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1 Introduction 

Estimates of existing traffic volumes are used as inputs to multiple transportation-related planning and 

design studies, for example, network level mobility trend analysis, travel demand model calibration, 

level-of-service studies, and signal timing. Presently, the data that are used for such estimates are 

almost entirely collected by fixed-location traffic studies. In these fixed-location studies, an individual or 

an automatic sensor (a pneumatic road tube or a magnetic loop detector, for example) is stationed at a 

specific point location on a roadway segment to determine the number of vehicles that pass the point 

during an extended time interval. It is infeasible to deploy fixed-location sensors or human observers on 

every segment of spatially extensive urban networks. As a result, data are collected on very few 

roadway segments in an urban area. For the segments where data are collected, updates are generally 

conducted on an infrequent basis, possibly resulting in erroneous estimates of traffic volumes, which in 

turn can lead to increased traveler delay, fuel consumption, and pollutant emissions from poor design 

and operations decisions. For example, in Appendix 1, a numerical analysis is presented to indicate the 

increased vehicle delays at a typical signalized intersection that would result from erroneous traffic 

volume inputs. 

With the increasing availability of portable and low-cost automatic sensors that can be mounted on 

vehicles, this project was designed to investigate the potential of obtaining traffic data from sensors on 

municipal vehicles operating in the traffic streams as “mobile sensing platforms.” The public nature of 

municipal vehicle fleets would facilitate the collection and availability of the data for urban 

transportation planning and design. In addition, the size of some fleets would increase the spatial and 

temporal coverage of these mobile sensing platforms.  

The increasing use of video cameras on transit buses in regular operation that was occurring near the 

beginning of the project motivated a focus on the use of video data collected from fixed-schedule transit 

buses to estimate roadway traffic volumes.  Since the video sensors are implemented for other purposes 

of interest to the transit agencies – namely, safety, security, and liability – there would be low, if any, 

additional cost for sensor installation and deployment. In addition, transit bus fleets cover most 

important roadways in an urban area, which responds directly to the short-coming of presently used, 

fixed-location traffic studies. However, unlike in traditional fixed-location data collection, data collected 

from transit buses in operation – or for any mobile sensor operating in the traffic stream – would be of 

very short duration for an individual pass of the sensor past a roadway of interest. However, fixed-

schedule transit buses regularly and repeatedly traverse the same segments many times per day and 

day after day. It is hypothesized that this repeated coverage would allow a large number of independent 

observations of traffic that could be aggregated to diminish the shortcoming of the short duration of the 

observation interval associated with a single pass.  

In this study, sets of video imagery are obtained from transit buses in regular service on The Ohio State 

University campus and processed into time-of-day traffic volume estimates on major campus roadways. 

The traffic volume estimates are obtained from vehicles identified in the video imagery using an 

approach previously developed by the investigators to translate vehicles identified from sensors 

mounted on mobile platforms into traditional traffic volume estimates. Hourly volumes estimated from 

the processed video imagery are compared to hourly volumes obtained from concurrently collected 

road tube data. The results are seen to be encouraging and agree with the underlying hypothesis that 

volumes obtained from bus-based imagery are similar to short-duration traffic counts, which will be 
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noisy for any one observation but which can lead to good estimates of time-of-day traffic volumes when 

aggregated over the multiple observations that can be obtained from a transit bus. When longer time-

of-day periods are considered or when the volume estimates are used to produce estimates of vehicle 

distance travelled across a set of roadway segments, performance of the estimates obtained from the 

video imagery improves further.  

In addition to showing the promise of using already available video imagery obtained at low cost from 

transit buses in regular service, this study included important educational and outreach components. 

Specifically, the empirical validation study used to assess the performance of the proposed approach 

was designed in the context of a term project for a transportation data acquisition and analysis class. 

The term project was conceived, designed, and implemented – and refined and repeated in the 

subsequent offering of the class – as a result of the research validation study. Empirical data obtained 

were used both for the research study and as the basis of the term projects. From an outreach 

perspective the estimates of vehicle distance travel determined for the research study were 

disseminated to transportation planners and administrators at The Ohio State University as the only 

such estimates that presently exist for the campus. 

The rest of this report is organized as follows. The approach used to estimate traditional traffic volumes 

from vehicles identified from a sensor mounted on a mobile platform is explained in Section 2.  In 

Section 3.1, the video data used in the empirical study are described, along with the software and steps 

used to preprocess the data for traffic volume estimation. The context and design of the empirical 

validation study and the multiple data sources and quantities of data are presented in Section 3.2. The 

encouraging results of the empirical study are described in Section 4. In Section 5, the unique education 

and outreach components of this project are explained. Finally, the highlights of the study and areas for 

future research are presented in Section 6. 
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2 Estimating Segment Volumes from Video Imagery 

The approach used to estimate traffic volumes from vehicles observed in the video imagery of a bus 

pass over a segment was originally developed by the project investigators when considering the use of 
LiDAR data collected from sensors that would need to be installed on a sufficient number of municipal 

vehicles for the purpose of traffic monitoring (McCord, et al., 2017). The approach, which is illustrated in 
the time-space diagram of Figure 2.1, is a modification of the moving observer method (Wardop and 

Charlsworth, 1954) that allows for estimation of traffic volume in one direction on a roadway segment 
from a single pass of the bus traveling in the opposite direction on the segment. The schematic on the 

left of the figure depicts the segment of interest between locations xo and xe, with the vehicles to be 
detected traveling in the left lane from top to bottom (“Direction 1”), and the bus traveling in the right 

lane from bottom to top (“Direction 2”). The time-space diagram is presented on the right, with distance 
from xo increasing from bottom to top. Therefore, the trajectory of the bus has positive slope, while the 

trajectories of the vehicles to be detected have negative slopes. An intersection of the bus and a 
trajectory of a vehicle moving in the opposite direction indicates that the bus and the vehicle are at the 

same location (in different lanes) at the same time. This is when the vehicle traveling in Direction 1 
would be detected by the bus-based sensor traveling in Direction 2.  

The bus trajectory indicates that the bus entered the segment (x = xo) at time to and exited the segment 
(x = xe) at time tp. Of interest is the time t1 = tp – to that the bus took to traverse the segment. In the 

illustration, the bus-based sensor detects four vehicles during this time, as indicated by the bus 
trajectory intersecting four vehicle trajectories.  
 

 

Figure 2.1: Illustration of the modified moving observer method used to estimate traffic volume 
from a bus traveling in the opposite direction of the traffic flow 
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To estimate a traffic volume, a hypothetical “virtual observer” is considered to be stationed at the 
downstream end of the segment. In Figure 2.1, this virtual observer is indicated by the “eyeball” located 

at xo to the left of the roadway schematic. Assuming no vehicles exit the segment before reaching the 
downstream end of the segment where the virtual observer is assumed to be located – an assumption 

that is consistent with traditional, fixed-location traffic studies – all detected vehicles would eventually 
pass the virtual observer some time after detection by the bus-based sensor. To determine the time that 

the last event observed by the bus-based sensor (which could be observing a vehicle or, more likely, 
observing that a vehicle was not present at the time the sensor passed) would take to reach the virtual 

observer, a “virtual vehicle” is considered to enter the segment at this instant. The (hypothetical) 
trajectory of this virtual vehicle is depicted with dashes as the rightmost trajectory. Of interest is the 

time t2 = te – tp required for this virtual vehicle to traverse the length of the segment and reach the 
virtual observer. This virtual vehicle travel time t2 could be determined in several ways. Two approaches 

are used in the empirical validation study below.  

The interval during which the virtual observer would observe the n vehicles detected by the bus would 

therefore be t1 + t2 (which, as evident in Figure 2.1, is the same as te – t0), leading to a volume of n 
vehicles in time interval t1 + t2. Assuming that t1 and t2 are measured in minutes,  the estimated hourly 

volume Vh would therefore be:  

𝑉ℎ =
𝑛

𝑡1+𝑡2
 × 60 (2.1) 

where n is the number of vehicles (traveling in “Direction 1”) detected by the bus-based sensor while the 

bus is traversing the segment (in “Direction 2”), t1 is the time in minutes taken by the bus to traverse the 
segment in its direction of travel (“Direction 2”), and t2 is the time in minutes it would take a “virtual 

vehicle” to traverse the segment in the direction of the vehicles being detected (“Direction 1”).  

3 Empirical Data Collection and Processing 

A major emphasis in this project was placed on investigating the performance of the approach 

presented in the previous section to estimate roadway segment traffic volumes from video imagery 

obtained by transit buses in regular operation. Therefore, empirical studies were conducted to produce 

volume estimates from video imagery and compare the results to volume estimates obtained from 

traditional data collection studies.  The data and the context of the empirical studies are described in 

this section. The results of the studies are presented in Section 4.  

3.1 General Video Data Collection and Preprocessing  

Video Data:  The project team has a close association with The Ohio State University (OSU) 

Transportation and Traffic Management (TTM) and collaborates with its leadership, management, and 

staff on a number of initiatives. TTM is responsible for all transportation planning and operations on the 

OSU campus excluding parking operations. Among other functions, TTM manages the OSU Campus Area 

Bus Service (CABS).  Before the 2020 covid-19 pandemic altered operations and ridership, in its fixed 

service operations the CABS fleet contained approximately forty 40-foot buses that served 

approximately 5 million passengers per year across 6 routes of approximately 50 route-kilometers in 

total length. TTM recently installed cameras on its CABS buses for safety, security, and liability purposes. 

(Project investigators worked with TTM on camera selection and installation, in part to allow the type of 

video imagery used in this project.)   
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TTM does not archive the CABS bus video imagery, but only uploads pertinent video files saved on a 

bus’s hard-drive when a need arises for TTM or when a request is received by TTM for incident 

investigations. Given the finite storage capacity of a bus’s hard-drive, the latest recorded video imagery 

regularly overwrites the oldest imagery saved on the hard-drive. Depending on the total number of 

cameras on each bus, their resolutions, the storage capacity of a bus’s hard-drive, and the duration 

during which a bus is jn service, all of which vary across the bus fleet, a given video file remains on a 

bus’s hard-drive between three to four weeks before it is overwritten. Because of the history of 

collaboration between project investigators and TTM/CABS, investigators were able to request and 

receive video files for specified days, times-of-day, and bus routes on several occasions. Requests were 

made to the TTM Transportation Systems Coordinator, the staff member responsible for operations, 

use, and upkeep of the video cameras on the CABS fleet. After receiving these requests, this individual 

would upload the specified video files from the buses’ hard-drives before the video files were 

overwritten from ongoing video recording. He would then share the files with the project team.  

At the beginning of the project, video files were received from two different cameras on a bus – a 

forward-looking camera mounted outside the bus on the driver’s side at the rear of the bus and a 

forward-looking higher resolution camera mounted inside the bus behind the windshield. The positions 

of the two cameras on the bus and example frames are shown in Figure 2.2.  After experimenting with 

both cameras, the project team decided that the improved resolution of the inside, windshield camera 

would be of only marginal benefit and would not warrant the increased handling difficulties that 

resulted from the large file sizes. Therefore, video from the side-mounted camera was subsequently 

requested from TTM and is used in the empirical studies presented below.   

 

Figure 2.2: Driver's side exterior and windshield interior cameras mounting locations  
and sample frames 
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3.2 Targeted Empirical Study: Design and Data 

3.2.1 Overview 

A targeted empirical study was designed to compare roadway traffic volumes estimated from video 

imagery to traffic volumes estimated from traditional data collection studies. This targeted study was 

designed in the context of a class term project in Autumn 2018 and repeated in the subsequent offering 

of the class.  The setting of the class project is described in Section 5, where the education and outreach 

components of this project are explained.  Here, the design of the study for the research investigation of 

performance is presented. Results of the investigation are presented in Section 4.   

The empirical study consisted of estimating traffic volumes from bus-based video imagery between 7 

a.m. to 7 p.m. on October 25, 2018 on a network of major roadway segments on The Ohio State 

University campus and comparing these estimates to traffic volumes estimated from traditionally 

collected, fixed-location traffic counts for the same roadway segments during the same time period. The 

network of roadway segments is depicted in Figure 3.1.  This network consists of 21 bi-directional 

roadway segments, and therefore 42 directional roadway segments, which total 6.26 directional miles. 

 

 

Figure 3.1: OSU roadway network used in 2018 empirical study; numbers refer to segment numbers; 
blue shading indicates segments where road tubes were placed 

The class project was repeated, with slight variations in Autumn 2019. The network of segments of 

interest in that project was expanded to the 7.86-directional mile network illustrated in Figure 3.2, and 

the hours of analysis were reduced to 8 a.m. to 6 p.m. to allow coverage of the limited number of  

manual data collectors over this his expanded network (see below). 
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Figure 3.2: OSU roadway network used in 2019 class project; numbers refer to segment numbers; 
blue shading indicates segments where road tubes were placed 

3.2.2 Data Collection 

Video Data: For the 2018 study, approximately 60 hours of total video were obtained on October 25, 

2018 from 6 different buses on 3 different bus routes that collectively covered all the segments of 

interest in the study between 7 a.m. and 7 p.m. on the day of the study.  For the 2019 study, 72 hours of 

video were obtained on October 24, 2019 from 6 different buses on 5 different bus routes that 

collectively covered all the segments of interest in the study between 8 a.m. an 6 p.m. on the day of the 

study. 

Manual Traffic Counts: Pairs of students in the class were assigned to conduct manual traffic counts for 

specified segment-hours to cover a subset of the large number of segment-hours, as would be done in a 

typical small network traffic study. (Different pairs of students were formed for different times based on 

availability.) In addition, funded undergraduate and graduate students working in the Campus 

Transportation Lab assisted with data collection. Specifically, 54 and 49 segment-hours of manual traffic 

counts were obtained, respectively, from among the total 252 (21 segments x 12 hours) and 260 (26 

segments x 10 hours) segment-hours of interest in the 2018 and 2019 studies. 

Working in teams of two, human data collectors recorded traffic volumes using the common short-break 

and alternating count approaches to manual data collection.  Specifically, a pair of students would 

record a 4-minute traffic volume in one direction on a segment, break for one minute to rest and ensure 

proper data entry, then record a 4-minute traffic volume in the other direction on the same segment, 

break again for one minute, then record a 4-minute traffic volume in the original direction, and so on. 

This approach was begun five minutes before the hour of interest and continued until five minutes after 
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the hour of interest to allow for interpolation of all 5-minute intervals not directly observed because of 

the alternating counts.   

Road Tube Traffic Counts: Long-standing relationships between the project investigators and the Mid-

Ohio Regional Planning Commission (MORPC), which serves as the Metropolitan Planning Organization 

for the Central Ohio area, led to MORPC agreeing to lay road tubes on five segments on the October 25, 

2018 and October 24, 2019 study dates.  MORPC agreed to collect these counts if counting the segments 

was of interest to MORPC’s ongoing planning efforts. Discussions led to agreement as to locations that 

were of mutual interest to MORPC, to the research tasks, and to the class project. Five locations were 

selected in each year, with all five segments being located on the project network in 2018 (see Figure 

3.1) and four segments being located on the project network in 2019  (see Figure 3.2) The fifth road tube 

segment in 2019 is a major arterial  on the border of campus that carries large volumes of through 

traffic. This segment was not of interest for the targeted class project but will be of interest in future 

investigations because of its different traffic characteristics. The MORPC road tubes recorded 15-minute 

traffic volumes in each direction of the segments for the entire day of the project. 

3.2.3 Data Processing and Volume Estimation 

Video Data: A Graphical User Interface (GUI) previously developed by the project team was used to 

semi-manually process video data into information that could be used to estimate vehicle volumes on 

specified segments. Figure 3.3 shows two example images of the GUI. It presents the video with a 

reference line superimposed across the road, along with a suite of buttons for the user to enter data and 

control the video. A user records a vehicle passage by pressing a key any time a vehicle crosses the 

reference line, and the corresponding frame number is stored as a vehicle observation for later 

processing. The video controls include navigation controls (e.g., play/pause, slider to select position in 

the video), file controls (e.g., open, save), and data recording controls (e.g., vehicle passage, undo last 

record). 

 

Figure 3.3: Example images of the GUI used to record vehicle observations 

The GUI was used to implement three steps involved with extracting data from the video imagery and 

forming inputs to the estimation approach described in Section 2. The first step involves “clipping” the 

video files to eliminate long stretches of imagery recorded by the bus’s camera when the bus was 

travelling on segments not of interest for analysis. The second step consists of determining the video 

frame numbers at which the various roadway segments began and ended. This is done by watching the 

video, usually in sped up mode, and identifying when the bus began or ended a segment. A few 
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undergraduate student researchers who are familiar with the bus routes conducted this step after 

training by an experienced graduate student researcher. In the third step, a student watches the video, 

sometimes in sped up mode (depending on the traffic conditions) and clicks when a vehicle is seen 

crossing the reference line in the direction opposite that of the movement of the bus. This step was 

conducted by student research assistants and students enrolled in the course, as part of their term 

project, after they were trained by experienced student researchers and the course instructors, who are 

project investigators.  (It is noted that the second and third steps can be done in either order.) Using this 

process, approximately 40 hours of video were prepared for the validation study reported below. 

The output of these three steps produced, for each roadway segment-direction and bus pass, the 

number of vehicles n detected on the segment-direction and the frame numbers at the beginning and 

end of the segment-direction. Using the frame rate (10 frames per second for the side camera used in 

the empirical study), the difference in end frame number and beginning frame number on the bus pass 

of the segment-direction can be converted to the time t1 that the bus took in traversing the segment-

direction on the pass. As described in Section 2, different approaches can be used to estimate the time 

t2 of the virtual vehicle on a bus pass. Two approaches are used in the empirical studies reported below. 

One approach – designated “t2 = t1” – determines t2 for a pass as t1, the time taken by the bus to 

traverse the segment (in the opposite travel direction of the virtual vehicle) on the pass. The second 

approach – designated “t2 = SL-time” – approximates t2 for a pass as the distance of the segment divided 

by the speed limit. (More refined approaches for determining t2 are left for future research.) With these 

values of n, t1, and t2, Equation (2.1) can then be used to calculate two hourly volume estimates (one for 

each of the two approaches used to determine the value of t2) for each bus pass of the segment-

direction.  

Manual Traffic Counts: As discussed above, 54 and 49 segment-hours, and therefore 108 and 98 

direction-segment-hours of manual counts were collected using the short break, alternating count 

method for the 2018 and 2019 studies, respectively. The manual traffic counts were used to estimate 

hourly directional volumes by linearly expanding the 4-minute counts obtained with the short break 

method to 5-minute volumes and linearly interpolating between observed periods to provide an 

estimate of unobserved periods that results when using the alternating count method (see, e.g., Roess 

et al., 2004).  

In addition, to determine hourly two-direction estimates for segments that did not have any direct 

manual observations for the hour, the typical approach of using control counts (see, e.g., Zhang, et al, 

2006; Roess et al, 2004) was used. This approach assumes that the ratio of a volume occurring during 

one time period, say T1, to the volume occurring during another time period, say T2 (which could contain 

T1), is the same for all segments in a defined class of segments. Therefore, obtaining volumes (usually 

from direct counts) during periods T1 and T2 on a “control count” segment and a volume (again usually 

from a direct count) on a “coverage count” segment during period T2 allows determination of the 

volume on the coverage counts segment during time period T1. This approach allows limited resources 

(student data collectors in this case) to be distributed over a subset of the segment-hours of interest, as 

was done in the class project. Multiple segments or combinations of count segments can typically be 

used to determine the control count volumes during periods T1 and T2 for use with a specified coverage 

count segment. Similarly, multiple periods T2 might also be used.  Several options were indeed available 

in this study, and the different student groups estimated traffic volumes with different assumptions in 

the “traditional” approach, but all options resulted in obtaining 2-direction traffic volumes obtained 
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from non-video data on all 252 segment hours in the 2018 study. The variability in the results, 

emanating from the assumptions used are discussed further in Section 4.2. 

Road Tube Data:  MORPC provided the road tube data to the research team as 15-minute vehicle counts 

by direction. The 15-minute counts were simply summed across the relevant periods to obtain the 

traffic volume of interest. 

4 Validation Study Results 

The hourly estimates for a segment-direction obtained from the video data are determined for a time-

of-day period by averaging all the hourly volume estimates obtained using Equation (2.1) for all bus 

passes within the time-of-day period of interest. To validate the reasonableness of the video-based 

approach, these averaged hourly volumes are compared to hourly volumes determined from the 

concurrent road tube volumes for the same segment-direction for a specified time-of-day period.  In 

addition, an estimated of vehicle distance traveled determined from video-based volumes is compared 

to the vehicle distance traveled value determined from road tube-based volumes for the set of 

segments where road tubes were placed and also compared to estimates that would be obtained from 

traditional approaches for the expanded network. It is noted that although the video-based estimates 

are compared to the road tube-based volumes, measurement errors associated with the road tube data 

imply that the road tube-based volumes are not necessarily “ground truth.” Therefore, in what follows 

the comparisons are referred to as “differences,” rather than “errors.” 

4.1 Segment-based Validation  

4.1.1 Segment-based Validation in Multi-hour Periods 

In a first validation exercise, video and road tube data from the 10/25/2018 data collection effort are 

used to determine average flows on that date for three time-of-day periods: 

• 7:30-10:00, which is called the Morning (M) period 

• 12:00-2:00 pm, which is called the Noon (N) period 

• 2:00 – 4:00, which is called the Afternoon (A) period 

All the video based hourly volume estimates (one from each bus pass) during the period are averaged to 

produce a single hourly volume estimate 𝑉𝑝,𝑠𝑑
ℎ−𝑣𝑖𝑑(𝑎𝑣𝑔)

 estimate for each period p = M, N, A, and segment 

direction sd.  Average hourly video-based estimates are determined separately for each of the two 

approaches – the t2 = t1 approach and the t2 = SL-time approach – used to determine the virtual vehicle 

time t2 (see Section 3.2.3).  

This video-based estimate is compared to the road tube average hourly estimate 𝑉𝑝,𝑠𝑑
ℎ−𝑡𝑢𝑏(𝑎𝑣𝑔)

 for the 

same period p and segment direction sd. The road tube average hourly volume is determined by dividing 

the total volume during the period by the number of hours in the period (2.5, 2.0, and 2.0 for the M, N, 

and A periods, respectively).  

The relative difference for each period p and segment-direction sd, defined as: 

𝑅𝐷𝑝,𝑠𝑑 =  
𝑉𝑝,𝑠𝑑

ℎ−𝑣𝑖𝑑(𝑎𝑣𝑔)
−𝑉𝑝,𝑠𝑑

ℎ−𝑡𝑢𝑏(𝑎𝑣𝑔)

𝑉
𝑝,𝑠𝑑
ℎ−𝑡𝑢𝑏(𝑎𝑣𝑔)  (4.1) 
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is computed for each period and segment direction combination. A positive (negative) value of  𝑅𝐷𝑝,𝑠𝑑  

indicates that the video-based estimate is greater (less) than the tube-based estimate for the time-of-

day period and segment direction combination. In addition, the absolute value 𝐴𝐵𝑆(𝑅𝐷𝑝,𝑠𝑑) of this 

measure of difference is also determined to allow computation of aggregate statistics on the magnitude 

of the differences.  

As discussed in Section 3.2.2, data were collected from road tubes for each of the two directions of 

traffic on five different roadway segments. Considering the three time-of-day periods, 30 (= 3 periods x 

5 segments x 2 direction) 𝑅𝐷𝑝,𝑠𝑑 and 30 𝐴𝐵𝑆(𝑅𝐷𝑝,𝑠𝑑) values are thus determined. Table 4.1 presents 

summary statistics of these 𝑅𝐷𝑝,𝑠𝑑  and 𝐴𝐵𝑆(𝑅𝐷𝑝,𝑠𝑑) values when using the t2 = t1 approach and when 

using the t2 = SL-time approach for t2. It is seen that the t2 = t1 approach leads to video-based estimates 

being less than the tube-based estimated on average (negative sign on the average of the RD values), 

and the t2 = SL-time approximation leads to video-based estimates being greater than the tube-based 

estimates on average (positive sign on the average of the RD values). It is noted, however, that the large 

standard deviations and small sample size (30 observations) would not imply that these values are 

statistically different from 0.  The averages of the absolute value of the relative differences indicate that 

the average magnitude of difference is lower when using the t2 = SL-time approach than when using the 

t2 = t1 approach.  Once again, the relatively large standard deviations and small sample size would not 

imply a statistically significant difference in these values. Nevertheless, the results indicate a slight 

improvement in performance when using the SL-time approximation. 

 

Table 4.1: Summary statistics on relative differences RD and absolute value of relative differences 
ABS(RD) between video-based and tube-based hourly volumes for 30 time-of-day period and 
segment-direction combinations for the two approaches used to determine t2   

 Approximation for t2 

Summary Statistics t2 = t1 t2 = SL-time 

Average of 𝑅𝐷𝑝,𝑠𝑑 values -0.13 0.08 

Average of ABS(𝑅𝐷𝑝,𝑠𝑑) values 0.26 0.21 

Standard deviation (𝑅𝐷𝑝,𝑠𝑑) values 0.29 0.26 

Standard deviation of ABS(𝑅𝐷𝑝,𝑠𝑑) values 0.17 0.18 

 

To further investigate the reasonableness of the time-of-day period video volume estimates, a linear 

regression of the individual 𝐴𝐵𝑆(𝑅𝐷𝑝,𝑠𝑑) values against expected explanatory variables is conducted 

with the following specification: 

𝐴𝐵𝑆(𝑅𝐷𝑝,𝑠𝑑) =  𝛽0 +  𝛽1 log(𝐶𝑉𝑝,𝑠𝑑) + 𝛽2 #𝑃𝑎𝑠𝑠𝑝,𝑠𝑑  (4.2) 
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where log(𝐶𝑉𝑝,𝑠) is the (natural) logarithm of the coefficient of variation of the individual video-based 

volume estimates (one for each bus pass) for time-of-day period and segment-direction combination 

p,sd, and #𝑃𝑎𝑠𝑠𝑝,𝑠𝑑 is the number of bus passes (individual estimates) for combination p,sd. The 

coefficient of variation 𝐶𝑉𝑝,𝑠𝑑 for a combination p,sd is obtained by dividing the standard deviation of 

the individual video-based estimates in period p on segment direction sd by the mean of these video-

based estimates. This variable is intended to represent the variability in the traffic on the segment 

direction during the time-of-day period. More variable traffic would tend to lead to more variability in 

the numbers of vehicles observed (higher CV) across individual bus passes. For a fixed number of bus 

passes (number of volume estimates used in the average) and all other things equal, one would expect 

larger ABS(RD) value (less accurate average video-based estimate, where accuracy is represented by the 

magnitude of the difference from the tube-based volume) for more variable traffic. Therefore, the a 

priori expectation is that the sign on 𝛽1 would be positive. Similarly, all other things equal, one would 

expect the ABS(RD) value to decrease (implying increased accuracy) as the number of bus passes 

(number of observations, or sample size, used to determine the average) increases. Therefore, the a 

priori expectation is that the sign on 𝛽2 would be negative.  

The regression results using video volumes estimated with the t2 = t1 approach are presented in Table 

4.2a, and the results obtained when using video volumes estimated with the t2 = SL-time approach are 

presented in Table 4.2b. The positive sign on the log(CV) coefficient and the negative sign on the #Pass 

coefficient in both tables agree with the a priori expectations discussed above, supporting the 

reasonableness of the video-based estimates.  The low p-values, indicating strong statistical significance, 

associated with the coefficients in Table 4.2b, the higher p-values (indicating lower significance) in Table 

4.2a, and the higher R2 value in able Table 4.2b support the use of t2 = SL-time approach over the t2 = t1 

approach based on the regression results.  

Table 4.2: Regression results obtained from specification in equation (4.2)  

(a) Video estimates obtained using t2 = t1 approach 

Variable 
Coefficient 

Estimate 
Std. Error t-value p-value 

Intercept 0.479438 0.089143 5.378 1.10E-05 

Log(CV) 0.142884 82019 1.742 0.0929 

#Pass -0.00803 0.006598 -1.217 0.2341 

Number of Observations: 30  

R2 : 0.1954 

 



13 

(b) Video estimates obtained using t2 = SL-time approach  

Variable 
Coefficient 

Estimate 
Std. Error t-value p-value 

Intercept 0.553083 0.070615 7.832 2.02E-08 

Log(CV) 0.259731 0.072577 3.579 0.00133 

#Pass -0.011308 0.005519 -2.049 0.0503 

Number of Observations: 30 

R2: 0.5039 

 

In Table 4.2 the variability among the individual video-based estimates, modeled by the Log(CV) variable 

is seen to influence the accuracy of the results (as measured by ABS(RD)) in the expected direction 

(positive sign on the associated estimated coefficient).  It is further hypothesized that the variability in 

the estimates would be less for larger traffic volumes (which would generally lead to more stable 

volumes in the short periods during with the bus sensor observes vehicles) and for larger duration of the 

observation periods. To investigate these hypotheses, a linear regression of the individual 𝑙𝑜𝑔(𝐶𝑉𝑝,𝑠𝑑) 

values is conducted with the following specification: 

log (𝐶𝑉𝑝,𝑠𝑑) =  𝛽0 + 𝛽1 𝑉𝑝,𝑠𝑑
ℎ−𝑣𝑖𝑑(𝑎𝑣𝑔)

+  𝛽2 𝐴𝑣𝑔𝑇𝑖𝑚𝑒𝑝,𝑠𝑑 (4.3) 

where log(𝐶𝑉𝑝,𝑠𝑑) is, again, the (natural) logarithm of the coefficient of variation of the individual video-

based volume estimates for time-of-day period  and segment-direction combination p,sd; as above, 

𝑉𝑝,𝑠𝑑
ℎ−𝑣𝑖𝑑(𝑎𝑣𝑔)

 is the average of the video-based hourly volumes for combination p,sd,  and𝐴𝑣𝑔𝑇𝑖𝑚𝑒𝑝,𝑠𝑑 is 

the average of the t1 + t2 (the duration of the time considered in the estimation for a single pass) values 

taken across all the bus passes (individual volume estimates) in minutes for combination p,sd. It is noted 

that tube-based estimates are not used to determine any of the variables in this specification. 

Therefore, a data record can be determined for every p,sd combination in which video-based volume 

estimates are obtained. There are, therefore, 3 time-of-day periods x 21 segments x 2 directions = 126 

observations (sample size) used in this estimation. 

The estimation results are presented in Table 4.3, with the results obtained using video volumes 

estimated with the t2 = t1 approach presented in Table 4.3a, and the results obtained when using video 

volumes estimated with the t2 = SL-time approach presented in Table 4.3b.  The negative signs on the 

𝑉𝑝,𝑠𝑑
ℎ−𝑣𝑖𝑑(𝑎𝑣𝑔)

 and 𝐴𝑣𝑔𝑇𝑖𝑚𝑒 coefficients and the low p-values indicate statistically significant 

correspondence to the expected results discussed above, again supporting the reasonableness of the 

video-based estimates.  The results are again better with the t2 = SL-time approach than with the t2 = t1 

approach – higher R2 values (indicating better fit) and lower p-values on the coefficients of the 

𝑉𝑝,𝑠𝑑
ℎ−𝑣𝑖𝑑(𝑎𝑣𝑔)

 and 𝐴𝑣𝑔𝑇𝑖𝑚𝑒 variables (indicating greater statistical significance on these expected 
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explanatory variables).  When combined with the results in Tables 4.1 and 4.2, these results indicate 

that using the t2 = SL-time approach is better than t2 = t1 approach. 

Table 4.3: Regression results obtained from specification in Equation (4.3)  

(a) Video estimates obtained using t2 = t1 approach 

Variable 
Coefficient 

Estimate 
Std. Error t-value p-value 

Intercept -0.0755044 0.081226 -0.93 0.354 

𝑉𝑝,𝑠𝑑
ℎ−𝑣𝑖𝑑(𝑎𝑣𝑔)

 (hourly 

volumes) 
-0.0013563 0.0002225 -6.096 1.30E-08 

AvgTime (minutes) -0.1538255 0.0214598 -7.168 6.17E-11 

Number of Observations: 126 

R2:0.3684 

 

(b) Video estimates obtained using t2 = SL-time approach  

Variable 
Coefficient 

Estimate 
Std. Error t-value p-value 

Intercept 0.0180806 0.0755396 0.239 0.811 

𝑉𝑝,𝑠𝑑
ℎ−𝑣𝑖𝑑(𝑎𝑣𝑔)

 (hourly 

volumes) 
-0.0011489 0.0001522 -7.548 8.57E-12 

AvgTime (minutes) -0.2500388 0.0309605 -8.076 5.21E-13 

Number of Observations: 126 

R2: 0.4643 

 

4.1.2 Segment-based Validation in Hourly and 12-Hour Periods 

The video-based estimates are further compared to the tube-based volume estimates at the hourly level 

and at the 12-hour level.  Specifically, hourly video-based volumes and tube-based volumes are 

determined from the October 25, 2018 data for each of the 12 hours between 7 a.m. and 7 p.m. and for 

each of the 10 segment-directions where road tube data are available. The video-based volumes are 

determined using the t2 = SL-time approximation, given that this approximation appears to be better 

than the t2 = t1 approximation, as discussed in Section 4.1.1.   

The hourly video-based and tube-based volumes are presented in Table 4.4. (The segments are denoted 

according to the numbering seen in Figure 3.1, with each segment s having two segment directions 

leading to notation s.1 and s.2 for the segment directions.) Also presented in the table are the numbers 



15 

of bus passes from which an individual video-based hourly volume is estimated using Equation (2.1), the 

12-hour 7 a.m.-7 p.m. segment-direction volumes, and the segment lengths. The 12-hour volumes are 

computed as the sum of the estimated hourly volumes. 

Table 4.4: Video- and road tube-based volumes, number of bus passes used to determine hourly video-
based volume, and lengths of segments 

Segment 
and 

Direction 
 

Sd. 
Length 
(miles) 

 

Variables 
 

Start Time of 1-hour period 12-
hour 

Period 
 

7 8 9 10 11 12 13 14 15 16 17 18 

1.1 0.2563 

Video Volumes 706 630 398 330 310 358 192 262 182 640 320 185 4512 

Tube Volumes 695 679 455 334 297 360 303 268 342 463 406 297 4899 

# passes 4 4 3 3 4 3 4 3 3 4 4 3 42 

1.2 0.2563 

Video Volumes 275 423 276 154 412 332 309 377 539 757 851 442 5147 

Tube Volumes 278 277 232 269 346 422 338 505 479 662 766 453 5027 

# passes 3 4 4 4 3 3 3 4 4 3 3 3 41 

4.1 0.3262 

Video Volumes 671 849 656 504 373 410 353 292 467 558 420 322 5876 

Tube Volumes 775 814 654 502 356 436 353 353 423 442 455 360 5923 

# passes 6 9 9 8 8 10 9 8 9 10 10 9 105 

4.2 0.3262 

Video Volumes 164 236 257 266 345 371 384 432 550 478 669 551 4703 

Tube Volumes 192 202 237 304 319 451 349 506 581 643 725 560 5069 

# passes 8 10 9 10 9 9 9 9 7 9 10 10 109 

10.1 0.2316 

Video Volumes 149 164 174 178 141 226 168 227 285 225 424 174 2535 

Tube Volumes 110 120 135 147 147 186 182 180 193 235 270 216 2121 

# passes 4 6 4 6 4 6 6 5 4 5 5 5 60 

10.2 0.2316 

Video Volumes 135 90 164 116 104 274 191 165 196 200 199 162 1997 

Tube Volumes 115 119 150 151 166 153 146 139 183 165 283 182 1952 

# passes 4 4 4 2 3 3 4 4 4 4 1 4 41 

15.1 0.1939 

Video Volumes 725 667 247 349 320 343 352 311 209 320 301 374 4518 

Tube Volumes 547 461 327 275 284 349 283 287 284 308 299 408 4112 

# passes 4 5 4 5 6 5 6 6 4 6 6 6 63 

15.2 0.1939 

Video Volumes 429 233 266 305 188 378 402 366 673 807 965 593 5605 

Tube Volumes 332 201 252 217 296 296 297 341 458 590 576 392 4248 

# passes 3 3 4 4 4 3 4 4 3 4 3 4 43 

19.1 0.1121 

Video Volumes 90 210 153 179 226 400 154 376 267 183 435 188 2862 

Tube Volumes 80 100 131 166 161 181 174 230 257 235 308 181 2204 

# passes 4 3 4 4 4 3 3 4 4 3 4 4 44 

19.2 0.1121 

Video Volumes 363 183 196 203 109 133 157 90 143 137 215 207 2136 

Tube Volumes 350 320 237 188 175 196 186 204 160 175 170 147 2508 

# passes 3 5 3 5 5 5 6 3 3 3 4 4 49 
 

 

RD values are computed for each segment-direction-hour using the equivalent of Equation (4.1), and 

ABS(RD) values are again computed by taking the absolute value of the corresponding RD value.  For 

each segment-direction, the mean and standard deviation of the distribution of the 12 RD values (one 

for each hour interval) are presented in Table 4.5, and similarly for the ABS(RD) values. In addition, the 

single RD and ABS(RD) values corresponding to the 12-hour volumes for each segment-direction are 

presented. The rows at the bottom of the table portray the means and standard deviations of the 

distribution of 120 (10 segment-directions x 12 hours) hourly values and 10 (one for each segment-

direction) 12-hour values.  
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Table 4.5: Summary statistics of relative differences, RD, and absolute Value of relative differences, 
ABS(RD), for hourly and 12-hour segment-direction volumes 

 Segment-
Direction 

Hourly Volumes 12-hour volumes 

N 
RD ABSRD 

N RD ABSRD 
Mean SD Mean SD 

1.1 12 -0.1019 0.2310 0.1755 0.1762 1 -0.0790 0.0790 

1.2 12 0.0225 0.2511 0.1918 0.1531 1 0.0238 0.0238 

4.1 12 -0.0069 0.1171 0.0844 0.0775 1 -0.0080 0.0080 

4.2 12 -0.0468 0.1316 0.1192 0.0647 1 -0.0721 0.0721 

10.1 12 0.1992 0.2384 0.2580 0.1660 1 0.1954 0.1954 

10.2 12 0.0489 0.3266 0.2582 0.1913 1 0.0232 0.0232 

15.1 12 0.0776 0.2186 0.1789 0.1394 1 0.0987 0.0987 

15.2 12 0.2730 0.2698 0.3341 0.1799 1 0.3195 0.3195 

19.1 12 0.3235 0.4545 0.3793 0.4047 1 0.2986 0.2986 

19.2 12 -0.1290 0.2865 0.2612 0.1607 1 0.0334 0.0334 

                  

Mean 
120 

0.0660 0.2241 
10 

0.0652 0.1267 

SD 0.2968 0.2046 0.1603 0.1122 

 
The mean ABS(RD) of all the hourly volumes is 0.2241, which indicates a difference of over 20% “on 

average” between the hourly video- and tube-based volumes. This average is fairly large, but it is 

important to note that the video-based volumes are determined from bus passes on only one day. As 

explained previously, the motivation for using transit buses as sensing platforms is the ability to obtain 

recurring observations over many days and weeks to estimate typical volumes, and not just one day as 

was done in this study. In addition, Table 4.5 shows variability in the mean ABS(RD) values across 

segment-directions. Determining segment-direction characteristics that would lead to better or worse 

video-based estimates is a topic for future research. However, one characteristic that is expected to be 

associated with the quality of the estimates is the duration of the “observation period” over which the 

volumes were estimated. To investigate the hypothesis that better video estimation performance would 

be obtained with longer observation periods (either from the bus spending more time on the segment 

or from combining more bus passes in the estimation) the segment-direction-hour ABS(RD) values are 

regressed against the sum, across all bus passes in the hour, of the t1 and t2 values on the bus passes. 

The following equation was estimated: 

𝐴𝐵𝑆(𝑅𝐷ℎ,𝑠𝑑) = 0.329541 − 0.012349 𝑇𝑜𝑡𝑎𝑙(𝑡1 + 𝑡2)ℎ,𝑠𝑑   (4.4) 

where 𝐴𝐵𝑆(𝑅𝐷ℎ,𝑠𝑑) is the absolute value of the relative difference for hour h and segment direction sd, 

and 𝑇𝑜𝑡𝑎𝑙 (𝑡1 + 𝑡2)ℎ,𝑠𝑑 is the sum across all bus passes for hour h and segment direction sd of the t1 

and t2 times, in minutes, associated with the bus passes. The R2 (0.1132) is low, indicating that other 

factors are influencing the magnitude of the differences and that the total observation time may not 

affect the accuracy of the estimates linearly. However, the coefficient of the total observation time 

variable has low p-values (0.000172), and its negative sign supports the expectation that increase 

observation time will lead to lower errors.  
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In Table 4.5, one also sees that the magnitude of the mean of the 120 hourly RD values is much less than 

the magnitude of the mean of the 120 ABS(RD) values (0.0660 vs. 0.2241).  This indicates that there is a 

distribution of negative (indicating a lower video-based volume estimate than tube-based volume 

estimate) and positive (indicating a higher video-based volume estimate than tube-based volume 

estimate) RD values. This pattern (i.e., the magnitude of mean hourly RD values being less than the 

mean ABS(RD) values) is seen to hold for all 10 segment-directions. This pattern implies that for more 

aggregate measures, overestimates and underestimates would be expected to “cancel out” and produce 

lower differences. This expectation is confirmed by the ABS(RD) values for the 12-hour volumes 

presented in Table 4.5. Specifically, the mean of the ten ABS(RD) values corresponding to the 12-hour 

volumes is only 0.1267, which is much less than the 0.2241 mean of the ten hourly ABS(RD) values, 

indicating better performance for volumes estimated over longer periods. Indeed, the 12-hour ABS(RD) 

value is less than the mean ABS(RD) value for each segment-direction. 

4.2 Network-based Validation  

Segment volumes serve as inputs to aggregate, network-level measures of vehicle travel.  Arguably, the 

most common network measure of vehicle travel over a set of roadway segments is vehicle distance 

traveled (VDT), defined as the sum, taken over all vehicles traveling on the segments, of the miles 

traveled by the vehicles on the set of segments during the period considered. In most studies, VDT is 

more easily determined by calculating the mathematical equivalent (under fairly loose assumptions), as: 

VDT = ∑ 𝑉𝑜𝑙𝑢𝑚𝑒𝑠𝑑  ×  𝐿𝑒𝑛𝑔𝑡ℎ𝑠𝑑𝑠𝑑  (4.5) 

where Volumesd is the traffic volume on segment-direction sd during the period of interest, and Lengthsdi 

is the length of segment sd. When distance is measured in miles, vehicle miles traveled (VMT) is 

obtained. 

In Table 4.5, one sees that the 12-hour volume ABS(RD) value is less than the mean of the hourly 

ABS(RD) values for each segment-direction, indicating that the over- and under-estimates (when 

compared to the target road tube counts, which as mentioned above are also subject to measurement 

errors) associated with video-based volumes on a segment would be expected to cancel out when 

averaged over segments.  From Equation 4.5, VDT is seen to be a weighted (by segment length) average 

of the volumes.  Therefore, it is expected that VDT values from video-based volume estimates would, in 

general, be more accurate than the estimates of the segment-level volumes used.   

In Table 4.6 12-hour (7 a.m. to 7 p.m.) VMT values for the Figure 3.1 network on October 25, 2018 are 

determined from what are called “traditional” volume estimates and from the video-based volume 

estimates. The corresponding relative differences are also presented, where the relative differences are 

determined as with Equation (4.1), but using VMT instead of period volumes, subtracting VMT obtained 

from the traditionally determined volume estimates from the VMT obtained from the video-based 

volume estimates, and using the VMT obtained from the traditionally determined volume estimates in 

denominator.  Two different networks (sets of segments) are considered.  In one network, only the five 

segments on which road tubes were placed are considered. The traditionally estimated volumes are 

determined directly by summing the road tube counts over the 12 hours. In the other network, all 

twenty segments shown in Figure 3.1 are considered. For the segments on which road tubes were not 

placed, coverage counts were obtained during selected segment-hours and “expanded” to determine 
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12-hour volumes for all segments using traditional “small network” estimation methods, as discussed in 

Section 3.2.3.  As discussed there, different assumptions can be made when implementing this 

expansion, and the five student groups organized for the term project (see Section 5) were free (with 

instructor feedback and documentation of approaches used) to implement approaches they thought 

appropriate for the term project.  Some groups determined VMT from two different small network 

expansion approaches. As a result, seven different VMT estimates were determined from the five 

student groups. The seven values ranged from 20,568 to 25,709 [vehicle miles]. The 22,589 traditionally 

estimated VMT value presented in Table 4.6 is the average of seven different traditionally estimated 

VMT values provided by the student groups.  

Table 4.6: Twelve-hour (7 a.m. to 7 p.m.), October 15, 2018 vehicle miles traveled estimates determined 
from traditional volume estimates and from video-based volume estimates for road tube and 
entire Figure 3.1 network, with relative differences 

Network Considered 
VMT from video-based 

volume estimates 
VMT from traditional 
volume estimates * 

Relative Difference 

Segments with road 
tubes* 

9,581 9,221 0.0390 

Entire network shown 
in Figure3.1** 

23,554 22,589 0.0476 

*For network consisting of road tubes, 12-hour traditional volume estimates are determined directly from road 
tube volumes. 
**For entire network, 12-hour traditional volume estimates are determined by student groups as part of a class 

term project using approaches described in Section 3.2.3. 

 

As expected, the relative differences of 0.0390 when considering the “road tube network” and of 0.0476 

when considering the entire network are less than the average ABS(RD) value – and even of lower 

magnitude than the average RD value – shown in Table 4.5.  Since there does not appear to be a 

systematic over- or under-estimation in the video-based volume estimates, the weighted average used 

when determining VMT averages out errors to produce better estimates.  

As discussed above the traditionally determined VMT estimates produced by the class groups for the 

entire network ranged from 20,568 [veh-mi] to 25,709 [veh-mi]. This range of 5,141 [veh-mi] is over 20% 

of the 22,589 [veh-mi] value presented as the traditionally estimated VMT value. Estimates produced by 

professional traffic engineers would likely have less variability than those produced by student groups. 

Nevertheless, different assumptions can be made even by the professional engineers when expanding 

sample coverage counts to longer period estimates, and the less than 5% differences seen when using 

video-based estimates for either the road-tube network or the entire network are very encouraging in 

light of the variability that would be involved with traditional traffic studies, especially when considering 

that the video-based estimates can be determined from video data obtained for other purposes, 

whereas traditional estimates require added costs for data collection. 

5 Education and Outreach Components 

As mentioned above, the traditional data for the validation studies were collected in the context of a 

course project. CIVILEN 5720: Traffic Engineering Data Collection Studies is an elective Civil Engineering 

course that focusses on understanding, collecting, and processing traditional and emerging types of 



19 

transportation data. The course is co-taught by two of the project investigators and is taken by both Civil 

Engineering undergraduate and Civil Engineering and City and Regional Planning graduate students 

specializing in transportation. In 2018, 27 undergraduate and 3 graduate students took the course. In 

2019, 16 undergraduate students and 6 graduate students took the course.  

A major component of this course relates to traffic volume data collection and analysis and the 

approach of using control and coverage counts to estimate traffic volumes on roadway segments across 

small, regional, and statewide roadway networks. In the past, students would use traditional data 

collection techniques to estimate traffic volumes on three or four OSU campus roadway segments for an 

hour or two. The research project summarized in  this report inspired the co-instructors of the course to 

add a term project involving estimating hourly flows for an extended period of time (12 hours in 2018 

and 10 hours in 2019) over a connected network of campus segments (see Figures 3.1 and 3.2) using 

both traditional methods and the video-based estimation methods being developed in this course.  

As mentioned above students worked in groups of two to manually collect volume counts for a subset of 

the segment-hours of interest. When the project investigators explained the class project and the 

potential outreach component (see below) to the transportation directors at the Mid-Ohio Regional 

Planning Commission (MORPC), which serves as the Metropolitan Planning Organization for the region, 

MORPC agreed to put down road tubes on a small subset of the segments on the day of the study. The 

students combined the road tube and manually collected data using techniques learned in the class to 

estimate hourly volumes across the set of segment-hours. In addition, OSU Transportation and Traffic 

Management uploaded video imagery from its buses on the day of the data collection and supplied the 

imagery to the project investigators. The research project team prepared the video imagery so that the 

students in the class could individually use the Graphical User Interface described in Section3.2.3 to 

digitize vehicles in the imagery into information that could be processed by software developed in this 

project to estimate traffic volumes for each bus pass of a segment direction. (As part of this course, the 

students had previously learned the estimation techniques described in Section 3.2.3.) The estimated 

traffic volumes were then averaged into hourly volumes.  

Students were assigned to teams, and each team developed hourly traffic volumes from the traditional 

data sources and compared the video-based results to those determined from traditionally collected 

data. The student teams also used both sets of traffic volumes to estimate vehicle miles traveled across 

the network during the period and compared the results in terms of estimated fuel consumption during 

the study period. Each team prepared a written report documenting approaches, assumptions, and 

results using technical communication techniques emphasized in the course. 

In addition to addressing the overall topic – collecting and processing data obtained in traditional and 

emerging ways and analyzing the results – the term project fulfilled more general objectives of 

increasing interest to engineering programs, namely, working in teams, effectively communicating 

technical material, and analyzing “laboratory” data. Conducting this project in the campus setting, 

where students are familiar with general traffic flow patterns, had the advantage of making this project 

much more understandable to the students. No formal evaluation of the project was conducted. 

However, most students seemed more engaged in the project than in other aspects of the course. In 

addition, one student commented afterward (without solicitation) that the project was a topic of 

discussion in a job interview with his eventual employer and that his ability to articulate the project and 

show enthusiasm for it were aspects that he believed helped him receive an employment offer. 
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In addition to the research project forming the basis of a term project in two offerings of a course, the 

vehicle miles travelled estimate determined across the campus network for the “typical weekday while 

the semester is in session,” was provided to The Ohio State University’s Transportation and Traffic 

Management (TTM). As mentioned above, TTM is responsible for all transportation planning and 

operations, excluding parking operations, at the university. Although the university has undertaken long-

term transportation planning and ascribes to environmental sustainability principles, it has no ongoing 

program to directly monitor motorized VMT. As seen in Table 4.6, the VMT values obtained from the 

video-based data are very close to those obtained when using traditional traffic study approaches.  

Because of the ability to monitor changes with ongoing video imagery, the video-based VMT values are 

what were presented to TTM.  It is also noted that, in part because of the institutional relations 

strengthened through this project and the unique datasets that can be obtained from the approaches 

developed in this project, two of the project investigators have been invited to discussions on data 

sources for university carbon footprint monitoring. 

6 Summary and Discussion 

This project was conceived to investigate the potential of mounting inexpensive sensors on fleets of 

municipal vehicles that would operate in traffic streams to provide observations of surrounding traffic 

conditions in urban areas. Fleets of municipal vehicles would be expected to cover large portions of 

urban networks where traffic information is presently unavailable from traditional, fixed-location 

sensors. Moreover, the public nature of the fleet would increase the likelihood that the data could be 

obtained at low cost.  

Video cameras are now being installed on transit bus fleets around the world for safety, security, and 

liability reasons. This phenomenon makes fixed route transit buses an appealing set of vehicles to act as 

mobile platforms for traffic data acquisition. Transit bus fleets are generally public sector, and the data 

can therefore be expected to be made available for municipal traffic monitoring. Since the video 

imagery is being collected for other purposes, there would be little, if any, additional cost for sensor 

installation or platform deployment. The buses cover most, if not all, major surface roadways of an 

urban network, and they do so on a repeated basis. This repeated coverage would allow for large 

sample sizes when estimating typical time-of-day traffic patterns. Because of these observations, the 

focus in this project was placed on using video imagery obtained from fixed route transit buses in 

regular service. 

Established relations with the Transportation and Traffic Management at The Ohio State University 

allowed the project investigators to obtain video imagery from buses deployed in regular passenger 

service on the OSU campus. The video imagery obtained was used with software previously developed 

by project investigators to semi-automatically digitize vehicle locations in the imagery into data that 

could be used as input to software developed to estimate traffic volumes. This latter software is based 

on an approach previously developed by the project investigators for use with other sources of data 

collected from a mobile sensing platform.  

The ability to convert bus-based video imagery into traffic volume estimates motivated the design and 

implementation of a large-scale empirical validation study. Video imagery from multiple buses on 

multiple routes traversing a roadway network consisting of 21 bi-directional roadway segments over a 

12-hour period was obtained and processed into hourly and 12-hour traffic volumes. Concurrent volume 
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estimates were obtained on 5 of the 21 roadway segments from road tubes placed by the Mid-Ohio 

Regional Planning Commission for use in the study.  

Results show the promise of using bus-based video imagery for traffic volume estimation. The 

magnitudes of the relative differences between the hourly estimates obtained from the video and from 

the road tube data average approximately 20%, which might be considered a relatively large difference. 

However, regression results show a statistically significant decrease in the relative difference with 

measures associated with increased length of the observation period (number of bus passes sampling 

the hourly volume or total equivalent observation time of the bus passes). Since transit buses are able to 

obtain large numbers of observations from their repeated service over the same roadway segments day 

after day, the statistical relations indicate the potential for increased performance when taking 

advantage of the many more estimates that can be obtained from transit buses in regular service. 

Moreover, the differences between the estimates obtained from the video imagery and from the road 

tube data tend to cancel out when estimating traffic volumes over longer time periods. Specifically, the 

average magnitudes of relative differences (between video- and road tube-based values)  for estimates 

of 12-hour traffic volumes decrease to approximately 10%. Furthermore, the relative difference in 

calculated network vehicle miles traveled (VMT) over the 12-hour period obtained from the video-based 

and road tube-based volume estimates is less than 5%, a difference proposed to be much less than the 

range of VMT estimates resulting when making necessary assumptions with traditional traffic data 

collection approaches. 

The results obtained in the large-scale empirical study are encouraging, but they also motivate 

additional research. As with all first-time empirical studies, it would be helpful to conduct an analogous 

study to see if similar results are obtained. Additional data collected during this project will allow 

conducting an analogous validation study in a follow-on project. In addition, the statistically significant 

results demonstrating that accuracy would increase with increased duration of the observation period 

motivate an empirical demonstration of this effect. It is possible that the additional data collected in this 

study and data that will continue to be collected in a follow-on study will allow such an empirical 

demonstration.  

 Improvements to estimating traffic volumes from the observations in the video imagery should also be 

explored. In this study, better estimates were systematically obtained when the time assumed for the 

“virtual vehicle” to traverse the segment – an important input value when determining the video-based 

estimate – was determined using one of two approaches considered (namely, determining the time 

from the speed limit and length of the segment). Other options for determining this virtual time should 

be developed and tested. Similarly, other options to determine a time-of-day volume estimate from the 

multiple individual estimates should be developed and tested. In this study, the multiple individual 

estimates were combined through a simple average. A weighted average of the multiple estimates 

(where the weights are determined by the equivalent observation period) or an approach that accounts 

for temporal trends within the time-of-day period are possible approaches. 

In addition, the study conducted in this project was one where traffic volume estimates were obtained 

with no prior information of the volumes. If video imagery from transit buses in regular operations were 

to be used for traffic volume estimation, the data would be collected on an ongoing basis. Traffic 

estimates would therefore be available, either from previous bus passes or from traditional traffic 
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studies. Determining a way to use the video-based traffic estimates in an ongoing, “updating” manner 

would be valuable for practical implementation.   

In addition, if the approach considered in this research is eventually to be used in an ongoing manner, it 

would be important to develop more efficient ways to process the imagery into the data used as input 

to the volume estimation module. Presently, a semi-automated Graphical User Interface tool is used to 

provide these input data.  Although the time to transform the video imagery into a final volume 

estimate using the present software is less than would be required to conduct a traditional traffic study, 

the motivation for using existing bus-based video imagery is the ability to provide estimates on many 

more segments and on a much more frequent basis than is associated with present traffic studies. To 

take advantage of the bus-based imagery, ways to automatically identify vehicles in the imagery 

obtained from a mobile platform and to automatically segment the video clips into appropriate roadway 

segments should be developed. 

This project also had important education and outreach components. The large-scale empirical 

validation study was designed to complement a class project in a transportation engineering course 

taken by approximately 30 students per year. Because of the research study, two of the project 

investigators, who are co-instructors of the class, designed a study for the 2018 class offering where 

students collected traditional “coverage” traffic counts over a 12-hour period across the campus 

roadway network of The Ohio State University. The students then worked in groups to combine their 

manually collected coverage counts with concurrently collected “control counts” obtained from road 

tubes using traditional, fixed-location traffic study approaches to estimate hourly volumes and network-

level vehicle miles of travel (VMT) during the study period.  In parallel, the students processed video 

data collected from OSU buses over the network during the same period to determine hourly volumes 

and VMT from the video-based volume estimates and made comparisons with traditionally estimated 

values.  Approaches, assumptions, and results were documented in group reports using technical 

communication practices as presented in the class. A similar study was conducted in the subsequent 

year. Informal instructor observations and student comments indicate that the term project contributed 

to the educational and professional development aspects of this course. 

From an outreach perspective, the estimate of network VMT determined in this study was provided to 

university transportation planners and administrators. University decision makers are increasingly 

interested in environmental sustainability on campus. The otherwise unavailable VMT estimates can be 

used as baseline measures for campus travel monitoring. VMT estimates using data collected in this 

study will be determined in a follow-on study and provided as an annual update to the campus 

transportation and sustainability administrators.  Partly because of the unique datasets and ongoing 

discussions of intermediate results, two of the project investigators have recently been asked to join 

campus discussions on carbon footprint monitoring.  

In summary, the empirical validation study conducted in this project supports the potential of using 

imagery already being collected on transit buses in regular operation to estimate traffic volumes across 

urban roadway networks at low cost. Although additional research is warranted to improve estimates 

obtained and to obtain the estimates more efficiently, the validation results indicate very good 

performance for extended time-of-day periods and for network-level traffic measures. Indeed, these 

results have already been provided as otherwise unavailable benchmark information in an outreach 
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function at The Ohio State University (OSU). Such use of the output of the concepts being developed and 

evaluated should improve the likelihood of ongoing use at OSU and of expanded use in other settings.  
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9 Appendix 1. Numerical Evaluation Study Indicating Potential Savings in Vehicle Delays 

Obtained by Eliminating Errors in Traffic Volume Estimates at Signalized Intersections 

9.1 Evaluation Methodology 

In this appendix, the impact of poor estimates of traffic volumes on signal timing is illustrated using a 

simplified D/D/1 queuing system approach (Mannering and Washburn, 2011) at a hypothetical, two-

phase, four-approach signalized intersection.  Each phase is assumed to control two movements. For 

example, one phase would control northbound and southbound movements, while the other phase 

would control eastbound and westbound movements. A critical approach is considered for each phase. 

Specifically, the critical approach is considered to be that where the ratio of the arrival flow (volume) Qa 

to the saturation flow (volume) Qs is greatest among all movements for the phase. (In this case the 

approach with greater Qa/Qs is considered, since there are only two approaches during each of the 

phases.) Determination of cycle times and green splits at the intersection are determined based on the 

characteristics of the critical approaches. To indicate performance of the cycle times and green splits, 

vehicle delays are similarly determined only for the critical approaches. In this simplified model, only 

through movements on the critical approaches are considered, and these movements are assumed not 

to be affected by any turning movements. 

 The physical characteristics of the hypothetical intersection are patterned on an intersection of two 

major arterials, Lane Avenue and Kenny Road, that cut through The Ohio State University campus.  

Based on this intersection, two lanes of through traffic are considered for each segment approaching 

the intersection. From the curb-to-curb intersection widths, the location of the stop lines, and the speed 

limits at this intersection, the intergreen times (the time to clear vehicles through the intersection after 

the end of a green signal on a phase) are determined to be approximately  8  seconds for each approach. 

The sum of the “amber time used as green” (the times after the signal turns yellow until vehicles stop 

being processed past the stop line) is determined to be approximately 4.5 seconds for each approach. 

Finally, the start-up delay time (the time to begin moving a queue of traffic after traffic signal turns 

green for the phase) is assumed to be 1.5 seconds on each approach.  These values lead to total (i.e., 

summed across the two phases) lost time (time during the cycle not used to process vehicles through 

the intersection, which equals the sum, across critical streams, of the startup delay plus the intergreen 

time minus the amber time used as green) of 10 seconds.  This value is used to determine the total 

effective green time that can be split between the two phases, given a specified cycle time according to 

the governing equation: 

𝐶 =  ∑ (𝐺𝑖
′ + 𝐿𝑖)𝑎𝑙𝑙 𝑝ℎ𝑎𝑠𝑒𝑠,𝑖  (9.1) 

where C is the cycle time for the intersection, 𝐺𝑖
′ is the effective green time (time used to process 

vehicles through the intersections) associated with the critical approach on phase i, and 𝐿𝑖 is the lost 

time associated with the critical approach on phase i.  Given the values assumed for this two-phase 

intersection, where the two phases are denoted A and B, Equation (9.1) becomes: 

𝐶 =  𝐺𝐴
′ + 𝐺𝐵

′ + 10 (9.2) 

where the cycle time C and effective green times 𝐺𝐴
′  and 𝐺𝐵 

′ are measured in seconds, and the value of 

10 is that associated with the sum of the loss times across the two critical approaches.. 
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The numerical evaluation conducted is based on a 15-minute period with cycle time C, (effective) green 

times 𝐺𝐴
′  and 𝐺𝐵 

′ , arrival flow rates on the critical streams 𝑄𝐴
𝑎  and 𝑄𝐵 

𝑎 , and saturation flow rates 𝑄𝐴
𝑠  and 

𝑄𝐵 
𝑠 on the critical approaches assumed to remain constant throughout the period. The saturation rates 

are assumed to be 1.0 [vehicle/second/lane] for both critical approaches  

The performance measure considered is the Total Vehicle Delay TVD taken over all the vehicles on the 

two critical approaches during the 15-minute period. TVD is defined as the sum, taken over all vehicles 

on the critical approaches during the period, of the delay to the vehicle. Numerically, TVD for a critical 

approach can be found by integrating, over time, the queue length on the critical approach at time t.  

(The queue length on an approach at time t is equal to the difference between the cumulative number 

of vehicles that arrived to the stop line at t and the cumulative number of vehicles that passed the stop 

line at t.)  Because the cycle time, green splits, arrival rates, and saturation rates are all assumed to be 

constant throughout the 15-minute period, the queued vehicles on an approach will either clear every 

cycle (when   𝑄𝑖
𝑎𝐶 < 𝑄𝑖

𝑠𝐺𝑖
′) or some of the vehicles will not clear each cycle and queues will continue to 

grow each cycle. By integrating the queue lengths, the TVD for a critical approach during the 15-minute 

(900-second) period can be found as: 

𝑇𝑉𝐷𝑖 =  
450 ×𝑁𝑖

𝐿×𝑄𝑖
𝐴×(𝐶−𝐺𝑖

′)2

𝐶×(1−
𝑄𝑖

𝑎

𝑄𝑖
𝑠⁄ )

, 𝑖𝑓 𝑄𝑖
𝑎  𝐶 <  𝑄𝑖

𝑠 𝐺𝑖
′ (9.3a) 

 𝑇𝑉𝐷𝑖 = 𝑁𝑖
𝐿 [

450(𝑄𝑖
𝑎𝐶2−𝑄𝑖

𝑠𝐺𝑖
′2

)

𝐶
+ (900 − 𝐶)(𝑄𝑖

𝑎𝐶 − 𝑄𝑖
𝑠𝐺𝑖

′)] , 𝑖𝑓 𝑄𝑖
𝑎  𝐶 ≥  𝑄𝑖

𝑠  𝐺𝑖
′  (9.3b) 

for critical approaches i = A, B,  where 𝑁𝑖
𝐿

 is the number of (through) lanes on critical approach i, and the 

other notation is defined above with 𝐶 and 𝐺𝑖
′ in units of [seconds], 𝑄𝑖

𝑎  and 𝑄𝑖
𝑠  in units of [vehicles per 

second per lane], and TVD is in units of [vehicle-seconds] (for the 15-minute or 900-second period).  As 

mentioned above, 𝑁𝐴
𝐿 =  𝑁𝐵

𝐿 = 2 (2 through lanes for each of the critical approaches), and  

𝑄𝐴
𝑠 =  𝑄𝐵

𝑠 = 1.0 (saturation rate of 1.0 [vehicle/second/lane] for each of the critical approaches).   

Given the additional values of 𝑄𝐴
𝑎, 𝑄𝐵

𝑎, 𝐶, 𝐺𝐴
′ , and 𝐺𝐵

; , Equation (9.3a) or (9.3b) is used to determine TVDA 

and TVDB, and the two values (TVDA and TVDB) are summed to determine TVD across the two critical 

streams during the 15-minute period. In the evaluation study, values of 𝑄𝐴
𝑎  are 𝑄𝐵

𝑎assumed as discussed 

below, and values of 𝐶, 𝐺𝐴
′ , and 𝐺𝐵

;  are those that are found to minimize TVD (= TVDA + TVDB).  Cycle 

times between 15 and 180 seconds are considered, and only positive effective green times are 

considered. (Note that from Equation (9.2), given a cycle time and one of the effective green times, the 

other effective green time is uniquely determined.) In this way, the approach used is one that 

determines the solution to: 

Min: TVDA + TVDB     (9.4a) 

subject to: 

𝐺𝐵
′ = 𝐶 −  𝐺𝐴

′ − 10 (9.4b) 

15 ≤ 𝐶 ≤ 180 (9.4c) 
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𝐺𝐴
′  ,  𝐺𝐵

′ ≥ 0 (9.4d) 

𝐶, 𝐺𝐴
′ , 𝐺𝐵

′   integer (9.4e) 

 

Formulation (9.4) is solved numerically by considering all 1-second values of C between 15 and 180 

seconds and, for each value of C, all 1-second values of 𝐺𝐴
′  greater than 0 and less than the smallest 

value that leads to a non-positive value of 𝐺𝐵
′ , as determined by (9.4b). 

9.2 Application of Methodology to Evaluation Study 

The evaluation study is developed to indicate the value of improving the estimates of traffic volumes, 

which are represented by the arrival flows 𝑄𝑖
𝑎. To bound the value of this improvement, the reduction in 

total vehicle delay that would be achieved by knowing true flow values 𝑄𝑖
𝑎,𝑡𝑟𝑢𝑒 , rather than erroneously 

estimated flow values of 𝑄𝑖
𝑎,𝑒𝑠𝑡, is determined. The approach is described in the following “Vehicle Delay 

Savings Approach.” 

Vehicle Delay Savings Approach 

Step 0. Input values:  Given number of through lanes on critical stream approach A and B (2 

lanes each in this study ), sum of lost times across phases (10 seconds in this study), and 

saturation flow rates (1 vehicle/second/lane on both approaches in this study). Assume true 

values (𝑄𝐴
𝑎,𝑡𝑟𝑢𝑒 , 𝑄𝐵

𝑎,𝑡𝑟𝑢𝑒) and estimated values (𝑄𝐴
𝑎,𝑒𝑠𝑡, 𝑄𝐵

𝑎,𝑒𝑠𝑡) of arrival flow rates 𝑄𝐴
𝑎  and 𝑄𝐵

𝑎. 

Step 1. Suboptimal signal timing: Solve Formulation (9.4a-e) for cycle time and effective green 

times (𝐶𝑒𝑠𝑡 , 𝐺𝐴
′,𝑒𝑠𝑡 , 𝐺𝐵

′,𝑒𝑠𝑡)  using estimated arrival flows (𝑄𝐴
𝑎,𝑒𝑠𝑡, 𝑄𝐵

𝑎,𝑒𝑠𝑡) to determine the signal 

timing values that would be selected with the erroneous estimates of arrival flows. 

Step 2. Total vehicle delay with suboptimal signal timing: Use Equation (9.3a,b) with 

(𝐶𝑒𝑠𝑡 , 𝐺𝐴
′,𝑒𝑠𝑡 , 𝐺𝐵

′,𝑒𝑠𝑡) (from Step 1) and true arrival flows (𝑄𝐴
𝑎,𝑡𝑟𝑢𝑒 , 𝑄𝐵

𝑎,𝑡𝑟𝑢𝑒 ) (from Step 0) to 

determine the 15-minute total vehicle delay for each critical stream, 𝑇𝑉𝐷𝐴
𝑒𝑠𝑡and 𝑇𝑉𝐷𝐵

𝑒𝑠𝑡 , 

resulting from the use of the erroneous flow estimates in developing the signal timing. 

Determine the total 15-minute vehicle delay 𝑇𝑉𝐷𝑒𝑠𝑡  resulting from the use of the erroneous 

estimates by summing the two values, 𝑇𝑉𝐷𝑒𝑠𝑡 =  𝑇𝑉𝐷𝐴
𝑒𝑠𝑡 + 𝑇𝑉𝐷𝐵

𝑒𝑠𝑡 .  

Step 3. Optimal signal timing: Solve Formulation (9.4a-e) for cycle time and effective green 

times (𝐶𝑜𝑝𝑡 , 𝐺𝐴
′,𝑜𝑝𝑡 , 𝐺𝐵

′,𝑜𝑝𝑡)  using true arrival flows (𝑄𝐴
𝑎,𝑡𝑟𝑢𝑒 , 𝑄𝐵

𝑎,𝑡𝑟𝑢𝑒) (to determine the optimal 

signal timing values that would be selected when using the true estimates of arrival flows. 

Step 4. Total vehicle delay with optimal signal timing: Use Equation (9.3a,b) with 

(𝐶𝑜𝑝𝑡 , 𝐺𝐴
′,𝑜𝑝𝑡

, 𝐺𝐵
′,𝑜𝑝𝑡) (from Step 3) and true arrival flows (𝑄𝐴

𝑎,𝑡𝑟𝑢𝑒 , 𝑄𝐵
𝑎,𝑡𝑟𝑢𝑒) (from Step 0) to 

determine the 15-minute total vehicle delay for each critical stream, 𝑇𝑉𝐷𝐴
𝑜𝑝𝑡  and 𝑇𝑉𝐷𝐵

𝑜𝑝𝑡 , 

resulting from the use of the true flow estimates in developing the signal timing.  Determine the 

total 15-minute vehicle delay 𝑇𝑉𝐷𝑜𝑝𝑡  resulting from the use of the true estimates by summing 

the two values, 𝑇𝑉𝐷𝑜𝑝𝑡 =  𝑇𝑉𝐷𝐴
𝑜𝑝𝑡 +  𝑇𝑉𝐷𝐵

𝑜𝑝𝑡 .  
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Step 5. Savings in total vehicle delay:  Determine the 15-minute savings ΔTVD as  

∆𝑇𝑉𝐷 =  ∆𝑇𝑉𝐷𝑒𝑠𝑡 −  ∆𝑇𝑉𝐷𝑜𝑝𝑡 ,   where ∆𝑇𝑉𝐷𝑒𝑠𝑡  tand ∆𝑇𝑉𝐷𝑜𝑝𝑡are determined in Steps 2 and 

4, respectively.  

This Vehicle Delay Savings Approach is run for multiple combinations of “true” and “estimated” flow 

inputs,  (𝑄𝐴
𝑎,𝑡𝑟𝑢𝑒 , 𝑄𝐵

𝑎,𝑡𝑟𝑢𝑒), (𝑄𝐴
𝑎,𝑒𝑠𝑡, 𝑄𝐵

𝑎,𝑒𝑠𝑡). Specifically, the following values of true arrival flow on critical 

approach B are considered: 

𝑄𝐵
𝑎,𝑡𝑟𝑢𝑒 = 0,15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45 [veh/lane/sec].   (9.5a) 

For each value of 𝑄𝐵
𝑎,𝑡𝑟𝑢𝑒 , three values of true arrival flows on critical approach A are considered: 

𝑄𝐴
𝑎,𝑡𝑟𝑢𝑒 =  𝐾 × 𝑄𝐵

𝑎,𝑡𝑟𝑢𝑒 , K = 1, 2, 3. (9.5b) 

In this way, K = 1 represents identical arrival flows on the two streams, and K = 2 and K = 3 represent 

increasingly more disparity between the true arrival flows on the two streams. 

For each input pair of true arrival flows (𝑄𝐴
𝑎,𝑡𝑟𝑢𝑒 , 𝑄𝐵

𝑎,𝑡𝑟𝑢𝑒) determined from (9.5a) and (9.5b), nine pairs 

of input estimated arrival flows (𝑄𝐴
𝑎,𝑒𝑠𝑡 , 𝑄𝐵

𝑎,𝑒𝑠𝑡) are considered, namely: 

(𝑄𝐴
𝑎,𝑒𝑠𝑡 , 𝑄𝐵

𝑎,𝑒𝑠𝑡) = (𝛼 × 𝑄𝐴
𝑎,𝑡𝑟𝑢𝑒 , 𝛽 × 𝑄𝐵

𝑎,𝑡𝑟𝑢𝑒 ),  𝛼 = 0.5, 1.0, 1.5,   𝛽 = 0.5, 1.0, 1.5.  (9.5b)  

Values of 0.5 (1.5) for 𝛼 or 𝛽 indicate that the estimated flows are less than (greater than) the true 

flows, whereas values of 1.0 indicate no error in the estimated flows. (Note that when both  𝛼 and 𝛽 are 

equal to 1.0, one would set the signal timing values according to estimated arrival values that equal the 

true arrival flows, and no savings would result from estimating the arrival flows better, since they are 

assumed to be known without error in this case.) 

All combinations (QB, K, 𝛼, 𝛽) determined in this way  are considered such that the intersection is not 

saturated when assuming the true values of the arrival rates, that is, such that values of (𝑄𝐴
𝑎,𝑡𝑟𝑢𝑒 , 

𝑄𝐵
𝑎,𝑡𝑟𝑢𝑒 ) can lead to some (𝐶𝑜𝑝𝑡 , 𝐺𝐴

′,𝑜𝑝𝑡 , 𝐺𝐵
′,𝑜𝑝𝑡) combination that allows the queues to clear for both 

approaches in the recurring cycle. Note that the queues would not necessarily clear when using the 

estimated arrival rates or when using the true arrival rates with the cycle and (effective) green times 

determined with the estimated arrival rates.  The resulting savings in total vehicle delay are shown in 

Figure 9.1 as a function of the input 𝑄𝐵
𝑎,𝑡𝑟𝑢𝑒 , K, α, and β values. 
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Figure 9.1 Reduction in total vehicle delay for 15-minute period across two critical streams for simulated intersection; QB = true arrival rate in 
vehicles per second per lane on minor approach (approach B); K = factor for true arrival rate on major approach (approach A),  
QA = K x QB; alpha = factor assumed for estimated arrival rates on major approach, QA

esr = alpha x QA; beta = factor assumed for 
estimated arrival rates on minor approach, QB

est = beta x QB 
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From the graphs, it is noted that the savings in knowing true arrival flow rates (volumes) depend on the 

values of the arrival flow rates, Qa = KQB and QB, and, depending on the true arrival flow rates, whether 

the true arrival flow rates are overestimated (alpha or beta >1) , underestimated (alpha or beta <1), or 

estimated correctly (alpha or beta = 1).  However, as would be expected, the saving is generally greater 

at heavier volumes (higher QB and K values). It is also noted that, although the queuing and delay models 

are simplified representations of real vehicle performance at an intersection, the values of α and β 

representing differences between true and erroneously assumed values on arrival flows are only crude 

parameter values, and one would not be able to eliminate all error in assumed arrival flows with better 

traffic monitoring, the approximately 1.0(105) [vehicle-seconds] (= 27.8 [vehicle hours]) or greater of 

delay savings during the 15-minute analysis period seen at many of the evaluated values are substantial. 

These large values would be attributable to an inability to clear the queues during a cycle when using 

erroneous volumes to determine signal timings. 

10 Appendix 2. Research Products from this Project 

10.1 Conference Presentations 

McCord, M.R., and Mishalani, R.G. The Ohio State University Campus Transit Lab: A Living Laboratory 

Platform for Research, Education, and Outreach. TransitData 2020 6th International Symposium, 

Toronto, Canada, August 11-13, 2020.  

Mishalani, R.G., McCord, M.R., Coifman, B., and Hansel, G. Roadway Traffic Flow Estimation using Video 

Imagery Data Collected from Transit Bus Cameras, TransitData 2019 5th International Workshop and 

Symposium, Paris, France, July 7-11, 2019. 

10.2 Data 

Dataset containing hourly volumes determined from video data, from road tube data, and from 

manually collected data, and numbers of bus passes used in hourly estimations are available at 

https://osu.box.com/s/9rgftpe72zene85cpj4hcu7dmta4p1ck 

 


