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INTRODUCTION
Cities aiming to enhance their transportation systems are quickly adopting shared mobility modes
and improving their connectivity. These changes are intended to provide residents with more
flexibility as they construct routes to various points of interest throughout the city. Specifically,
the goal of integrating more mobility modes is to expand access to goods and services in a safe,
affordable, and reliable way (1–3).

As cities invest in their transportation networks, they require a way to quantify accessibility.
In the transportation literature, accessibility is typically defined on the origin, destination, or origin-
destination (O-D) level. Origin-level metrics often measure how many points of interest (e.g., jobs)
can be reached by a given origin within some travel cost contour (4, 5). Destination-based metrics
are calculated from the opposite perspective, measuring instead how many origins can reach a
given destination within some travel cost threshold (6, 7). More generally, O-D accessibility is
measured strictly as the travel cost between a given O-D pair (8–10), which is the convention
adopted in this paper.

Regardless of the metric of accessibility selected, early literature that sought to evaluate
accessibility in a transportation network assumed the only modes available were personal vehi-
cle, fixed-route public transit, and walking (6, 9, 11, 12). Recently, researchers have also begun
including personal bike (13, 14) and shared modes such as bikeshare and transportation network
companies (TNCs) into accessibility evaluations (15, 16). These studies aimed to discover whether
additional modes can increase access to jobs by better connecting travelers to public transit (i.e.,
solving the first/last-mile problem). This research showed that bikes are a plausible solution when
bikeway infrastructure is available, whereas TNCs do not provide the same benefit due to their
high monetary cost.

In these studies, researchers considered the fact that the disutility of travel encompasses
additional factors such as risk and monetary cost. This reflects a shift in the way that accessibility
is defined. The travel cost associated with accessibility metrics is no longer solely based on travel
time; rather, other factors like reliability, affordability, and safety are also included. For example,
El-Geneidy et al. (17) consider public transit fare cost, Gehrke et al. (7) account for bike safety,
and Cui and Levinson (18) introduce a “full cost accessibility” framework that integrates travel
time, crash risk, emissions, and monetary cost into a single generalized travel cost function.

It is also common that accessibility metrics are reported for a single departure time (11, 19).
However, the accessibility of an O-D pair depends on departure time due to the reality of a fixed-
schedule public transit network. Some studies compute time-dependent accessibility (10, 14, 20,
21), demonstrating how schedule deficits can leave regions underserved for extended periods of
time.

Furthermore, there is a sizeable body of literature whose objective is to identify gaps in
accessibility across socio-demographic groups. Their approach is typically to calculate origin-
level accessibility metrics and then compare these metrics by the origin’s average income level
(21–23). Though this approach allows us to make generalizations about the relationship between
income and accessibility, it assumes a uniform population surrounding each origin and neglects
other demographic characteristics such as age, disability status, and household composition that
influence traveler preferences (24).

A review of the transportation literature related to accessibility reveals a renewed focus on
four elements: new mobility modes, additional traveler costs, time-dependency, and population
group-specific measures. However, a framework that simultaneously accounts for all of these
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dimensions has yet to be introduced. In our work, we address this challenge by developing a
time-dependent, multi-cost, multimodal network model capable of discovering optimal O-D paths
by population group. In particular, we account for the following travel modes: personal vehicle,
TNC, carshare, fixed-route public transit, personal bike, bikeshare, scooter, and walking. The
traveler costs we consider are day-to-day mean travel time, monetary expense, reliability, risk,
and discomfort, all of which are assigned on the minute-level. With this framework, decision-
makers can identify mobility disparities across time and space, as well as determine opportunities
for network investments that may improve accessibility for desired groups and O-D pairs.

METHODOLOGY
Evaluating and comparing time-dependent accessibility across O-D pairs requires three steps: 1)
construct a routable multimodal network, 2) assign a generalized travel cost to each edge and
selected nodes, and 3) determine the shortest path between O-D pairs.

Multimodal Network Model
Our method involves designing a multimodal network model that accounts for the personal vehicle,
TNC, carshare, fixed-route public transit, personal bike, bikeshare, scooter, and walking modes
(25). The set of all travel modes, with the exception of the walking mode, is denoted by M. To
construct the model, we first represent the network for each mode m ∈ M as a unimodal graph
Gm = (Nm,Am), where Nm and Am are the set of graph nodes and edges, respectively, associated
with mode m. The network for each mode must be modeled as a unique graph so that a path that
crosses multiple modes can be found. We illustrate the unimodal graph for each mode in Figure 1,
where each graph is derived based on the original transportation network in Figure 2.

In a multimodal network model, the unimodal graphs are connected by transfer edges in
order to facilitate multimodal route-finding. A transfer edge is an edge that connects two nodes
which are members of different unimodal graphs. Prior to building transfer edges, we first decide
which transfers are permissible based on practical intuition; for example, we permit transfers be-
tween public transit and any other mode, while we do not allow transfers between personal bike
and TNC assuming a TNC vehicle lacks bike storage. We subsequently construct transfer edges
between unimodal graph nodes where transfers could possibly occur (e.g., bus/train/etc. stops of
the public transit graph, bikeshare stations of the bikeshare graph). Finally, we add the origin (O)/
destination (D) nodes along with O/D connector edges, which represent network ingress/egress,
respectively. The final result is a routable multimodal graph, GMM, also called a “supernetwork." It
should be noted that transfer and O/D connector edges are assumed to be traversed by the walking
mode.

Figure 3 displays an example supernetwork based on the original network shown in Figure
2, but only inclusive of the mode set M = {TNC,public transit,bikeshare}. The walking mode is
included by way of transfer edges and O/D connector edges. Figure 3 also shows a plausible mul-
timodal path that begins at the origin, traverses two unimodal graphs, and ends at the destination.

Generalized Travel Cost
After designing the multimodal network topology, we assign a generalized travel cost function
to each edge that is a combination of five time-dependent traveler disutilities: monetary expense,
mean travel time, reliability, risk, and discomfort. These five attributes were selected because they
are measurable and known to impact travelers’ decisions (26). The generalized travel cost is given
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FIGURE 1: The unimodal graph model for various travel modes, including m ∈
{personal vehicle,bikeshare,TNC,carshare,personal bike,public transit,scooter}.
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FIGURE 2: A toy transportation network with 20 directional street segments and 8 street inter-
section nodes. Other significant nodes include carshare stations, bikeshare stations, parking spots,
and bus stops.

FIGURE 3: Supernetwork model for M = {TNC,public transit,bikeshare}. The unimodal graphs
are connected via transfer edges. The origin and destination are connected by O/D connector
edges. We offset the unimodal graphs slightly for the ease of visualization. A multimodal path
leveraging bikeshare, public transit, and walking (for transfer and O/D connector edges) is bolded.

by Equation 1.

GTCe(t) = βx · cx
e(t)+βT · cT

e (t)+βr · cr
e(t)+βk · ck

e(t)+βD · cD
e (t) (1)
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where cx
e(t),c

T
e (t),c

r
e(t),c

k
e(t),c

D
e (t) denote the monetary expense, mean travel time, reliability

measure, risk measure, and perceived discomfort measure, respectively, of edge e when entering
the edge at time t.

The β parameter of a given cost attribute is defined as dollar value associated with a single
unit of that cost attribute. Thus, βx is always equal to $1.00/$1.00, while βT is given by the dollar
value that a traveler assigns to a unit of their time. The benefit of defining the cost function in
this way is that the β parameters can be assigned depending on the population group of interest
or the goals of the transportation planner. For example, a planner conducting an analysis on the
modal options for risk-averse cyclist may choose to assign a relatively high value to βk. Another
advantage of this cost function formulation is that it may be simplified to a subset of the individual
cost factors by simply setting any of the β parameters to zero.

Below we provide the definition of each cost factor that composes the generalized cost
function:

• Monetary expense cx
e(t): sum of fixed and operational monetary costs

• Mean travel time cT
e (t): day-to-day average travel time

• Reliability ck
e(t): 95th percentile travel time, estimated by the mean travel time cT

e (t)
multiplied by a scalar that is time-dependent and mode-specific

• Risk cr
e(t): predicted number of crashes within a given time period, where the prediction

is calibrated based on observed crash data and accounts for road length, road class, speed
limit, and micromobility infrastructure

• Discomfort cD
e (t): discomfort-weighted-length, where the discomfort weight is mode-

specific and indicative of physical exertion required to traverse edge e
In addition to edge costs, movement-based node costs are assigned as necessary. Node

costs are imposed to either penalize or benefit movement from one edge to another edge via a
specific node. For example, free transfers within the public transit network or discounted transfers
between different modes can be implemented by node costs.

Accessibility Analysis
After building the network model and assigning edge and node costs, we conduct accessibility
analysis. This requires finding the time-dependent shortest (lowest generalized travel cost) path
between selected O-D pairs using the decreasing order of time algorithm provided by (27) and
openly available on Github (28). We specifically examine O-D accessibility in this work. For an
accessibility metric, we use the generalized travel cost of the shortest path as well as the individual
cost attributes where appropriate.

EXPERIMENTS AND RESULTS
The real multimodal transportation network of Pittsburgh, PA was used to demonstrate the method.
The nine-neighborhood study area is depicted in Figure 4a along with its street network in Figure
4b. Our case studies investigate the morning period accessibility of the Larimer-Central Oakland
pair, which was selected to represent the commute from a low-income, high-unemployment neigh-
borhood to an area with well-paying jobs. We assumed the population of interest lacked private
modes of transportation such that the supernetwork model included the modes of TNC, carshare,
public transit, bikeshare, scooter, and walking.

All of the data required to build the network topology in Pittsburgh is publicly available.
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(a) The study area’s street network is identified within
the broader context of Allegheny County. The neigh-
borhoods of Larimer and Central Oakland are consid-
ered in the case studies.

(b) The streets, bike lane information, and locations
of bus stops, parking meters, bikeshare stations, and
carshare stations within the study area are shown.

FIGURE 4: The study area in Pittsburgh, PA.

Most of the data used to assign edge costs is also open-source; the only exception is the data
(provided by INRIX) we used for the reliability cost component, which was acquired via a li-
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cense. The implementation of the method is also open-source and provided by the following link:
https://github.com/lgraff/Multimodal_Accessibility.

Three case studies showcase the versatility of the proposed method. These sensitivity anal-
yses highlight how the accessibility of the Larimer-Central Oakland O-D pair varies with three
model elements: 1) βT (value of travel time) in Equation 1, 2) origin departure time, and 3) usage
pricing of shared scooter services.

Case Study 1: Sensitivity Analysis of Value of Travel Time
In the first case study, we varied the value of time parameter (βT ) in Equation 1 from $0.00/hour
to $20.00 hour and evaluated how the mode combination and individual cost attributes of the
shortest path change. The departure time was set at 8:00AM, and the other parameters were fixed
as follows: βr = $15.00/hour, βx = $1.00/$1.00, βr = $0.10/crash, and βk = $0.00/discomfort-
weighted-km (indicating no value for physical discomfort).

FIGURE 5: Individual cost attributes and mode combination along the optimal path as a function
of βT .

Figure 5 illustrates the sensitivity of the optimal path to changes in βT , underscoring the
influence of cost sensitivity on modal options. At lower values ($0.00/hour to $8.00/hour), the
path includes walking and an express bus route, offering lower monetary expenses in exchange for
higher mean travel time and reliability (95th percentile travel time).

As βT increases to $10.00/hour, the optimal path shifts to bikeshare and walking, resulting
in slightly reduced expenses due to the lower usage price of bikeshare compared to fixed-price
public transit. However, the path’s risk and discomfort measures rise, reflecting the increased risks
and physical effort associated with active transportation. The substantial increase in the risk mea-
sure suggests insufficient bikeway infrastructure along the chosen path. Although bikeshare offers

https://github.com/lgraff/Multimodal_Accessibility
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shorter waiting times compared to buses, its travel time remains relatively high when compared
to a Google Maps query suggesting a shorter 24-minute personal bike ride between Larimer and
Central Oakland. This is due to the fact that the specified origin requires a lengthy walk to reach
the nearest bikeshare station.

For βT between $14.00/hour and $20.00/hour, the optimal path includes TNC and walking.
The path’s estimated monetary expense increases about five-fold, though all other cost factors
expectedly decline since TNCs offer direct O-D travel after an initial waiting period. These results
suggest that the high prices of TNC vehicles are justified for traveler groups with high values of
travel time, since TNCs are usually quicker, more reliable under light traffic, more comfortable,
and safer. Consequently, policymakers whose goals are to replace TNC vehicle trips with transit or
active modes may choose to invest in micromobility safety infrastructure, new express bus routes,
or additional bikeshare stations. For users with active mode restrictions, transit agency partnerships
with TNC companies could be a plausible option.

Case Study 2: Sensitivity Analysis of Departure Time
The second case study investigates the sensitivity of accessibility to departure time, which is partic-
ularly relevant for regions with low-frequency transit service. The following parameters were used:
βT = $12.00/hour βr = $15.00/hour, βx = $1.00/$1.00, βr = $0.10/crash, and βk = $0.00/discomfort-
weighted-km.

FIGURE 6: Generalized travel cost as a function of departure time.

Figure 6 illustrates the generalized travel cost and mode combination of the optimal path
during the morning period. We observe a pattern indicative of schedule-based transit: for some de-
parture time windows (e.g., 7:30AM-7:34AM, 7:46AM-7:53AM), the generalized cost decreases
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with time as a bus nears its arrival and waiting time for the bus decreases. Immediately after the
bus arrives, the bikeshare mode is advantageous for a period until another bus arrival is imminent.
The graph also shows two departure times (7:42AM and 8:27AM) for which optimal path involves
transit, bikeshare, and walking, exemplifying the supernetwork model’s ability to identify multi-
modal paths. A comparison between the transit, bikeshare, and walking path and the bikeshare
and walking path reveals improved travel time, risk, and reliability metrics for the former. This is
likely due to the use of an express bus line with fewer stops and a dedicated bus lane. The fact that
this mode combination is rarely selected suggests that bikeshare stations are not well connected
with bus routes in the region surrounding this O-D pair.

Moreover, the study’s findings highlight how emerging modes such as bikeshare can aug-
ment accessibility during periods when transit service is infrequent. In this example, the presence
of bikeshare sets a practical upper limit on the generalized cost just below $25.50. The bikeshare
option allows travelers to forgo longer waiting times for a bus that operates on a fixed schedule,
thereby providing a more robust accessibility solution that does not depend on the time of day.

Case Study 3: Sensitivity Analysis of Scooter Usage Pricing
The objective of the third case study was to determine if lowering scooter prices could improve
accessibility between the selected O-D pair. We conducted this analysis because the results of the
second study revealed that, for the population group characterized by this set of β parameters,
scooters were not a viable mode option at their current rate of $0.39 per minute. Figure 7, displays
the optimal path results of two different usage rates: $0.10 per minute and $0.05 per minute. Note
that the $1.00 fixed fee per ride was also removed for this study.

(a) Scooter price per minute: $0.05 (b) Scooter price per minute: $0.10

FIGURE 7: Comparison of generalized travel cost as a function of departure time for different
scooter per-minute usage prices.

Figure 7a shows that the mode combination of scooter and walking is almost always op-
timal when scooters are priced at the very low rate of $0.05 per minute. The only exceptions are
the few instances when almost no waiting time is required by the bus. At $0.10 per minute (Figure
7b), the optimal path is heavily dependent on departure time. Figure 7b is similar to Figure 6,
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though multimodal paths consisting of scooter, public transit, and walking replace bikeshare and
walking paths in eight instances. In these cases, scooters are used as a first/last-mile solution that
allows travelers to take advantage of a larger array of transit routes. The analysis suggests that
scooters, if priced affordably, can complement transit in two ways: 1) spatially by increasing bus
stop services areas, and 2) temporally by offering an alternative during schedule deficits. We also
tested the scooter price of $0.15 per minute, but the results mimicked those displayed in Figure 6,
which indicates that scooter rates must be greatly reduced for the mode to be part of the theoretical
shortest path between this O-D pair.

CONCLUSION
In this research, we introduce a multi-cost, multimodal network modeling framework to evaluate
time-dependent accessibility. The network model includes the personal vehicle, TNC, carshare,
public transit, personal bike, bikeshare, scooter, and walking travel modes. Each edge is assigned
a time-dependent generalized travel cost that is a function of monetary expense, day-to-day average
travel time, reliability, risk, and discomfort. Differences in population groups are accounted for by
way of differential treatment of cost sensitivities in the travel cost function. Movement-based node
costs are also incorporated.

The network model can be used to determine and compare accessibility metrics across
time and space. We illustrate the model’s flexibility on a large-scale transportation network in
Pittsburgh, PA, highlighting the flexibility of the model via three case studies. The first two studies
showcase the model’s ability to assess the current state of a transportation network. Specifically,
we investigate how the mode and cost breakdown of the optimal path vary in accordance with
value of time and origin departure time. In the third study, we use the model to test the effects of
proposed pricing changes to scooters, finding that scooters can complement schedule-based transit
if priced affordably.

In future work, we will develop additional use cases for the network model. A possible
application involves determining the utilization pattern of the network for different modes and fa-
cilities. This involves aggregating the shortest paths for individuals across various O-D pairs. This
analysis could enable decision-makers to make informed choices on mobility service investments
based on accessibility goals and budget limitations.



K.A. Flanigan 12

REFERENCES
1. City of Austin, Austin Strategic Mobility Plan. City of Austin, 2022.
2. City of Boston, Go Boston 2030. City of Boston, 2017.
3. City Of Pittsburgh, Move PGH Mid-Pilot Report. Department of Mobility and Infrastruc-

ture, 2022.
4. Curtis, C. and J. Scheurer, Planning for sustainable accessibility: Developing tools to aid

discussion and decision-making. Progress in Planning, Vol. 74, No. 2, 2010, pp. 53–106.
5. Geurs, K. T. and B. van Wee, Accessibility evaluation of land-use and transport strategies:

review and research directions. Journal of Transport Geography, Vol. 12, No. 2, 2004, pp.
127–140.

6. Mavoa, S., K. Witten, T. McCreanor, and D. O’Sullivan, GIS based destination acces-
sibility via public transit and walking in Auckland, New Zealand. Journal of Transport
Geography, Vol. 20, No. 1, 2012, pp. 15–22.

7. Gehrke, S. R., A. Akhavan, P. G. Furth, Q. Wang, and T. G. Reardon, A cycling-focused
accessibility tool to support regional bike network connectivity. Transportation Research
Part D: Transport and Environment, Vol. 85, 2020, p. 102388.

8. Järv, O., H. Tenkanen, M. Salonen, R. Ahas, and T. Toivonen, Dynamic cities: Location-
based accessibility modelling as a function of time. Applied Geography, Vol. 95, 2018, pp.
101–110.

9. Tribby, C. P. and P. A. Zandbergen, High-resolution spatio-temporal modeling of public
transit accessibility. Applied Geography, Vol. 34, 2012, pp. 345–355.

10. Farber, S. and L. Fu, Dynamic public transit accessibility using travel time cubes: Com-
paring the effects of infrastructure (dis)investments over time. Computers, Environment
and Urban Systems, Vol. 62, 2017, pp. 30–40.

11. Salonen, M. and T. Toivonen, Modelling travel time in urban networks: comparable mea-
sures for private car and public transport. Journal of Transport Geography, Vol. 31, 2013,
pp. 143–153.

12. Chen, J., J. Ni, C. Xi, S. Li, and J. Wang, Determining intra-urban spatial accessibility dis-
parities in multimodal public transport networks. Journal of Transport Geography, Vol. 65,
2017, pp. 123–133.

13. Djurhuus, S., H. Sten Hansen, M. Aadahl, and C. Glümer, Building a multimodal net-
work and determining individual accessibility by public transportation. Environment and
Planning B: Planning and Design, Vol. 43, No. 1, 2016, pp. 210–227.

14. Pritchard, J. P., D. B. Tomasiello, M. Giannotti, and K. Geurs, Potential impacts of bike-
and-ride on job accessibility and spatial equity in São Paulo, Brazil. Transportation Re-
search Part A: Policy and Practice, Vol. 121, 2019, pp. 386–400.

15. Qian, X. and D. Niemeier, High impact prioritization of bikeshare program investment
to improve disadvantaged communities’ access to jobs and essential services. Journal of
Transport Geography, Vol. 76, 2019, pp. 52–70.

16. Abdelwahab, B., M. Palm, A. Shalaby, and S. Farber, Evaluating the equity implications
of ridehailing through a multi-modal accessibility framework. Journal of Transport Geog-
raphy, Vol. 95, 2021, p. 103147.

17. El-Geneidy, A., D. Levinson, E. Diab, G. Boisjoly, D. Verbich, and C. Loong, The cost
of equity: Assessing transit accessibility and social disparity using total travel cost. Trans-
portation Research Part A: Policy and Practice, Vol. 91, 2016, pp. 302–316.



K.A. Flanigan 13

18. Cui, M. and D. Levinson, Full cost accessibility. Journal of Transport and Land Use,
Vol. 11, No. 1, 2018, number: 1.

19. Tahmasbi, B., M. H. Mansourianfar, H. Haghshenas, and I. Kim, Multimodal accessibility-
based equity assessment of urban public facilities distribution. Sustainable Cities and So-
ciety, Vol. 49, 2019, p. 101633.

20. Owen, A. and D. M. Levinson, Modeling the commute mode share of transit using contin-
uous accessibility to jobs. Transportation Research Part A: Policy and Practice, Vol. 74,
2015, pp. 110–122.

21. El-Geneidy, A., R. Buliung, E. Diab, D. van Lierop, M. Langlois, and A. Legrain, Non-
stop equity: Assessing daily intersections between transit accessibility and social disparity
across the Greater Toronto and Hamilton Area (GTHA). Environment and Planning B:
Planning and Design, Vol. 43, No. 3, 2016, pp. 540–560.

22. Guzman, L. A., D. Oviedo, and C. Rivera, Assessing equity in transport accessibility to
work and study: The Bogotá region. Journal of Transport Geography, Vol. 58, 2017, pp.
236–246.

23. Kelobonye, K., G. McCarney, J. C. Xia, M. S. H. Swapan, F. Mao, and H. Zhou, Relative
accessibility analysis for key land uses: A spatial equity perspective. Journal of Transport
Geography, Vol. 75, 2019, pp. 82–93.

24. Susilo, Y. O. and O. Cats, Exploring key determinants of travel satisfaction for multi-modal
trips by different traveler groups. Transportation Research Part A: Policy and Practice,
Vol. 67, 2014, pp. 366–380.

25. Flanigan, K. A., K. Lightman, L. Graff, C. Lin, and S. Qian, Smart and equitable parks:
Quantifying returns on investments based on probabilistic mobility-dependent correlates
of park usage using cyber-physical system technologies. Mobility 21 Carnegie Mellon Uni-
versity, 2022.

26. Vredin Johansson, M., T. Heldt, and P. Johansson, The effects of attitudes and personality
traits on mode choice. Transportation Research Part A: Policy and Practice, Vol. 40, No. 6,
2006, pp. 507–525.

27. Chabini, I., Discrete Dynamic Shortest Path Problems in Transportation Applications:
Complexity and Algorithms with Optimal Run Time. Transportation Research Record,
Vol. 1645, No. 1, 1998, pp. 170–175.

28. Ma, W., P. Xidong, Q. Zou, and S. Qian, MAC-POSTS. https://github.com/
psychogeekir/MAC-POSTS, 2023.

https://github.com/psychogeekir/MAC-POSTS
https://github.com/psychogeekir/MAC-POSTS

	Introduction
	Methodology
	Multimodal Network Model
	Generalized Travel Cost
	Accessibility Analysis

	Experiments and Results
	Case Study 1: Sensitivity Analysis of Value of Travel Time
	Case Study 2: Sensitivity Analysis of Departure Time
	Case Study 3: Sensitivity Analysis of Scooter Usage Pricing

	Conclusion



