 

factors representing yearly changes in statewide traffic. The results obtained when using video volumes 

were consistent with local knowledge and published ODOT factors, whereas those obtained when using 

LBS volumes were not. Based on these results, it appears that using video volumes for estimation of 

network level VMT, monitoring of VMT changes, and determination of network level time-of-day 

patterns can produce very good results, whereas using volumes from a presently popular data aggregator 

and provider cannot, at least for the types of networks that formed the basis of these empirical 

investigations. 

The empirical studies of Sections 3, 4, and 5 all consider estimating a time-of-day traffic volume for the 

day on which the data were collected. A great advantage of using transit buses for traffic volume 

estimation is the ability to obtain data on the same large number of roadway segments on many days. 

These many repeated estimates would allow estimating an “average” time-of-day volume, which is 

typically of more interest in off-line traffic monitoring than is an estimate of a time-of-day volume on a 
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specific day. The improved accuracy of average day estimation was addressed in Section 6. An extensive 

data collection effort was implemented, where concurrent bus-based imagery and manual traffic counts 

were obtained for one segment-direction over two academic semesters for multiple hours on multiple 

days. The differences in sample average hourly video and manual volumes were between 1% and 5% for 

the four different time-of-day periods considered. These values can be compared to the average error for a 

specific day that was seen to be on the order of 20% in Section 4. 

The average of hourly volumes obtained over a finite number of multiple days, even if they are error-free 

representations of the true volumes occurring on the day of collection, would not necessarily represent the 

true average hourly volume because of day-to-day variability in traffic volumes. Therefore, an analytical 

framework was also presented to investigate the ability to provide good estimates of the true average day 

hourly volume when obtaining sample hourly volumes over a specified number of days. The empirical 

data were used to estimate input values for this analytical framework, and it is seen that, for the 

time-of-day periods covered in the empirical data collection, good results could be obtained with only a 

few days of video-based bus volumes. 

In addition to the methodological developments and empirical demonstrations associated with the 

research component of this project, this project also included important education and outreach aspects. In 

Section 7, the use of the research concept in term projects for an annually offered OSU course on 

transportation data collection was described, as well as how the term project addressed multiple important 

pedagogical objectives of increasing interest in engineering education. In Section 7, it was also described 

that the annual VMT estimates across the OSU campus network are regularly provided to university 

transportation planners and operators as the only in situ data-driven source of motorized travel across the 

campus network. 

In general, it appears that estimating an hourly traffic volume for a specific hour of a specific day from 

bus-based video imagery leads to relatively large errors at this time. However, the accuracy appears to be 

sufficiently good for practice when estimating volumes over longer aggregation periods (e.g., ten hours), 

when using the estimated volumes to determine estimates of network vehicle miles traveled, and when 

determining an average hourly volume, rather than an hourly volume for a specific day. Moreover, it was 

seen that many of the large errors associated with estimating hourly volumes on a specific day result from 

including queued vehicles in the data used for estimation. Preliminary evaluation of approaches 

developed to address queued vehicles demonstrates very good performance, which would imply that 

much improved estimation accuracy could be obtained with additional research. Moreover, the 

magnitudes of the errors were seen to be statistically associated with segment length, which can be 

observed in practice. However, the model relations developed are not sufficiently precise to provide 

useful predictions of whether specific estimates would be more or less accurate. It would be helpful to 

conduct additional research to determine other factors that are associated with the quality of a video-based 

volume estimate and to possibly develop a quantitative model that could be used in practice to indicate 

the degree of confidence to be attributed to specific estimates. Discovering the factors associated with 

good or bad quality estimates would also be helpful in improving the estimation methodology. In addition 

to research on developments in the estimation methodology, it would be useful to provide more evidence 

of the very good results seen in the empirical studies conducted in this research project by replicating the 

studies and extending them to other urban networks covered by transit buses operated by different 

agencies.  

Even though additional methodological developments and empirical studies would be helpful, the results 

presented in this report, especially when compared to those obtained from a presently popular data 
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aggregator and provider, indicate that existing imagery captured from cameras on transit buses in regular 

operation could be a low cost, accurate approach to traffic volume estimation. 

The focus of the research was on improving the estimation methodology and evaluating performance of 

the estimated volumes in various applications and not on developing a software package that could be 

used in practice. Nevertheless, it is noted that other than vehicle  detection, the steps involved with 

implementing the present estimation approach are fully automated. Based on approximate calculations, 

the process, including the semi-automated vehicle detection step used in the empirical studies, required 

approximately 10 minutes of human time on average for every segment-direction-day-hour of volume 

estimation for the types of segments and number of bus passes used in the empirical studies. Human 

traffic counters obtain counts on both directions of a segment (although with decreased accuracy 

compared to counting in one direction). Therefore, present human data collection would require 

approximately 30 minutes per segment-direction-day-hour, that is, approximately three times the human 

vehicle detection time involved with the video-based estimation. These estimates of time required do not 

consider the time to download video from buses, which can be automated, or the time for manual data 

collectors to travel to and from the data collection locations and the set-up time involved. In short, the 

present video-based approach appears very time-competitive with manual data collection. Of course, 

portable automatic sensors can avoid much of the human time involved with some traffic counts, but as 

emphasized in the motivation to this research, these automatic sensors can only collect data on a limited 

number of segments and on an infrequent basis. Moreover, recent results (Redmill, et al., 2023) indicate 

the promise of automating the vehicle detection step with additional research, which would further reduce 

the already competitive time requirements of estimating volume estimates from transit bus-based imagery 

on a regular basis. 
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Table A-1: Data collected on data collection days, 10/25/2018, 10/24/2019, 11/05/2020, 11/04/2021, 

11/01/2022; Numbers in parentheses in “Video” column refer to the number of bus passes from which 

video data were collected during the corresponding time period 

 

Seg_dir Video LBS Manual Road Tube Video LBS Manual Road Tube Video LBS Manual Road Tube Video LBS Manual Video Manual

1.1
7:00-19:00 (42) 24-hour 11:00-12:00 24-hour 7:00-19:00 (94) 24-hour

8:00-9:00; 

11:00-13:00 7:00-19:00 (98) 24-hour 24-hour 7:00-19:00 (171) 24-hour 11:30-12:30 7:00-19:00 (116) 11:15-12:15

1.2
7:00-19:00 (41) 24-hour 11:00-12:00 24-hour 7:00-19:00 (91) 24-hour

8:00-9:00; 

11:00-13:00 7:00-19:00 (103) 24-hour 24-hour 7:00-19:00 (171) 24-hour 11:30-12:30 7:00-19:00 (125) 11:15-12:15

2.1
7:00-19:00 (42) 24-hour 11:00-12:00 7:00-19:00 (56) 24-hour

8:00-10:00; 

11:00-12:00 7:00-19:00 (48) 24-hour 11:15-12:15 7:00-19:00 (56) 24-hour 11:30-12:30 7:00-19:00 (70) 11:15-12:15

2.2
7:00-19:00 (44) 24-hour 11:00-12:00 7:00-19:00 (54) 24-hour

8:00-10:00; 

11:00-12:00 7:00-19:00 (49) 24-hour 11:15-12:15 7:00-19:00 (57) 24-hour 11:30-12:30 7:00-19:00 (73) 11:15-12:15

3.1
7:00-19:00 (106) 24-hour 11:00-12:00 7:00-19:00 (104) 24-hour

11:00-12:00; 

17:00-18:00 7:00-19:00 (111) 24-hour 11:15-12:15 7:00-19:00 (154) 24-hour 11:30-12:30 7:00-19:00 (122) 11:15-12:15

3.2
7:00-19:00 (107) 24-hour 11:00-12:00 7:00-19:00 (97) 24-hour

11:00-12:00; 

17:00-18:00 7:00-19:00 (188) 24-hour 11:15-12:15 7:00-19:00 (155) 24-hour 11:30-12:30 7:00-19:00 (125) 11:15-12:15

4.1

7:00-19:00 (105) 24-hour

8:00-9:00; 

11:00-13:00; 

15:00-17:00 24-hour 7:00-19:00 (100) 24-hour

8:00-9:00; 

11:00-14:00 7:00-19:00 (110) 24-hour 11:15-12:15 24-hour 7:00-19:00 (152) 24-hour 11:30-12:30 7:00-19:00 (123) 11:15-12:15

4.2

7:00-19:00 (109) 24-hour

8:00-9:00; 

11:00-13:00; 

15:00-17:00 24-hour 7:00-19:00 (100) 24-hour

8:00-9:00; 

11:00-14:00 7:00-19:00 (186) 24-hour 11:15-12:15 24-hour 7:00-19:00 (158) 24-hour 11:30-12:30 7:00-19:00 (125) 11:15-12:15

5.1 7:00-19:00 (44) 24-hour 11:00-12:00 7:00-19:00 (46) 24-hour 24-hour 7:00-19:00 (64) 24-hour 11:15-12:15 7:00-19:00 (52) 24-hour 11:30-12:30 7:00-19:00 (122) 11:15-12:15

5.2 7:00-19:00 (64) 24-hour 11:00-12:00 7:00-19:00 (76) 24-hour 24-hour 7:00-19:00 (122) 24-hour 11:15-12:15 7:00-19:00 (102) 24-hour 11:30-12:30 7:00-19:00 (126) 11:15-12:15

6.1
7:00-19:00 (39) 24-hour 11:00-12:00 7:00-19:00 (49) 24-hour

8:00-9:00; 

11:00-12:00 7:00-19:00 (67) 24-hour 11:15-12:15 7:00-19:00 (56) 24-hour 11:30-12:30 7:00-19:00 (121) 11:15-12:15

6.2
7:00-19:00 (63) 24-hour 11:00-12:00 7:00-19:00 (58) 24-hour

8:00-9:00; 

11:00-12:00 7:00-19:00 (46) 24-hour 11:15-12:15 7:00-19:00 (110) 24-hour 11:30-12:30 7:00-19:00 (126) 11:15-12:15

7.1
7:00-19:00 (66) 24-hour 11:00-12:00 7:00-19:00 (52) 24-hour

8:00-9:00; 

11:00-13:00 7:00-19:00 (43) 24-hour 11:15-12:15 7:00-19:00 (99) 24-hour 11:30-12:30 7:00-19:00 (73) 11:15-12:15

7.2
7:00-19:00 (44) 24-hour 11:00-12:00 7:00-19:00 (45) 24-hour

8:00-9:00; 

11:00-13:00 7:00-19:00 (67) 24-hour 11:15-12:15 7:00-19:00 (52) 24-hour 11:30-12:30 7:00-19:00 (121) 11:15-12:15

8.1 7:00-19:00 (66) 24-hour 11:00-12:00 7:00-19:00 (53) 24-hour 7:00-19:00 (45) 24-hour 11:15-12:15 7:00-19:00 (99) 24-hour 11:30-12:30 7:00-19:00 (73) 11:15-12:15

8.2 7:00-19:00 (44) 24-hour 11:00-12:00 7:00-19:00 (50) 24-hour 7:00-19:00 (69) 24-hour 11:15-12:15 7:00-19:00 (55) 24-hour 11:30-12:30 7:00-19:00 (121) 11:15-12:15

9.1 7:00-19:00 (63) 24-hour 11:00-12:00 7:00-19:00 (53) 24-hour 11:00-12:00 7:00-19:00 (43) 24-hour 11:15-12:15 7:00-19:00 (101) 24-hour 11:30-12:30 7:00-19:00 (73) 11:15-12:15

9.2 7:00-19:00 (42) 24-hour 11:00-12:00 7:00-19:00 (45) 24-hour 11:00-12:00 7:00-19:00 (69) 24-hour 11:15-12:15 7:00-19:00 (52) 11:30-12:30 7:00-19:00 (121) 11:15-12:15

10.1
7:00-19:00 (60) 24-hour 11:00-12:00 24-hour 7:00-19:00 (52) 24-hour

8:00-9:00; 

10:00-12:00 7:00-19:00 (47) 24-hour 11:15-12:15 7:00-19:00 (107) 24-hour 11:30-12:30 7:00-19:00 (73) 11:15-12:15

10.2
7:00-19:00 (41) 24-hour 11:00-12:00 24-hour 7:00-19:00 (22) 24-hour

8:00-9:00; 

10:00-12:00 7:00-19:00 (69) 24-hour 11:15-12:15 7:00-19:00 (59) 24-hour 11:30-12:30 7:00-19:00 (122) 11:15-12:15

11.1 7:00-19:00 (60) 24-hour 11:00-12:00 7:00-19:00 (53) 24-hour 10:00-13:00 7:00-19:00 (46) 24-hour 11:15-12:15 7:00-19:00 (102) 24-hour 11:30-12:30 7:00-19:00 (73) 11:15-12:15

11.2 7:00-19:00 (42) 24-hour 11:00-12:00 7:00-19:00 (23) 24-hour 10:00-13:00 7:00-19:00 (117) 24-hour 11:15-12:15 7:00-19:00 (53) 24-hour 11:30-12:30 7:00-19:00 (121) 11:15-12:15

12.1 7:00-19:00 (58) 24-hour 7:00-8:00 7:00-19:00 (55) 24-hour 12:00-13:00 7:00-19:00 (48) 24-hour 11:15-12:15 7:00-19:00 (46) 24-hour 11:30-12:30 11:15-12:15

12.2 7:00-19:00 (40) 24-hour 7:00-8:00 7:00-19:00 (25) 24-hour 12:00-13:00 7:00-19:00 (69) 24-hour 11:15-12:15 7:00-19:00 (55) 24-hour 11:30-12:30 11:15-12:15

13.1

7:00-19:00 (43) 24-hour 7:00-19:00 (23) 24-hour

8:00-9:00; 

11:00-12:00; 

16:00-18:00 7:00-19:00 (69) 24-hour 11:15-12:15 7:00-19:00 (52) 24-hour 11:30-12:30 7:00-19:00 (71) 11:15-12:15

13.2 9:00-13:00; 

14:00-16:00 (32) 24-hour

7:00-17:00; 

18:00-19:00 

(50) 24-hour

8:00-9:00; 

11:00-12:00; 

16:00-18:00 7:00-19:00 (48) 24-hour 11:15-12:15 7:00-19:00 (97) 24-hour 11:30-12:30 7:00-19:00 (72) 11:15-12:15

14.1
7:00-19:00 (65) 24-hour

7:00-10:00; 

16:00-19:00 7:00-19:00 (52) 24-hour 7:00-19:00 (49) 24-hour 7:00-19:00 (97) 24-hour 11:30-12:30 7:00-19:00 (72) 11:15-12:15

14.2
7:00-19:00 (44) 24-hour

7:00-10:00; 

16:00-19:00 7:00-19:00 (24) 24-hour 7:00-19:00 (69) 24-hour 7:00-19:00 (52) 24-hour 11:30-12:30 7:00-19:00 (72) 11:15-12:15

15.1 7:00-19:00 (63) 24-hour 7:00-8:00 24-hour 7:00-19:00 (90) 24-hour 7:00-19:00 (103) 24-hour 11:15-12:15 24-hour 7:00-19:00 (208) 24-hour 11:30-12:30 7:00-19:00 (46) 11:15-12:15

15.2 7:00-15:00; 

18:00-19:00 (33) 24-hour 7:00-8:00 24-hour 7:00-19:00 (57) 24-hour 7:00-19:00 (121) 24-hour 11:15-12:15 24-hour 7:00-19:00 (163) 24-hour 11:30-12:30 7:00-19:00 (46) 11:15-12:15

16.1 7:00-19:00 (41) 24-hour 7:00-19:00 (24) 24-hour 24-hour 7:00-19:00 (66) 24-hour 11:25-12:25 7:00-19:00 (52) 24-hour 11:30-12:30 11:15-12:15

16.2 7:00-19:00 (66) 24-hour 7:00-19:00 (56) 24-hour 24-hour 7:00-19:00 (47) 24-hour 11:25-12:25 7:00-19:00 (101) 24-hour 11:30-12:30 11:15-12:15

17.1
7:00-19:00 (45) 24-hour

8:00-10:00; 

16:00-18:00 7:00-19:00 (22) 24-hour 7:00-19:00 (67) 24-hour 12:45-13:45 7:00-19:00 (52) 24-hour 11:30-12:30 11:15-12:15

17.2
7:00-19:00 (64) 24-hour

8:00-10:00; 

16:00-18:00 7:00-19:00 (56) 24-hour 7:00-19:00 (47) 24-hour 12:45-13:45 7:00-19:00 (96) 24-hour 11:30-12:30 11:15-12:15

18.1 7:00-19:00 (44) 24-hour 7:00-19:00 (22) 24-hour 7:00-19:00 (68) 24-hour 14:45-15:45 7:00-19:00 (51) 24-hour 11:30-12:30 11:15-12:15

18.2 7:00-19:00 (67) 24-hour 7:00-19:00 (55) 24-hour 7:00-19:00 (47) 24-hour 14:45-15:45 7:00-19:00 (97) 24-hour 11:30-12:30 11:15-12:15

19.1
7:00-19:00 (44) 24-hour 24-hour 7:00-19:00 (22) 24-hour

8:00-9:00; 

11:00-13:00 7:00-19:00 (68) 24-hour 11:15-12:15 7:00-19:00 (51) 24-hour 11:30-12:30 11:15-12:15

19.2
7:00-19:00 (49) 24-hour 24-hour 7:00-19:00 (56) 24-hour

8:00-9:00; 

11:00-13:00 7:00-19:00 (47) 24-hour 11:15-12:15 7:00-19:00 (96) 24-hour 11:30-12:30 11:15-12:15

20.1
7:00-19:00 (60) 24-hour

7:00-9:00; 

10:00-15:00 7:00-19:00 (46) 24-hour 24-hour 7:00-19:00 (136) 24-hour 12:30-13:30 24-hour 7:00-19:00 (97) 24-hour 11:30-12:30 7:00-19:00 (53) 11:15-12:15

20.2
7:00-19:00 (65) 24-hour

7:00-9:00; 

10:00-15:00 7:00-19:00 (46) 24-hour 24-hour 7:00-19:00 (69) 24-hour 12:30-13:30 24-hour 7:00-19:00 (93) 24-hour 11:30-12:30 7:00-19:00 (52) 11:15-12:15

21.1 8:00-19:00 (62) 24-hour 8:00-19:00 8:00-19:00 (49) 24-hour 7:00-19:00 (48) 24-hour 11:15-12:15 7:00-19:00 (98) 24-hour 11:30-12:30 7:00-19:00 (72) 11:15-12:15

21.2 7:00-16:00; 

17:00-19:00 (40) 24-hour 8:00-19:00 7:00-19:00 (23) 24-hour 7:00-19:00 (69) 24-hour 11:15-12:15 7:00-19:00 (52) 24-hour 11:30-12:30 7:00-19:00 (73) 11:15-12:15

22.1

7:00-19:00 (35) 24-hour

8:00-10:00; 

12:00-13:00; 

16:00-17:00 7:00-19:00 (54) 24-hour 15:15-16:15 7:00-19:00 (110) 24-hour 11:30-12:30 7:00-19:00 (49) 11:15-12:15

22.2

7:00-19:00 (37) 24-hour

8:00-10:00; 

12:00-13:00; 

16:00-17:00 7:00-18:00 (54) 24-hour 15:15-16:15 7:00-19:00 (109) 24-hour 11:30-12:30 7:00-19:00 (47) 11:15-12:15

23.1
7:00-19:00 (35) 24-hour

11:00-12:00; 

17:00-18:00 7:00-19:00 (54) 24-hour 11:15-12:15 7:00-19:00 (106) 24-hour 11:30-12:30 7:00-19:00 (48) 11:15-12:15

23.2
7:00-19:00 (37) 24-hour

11:00-12:00; 

17:00-18:00 7:00-19:00 (55) 24-hour 11:15-12:15 7:00-19:00 (110) 24-hour 11:30-12:30 7:00-19:00 (47) 11:15-12:15

24.1 7:00-19:00 (38) 24-hour 24-hour 7:00-19:00 (54) 24-hour 24-hour 7:00-19:00 (109) 24-hour 11:30-12:30 7:00-19:00 (47) 11:15-12:15

24.2 7:00-19:00 (35) 24-hour 24-hour 7:00-19:00 (51) 24-hour 24-hour 7:00-19:00 (113) 24-hour 11:30-12:30 7:00-19:00 (48) 11:15-12:15

25.1 11:00-13:00 24-hour 11:15-12:15 11:30-12:30 11:15-12:15

25.2 11:00-13:00 7:00-19:00 (79) 24-hour 11:15-12:15 11:30-12:30 11:15-12:15

26.1

7:00-15:00; 

16:00-18:00 

(24) 24-hour

11:00-13:00; 

16:00-18:00 7:00-19:00 (75) 24-hour 11:15-12:15 11:30-12:30 11:15-12:15

26.2
24-hour

11:00-13:00; 

16:00-18:00 7:00-19:00 (78) 24-hour 11:15-12:15 11:30-12:30 11:15-12:15

27.1 11:15-12:15 11:30-12:30 11:15-12:15

27.2 7:00-19:00 (77) 24-hour 11:15-12:15 11:30-12:30 11:15-12:15

28.1 7:00-19:00 (130) 24-hour 11:15-12:15 7:00-19:00 (98) 24-hour 11:30-12:30 7:00-19:00 (54) 11:15-12:15

28.2 7:00-19:00 (66) 24-hour 11:15-12:15 7:00-19:00 (101) 24-hour 11:30-12:30 7:00-19:00 (53) 11:15-12:15

Oct. 25, 2018 Oct. 24, 2019 Nov. 05, 2020 Nov. 04, 2021 Nov. 01, 2022



 

59 
 

Table A-2: Manual and video hourly volumes used in average day study of  Section 6; Numbers in 

parenthesis are the number of bus passes used to estimate the video volume in the hour 

Date Hour Day Semester 

Video Vol      

(# bus passes) Man Vol 

2-16-22 9:30 Wed Spring 179.71 (10) 191.88 

3-2-22 9:30 Wed Spring 173.49 (14) 146.88 

3-10-22 9:30 Thu Spring 150.68 (11) 162.50 

3-24-22 9:30 Thu Spring 186.76 (13) 189.38 

3-30-22 9:30 Wed Spring 232.62 (13) 213.13 

4-6-22 9:30 Wed Spring 150.59 (8) 203.13 

4-7-22 9:30 Thu Spring 201.65 (4) 184.38 

4-13-22 9:30 Wed Spring 183.04 (10) 199.38 

4-14-22 9:30 Thu Spring 121.86 (11) 184.38 

4-21-22 9:30 Thu Spring 181.99 (14) 193.13 

4-27-22 9:30 Wed Spring 160.17 (8) 158.75 

5-5-22 9:30 Thu Spring 94.7 (4) 128.75 

9-15-22 9:30 Thu Fall 147.67 (8) 165.88 

9-22-22 9:30 Thu Fall 184.35 (11) 164.69 

9-29-22 9:30 Thu Fall 215 (8) 165.50 

10-13-22 9:30 Thu Fall 106.86 (7) 93.13 

10-27-22 9:30 Thu Fall 195.37 (11) 185.06 

11-10-22 9:30 Thu Fall 207.4 (9) 186.06 

12-1-22 9:30 Thu Fall 154.99 (12) 168.88 

12-8-22 9:30 Thu Fall 178.41 (6) 156.13 

9-21-22 9:30 Wed Fall 205.97 (8) 215.94 

9-28-22 9:30 Wed Fall 206.22 (6) 210.50 

10-5-22 9:30 Wed Fall 163.95 (8) 208.06 

10-12-22 9:30 Wed Fall 180.36 (9) 190.63 

12-7-22 9:30 Wed Fall 254.74 (5) 222.19 

2-7-22 11:30 Mon Spring 145.73 (13) 155.63 

2-10-22 11:30 Thu Spring 156.26 (15) 155.00 

2-14-22 11:30 Mon Spring 171.11 (10) 146.88 

2-21-22 11:30 Mon Spring 191.55 (10) 164.38 

2-28-22 11:30 Mon Spring 138.54 (12) 154.38 

3-7-22 11:30 Mon Spring 113.66 (12) 155.00 

3-10-22 11:30 Thu Spring 148.82 (12) 145.00 

3-21-22 11:30 Mon Spring 144.8 (8) 164.38 

3-24-22 11:30 Thu Spring 164.95 (12) 181.25 

3-28-22 11:30 Mon Spring 181.96 (11) 197.50 

4-4-22 11:30 Mon Spring 180.74 (10) 176.88 

4-7-22 11:30 Thu Spring 129.5 (6) 160.63 

4-11-22 11:30 Mon Spring 183.35 (7) 166.88 
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Table A-2 (continued): Manual and video hourly volumes used in average day study of  Section 6; 

Numbers in parenthesis are the number of bus passes used to estimate the video volume in the 

hour 

Date Hour Day Semester 

Video Vol      

(# bus passes) Man Vol 

4-14-22 11:30 Thu Spring 173.51 (11) 187.50 

4-21-22 11:30 Thu Spring 140.28 (11) 156.25 

4-25-22 11:30 Mon Spring 153.68 (5) 172.50 

4-28-22 11:30 Thu Spring 151.89 (8) 138.13 

5-2-22 11:30 Mon Spring 94.72 (12) 111.25 

5-5-22 11:30 Thu Spring 96.86 (4) 114.38 

9-12-22 13:00 Mon Fall 132.33 (13) 135.25 

9-15-22 13:00 Thu Fall 186.46 (8) 149.25 

9-19-22 13:00 Mon Fall 193.05 (12) 152.00 

9-26-22 13:00 Mon Fall 144.53 (13) 147.63 

9-29-22 13:00 Thu Fall 112.45 (7) 140.94 

10-3-22 13:00 Mon Fall 114.79 (10) 148.81 

10-6-22 13:00 Thu Fall 136.02 (7) 162.06 

10-10-22 13:00 Mon Fall 204.24 (7) 146.63 

10-20-22 13:00 Thu Fall 163.59 (10) 124.88 

10-24-22 13:00 Mon Fall 168.2 (14) 154.06 

10-27-22 13:00 Thu Fall 158.47 (12) 133.44 

10-31-22 13:00 Mon Fall 170.89 (13) 173.75 

11-7-22 13:00 Mon Fall 208.54 (11) 171.44 

11-10-22 13:00 Thu Fall 135.48 (10) 159.75 

11-14-22 13:00 Mon Fall 169.01 (9) 168.81 

11-21-22 13:00 Mon Fall 147.79 (15) 160.13 

11-28-22 13:00 Mon Fall 157.04 (12) 154.00 

12-5-22 13:00 Mon Fall 165.88 (6) 144.31 

 

 

  



 

61 
 

 

 

 

 

 

 

 

 

 

 

Appendix B: CIVILEN 5720 Term Project Statements by Semester 

  



 

62 
 

 

  

The Ohio State University         Autumn 2018 

CIVILEN 5720 Transportation Engineering Data Collection Studies                 

Department of Civil, Environmental, and Geodetic Engineering 

 

Date Handed Out: Tuesday, 6 November 2018 

Date Due: Thursday, 6 December 2018, by noon
1
 

 

Term Project (Grade will be considered equal to one exam grade): Estimating Campus 

VMT with Multiple Data Sources 

 
Keep a copy of your project report. Work on your project in the assigned groups. Turn in one project 

report per group. Place all names of the group on the report. 

 

You may be asked to orally present your projects as well. 

 

We will solicit specific information on how group members contributed. 

 

For all parts, we are expecting good technical communication. You should consider the “clients” to be the 

instructors of this course. That is, you should assume our knowledge level and do not need to describe 

basic principles covered in class. However, you should be specific, but concise on approaches used and 

assumptions made, and illustrate with example calculations if appropriate. The reader should be able to 

determine quickly the main points. Long tables that support points should be placed in appendices. 

 

Data in the form of collected counts, tube counts, parking garage entries and exists, and vehicle flows 

determined from video images by cameras mounted on CABS transit buses will be made available. 

 

1. Use the hourly volumes obtained from the manual data collections effort on 23 and 25 October to 

estimate VMT on a typical Thursday across all the segments considered between 7:00 am and 7:00 

pm. Based on your VMT estimate, estimate the amount of fuel consumed from travel on these 

segments during this time period. 

 

2. How might you use any combination of the road tube data, parking garage data, and traffic volumes 

estimated from the bus-based video count data to either improve your VMT estimate or to obtain a 

VMT estimate of similar quality with fewer manual counts? This question is intentionally 

open-ended. We are looking for thoughtful, creative, and rigorous engineering analyses, supported by 

numerical investigations, perhaps even leading to revised estimates of VMT. 

 

3. Assume that parking and bus-video data will be available in future at minimal marginal cost to 

transportation engineers and planners. How might these sources of data be helpful in monitoring or 

producing new estimates of VMT in future, both for campus and in general? We are again looking for 

thoughtful, creative, and rigorous analyses. We do not have a right or wrong answer in mind, but we 

expect your proposal to be defensible. 

 

  

                                                             
1
In both electronic form via email to both instructors (mccord.2 and mishalani.1) and hard-copy form hand-delivered 

to either of the instructors in their offices 491D or 483E, or in their mailboxes in HI 423 if you don’t find them in 

their offices. 
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Project	Groups	
	

Group	1	 		 		 		 Group	2	 		 		 		 Group	3	 		

Abdul	Latif,	Muhammad	 		 Ahmad	Shukri,	Suraya		 		 Billisits,	Ethan	

Fauzi,	Ahmad		 		 		 Ahmat,	Nurul		 		 		 Brickner,	Nathan		

Hamid,	Tuah	 		 		 Mohamad	Rodzai,		Danial	 		 Lifke,	Claire	

Mohamad	Shahrizal,	Syahril		 		 Mohamad,	Nazrul		 		 		 Miller,	Skyler	

Muhamad	Luqmanul	Hakim	 		 Mohd	Nasir,	Sofiya		 		 		 Wasielewski,	Grant		
	
	 	 	 	 	 	

Group	4	 		 		 		 Group	5	 		 		 		 Group	6	 		

Becht,	Henry	 		 		 Ma,	Yingyu	 		 		 Abdulkadir,	Afrah		

Suib,	Muhammad		 		 		 Moody,	John		 		 		 Brown,	Molly	

Syed	Ismail,	Dani	 		 		 Pelfrey,	Amanda	 		 		 Joshi,	Ashish		

Travis,	Michael	 		 		 Summer,	Sonja		 		 		 Sanor,	Jerry		

Tury,	Richard		 		 		 Wang,	Taoyu	 		 		 Willis,	Aaron		
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The Ohio State University Autumn 2019 

CIVILEN 5720 Transportation Engineering Data Collection Studies 

Department of Civil, Environmental, and Geodetic Engineering 

 

Date Handed Out: Tuesday, 29 October 2019 

Date Due: Thursday, 5 December 2019, by noon
1
 

 

Term Project (Grade will be considered equal to one exam grade): Estimating Campus 

Segment Volumes and VMT with Multiple Data Sources 

 
Keep a copy of your project report. Work on your project in the assigned groups indicated on the next 

page. Turn in one project report per group. Place all names of the group on the report. 

 

You may be asked to orally present your projects as well. 

 

We will solicit specific information on how group members contributed. 

 

For all parts, we are expecting good technical communication. You should consider the “clients” to be the 

instructors of this course. That is, you should assume our knowledge level and do not need to describe 

basic principles covered in class. However, you should be specific, but concise, on approaches used and 

assumptions made, and you should illustrate with example calculations if appropriate. The reader should 

be able to determine quickly the logic and main points. Long tables and supporting information should be 

placed in appendices. 

 

Data in the form of manually collected counts, tube counts, and vehicle flows determined from video 

images by cameras mounted on CABS transit buses will be made available. 

 

1. Consider all segments for which either manual or road tube data were collected on 22 or 24 October 

2019. For these segments, use manually collected and road tube data to estimate the following for a 

typical Thursday in Autumn 2019: 

 

• Hourly segment flows between 8:00 am and 6:00 pm 

• 10-hour VMT aggregated across the set of segments specified above 

 

You should consider the data collected on Tuesday 22 October, 2019 to be representative of data that 

would have been collected on Thursday 24 October, 2019. 

 

2. Consider the union of segments for which either manual or road tube date were collected this year or 

last year (October 2018). Use the manual and road tube data collected this year (i.e., the data used in 

part 1) and estimated volumes for a typical Thursday in Autumn 2019 using manual and road tube 

data collected last year (October 2018) to estimate the following for a typical Thursday in Autumn 

2019: 

 

• Hourly segment flows between 7:00 am and 7:00 pm  

• 12-hour VMT aggregated across the extended set of segments 

 

                                                             
1
In both electronic form via email to both instructors (mccord.2 and mishalani.1) and hard-copy form hand-delivered 

to either of the instructors in their offices 491D or 483E, or in their mailboxes in HI 423 if you don’t find them in 

their offices. 
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Again, you should consider the data collected on Tuesday 23 October, 2018 to be representative of 

data that would have been collected on Thursday 25 October, 2018. 

 

Assume that the volumes you estimated for Thursday Oct 24 are representative of volumes on an 

average weekday when OSU classes are in sessions during Autumn and Spring semesters. Estimate 

the following: 

 

• Total 12-hour VMT across this campus network and all days when classes are in session during 

Autumn and Spring semesters 

• Total fuel consumed across the same network and period 

 

3. Consider only the hourly volumes determined from vehicle count data extracted from video imagery 

taken from cameras mounted on CABS buses recorded on 24 October 2019. These volumes are 

determined by applying the moving observer method assuming t2 = t1 for each bus pass and averaging 

across the estimates from each pass. Estimate the following for a typical Thursday in Autumn 2019: 

 

• Hourly segment flows between 7:00 am and 7:00 pm 

• 12-hour VMT aggregated across the extended set of segments 

 

4. Compare the results from questions 2 and 3 for the following: 

 

• Hourly segment flows between 7:00 am and 7:00 pm 

• Daily segment follows between 7:00 am and 7:00 pm 

• 12-hour VMT aggregated across the extended set of segments 

 

In doing so, think of single indicator summary metrics to calculate and use to compare the results 

from questions 2 and 3. 

 

Are your comparison results similar or different when considering hourly segment flows, daily 

segment flow, and 12-hour VMT? Explain the similarities or differences that you note. 

 

Term Project Groups 

Group 1  Group 2  Group 3  Group 4 

Bresciani, Jeremy  Brosnahan, John  Cottingim, Josh  Dittoe, Austin 

Insley, Chris  Liu, Ziming  Foster, Abby  Schenken, Mark 

Jackson, Trey  Roy, Raj  Neiderhouser, Jacob  Stefanek, Sydney 

Watson-Ables, Julie  Sullivan, Mark  Russell, Matthew  Thompson, Nate 

  Wang, Norman  Scholz, Eric  Yoder, Neil 

       

Group 5  Group 6  Group 7   

Dobson, Abraham  El Asmar, Paul  Faist, Cody   

Schanzlin, Eric  Ferzli, Stephanie  Haubert, Alex   

Simons, Tyler  Galdino, Diego   Lai, Welton   

Slade, Connor  Gaus, Greg  Reategui, Chris   

Wilson, Logan       
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The Ohio State University Autumn 2020 

CIVILEN 5720 Transportation Engineering Data Collection Studies 

Department of Civil, Environmental, and Geodetic Engineering 

 

Date Handed Out: Tuesday, 3 November 2020 

Update 2 (fourth bullet of part 3 and parts 4-7): Tuesday, 1 December 2020 

Date Due: Tuesday, 8 December 2020 at noon 

 

Term Project (25% of course grade): Estimating Campus Segment Volumes and VMT 

Using Data from Multiple Sources 

 
Work on your project in the assigned groups indicated below. Submit one project report per group. Place 

all names of the group on the report. Additional submission instructions will be provided. 

 
Any team member may be asked to defend aspects of the project individually. That is, although we expect 

different team members to take the lead on different aspects, we expect all team members to understand 

all components of the project.  
 

We will also solicit specific information on how group members contributed using a peer- and 

self-evaluation questionnaire. 
 

For all parts of the PowerPoint slides based “report”, we are expecting good technical communication. 

You should consider the “clients” to be the instructors of this course. That is, you should assume our 

knowledge level and do not need to describe basic principles covered in class. However, you should be 
specific, but concise, on approaches used and assumptions made, and you should illustrate with example 

calculations if appropriate. The audience should be able to determine quickly the logic and main points. 

Long tables and supporting information should be placed in appendices after the set of slides you would 
typically present. Summary tables and information that directly support your results and conclusions 

should be part of the main slides. Of course, only use tables when they help summarize multiple 

numerical values or items. 

 
Data in the form of manually collected counts, tube counts, and vehicle flows determined from video 

images by cameras mounted on CABS transit buses are made available at different stages of the term 

project. 
 

1. Consider only the segments for which data were collected on 25 October 2018. For these segments 

use volumes determined from vehicle count data extracted from video imagery taken from cameras 
mounted on CABS buses recorded on 25 October 2018 and 24 October 2019 to estimate the 

following: 

 

• Volumes for each segment-direction-hour in the 7:00 am to 7:00 pm interval for Thursday, 

10/25/2018 

• Volumes for each segment-direction-hour in the 7:00 am to 7:00 pm interval for Thursday, 
10/24/2019 

• 12-hour VMT aggregated across the set of segments specified above from 7:00 am to 7:00 pm for 

Thursday, 10/25/2018 

• 12-hour VMT aggregated across the set of segments specified above from 7:00 am to 7:00 pm for 

Thursday, 10/24/2019 
  



 

67 
 

 

  

UPDATE 2 

Page 2 of 3 

2. Quantify the differences between 2018 and 2019 volumes for common segment-direction-hours and 
in 12-hour VMT. Compare the differences and discuss whether you believe they might reflect a 

systematic change in VMT between 2018 and 2019 or if the difference could be attributable to  

day-to-day variation in campus travel.  

 
3. Consider all segments for which either manual or road tube data were collected on 5 November 2020. 

For these segments, use manually collected and road tube data to estimate the following for 

11/5/2020: 
 

• Volumes for each segment-direction-hour in the 7:00 am to 7:00 pm interval 

• 12-hour (7:00 am to 7:00 pm) segment-direction-volumes 

• 12-hour VMT between 7:00 am and 7:00 pm aggregated across the set of segments specified 

above 

• 6-hour VMT over the combined periods 7:00 am to 9:00 am, 11:00 am to 1:00 pm, and 4:00 pm 

to 6:00 pm aggregated across the set of segments specified above 
 

4. Consider all segments for which either manual or road tube data were collected on 5 November 2020, 

however, now only consider the following six hours: 7:00 am to 9:00 am, 11:00 am to 1:00 pm, and 

4:00 pm to 6:00 pm. For these segments and hours, use volumes determined from vehicle count data 
extracted from video imagery taken from cameras mounted on CABS buses recorded on 5 November 

2020 to estimate the following for 11/5/2020: 

 

• Volumes for each segment-direction-hour for the six hours noted above 

• 6-hour VMT over the combined periods 7:00 am to 9:00 am, 11:00 am to 1:00 pm, and 4:00 pm 
to 6:00 pm and aggregated across the set of segments specified above 

 

5. Quantify the differences between the 2020 manual- and tube-based volume estimates and the 2020 
video-based volume estimates for common segment-direction-hours and for 6-hour VMT. Compare 

the differences and briefly comment (e.g., a few bullets in a PowerPoint slide) whether you believe 

video-based estimates could complement or replace manual- and tube-based volume estimates in the 

future. 
 

6. Consider only the segments for which data were collected on 25 October 2018. For these segments 

use volumes determined from vehicle count data extracted from video imagery taken from cameras 
mounted on CABS buses recorded on 25 October 2018, 24 October 2019, and 5 November 2020 to 

estimate the following: 

 

• 6-hour VMT aggregated across the set of segments specified above over the combined periods 
7:00 am to 9:00 am, 11:00 am to 1:00 pm, and 4:00 pm to 6:00 pm for Thursday, 10/25/2018 

• 6-hour VMT aggregated across the set of segments specified above over the combined periods 

7:00 am to 9:00 am, 11:00 am to 1:00 pm, and 4:00 pm to 6:00 pm for Thursday, 10/24/2019 

• 6-hour VMT aggregated across the set of segments specified above over the combined periods 

7:00 am to 9:00 am, 11:00 am to 1:00 pm, and 4:00 pm to 6:00 pm for Thursday, 11/05/2020 

 
7. Quantify the differences between 2018, 2019, and 2020 6-hour VMT based on volumes estimated 

from video imagery. Compare the differences and discuss whether you believe the differences might 

reflect systematic changes in VMT between any pair of years 2018, 2019, and 2020 or if the 
differences could be attributable to day-to-day variation in campus travel. 
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Term Project Groups 

Group 1    Group 3  

Matt Allshouse    Nicholas Bernhard  
Josh Bals    Shahrzad Charmchi Toosi   

Alyssa Meurer    Anthony Collinger  

Kayla Saggio    Katherine Coggins   
Leiana Yates    Collin Walsh  

      

Group 4  Group 5  Group 6  

Josh Banaszak  Aaron Drewes  Matthew Friedman  
Jason Leonhardt  Tyler Dubbs  Max Hartman  

Jacob Mengelkamp  Frannie Severding  Sara Lemanski  

Nathan Scranton  Pedro Tokushiro  Jake O’Donnell  
Mingfei Yan  Chandrika White  Ben Peters  
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The Ohio State University Autumn 2021 

CIVILEN 5720 Transportation Engineering Data Collection Studies 

Department of Civil, Environmental, and Geodetic Engineering 

 

Date Handed Out: Thursday, 21 October 2021 

Update 1 (new part to question 2 and questions 3-6): Thursday, 18 November 2021 

Date Due: Monday, 13 December 2021 at noon 

 

Term Project (30% of course grade): Estimating Campus Segment Volumes and VMT 

Using Data from Multiple Sources 

 
Work on your project in the assigned groups. Submit one project report per group. Place all names of the 

group on the report. Additional submission instructions will be provided. Submitting the report is one of 

several submissions you are required to complete for this term project.  
 

Additional term project related questions will be provided. The submission instructions will follow the 

technical communications elements we have been emphasizing and will continue to build upon in class. 
 

The grade you will earn on the term project is based on your performance on all the term project related 

submissions. 
 

Any team member may be asked to defend aspects of the project individually. That is, although we expect 

different team members to take the lead on different aspects, we expect all team members to understand 

all components of the project.  
 

We will also solicit specific information on how group members contributed using a peer- and 

self-evaluation questionnaire. 
 

For all parts of the report, we are expecting good technical communication. You should consider the 

“clients” to be the instructors of this course. That is, you should assume our knowledge level and do not 

need to describe basic principles covered in class. However, you should be specific, but concise, on 
approaches used and assumptions made, and you should illustrate with example calculations if 

appropriate. The audience should be able to determine quickly the logic and main points. Long tables and 

supporting information should be placed in appendices. Summary tables and information that directly 
support your results and conclusions should be part of the main report. Of course, only use tables when 

they help summarize multiple numerical values or items. 

 
Information in the form of tube count data, vehicle volume estimates determined form manually collected 

counts, and vehicle volume estimates determined from video images recorded by cameras mounted on 

CABS transit buses will be made available at different stages of the term project. 

 
1. Consider only the segments for which data were collected on 25 October 2018. For these segments 

use volumes determined from vehicle count data extracted from video imagery taken from cameras 

mounted on CABS buses recorded on 25 October 2018, 24 October 2019, and 5 November 2020 to 
estimate the following: 

 

• Volumes for each segment-direction-hour in the 7:00 am to 7:00 pm interval for Thursday, 

10/25/2018 

• Volumes for each segment-direction-hour in the 7:00 am to 7:00 pm interval for Thursday, 
10/24/2019 
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• Volumes for each segment-direction-hour in the 7:00 am to 7:00 pm interval for Thursday, 

11/5/2020 

• 12-hour VMT aggregated across the set of segments specified above from 7:00 am to 7:00 pm for 
Thursday, 10/25/2018 

• 12-hour VMT aggregated across the set of segments specified above from 7:00 am to 7:00 pm for 

Thursday, 10/24/2019 

• 12-hour VMT aggregated across the set of segments specified above from 7:00 am to 7:00 pm for 

Thursday, 11/5/2020 
 

2. Quantify the differences among 2018, 2019, and 2020 volumes for common segment-direction-hours 

and in 12-hour VMT. 

 
Compare the differences and discuss whether you believe they might reflect a systematic change in 

VMT among 2018, 2019, and 2020 or if the differences could be attributable to day-to-day variation 

in campus travel.  
 

Compare the estimated changes (single values) you determined from the field video-based volumes 

between the years 2018 and 2019 and between the years 2019 and 2020 to the corresponding 

(distributions of) subjective Growth Factors based on the estimates each of you submitted as part of 
Term Project Assignment 2. Discuss the similarities and differences between the field data-based and 

subjective estimates using quantitative measures to support your discussion. 

 
3. Consider all segments for which either manual or road tube data were collected on 5 November 2020. 

For these segments, use manual-based volume estimates and road tube data to estimate the following 

for 11/5/2020: 
 

• Volumes for each segment-direction-hour in the 7:00 am to 7:00 pm interval 

• 12-hour (7:00 am to 7:00 pm) segment-direction-volumes 

• 12-hour VMT between 7:00 am and 7:00 pm aggregated across the set of segments specified 

above 

 

4. Consider all segments for which either manual or road tube data were collected on 5 November 2020. 
For these segments, use volumes determined from vehicle count data extracted from video imagery 

taken from cameras mounted on CABS buses recorded on 5 November 2020 to estimate the following 

for 11/5/2020: 
 

• Volumes for each segment-direction-hour in the 7:00 am to 7:00 pm interval 

• 12-hour VMT between 7:00 am and 7:00 pm aggregated across the set of segments specified 

above 

 
Reproduce the calculation of the video-imagery volumes for each direction of the segment that has 

the same number as your group number from 12 pm to 1 pm. Present the logic and show your 

calculations. 

 
5. Quantify the differences between the 2020 manual- and tube-based volume estimates (from your 

answers to question 3 above) and the 2020 video-based volume estimates (from your answers to 

question 4 above) for common segment-direction-hours and for 12-hour VMT. Compare the 
quantified differences to other quantified differences of volumes or volume-derived measures you 

determined throughout the semester. 
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6. Discuss the potential benefits of using bus-based video imagery to determine segment volumes and 
VMT over time, keeping in mind the analysis you conducted and presented in part 5. 

 

We expect your response to question 6 to be between ½ and 1 page, but to be well thought out and 

well presented. 

 

 

Term Project Groups 

Group 1 Group 2 Group 3 

Alexopoulos, Steven Beachy, Justin Beharry, Cassidy 

Androw, Cameron Deighan, Ryne Coppenger, Hayleigh 
Coleman, Tyler Faircloth, Jalen Harvey, Kenneth 

Dembek, Brandon Poling, Will Shah, Harsh 

Miller, Nick   
   

Group 4 Group 5 Group 6 

Bloch, Isaac Breier, Mitch Dakwar, Joshua 

Gardner, Jacob Dong, Zixuan Dixon, Adam 
Gartrell, Oliver Jaques, Sophie Folwarczny, Drew 

Fornaro, Anthony Maag, Sydney Frusciante, Alejandro 

Wheeler, Ryan Wang, Jintong Greve, Ryan 
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The Ohio State University Autumn 2022 

CIVILEN 5720 Transportation Engineering Data Collection Studies 

Department of Civil, Environmental and Geodetic Engineering 

 

Date Handed Out: Thursday, 20 October 2022 

Update 4 (typo correction in questions 3, 4, and 5): Monday, 5 December 2022 

Date Due: Monday, 12 December 2022 at noon 

 

Term Project (30% of course grade): Estimating Campus Segment Volumes and VMT 

Using Data from Multiple Sources 

 
Work on your project in the assigned groups indicated at the end of this statement. Submit one project 

report per group. Place all names of the group on the report. Additional submission instructions will be 

provided. Submitting the report is one of several submissions you are required to complete for this term 
project.  

 

Additional term project related questions will be provided. The submission instructions will follow the 
technical communications elements we have been emphasizing and will continue to build upon in class. 

 

The grade you will earn on the term project is based on your performance on all the term project related 
submissions. 

 

Any team member may be asked to defend aspects of the project individually. That is, although we expect 

different team members to take the lead on different aspects, we also expect each team member to 
understand all components of the project.  

 

We will also solicit specific information on how group members contributed using a peer- and 
self-evaluation questionnaire. 

 

For all parts of the report, we are expecting good technical communication. You should consider the 

“clients” to be the instructors of this course. That is, you should assume our knowledge level and do not 
need to describe basic principles covered in class. However, you should be specific, but concise, on 

approaches used and assumptions made, and you should illustrate with example calculations if 

appropriate. The audience should be able to determine quickly the logic and main points. Long tables and 
supporting information should be placed in appendices. Summary tables and information that directly 

support your results and conclusions should be part of the main report. Of course, only use tables when 

they help summarize multiple numerical values or items. 
 

Information in the form of tube count data, vehicle volume estimates determined form manually collected 

counts, and vehicle volume estimates determined from video images recorded by cameras mounted on 

CABS transit buses will be made available at different stages of the term project. 
 

1. Consider only the segments for which data were collected on 25 October 2018. For these segments 

use volumes determined from vehicle count data extracted from video imagery taken from cameras 
mounted on CABS buses recorded on 25 October 2018, 24 October 2019, 5 November 2020, and 4 

November 2021 to estimate the following: 

 

• Volumes for each segment-direction-hour in the 7:00 am to 7:00 pm interval for Thursday, 
10/25/2018 
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• Volumes for each segment-direction-hour in the 7:00 am to 7:00 pm interval for Thursday, 

10/24/2019 

• Volumes for each segment-direction-hour in the 7:00 am to 7:00 pm interval for Thursday, 
11/5/2020 

• Volumes for each segment-direction-hour in the 7:00 am to 7:00 pm interval for Thursday, 

11/4/2021 

• 12-hour VMT aggregated across the set of segments specified above from 7:00 am to 7:00 pm for 

Thursday, 10/25/2018 

• 12-hour VMT aggregated across the set of segments specified above from 7:00 am to 7:00 pm for 
Thursday, 10/24/2019 

• 12-hour VMT aggregated across the set of segments specified above from 7:00 am to 7:00 pm for 

Thursday, 11/5/2020 

• 12-hour VMT aggregated across the set of segments specified above from 7:00 am to 7:00 pm for 

Thursday, 11/4/2021 

 
2. (a) Quantify the differences among 2018, 2019, 2020, 2021 volumes for common segment-direction-

hours and in 12-hour VMT using measures you should be familiar with from this course. Compare 

the differences and discuss whether you believe they might reflect a systematic change in volumes 
and VMT among 2018, 2019, 2020, and 2021 or if the differences could be attributable to day-to-day 

variation in campus travel.  

 

(b) Compare the differences you found in part (a) to differences that would be expected from ODOT 
Annual Adjustment factors for functional classes U 5-7, urban collector and local roads. Interpret the 

differences. Do so while keeping in mind that ODOT factors are based on urban collector and local 

roads across any kind of such roads and across an entire calendar year while differences in part (a) 
reflect changes only to a university campus and for the specific day of collection namely a weekday 

in late October or early November. 

 
3. Consider all segments for which either manual or road tube data were collected on 5 November 2020. 

For these segments, use manual-based volume estimates and road tube data to estimate the following 

for 11/5/2020: 

 

• 12-hour (7:00 am to 7:00 pm) two-way segment-direction volumes 

• 12-hour VMT between 7:00 am and 7:00 pm aggregated across the set of segments specified 
above 

 

Notes: The road tube volumes provide control counts, whereas the manual counts provide coverage 
counts. Determine appropriate factors from the control counts. You need to decide and explain briefly 

but clearly how you decided to use the different sets of factors from the multiple control count 

segments to determine a set of factors for a specific coverage count segment. Different factors can be 
used for different coverage count segments. If a segment contains both a manual count and a road 

tube count for the same time interval, you may use the road tube count. 

 

4. Consider all segments for which either manual or road tube data were collected on 5 November 2020. 
For these segments, use volumes determined from vehicle count data extracted from video imagery 

taken from cameras mounted on CABS buses recorded on 5 November 2020 to estimate the following 

for 11/5/2020: 
 

• 12-hour (7:00 am to 7:00 pm) two-way segment-direction volumes 



 

74 
 

 

UPDATE 4 

Page 3 of 3 

• 12-hour VMT between 7:00 am and 7:00 pm aggregated across the set of segments specified 

above 
 

Notes: These values should be different than the 2020 values determined in part 1 because the 

networks are different in this part and in part 1. As in part 1, estimate the 12-hour volumes from the 

addition of hourly volumes. 
 

5. Quantify the differences between the 2020 manual- and tube-based volume estimates (from your 

answers to question 3 above) and the 2020 video-based volume estimates (from your answers to 

question 4 above) considering the 12-hour two-way segment-direction volumes and 12-hour VMT. 
Compare the quantified differences to other quantified differences of volumes or volume-derived 

measures you determined throughout the semester. 

 
6. Discuss the potential benefits of using bus-based video imagery on a regular basis to determine hourly 

segment volumes, longer period (e.g., 12-hour in this project) segment volumes, VMT, and changes 

over time, considering the analyses you conducted in this project, and lessons learned throughout the 
course. 

 

We expect your response to this question to be1/2 to 1 page, but to be well thought out and well 

presented. 

 

Term Project Groups 

Group 1 Group 2 Group 3 
Abdirahman, Khadijo Barone, Rick Crain, Mac 

DeMarzo, Danielle Hargraves, Michael Harris, Max 

O’Neill, Brock Kim, Hyunhwa Kerich, Danielle 
Schneider, Noah Kopechek, Michael Mohammed, Massara 

Sosko, Megan Mbow, Babacar Ren, Lanming 

 Voss, Tyler Zhang, Linghao 

   
Group 4 Group 5  

Emmett, Chris Gaskey, Michael  

Kuhlman, Reese Goldenbaum, Tyler  
Kwiatt, Collin McDaniel, Ian  

Paselsky, Mike Mutlak, Dean  

Schwartz, Cameron Tondra, Brandon  

 Williams, Mason  
 

 


