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Problem Statement 
As an applicable measure in traffic demand management contemporarily, congestion pricing has 
gained increasing interest from the public as well as the transportation authorities. Under the 
charging mechanism, unreasonable travel demand is consequently restrained, and a preferable 
distribution of traffic is completed on a network, which leads to a mitigation of traffic 
congestion. The cordon-based congestion pricing scheme is widely adopted by encircling a 
certain district within which commuters are required for congestion toll (Foo, 2000; Santo, 2008; 
Cheng et al., 2016.). 

Many charging schemes applied currently are flat-toll charges, ignoring the disparities between 
each traveler, which results in serious inequity for the general public. Consequently, previous 
studies have proposed several alternative toll charge schemes such as distance-based, time-based, 
congestion-based, patron-based and so on (Gu et al. 2018; Huang et al. 2021). Owing to the 
advance of technique such as global positioning system (GPS) and radio frequency identification 
(RFID), an integrated distance-based toll structure becomes practical which enhances the social 
equity since the congestion tolls are proportional to the distances travelled by commuters, 
reflecting the true utilities and costs. 

However, in spite of those benefits of congestion pricing discussed above, opposition against 
congestion pricing among the general public remains strong, due to the possible loss of public 
welfare (Jaensirisak et al., 2005). Most studies, which focus on congestion pricing assume that 
the demand of travelers is elastic, associated with less desirable schemes (e.g., shift travel time or 
use different mode of travel). However, travelers who switch travel schemes are not considered 
in the congestion pricing policy. In fact, in many cases, the trip rates taken between each origin 
and destination, especially in the peak hours, can be regarded as fixed demand (e.g., regular 
commute to work). During these periods most of the trips cannot be easily foregone or shifted. 
Therefore, a generalized congestion pricing scheme in a multi-modal network is established to 
better describe this social issue. 

In recent years, transportation network companies (TNCs) such as Uber and Lyft have brought 
about a significant transformation in urban mobility. By providing on-demand car services, these 
companies have decoupled car access from car ownership, bridging the gaps in mobility that 
arise when individuals lack their own vehicles. However, despite their high-tech appeal, ride-
hailing services do not offer equal accessibility to all neighborhoods and travelers. Ge et al. 
(2016) conducted a study and found that minority TNC riders experience significantly longer 
wait times, on average. Additionally, studies have revealed instances of discrimination by drivers 
from both UberX and Lyft, who sometimes cancel rides based on the perceived race of the 
passenger. 

Autonomous vehicles (AVs) have the potential to revolutionize transportation. The deployment 
of AVs is rapidly approaching, with companies like Google's Waymo already operating fully 
autonomous taxis in certain cities, and numerous other technology firms conducting pilot 
operations (The Waymo Team 2022). AVs offer significant promise in promoting social equity by 
improving mobility for minority groups, low-income individuals, the elderly, and those with 
medical conditions that limit their travel options. However, like any emerging technology, shared 



AVs also have the potential to worsen existing social inequalities. Unfortunately, most AV 
modeling efforts overlook the potential distribution of impacts and fail to consider equity 
considerations. 

To ensure that the path towards vehicle automation reduces transportation inequity and leads to a 
smarter and more sustainable transportation system, this study employs agent-based simulation 
to evaluate how different congestion pricing schemes in shared AV systems affect overall system 
performance (e.g., congestion and operations) as well as outcomes for specific sub-populations 
(e.g., travel costs for different groups). 

Case Study Area 
This paper focuses on assessing the transportation system and sub-population level impacts of 
different congestion pricing policies for shared AV services in Seattle. While the conclusions of 
this research are meant to be generalizable, we focus our study on Seattle, Washington because 
it’s a diverse city with known inequalities among income, race, and other factors. Areas outside 
of the city limits of Seattle are not in the scope of this study.  

 

 
Figure 1. Study Region 

 



Data 
We extracted the road network data from OpenStreetMap and public transit network and 
schedules from General Transit Feed Specification (GTFS). Converting GTFS to transit 
schedules and mapping transit stops and transit routes to the road network are accomplished by 
pt2matsim tool. Transit modes (bus and tram in this study) will reflect congestion effects if they 
share the same road with private vehicles, otherwise dedicated artificial links are created and 
transit vehicles will travel in fixed schedule. After cleaning and simplifying the network, 27k 
nodes and 57k links are extracted as the multi-modal network. 
 
Agent-based transportation simulation requires detailed information on the travel patterns of 
different travelers within the study region. A tour for each traveler is required in simulation 
preparation to represent the chain of trips each person takes throughout the day. In order to assign 
each traveler a set of trips we adopt the synthetic population from PSRC’s (Puget Sound Regional 
Council 2014) DaySim model, which simulates and creates a daily activity and travel schedule for 
each person in the Puget Sound region in the year 2014. The synthetic population generated by 
SoundCast contains important demographic information for each traveler such as household 
income, person, age and gender and employment status. Each person in the synthetic population 
also has a daily travel schedule that details information such as origin and destination trip purpose, 
arrival and departure time, and mode used for each trip. The synthetic travel population from 
SoundCast are based on the 2014 PSRC Household Travel Survey, the American Community 
Survey (United States Census Bureau 2014), and other demographic related data sources (Puget 
Sound Regional Council 2014).  
 
Overall, the synthetic population (home based in Seattle city) from SoundCast consists of about 
625,000 people with 30% households being low-income (lower than $50k). In this study, we focus 
on several categories of subpopulation. The reference group is set as an employed adult (age 18-
64) with car ownership and $100k - $150k household income. The elderly and/or low-income 
and/or unemployed groups are treated as vulnerable subpopulation and compared with reference 
groups.  
 

Methodology 

SAV configura�on and MATSim simula�on 
We implemented SAV vehicles in the simulation as demand-responsive transportation (DRT) 
service by using MATSim’s DRT module. These vehicles have a maximum capacity of 4 
passengers, and the automation was reflected by the change of road capacity in a mixed traffic 
condition (In this case the SAV consists only 3% of the vehicles, which makes the capacity 
change ignorable). Ridesharing will be executed when ride requests are in the proximity of the 
vehicle and the agents have similar destinations, implemented in DVRP algorithm (Maciejewski 
et al. 2017). The SAV vehicles are randomly distributed across the simulation area. Idle vehicles 
will return to one of these starting locations as they are regarded as depots and all vehicles 
returned to their predefined, random locations after each day operation. The maximum waiting 
time is set to 20 minutes. the request will be rejected if waiting time exceeds the limit, although 
travelers have the ability to replan their activity by mutate departure time, mode choice, etc. 



 

The cost of an SAV trip is calculated by distance-based pricing policy, which contains a $2 fixed 
fare and distance-based fare of $0.25 or $1 per mile, which is the similar settings to (Liu et al. 
2017). The operations cost function is calculated as follows, with operating parameters adopted 
from (Hörl et al. 2021) and are illustrated in parameter sections. 

𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐶𝐶𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 × 𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓 + 𝐶𝐶𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑛𝑛𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓𝑝𝑝 𝑜𝑜𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
+ 𝐶𝐶𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝𝑓𝑓ℎ𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓 × 𝑛𝑛𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓𝑝𝑝 𝑜𝑜𝑓𝑓 𝑝𝑝𝑓𝑓ℎ𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓 

Choice dimensions and scoring func�on 
In our simulations, the mode options include car, transit, bike, walk and SAV. Daily itineraries or 
agents’ plans contain up to five different activity types: “home”, “work”, “shop”, “school” and 
“others”, which can be linked via several possible trip-chain combinations. 

 

Regarding the mode split procedure, note that user equilibrium is not reasonable enough to 
depict the mode choice of traveler and goes far from the observed results. This process is 
influenced by a large number of factors, many of which are difficult to quantify and measure. To 
account for these factors in practice, the multinomial logit (MNL) model is applied as follows, 

Pr (𝑚𝑚) =
exp(𝜃𝜃𝑆𝑆𝑛𝑛𝑤𝑤)

∑ exp(𝜃𝜃𝑆𝑆𝑛𝑛𝑤𝑤)𝑛𝑛∈𝑀𝑀
,𝑤𝑤 ∈ 𝑊𝑊 

where for each OD pair 𝑤𝑤 ∈ 𝑊𝑊, Pr (𝑚𝑚) is the probability of choosing mode 𝑚𝑚 and 𝜃𝜃 is 
nonnegative empirical parameters associated with the degree of passenger’s perception of travel 
cost and set to 1 in our model. 𝑆𝑆𝑛𝑛𝑤𝑤 represents the scores (utility) of users choosing mode 𝑚𝑚 
between OD pair 𝑤𝑤. 

In MATSim, the travel plan may be modified given constraints of one day time and real-time 
road conditions. Part of travelers will change their daily activities based on the utilities of 
individuals. Besides monetary costs and travel time, early departure, late arrival, or cancelling an 
activity will also affect activity utility. Agents’ daily activities are modeled in MATSim through 
an iterative learning mechanism based on a quantitative score illustrated in the section below. 
The score of a plan is similar to the mode utility in the mode choice model but incorporates the 
additional utility (score) of activities (Axhausen and ETH Zürich 2016). The basic function of 
calculating the plan score is as follows, 

 

where 𝑁𝑁 is the number of activities in the plan, 𝑆𝑆act,q  refers to the score of activity 𝑞𝑞 and 
𝑆𝑆trav,mode(q) represents the score of trips after activity 𝑞𝑞 via 𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚(𝑞𝑞). The last activity is 
combined with the first one to have the same number of activities and trips. More specifically, 



the activity score is broken down as follows to capture the activity duration performance and late 
arrival penalty. 

 

where 𝑡𝑡typ,q (in hours) is the typical duration of activity 𝑞𝑞, 𝑡𝑡dur,q is the actual duration of activity 
𝑞𝑞, 𝑡𝑡0,q is the duration when the utility of activity 𝑞𝑞 starts to be positive. 𝑡𝑡0,q is set to 𝑡𝑡typ,qexp 
(−10/𝑡𝑡typ,q), 𝑡𝑡start,q is the actual start time of activity 𝑞𝑞, 𝑡𝑡latest arr,q is the latest start time of 
activity 𝑞𝑞 without penalty. Without further information regarding travelers’ preference for early 
departure/late arrival, we set these activity scoring parameters as default in MATSim.  

Conges�on Pricing Schemes 
For this distance-based toll, the amount agents have to pay for the toll is linear to the distance 
they travel in the tolled area. The tolled area is selected as the downtown area where most 
congestion occurred.  
 

 

Figure 2. Toll Area for Congestion Pricing 

 



Two tolling schemes are simulated under different SAV fleet size and pricing strategies. The two 
tolling schemes we investigated, are as follows: 

• Scheme 1: From 7AM-9AM, 5PM-7PM, toll is $0.5 per mile in the cordon. From 9AM-
5PM, toll is $0.1 per mile in the cordon. 

• Scheme 2: From 5PM-7PM, toll is $0.5 per mile in the cordon. 

Results and Recommenda�ons 
Road pricing will charge car users when they traverse specific links in the downtown area. All 
congestion-pricing scenarios evaluated here succeed in reducing the number of car trips. Overall, trips 
made by SAV and personally owned vehicles experience a slight increase in mode share, due to 
congestion pricing that makes car use more expensive. As shown in Table 1, when SAV fleet size is small, 
more car users switch to transit and walk. When SAV fleet size is oversupply (at a fleet size of 8000), 
SAVs will have higher mode share change compared to other mode because the shorter SAV wait times 
and less detoured distance from higher fleet size leads to SAVs being a more attractive mode for travelers. 

Both toll schemes have similar effects on mode share, which pushes private car users to other modes. This 
can be explained by the fact that agents will evaluate their entire trip plans per day to decide their mode 
choice. For instance, in a home-based trip chain, due to subtour mode constraints, car drivers need to 
return their car back home if they decided to commute with private car.   

Table 1. Mode Share Change Compared with Non-toll Scenario 

SAV Setting Toll Strategy Bike Car SAV Transit Walk 
SAV Fleet Size 
=1000, $1/mile 

Toll Scheme 1 +0.1% -2.5% +0.7% +0.8% +0.9% 
Toll Scheme 2 +0.1% -2.5% +0.4% +1.9% +0.1% 

SAV Fleet Size 
=5000, $1/mile 

Toll Scheme 1 +0.4% -3.1% +0.7% +0.8% +1.2% 
Toll Scheme 2 +0.4% -3.1% +1.0% +0.5% +1.2% 

SAV Fleet Size 
=8000, $1/mile 

Toll Scheme 1 +1.5% -3.4% +1.7% +0.4% -0.2% 
Toll Scheme 2 0% -1.6% +1.4% +0.6% -0.4% 

 

The VMT change in Table 2 shows a similar pattern with mode share change, that is less car VMT, but 
more SAV VMT is created. With a heavier tolling scheme (scheme 1), there’s a slightly more decrease in 
total private car travel distance and higher SAV travel distances.  

Table 2. VMT Change Compared with Non-toll Scenario 

SAV Setting Toll Strategy Car SAV 
SAV Fleet Size 
=1000, $1/mile 

Toll Scheme 1 -0.19% +0.55% 
Toll Scheme 2 -0.17% +0.17% 

SAV Fleet Size 
=5000, $1/mile 

Toll Scheme 1 -0.35% +0.36% 
Toll Scheme 2 -0.32% +0.25% 

SAV Fleet Size 
=8000, $1/mile 

Toll Scheme 1 -0.95% +0.40% 
Toll Scheme 2 -0.85% +0.13% 

 

To evaluate the social equity of congestion pricing effects among subpopulations, the synthetic population 
is split into two subpopulation groups based on several different socioeconomic characteristics (i.e., 
household income, employment status, and age). These factors were selected because they play a role in 



transportation mode choice decision-making and understanding their heterogeneous effects on mode 
choice is an important precursor to assess the effects of congestion pricing on mobility and equity. The 
reference group is set as employed adults (age 18-64) who have a household income above $100k, which 
belongs to middle to upper class given the median salary of 81k in Seattle in 2014.  People who are 
elderly, low-income, and/or unemployed are considered disadvantaged subpopulations and compared with 
the reference group.  

Table 3 shows the utility changes comparing these two subpopulation groups. Overall congestion pricing 
has a negative effect on travelers’ utility, mainly because higher monetary costs are generated for trips. 
The disadvantaged group has a higher utility decrease compared to their wealthier counterparts. This is 
mainly because disadvantaged groups are mostly from low-income households and are more sensitive to 
external costs. In some scenarios (e.g., with 8000 fleet SAV), the reference group experiences an overall 
utility increase. This can be explained by less congestion during peak hours and the benefits of using SAV 
where the reference group could gain more travel time savings with driverless vehicles. The results 
indicate an inequity issue inherently occurred in congestion pricing applications, due to the fact that 
different subpopulations have various attitudes towards external costs and travel time savings.  

Table 3. Utility Change in Subpopulations 

SAV Setting Toll Strategy Disadvantaged 
group 

Reference 
group 

SAV Fleet Size 
=1000, $1/mile 

Toll Scheme 1 -12.6% +1.0% 
Toll Scheme 2 -6.9% -3.6% 

SAV Fleet Size 
=5000, $1/mile 

Toll Scheme 1 -15.6% -6.3% 
Toll Scheme 2 -16.5% -8.2% 

SAV Fleet Size 
=8000, $1/mile 

Toll Scheme 1 -14.1% +4.1% 
Toll Scheme 2 -6.0% +2.1% 

 

Table 4 summarizes the collected toll information. In toll scheme 1, with SAV fleet size increases, the 
total collected toll increases, because more mode switch to SAV and SAV operators were also charged for 
the toll. Since congestion pricing pushes more private car users to other modes, the number of people who 
paid toll is decreasing with SAV fleet size increases. The average paid trip length decreases with fleet size 
increases, which means people tend to avoid longer distance trips by car in the tolled area, and the 
increase of SAV fleet size attracts shorter trips.   Toll scheme 2 shows a similar trend to scheme 1, and 
with the only charges from evening peak hours compared to the entire daytime in scheme 1, it collects 
about 35% of the total amount of toll. 

Table 4. Collected Toll Summary (in 5% scale) 

SAV Setting Toll Strategy 
Number of 
people who 

paid toll 

Total toll 
amount 

($) 

Average 
paid trip 

length 
(meter) 

SAV Fleet Size 
=1000, $1/mile 

Toll Scheme 1 13,087 8,432 651 
Toll Scheme 2 3,854 3,018 282 

SAV Fleet Size 
=5000, $1/mile 

Toll Scheme 1 11,826 8,549 424 
Toll Scheme 2 3,538 3,056 130 
Toll Scheme 1 11,113 8,566 351 



SAV Fleet Size 
=8000, $1/mile Toll Scheme 2 3,305 3,063 98 

 

Conclusion and Future Work 
This study uses agent-based simulations to evaluate distance-based congestion pricing in selected areas of 
the city of Seattle, WA. Different SAV settings are also tested with the proposed congestion pricing 
schemes. Results show that congestion pricing influences people’s decisions of mode choice and travel 
utilities.  Since road use is more expensive, congestion pricing pushes some people from private car to 
public transit and more active transportation modes. The toll scheme which only charges a toll during 
evening peak hours (Scheme 2) has a similar effect compared to the toll scheme which charges at 
different time periods during the day (Scheme 1). Different SAV fleet sizes also change the effects of 
congestion pricing. People tend to switch to SAV and use SAV for shorter trips if the fleet is over-supply. 
By comparing the utility changes of disadvantaged group and reference groups, we conclude there’s 
inequity issue occurred in a simple distance-based pricing schemes, because people with different value 
of time/household income would react differently to the external costs.  

Although this study provides some insights into how congestion pricing with SAVs affects mode share 
and traveler utility, there are opportunities for future work. First, in future simulations, we should evaluate 
the scenarios where SAV users will be responsible for the congestion toll, which will likely further 
decrease the mode share of SAVs. Second, more complicated congestion pricing schemes will be tested, 
which depends on the dynamic road congestion conditions, to better serve the purpose of congestion 
pricing to eliminate unnecessary car trips and promote a more equitable transportation system. 
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