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1. Introduction 
The rapid advancements in vehicle autonomy and artificial intelligence (AI) have propelled autonomous 
vehicles (AVs) from experimental prototypes to technologies undergoing extensive road testing (Traffic 
Lab, 2024) and, more recently, limited commercial deployment (Waymo, 2024). While these advances 
signal the potential for a transformative shift in personal and shared mobility, a critical challenge to 
integration of AV into the real-world transportation systems as well as our personal and professional lives 
is establishing regulatory and policy frameworks that define AV behavior in complex situations. In 
particular, such principles would determine how an AV makes decisions in dilemma-inducing situations, 
for instance, whether an AV should prioritize the safety of the onboard passengers over that of pedestrians 
in unavoidable collision circumstances. 

The present study approaches the decision-making challenge not from a purely philosophical standpoint, 
which seeks to prescribe normative rules for AV behavior (Geisslinger et al., 2021), but rather from the 
perspective of public expectations and perceptions which is at the intersection of economics, psychology, 
and cognitive science. These disciplines offer a lens into the processes underlying human decision-making, 
particularly when choices carry consequences for others as well. Building on this understanding, the present 
research seeks to examine how the public envisions AV decision-making by investigating the cognitive and 
attitudinal factors that shape these expectations. The findings aim to inform AV policy and system design, 
ensuring that decision-making frameworks align with both technical feasibility and widely held public 
preferences. 

Research on AV decision-making has increasingly moved beyond purely technical considerations to explore 
how public expectations, socio-political acceptance, and behavioral realities should inform AV policy and 
design. This literature reflects a shift from normative, philosophy-driven prescriptions toward empirical 
studies that capture how people actually reason about safety trade-offs and risk in both hypothetical and 
real-world contexts. In reviewing the most relevant works, we focus on empirical and experimental findings 
as well as review-based contributions that illuminate how individuals navigate safety dilemmas, and how 
these preferences might be embedded into AV decision frameworks. 

From a human-centered systems standpoint, Xing et al. (2021) provide a comprehensive review of 
collaborative autonomous driving systems, emphasizing the pivotal role of cognitive factors (such as 
situational awareness, shared control strategies, and trust calibration) in enabling effective human–AV 
interaction. They show that systems incorporating real-time driver state monitoring, which captures 
indicators like attentional focus, readiness, and cognitive load, substantially enhance public acceptance of 
AVs. By analyzing two principal interaction modes, shared control (where human and autonomy jointly 
manage driving) and takeover control (where responsibility transfers entirely between agent and driver), 
the authors highlight the need for interfaces that support smooth transitions and maintain operator 
understanding. 
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At the policy and industry level, Martinho et al. (2021) challenge the prevailing academic emphasis on 
extreme case dilemmas by examining real-world priorities within the AV industry. Through a systematic 
review of corporate reports and technical publications from AV developers in California, the authors reveal 
that industry attention is heavily concentrated on safety, cybersecurity, liability mitigation, and regulatory 
compliance, rather than philosophical thought experiments such as the trolley problem. While the academic 
literature is dominated by hypothetical scenarios, AV companies appear to address those dilemmas only 
indirectly or implicitly, instead opting for practical design strategies that minimize risk, expedite incident 
investigations, and favor robust crash avoidance systems. 

Complementing these perspectives, Bergmann et al. (2018) explore the essential role of socio-political 
acceptance in shaping AV decision-making policies. Through experimental philosophy, the authors present 
real-world driving dilemmas, revealing that participants demonstrate a willingness to sacrifice themselves 
to save others and consider the age of potential victims when making split-second decisions, even when 
such actions may contravene traffic norms. These findings underscore that public expectations balance self-
preservation with broader safety, suggesting that AV algorithms must not only reflect technical feasibility 
but also align with social intuitions, especially in situations requiring judgment. 

Radun et al. (2019) moves beyond theoretical trolley-type dilemmas by examining a real-world scenario 
often faced by drivers as whether veering off-road to avoid a potentially fatal collision with a lighter 
oncoming vehicle would risk a rollover that could endanger the driver’s safety. This real-life dilemma 
highlights real-world stakes and complexities that standard thought experiments overlook. Their 
experimental survey reveals that, in practice, drivers show a clear reluctance to endanger themselves for 
the sake of others. Crucially, this finding underscores that public decision-making in real-world scenarios 
is shaped not by abstract rules but by concrete risk assessment and personal safety considerations. Krügel 
and Uhl (2022) challenge the conventional framing of AV regulations, which often centers on stark binary 
dilemmas with zero uncertainty. Across three online experiments, they reveal that the public does not simply 
favor minimizing accident risk at all costs. Instead, respondents prefer a nuanced balancing of multiple 
harms in real-world decision-making contexts. This indicates that preferences in such situations emerge 
differently when risky scenarios involve trade-offs rather than clear-cut, high-stakes outcomes. 

The empirical study by Sui (2023) provides critical insights into how the public values different algorithms 
for AV decision-making. Through an online survey of 460 participants in China, the study assesses 
preferences across four algorithmic approaches, utilitarianism, rawlsianism, egoism (favoring self-interest), 
and a hybrid model, using a combination of trolley-like dilemma scenarios and Likert-scale acceptability 
ratings. The results challenge simplistic assumptions so that both pure egoism and pure utilitarianism face 
similarly high rejection rates, as participants disfavor algorithms that either promote complete self-sacrifice 
or prioritize the greater good at personal expense. Instead, a hybrid strategy, which balances harm 
minimization with self-responsibility, emerges as the most endorsed, indicating public preference for 
context-sensitive frameworks over rigid paradigms. 
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The present study aims to address the above gaps in understanding public attitudes toward AV decision-
making by developing a data-driven Dynamic Bayesian Network (DBN) model. Unlike normative 
approaches that prescribe how AVs should behave, our framework adopts a descriptive perspective, 
capturing how the public actually envisions AV behavior in realistic, context-dependent scenarios. The 
model is calibrated using empirical data from two distinct urban populations and simulates scenario-specific 
attitudes toward confidence in AV safety and willingness-to-ride with AV, accounting for variations in 
baseline confidence and situational context. The findings offer actionable insights on multiple fronts. First, 
the results provide policymakers, industry stakeholders, and transportation planners with evidence-based 
guidance for designing AV policies and systems that align with public expectations. Second, the model 
advances travel behavior research by integrating cognitive and attitudinal factors, such as trust and 
acceptance, into AV adoption analysis. Finally, by delivering a scalable, empirically grounded framework, 
this work contributes to broader AI governance discussions, offering a transparent and adaptable tool for 
aligning autonomous decision-making systems with user-centered priorities. 

The remainder of the report is structured as follows. Section 2 presents the study methodology, including 
the DBN framework. Section 3 details the survey design and data collection process, followed by Section 
4 analyzing the empirical dataset. Section 5 reports the simulation results from calibrating the DBN model 
under alternative policy scenarios. Finally, Section 6 concludes with a summary of key findings, limitations, 
and directions for future research. 

2. Methodology 
Bayesian Networks (BNs) have gained significant attention as a powerful analytical framework for 
modeling complex interdependencies across domains such as economics, medicine, environmental science, 
and transportation (Pearl, 2009). A BN is a directed probabilistic graph in which nodes represent variables 
and edges encode conditional dependencies, offering an intuitive, visual representation of how factors relate 
to one another. Foundational work by Pearl (1988) established the theoretical basis for BNs, with 
comprehensive summaries and methodological advancements provided by Friedman et al. (1997), Koski 
and Noble (2011), and Scutari and Denis (2021). Unlike traditional regression models, BNs do not require 
pre-specified functional forms, enabling the discovery of key interactions and interdependencies directly 
from the data. BNs also provide a formal framework for causal reasoning, allowing researchers to simulate 
how changes in one factor can propagate through the network to influence others, which provides an 
essential capability for realistic scenario analyses in AV policy research. Additional advantages include the 
ability to integrate expert knowledge with empirical data and to handle missing data through probabilistic 
reasoning, thereby reducing bias and preserving the effective sample size (Liu and Motoda, 2012; Madden, 
2009; Oh et al., 2022; Jo et al., 2023). Traditional BNs can be extended to DBN by incorporating temporal 
dependencies, enabling the identification of both contemporaneous and temporal relationships among 
variables (Dagum et al., 1992). This allows DBNs to capture interactions at a single time point as well as 
the evolution of these relationships over time. 
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Building on these concepts, Figure 1 presents the overarching framework for DBN modeling of attitudes 
towards AV. This framework operationalizes the DBN approach for our study, linking baseline attitudes to 
post-policy perceptions while integrating socio-demographic and behavioral predictors. The two “time 
slices” correspond to baseline perceptions before policy implementation (𝑡 = 0) and post-policy 
perceptions under a given scenario (𝑡 = 1). Each node in the network represents either an attitudinal 
measure — namely, confidence in AV safety (𝐶𝑂𝑁𝐹!)  and willingness-to-ride (𝑊𝑇𝑅!) — or a relevant 
predictor such as socio-demographic characteristics, travel behavior indicators, and the applied policy 
scenario (𝑃"). Within each time slice, directed edges represent conditional dependencies among concurrent 
variables. For example, at baseline (𝑡 = 0), confidence in AV safety and willingness-to-ride are allowed to 
influence one another, reflecting the empirical link between perceived safety and readiness to use AV 
technology. Temporal transitions are modeled through inter-slice dependencies, such that post-policy 
confidence (𝐶𝑂𝑁𝐹#) is conditionally dependent on its baseline value (𝐶𝑂𝑁𝐹$), baseline willingness-to-
ride (𝑊𝑇𝑅$), and the policy scenario(𝑃"). Similarly, post-policy willingness-to-ride (𝑊𝑇𝑅#) depends on 
its baseline value (𝑊𝑇𝑅$), baseline confidence (𝐶𝑂𝑁𝐹$), and the scenario. This design captures both 
autocorrelation (attitude persistence) and cross-effects between confidence and willingness over time. 

 
Figure 1. Overarching Framework for Dynamic Bayesian Network-Based Modeling of Confidence 
in AV Safety and Willingness-to-Ride 

Building on the structure outlined in Figure 1, the DBN mathematically formalizes the relationships among 
baseline and post-policy variables through a joint probability distribution, factored according to the 
network’s conditional independencies. Let 𝒀$ denote all variables at 𝑡 = 0 and 𝒀# all variables at 𝑡 = 1. 
The model factorizes as written in Eq. (1), where Pa(𝑌%#) denotes the set of parents of 𝑌%# in the DBN, 
including any baseline predecessors. Parameters are estimated using maximum likelihood from the 
observed baseline survey data. Equation (1) can be expanded into Eqs. (2) and (3), where 𝑌&$ and 𝑌%# 

respectively indicate baseline variable 𝑗 at 𝑡 = 0 and post-policy variable 𝑖 at 𝑡 = 1. The first product term 



 5 

in Eq. (2) represents the factorization of the baseline joint probability according to intra-slice dependencies 
at 𝑡 = 0 and the second product term represents the transition model, factoring post-policy variables given 
their intra-slice and inter-slice parents. In the present study, the AV attitudinal change component in Eq. (2) 
is expressed as written in Eq. (3). 

𝑃(𝒀$, 𝒀#) = 𝑃(𝒀$)6𝑃(𝑌%#|Pa(𝑌%#))
%

 (1) 

𝑃(𝒀$, 𝒀#) = 86𝑃(𝑌&$|Pa(𝑌&$))
&

9
:;;;;;<;;;;;=
'(")*%+)	"*%-)	(!/$)

× ?6𝑃(𝑌%#|Pa(𝑌%#))
%

@
:;;;;;<;;;;;=
12"!342*%-5	"*%-)	(!/#)

 (2) 

𝑃(𝒀$, 𝒀#) = 𝑃(𝐶𝑂𝑁𝐹$|𝑊𝑇𝑅$)
∙ 𝑃(𝑊𝑇𝑅$|𝐶𝑂𝑁𝐹$) × 𝑃(𝐶𝑂𝑁𝐹#|𝐶𝑂𝑁𝐹$,𝑊𝑇𝑅$, 𝑃")
× 𝑃(𝑊𝑇𝑅#|𝑊𝑇𝑅$, 𝐶𝑂𝑁𝐹$, 𝑃") 

(3) 

 
On the right side of the overarching framework in Figure 1, policy interventions are incorporated into the 
DBN through the causal do-operator, namely, do(𝑃"). This operator fixes the policy variable to a specified 
value while removing the influence of its natural parents. This enables counterfactual simulation of post-
policy distributions 𝑃(𝒀#|do(𝑃")) without requiring actual policy implementation. By isolating the causal 
impact of the policy scenario, this approach enables the evaluation of how interventions would shift 
attitudes toward AV safety and adoption, supporting robust, evidence-based policy analysis. Once the DBN 
is fitted, policy impacts are simulated by propagating probabilities forward from the baseline slice to the 
post-policy slice under each policy scenario. For each respondent, we compute the conditional probability 
distribution over confidence or willingness-to-ride levels at 𝑡 = 1, given their baseline characteristics and 
the imposed policy. These distributions are then aggregated to obtain the expected level 𝔼[𝐿𝑒𝑣𝑒𝑙], the mid-
scale probability (𝔼[𝑚𝑖𝑑%]), and the full distribution across the five response levels. The change from 
baseline is calculated as the difference in expected levels between 𝑡 = 1 and 𝑡 = 0, and statistical 
significance of scenario effects is assessed using Mann–Whitney (MW) U tests. This process yields 
scenario-specific outcome distributions for the full sample and, when disaggregated by baseline confidence 
strata, reveals heterogeneity in policy responsiveness. 

3. Survey Design and Data Collection 
To collect the sample dataset, we developed a structured survey instrument administered in two distinct 
U.S. metropolitan regions, namely, San Francisco, California (SF) and San Antonio, Texas (SA). The survey 
design is informed by prior studies on AV acceptance, decision-making under risk, and stated preferences 
methods (see reviews in Becker and Axhausen (2017), Gkartzonikas and Gkritza (2019), Harb et al. (2021), 
and Othman (2021)), ensuring both theoretical grounding and empirical comparability. Questionnaire 
covered socio-economic characteristics, travel patterns, general attitudes and lifestyle preferences, and AV-
related attitudes under baseline and policy-scenario conditions. The attitudinal modules incorporated 
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validated psychometric scales, including items capturing cognitive style dimensions (e.g., emotion- versus 
reason-driven decision-making) and rule-based orientation (e.g., utilitarian versus deontological 
tendencies). Scenario-based items were used to elicit respondent judgments in hypothetical AV decision 
contexts, enabling analysis of how baseline confidence in AV safety and contextual framing influence 
responses. 

Data were collected through an online survey platform in 2025. The survey participants are recruited from 
blended online market-research panels using incentives such as cash, airline miles, and gift cards. The final 
dataset comprises 176 valid responses from SF and 159 from SA, allowing for cross-regional comparisons 
between a technology-forward urban environment and a more traditionally car-oriented metropolitan area. 
This dual-city sampling strategy was designed to capture geographic and cultural variation in AV-related 
attitudes, supporting the study’s focus on modeling heterogeneity in public expectations of AV behavior 
using a DBN framework. 

4. Data Description 
This section presents an overview of the two sample datasets from SF and SA. We first outline the socio-
demographic profile of participants, followed by their travel behaviors, attitudinal and lifestyle preferences, 
and attitudes toward AV technology. Finally, we describe how measures of AV familiarity and attitudes, 
both in baseline and alternative policy scenarios (i.e., confidence in AV safety and willingness to ride), are 
operationalized to drive simulations in our DBN model. 

4.1. Socio-demographic Characteristics 
The sample individuals are characterized by socio-demographic factors, which are statistically distributed 
as presented in Table 1. Gender distribution is more balanced in SF, whereas SA has a higher proportion of 
females (61% versus 45%). Educational attainment differs sharply, as SF participants are more likely to 
hold a bachelor’s or advanced degree (68% combined) compared to only 32% in SA, where two-thirds fall 
into the lower education category. Income patterns follow a similar trend, with high-income households 
(≥$150K) far more prevalent in SF (24%) than SA (4%), while low-income households dominate in SA 
(74% vs. 43%). SF households are also more likely to own alternative fuel vehicles (39% versus 9%). These 
differences suggest distinct socio-economic contexts, which may influence AV-related attitudes and 
decision-making preferences across the two cities. 

Table 1. Distribution of Socio-economic Characteristics in San Francisco and San Antonio 

Variables Category SF (%) SA (%) 

Gender Male 54.55 38.99 
 Female 45.45 61.01 

Age Young (age < 35) 35.23 35.85 
 Middle age (35 ≤ age < 65) 38.64 45.91 
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Variables Category SF (%) SA (%) 
 Senior (age ≥ 65) 26.13 18.24 

Race and ethnicity White 38.64 29.56 
 African American 4.55 11.95 
 Asian 39.77 2.52 
 Hispanic or Latino 12.50 55.97 
 Other 4.54 — 

Educational attainment Level 1 (high school graduate or less, some 
college, vocational/technical training, or 
associate degree) 

32.39 67.92 

 Level 2 (bachelor’s degree) 38.07 20.13 

 
Level 3 (master’s degree, professional degree 
beyond bachelor's degree, e.g., M.D. and 
D.D.S., or doctoral degree, e.g., Ph.D.) 

29.55 11.95 

Employment Full-time employed (paid) 45.59 40.25 
 Part-time employed (paid) 10.23 13.84 
 Self-employed 6.82 11.32 
 Homemaker, unpaid volunteer or intern 3.98 8.18 
 Retired 21.59 15.72 
 Not currently employed 10.80 10.69 

Household structure Living alone 21.0 19.5 
 Couple (without children) 29.5 22.0 

 
Nuclear family (i.e., couple living with 
child(ren)) 

19.3 20.1 

 Shared adults 14.8 18.2 
 Other 15.3 20.1 

Household annual income Low level (i.e., income < $75K) 42.61 74.21 
 Medium level (i.e., $75K ≤ income < $150K) 32.95 22.01 

 High level (i.e., income ≥ $150K) 24.44 3.78 

Number of household vehicles None 14.20 15.72 
 1 40.91 42.14 
 2 32.39 30.82 
 3 or more 12.50 11.32 

Holding alternative fuel vehicle Yes 39.20 8.81 
 No 60.80 91.19 

Household residential ownership Own/Buying (paying mortgage) 60.23 45.91 
 Rent 34.09 42.14 
 Other 5.68 11.95 

Household residential duration Less than 1 year 8.52 10.69 
 1 to 5 years 27.84 40.88 
 5 to 10 years 19.32 17.61 
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Variables Category SF (%) SA (%) 
 10 to 20 years 14.20 13.21 
 20 years or more 30.11 17.61 

Household residential type Single-family house (detached house) 67.05 66.04 

 
Single-family house/townhouse (attached to 
one or more houses, each with separate entry) 
or multi-family house (3 or fewer apartments) 

11.93 7.55 

 Apartment 18.18 22.01 
 Other 2.84 4.31 

Sample size  n = 176 n = 159 

 

4.2. Travel Behavior Profiles 
The statistical distribution of travel pattern across the two sample datasets is shown in Table 2. There are 
notable differences in travel-related characteristics between SF and SA. A higher share of SF respondents 
hold a driver’s license (89.8%) compared to SA (79.3%), and a slightly larger share in SF are the primary 
driver of a household vehicle (84.1% versus 79.9%). Commute mode patterns also diverge. Driving alone 
is more common in SA (47.8%) than in SF (39.2%), while public transit use is significantly higher in SF 
(10.2%) compared to SA (2.5%), highlighting differences in transit availability or preferences. Active mode 
(e.g., bike and walk) share is marginally higher in SF (5.1%) than SA (4.4%). Commute distance 
distributions show SF has a larger proportion traveling 15 or more miles (24.4% versus 17.0%), whereas 
SA has more commuters in the 10 to 15-mile range (17.6% versus 11.4%). Both cities have similar shares 
of non-commuters or unemployed individuals (about 35%). These patterns suggest that SF residents rely 
more on public transit and active modes, whereas SA residents show greater dependence on driving alone 
and have a slightly more even distribution of commute distances under 15 miles. 

Table 2. Distribution of Travel Pattern in San Francisco and San Antonio 

Variables Category SF (%) SA (%) 

Holding a driver’s license Yes 89.77 79.25 
 No 10.23 20.75 

Primary driver of at least a 
household vehicle 

Yes 84.09 79.87 

 No 15.91 20.13 

Commute mode Drive alone 39.20 47.80 
 Carpool 6.82 6.92 
 Bike or walk 5.11 4.40 
 Public transit (bus or train) 10.23 2.52 
 Other 2.84 3.77 
 Not commuting or unemployed 35.80 34.59 
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Variables Category SF (%) SA (%) 

Commute distance (mile) Less than 5 16.48 15.09 
 5 to 10 11.93 15.72 
 10 to 15 11.36 17.61 
 15 or more 24.43 16.98 
 Not commuting or unemployed 35.80 34.59 

Sample size  n = 176 n = 159 

 

The distribution of travel frequency in Figure 2, reveals notable differences between SF and SA across all 
modes. For transit use, SF respondents report significantly higher regular usage, with lower shares in the 
“never” and “not in the past 30 days” categories, whereas SA shows much higher non-use. Biking and 
walking follow a similar trend. SF has smaller proportions of non-users and more frequent riders/walkers, 
particularly at moderate-to-high weekly frequencies, while SA shows heavier concentration in low or no 
usage. Carsharing is also more common in SF, with fewer respondents reporting “never” and higher shares 
using it at least occasionally. SA’s participation is comparatively minimal. In contrast, rideshare services 
(both single and pooled) are more evenly split, though SF still shows more frequent use, SA retains a sizable 
proportion of occasional users. Overall, SF demonstrates a more multimodal travel pattern with greater 
integration of active and shared modes, while SA respondents are more concentrated in non-use or 
infrequent participation across most modes. 
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(a) Transit (Bus or Train) (b) Bike 

  
(c) Walk (d) Carshare (such as Zipcar, Getaround, or Maven) 
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(e) Rideshare, single passenger (such as Uber or Lyft) (f) Rideshare, carpool option (such as UberPOOL) 

Figure 2. Distribution of Travel Mode Use in San Francisco and San Antonio 
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4.3. Attitudinal and Lifestyle Indicators 
To better understand various dimensions of decision-making psychology, the study respondents were 
inquired about their opinions on a series of questions, which build two attitudinal and preferential constricts 
including emotionalism versus rationalism and utilitarianism versus deontology. The emotions versus 
rationality framework distinguishes between decisions primarily guided by feelings, intuition, and 
instinctive reactions versus those grounded in logical reasoning, deliberate evaluation, and evidence-based 
judgment. Emotion-driven decision-making can be advantageous in contexts requiring quick, adaptive 
responses, while rationality-driven approaches tend to dominate when accuracy, consistency, and analytical 
trade-off evaluations are needed. In contrast, the utilitarianism versus deontology dimension reflects other 
aspects. The former prioritizes outcomes that maximize overall well-being, even at the expense of 
individual rights or comfort, whereas the latter emphasize adherences to specific rules, duties, and principles 
regardless of the consequences. Overall, these dimensions provide a richer understanding of how 
individuals approach complex choices, blending cognitive style with specific orientation, and allowing for 
nuanced comparisons between populations or contexts such as the SF and SA samples in this study. 

The distributions of the measurement indicators of these attitudes toward decision-making, each captured 
by the relevant question of the survey, along the emotions versus rationality spectrum reveal notable 
differences between the two city residents (Figure 3). For emotion-oriented tendencies, SF respondents 
show higher reliance on intuition and gut feelings in some measures compared to SA, whereas SA 
respondents are more likely to “agree” or “strongly agree” with making quick, instinct-based decisions. In 
contrast, rationality-oriented measures indicate generally high endorsement in both cities, with SA slightly 
ahead in deliberate, methodical decision-making and SF slightly ahead in weighing pros and cons. Both 
cities show strong alignment with logical reasoning, though SF leans marginally higher in strong agreement. 
Overall, SF respondents appear more balanced between emotional and rational cues, while SA respondents 
lean more toward rapid, instinctive decisions but also maintain strong rational decision-making 
endorsement. This suggests that interventions or policy framing may need to account for SF’s openness to 
intuitive reasoning alongside rational deliberation, whereas in SA, quick emotional instincts coexist with 
strong rational frameworks. 
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(a) Feelings and Intuition (b) Gut Feeling Even If Goes Against Data or Advice 

  
(c) Quickly, Based on Instincts or Emotions (d) Logical Reasoning and Facts 

  
(e) Weighing All Pros and Cons Before Deciding (f) Deliberately, Even If Takes Longer 

Figure 3. Distribution of Emotions-Driven vs. Rationality-Driven Decision-Making Criteria in San 
Francisco and San Antonio 
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(a) I value individual freedom more than collective 
rules. 

(b) I prefer making decisions that benefit most 
people, even if they harm a few. 

  
(c) Protecting human life is more important than 
protecting property. 

(d) I avoid situations where I have to choose between 
two bad outcomes. 

Figure 4. Distribution of Utilitarian and Deontological Decision-Making Perspectives in San 
Francisco and San Antonio 

The distributions of utilitarian and deontological decision-making perspectives in SF and SA (Figure 4) 
reveals both strong consensus on certain priorities and notable divergences between the two cities. Across 
both locations, there is significant agreement, particularly strong agreement, that protecting human life 
outweighs protecting property, indicating a shared deontological emphasis on intrinsic duties over material 
considerations (Figure 4(c)). Similarly, a majority in both cities express support for utilitarian reasoning, 
favoring decisions that maximize benefits for the greatest number even at the expense of a few, though SF 
shows a slightly higher share in strong agreement (Figure 4(b)). Divergence emerges in views on individual 
freedom versus collective rules, with SF respondents showing higher agreement and strong agreement, 
suggesting a stronger libertarian-leaning utilitarian orientation (Figure 4(a)). By contrast, avoiding complex 
dilemmas, which reflects a deontological preference, receives mixed responses, with SA residents more 
likely to agree or strongly agree with avoiding such situations, while SF respondents show higher neutrality 
or disagreement, possibly reflecting greater willingness to engage in complex trade-offs (Figure 4(d)). 
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Overall, these patterns suggest both cities value human life and societal benefit but differ in tolerance for 
complex situations and the balance between individual liberty and collective norms. 

4.4. Autonomous Vehicle-Related Measures 

4.4.1. AV Familiarity 

Figure 5 highlights marked differences in AV familiarity between the two cities. In SA, lower familiarity 
levels dominate, with 23.3% of respondents reporting no awareness and 30.2% indicating no familiarity, 
which are substantially higher than the corresponding shares in the SF sample (2.3% and 13.1%, 
respectively). In contrast, SF respondents exhibit notably higher familiarity, with 38.1% reporting being 
very familiar without ride experience (compared to 12.6% in SA) and 26.1% being very familiar with ride 
experience (compared to merely 5.7% in SA). These differences suggest greater AV exposure in SF, in terms 
of both public awareness and direct experience (as is also reported by REF), likely reflecting a more mature 
AV presence, broader testing activities, and more extensive public discourse compared to SA. 

 

Figure 5. Distribution of Autonomous Vehicle Familiarity Levels in the San Francisco and San 
Antonio Sample Datasets 

4.4.2. Baseline Attitudes toward AVs 

The distribution of confidence in AV safety for the base scenario is shown in Figure 6(a). SA respondents 
are disproportionately concentrated at the lowest confidence level, with 38.4% reporting an average zero 
confidence compared to only 15.3% in SF. Similarly, 22.6% of SA participants fall into the 13% confidence 
bin, which is approximately twice as the SF share of 11.4%. In contrast, SF respondents dominate the higher 
confidence ranges with 20.5% reporting 82.5% confidence (versus 3.8% in SA) and 18.8% reporting 63% 
confidence (versus 6.9% in SA). Notably, the highest confidence category of 95% receives no responses in 
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either city, suggesting a ceiling effect in how participants perceive AV safety under baseline conditions. 
These patterns indicate a statistically significant and practically meaningful gap, with SF residents on 
average exhibiting greater trust in AV safety than their SA counterparts. 

Willingness-to-ride with AVs under the base scenario (Figure 6(b)) reveals a similarly pronounced city-
level divide. In SF, responses are strongly skewed toward positive intentions with 33.5% reporting to be 
“Likely” and 29.0% “Very likely” riding in AV, compared to only 8.0% and 14.2%, respectively, in the two 
lowest-likelihood categories (“Very unlikely” and “Unlikely”). By contrast, SA presents a more cautious 
profile, with 25.2% “Very unlikely” and 22.0% “Unlikely,” and only 7.5% reporting “Very likely.” The 
proportion of “Neutral” responses is relatively comparable (15.3% in SF versus 20.8% in SA), suggesting 
similar levels of indecision among a smaller middle segment. Overall, the base scenario results indicate that 
SF respondents display substantially greater openness to riding in AV, while SA respondents exhibit stronger 
reluctance, aligning with the lower AV familiarity and safety confidence observed in Figure 5 and Figure 
6(a). 

  
(a) (b) 

Figure 6. Distribution of Attitudes Toward Autonomous Vehicle in Base Scenario for San Francisco 
and San Antonio 

4.4.3. Policy Scenario Attitudes toward AVs 

The distribution of attitudes toward AV for the four scenarios is shown in Figure 7. Across the four 
hypothetical scenarios, AV attitudes are observed with city-level differences yet with varying magnitudes 
depending on the scenario. In Scenario 1, where pedestrians are always prioritized over the on-board 
passengers, SA respondents show pronounced skepticism and hesitancy. Over 44% report zero confidence 
in AV safety compared to 22.2% in SF, while the highest-confidence share (82.5%) drops sharply for both 
cities. Willingness-to-ride follows the same polarizing pattern, with 36.5% of SA respondents “Very 
unlikely” to ride (versus 22.7% in SF) and only 5.0% “Very likely” (versus 19.3% in SF). Scenario 1 appears 
to polarize perceptions, amplifying low-confidence sentiment while eroding strong confidence, particularly 
in SF. This pattern suggests that an unconditional prioritization of pedestrians may heighten safety concerns 
among those worried about unpredictable AV behavior, even in a city with greater AV exposure. 
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Scenario 2 with prioritizing passengers only if pedestrians break laws moderates these extremes. In 
confidence, SF’s high-confidence share rebounds modestly, while SA’s zero-confidence share declines 
compared to Scenario 1. Willingness-to-ride also improves in both cities, with the “Very unlikely” share 
falling to 15.3% in SF and 33.3% in SA, and SF’s “Very likely” share rising to 22.7%. These changes 
suggest that rule-based AV behavior may reassure respondents, especially in SF, by signaling predictability 
and alignment with traffic laws. 

In Scenario 3 with the prioritization of children pedestrians, city-level gaps narrow further. Zero-confidence 
shares drop to 25.0% in SF and 40.3% in SA, and willingness-to-ride distributions converge slightly, 
producing the smallest gap across all scenarios. SA respondents show modest gains in mid- and high-
likelihood categories, while SF maintains relatively balanced willingness levels. This alignment may reflect 
a shared consensus on prioritizing vulnerable road users, reducing perceived risk regardless of AV 
familiarity levels. 

Finally, Scenario 4, which prioritized pedestrians if more numerous, brings mixed effects. In confidence, 
SA respondents return to their highest zero-confidence share (44.0%), while SF retains a relatively large 
high-confidence group, suggesting differing interpretations of “more numerous.” Willingness-to-ride 
increases in SF, with 22.7% “Very likely,” while SA records its highest “Very likely” share across all 
scenarios (20.1%). This rebound in SA indicates that some respondents may view numerical prioritization 
as a rational, data-driven safety rule, even if overall confidence remains lower than in SF. 

Overall, these patterns suggest that policies perceived as situationally justified (like Scenarios 2 and 4) can 
improve willingness-to-ride. However, rules seen as overly restrictive or biased (like Scenarios 1) may 
exacerbate hesitancy, particularly in lower-familiarity contexts like SA. 
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(b) Sc1 – Pedestrians Always Prioritized 

  
(c) Sc2 – Passengers Prioritized If Pedestrian Breaks Laws 
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(d) Sc3 – Pedestrians Prioritized If Children 

  
(e) Sc4 – Pedestrians Prioritized If More Numerous 

Figure 7. Distribution of Attitudes Toward Autonomous Vehicle Across Four Hypothetical Scenarios in San Francisco and San Antonio 
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Table 3 reports statistical tests comparing SF and SA in confidence in AV safety and willingness-to-ride 
with AVs under the base and four hypothetical policy scenarios. The Chi-square (𝜒6) test assesses 
differences in the overall response distribution, while MW test evaluates differences in central tendency 
(median responses). In the base scenario, both confidence in AV safety and willingness-to-ride differ sharply 
between cities, with both 𝜒6 and MW tests yielding p < 0.001, indicating very strong evidence of between-
city differences. Across scenarios, this pattern largely persists. For confidence in AV safety, 𝜒6 results are 
significant (p < 0.01) in Scenarios 1, 2, and 4, but not in Scenario 3 (p = 0.104), whereas MW tests show 
highly significant differences (p < 0.001) for all scenarios, suggesting that median differences remain even 
when full distributions are more similar. For willingness-to-ride, both tests indicate significant differences 
(p ≤ 0.002) across all scenarios, with SF respondents consistently reporting higher willingness than SA 
respondents. Overall, city-level differences in AV perceptions are robust across policy contexts. The 
smallest confidence gap appears when AVs prioritize children pedestrians (Scenario 3), yet willingness-to-
ride differences remain large in all scenarios, implying that adoption intentions are less sensitive to framing 
and more influenced by broader, location-specific attitudes toward AVs. 

Table 3. Between-City Differences in Confidence in AV Safety and Willingness-to-Ride Across Policy 
Scenarios (Chi-Square and Mann–Whitney U Tests: San Francisco vs. San Antonio) 

Scenario 
Confidence in AV safety Willingness-to-ride with AV 

p(𝝌𝟐) p(MW) p(𝝌𝟐) p(MW) 

Base scenario <0.001*** <0.001*** <0.001*** <0.001*** 
Sc1 – Pedestrians always prioritized 0.001** <0.001*** <0.001*** <0.001*** 
Sc2 – Passengers prioritized if pedestrian breaks laws 0.003** <0.001*** 0.002** <0.001*** 
Sc3 – Pedestrians prioritized if children 0.104 <0.001*** 0.005** <0.001*** 
Sc4 – Pedestrians prioritized if more numerous <0.001*** <0.001*** <0.001*** <0.001*** 
Note: * p < 0.05; ** p < 0.01; *** p < 0.001. 𝜒! = Chi-square test; MW = Mann–Whitney U test. 

 
Table 4 summarizes within-city changes in confidence in AV safety and willingness-to-ride when moving 
from the baseline to each of the four policy scenarios. Median scores and MW U test p-values are reported 
for each comparison. In SF, both attitudes decline uniformly across scenarios, with median confidence and 
willingness-to-ride dropping from high (3.0) at baseline to neutral (2.0) in all cases. All changes are 
statistically significant at the 1% or 0.1% level, indicating that any departure from the baseline decision 
rule — whether prioritizing pedestrians or passengers — substantially erodes positive AV perceptions. SA 
begins with lower baseline medians (2.0) and shows smaller, mostly non-significant shifts. Significant 
declines occur only in Scenario 1 for willingness-to-ride and in Scenarios 1 and 2 for confidence, and even 
these changes are modest (–1.0). Overall, SF respondents display greater sensitivity to AV decision rules, 
while SA respondents’ attitudes remain comparatively stable regardless of scenario framing. 

 

 



 21 

Table 4. Within-City Changes in Confidence in AV Safety and Willingness-to-Ride Across Policy 
Scenarios (Median Level, Change from Baseline, and Mann–Whitney U Tests) 

Scenario 
Confidence in AV safety Willingness-to-ride with AV 

Median ∆ p(MW) Median ∆ p(MW) 

San Francisco       
Base scenario 3.0 — — 3.0 — — 
Sc1 – Pedestrians always prioritized 2.0 -1.0 <0.001*** 2.0 -1.0 <0.001*** 
Sc2 – Passengers prioritized if pedestrian breaks laws 2.0 -1.0 0.007** 2.0 -1.0 0.003** 
Sc3 – Pedestrians prioritized if children 2.0 -1.0 <0.001*** 2.0 -1.0 <0.001*** 
Sc4 – Pedestrians prioritized if more numerous 2.0 -1.0 0.002** 2.0 -1.0 <0.001*** 

San Antonio       
Base scenario 2.0 — — 2.0 — — 
Sc1 – Pedestrians always prioritized 1.0 -1.0 0.121 1.0 -1.0 0.006** 
Sc2 – Passengers prioritized if pedestrian breaks laws 1.0 -1.0 0.768 1.0 -1.0 0.101 
Sc3 – Pedestrians prioritized if children 1.0 -1.0 0.604 1.0 -1.0 0.232 
Sc4 – Pedestrians prioritized if more numerous 1.0 -1.0 0.229 1.0 -1.0 0.120 
Notes: Confidence in AV safety is measured on 5-point ordinal scales: 0 = Very low, 1 = Low, 2 = Neutral, 3 = High, 
4 = Very high; Willingness-to-ride with AV is measured on 5-point ordinal scales: 0 = Very unlikely, 1 = Unlikely, 2 = 
Neutral, 3 = Likely, 4 = Very likely. Δ = difference in median from the baseline scenario (negative values indicate 
lower ratings). p(MW) = p-value from the Mann–Whitney U test comparing scenario ratings with the baseline within 
each city. * p < 0.05, ** p < 0.01, *** p < 0.001. 

5. Results 
This section presents the simulation outcomes generated from DBN model, focusing on how alternative 
policy scenarios influence public attitudes toward AV safety and willingness-to-ride. The results are 
organized to first provide an overall view of predicted changes under each scenario, then to examine 
heterogeneity by city and baseline attitude strata, enabling a nuanced understanding of policy 
responsiveness. 

The policy analysis uses the DBN trained on respondents’ baseline attitudes and their stated preferences 
under four hypothetical policies governing pedestrian–passenger prioritization in crash-imminent 
situations. In the simulations, baseline confidence and willingness-to-ride levels, together with scenario-
specific policy codes, determine the post-policy probability distribution of attitudes. The first approach, 
which is empirical-mix, weights the model’s scenario-level predictions by the observed distribution of 
baseline attitudes in each city, producing expected values (E[level] and E[mid%]) that reflect realistic 
population heterogeneity. Differences from the base scenario (Δ) are calculated within each city, and MW 
U tests assess whether scenario-induced changes are statistically significant. This approach allows direct 
comparison of simulated policy impacts across SF and SA, accounting for baseline variation and enabling 
policy-relevant interpretation of directional and magnitude changes. 
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Table 5 summarizes the simulated confidence in AV safety under the baseline and four policy scenarios for 
SF and SA, based on the empirical-mix approach. At the baseline, expected confidence is higher in SF 
(E[level] = 2.636, or 62.7%) than in SA (E[level] = 1.484, or 39.7%). In SF, all four policy scenarios 
produced statistically significant declines in confidence relative to baseline, with the largest decreases for 
scenarios prioritizing pedestrians when children are present (–0.632 level; –12.6%) and when pedestrians 
are more numerous (–0.634 level; –12.7%). By contrast, in SA, none of the changes from baseline are 
statistically significant. Small negative shifts occur for Scenario 1 (–0.1 level; –2.0%), while Scenario 3 
and Scenario 4 show moderate positive changes (+0.502 and +0.508 levels; about +10%), though without 
statistical significance. These results indicate that SF respondents’ simulated confidence is more sensitive 
to changes in pedestrian–passenger prioritization policies, whereas SA respondents’ confidence remained 
comparatively stable across scenarios. 

Table 5. Empirical-Mix Simulated Confidence in AV Safety by Policy Scenario for San Francisco and 
San Antonio 

Scenario E[level] E[mid%] ∆[level] ∆[mid%] p(MW) 
San Francisco      
Base scenario 2.636 62.7 — — — 
Sc1 – Pedestrians always prioritized 2.083 51.7 –0.553 –11.1 <0.001*** 
Sc2 – Passengers prioritized if pedestrian breaks laws 2.244 54.9 –0.393 –7.9 0.007** 
Sc3 – Pedestrians prioritized if children 2.005 50.1 –0.632 –12.6 <0.001*** 
Sc4 – Pedestrians prioritized if more numerous 2.002 50.0 –0.634 –12.7 0.002** 

San Antonio      
Base scenario 1.484 39.7 — — — 
Sc1 – Pedestrians always prioritized 1.384 37.7 –0.1 –2.0 0.121 
Sc2 – Passengers prioritized if pedestrian breaks laws 1.512 40.2 0.028 0.6 0.768 
Sc3 – Pedestrians prioritized if children 1.987 49.7 0.502 10.0 0.604 
Sc4 – Pedestrians prioritized if more numerous 1.993 49.9 0.508 10.2 0.229 
Note: E[level] = expected confidence in AV safety on 0–4 scale; E[mid%] = midpoint-scaled equivalent (10–90%). Δ 
= difference from base scenario within the same city. p(MW) from Mann–Whitney U tests versus base; significance: 
* p<0.05, ** p<0.01, *** p<0.001. Negative Δ = lower confidence; positive Δ = higher confidence. 

 
Table 6 presents the simulated willingness-to-ride with AVs under the baseline and four policy scenarios 
for SF and SA. At baseline, SF respondents show higher willingness (E[level] = 2.614) than SA respondents 
(E[level] = 1.673). In SF, all four policy scenarios produce statistically significant declines in willingness-
to-ride, with the largest decrease occurring when pedestrians are always prioritized (–0.702 level), followed 
by smaller yet still significant declines across the other three scenarios (–0.593 to –0.603 levels). In contrast, 
SA shows small positive changes from baseline under all scenarios, with the largest gains for Scenario 2 
(+0.222 level) and Scenarios 3 and 4 (+0.200 levels), though only Scenario 1 (+0.113) reaches statistical 
significance. These patterns suggest that SF respondents’ willingness-to-ride is highly sensitive to changes 
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in pedestrian–passenger prioritization, consistently decreasing under all scenarios, whereas SA respondents 
tend to show modest increases, particularly when policies favor passenger rights or balance between groups. 

Table 6. Empirical-Mix Simulated Willingness-to-Ride with AVs by Policy Scenario for San 
Francisco and San Antonio 

Scenario E[level] E[mid%] ∆[level] ∆[mid%] p(MW) 
San Francisco      
Base scenario 2.614 3.614 — — — 
Sc1 – Pedestrians always prioritized 1.912 2.912 –0.702 –0.702 <0.001*** 
Sc2 – Passengers prioritized if pedestrian breaks laws 2.010 3.010 –0.603 –0.603 0.003** 
Sc3 – Pedestrians prioritized if children 2.020 3.020 –0.593 –0.593 <0.001*** 
Sc4 – Pedestrians prioritized if more numerous 2.020 3.020 –0.593 –0.593 <0.001*** 

San Antonio      
Base scenario 1.673 2.673 — — — 
Sc1 – Pedestrians always prioritized 1.785 2.785 0.113 0.113 0.006** 
Sc2 – Passengers prioritized if pedestrian breaks laws 1.895 2.895 0.222 0.222 0.101 
Sc3 – Pedestrians prioritized if children 1.873 2.873 0.200 0.200 0.232 
Sc4 – Pedestrians prioritized if more numerous 1.873 2.873 0.200 0.200 0.120 
Note: E[level] = expected willingness-to-ride with AV on 0–4 scale; E[mid%] = midpoint-scaled equivalent (10–
90%). Δ = difference from base scenario within the same city. p(MW) from Mann–Whitney U tests versus base; 
significance: * p<0.05, ** p<0.01, *** p<0.001. Negative Δ = lower confidence; positive Δ = higher confidence. 

 

In the second stage of the policy simulation framework, we stratified results by baseline confidence levels 
to capture heterogeneity in respondents’ simulated reactions to the four policy scenarios. Table 7-Table 8 
and Table 9-Table 10 present the outcomes respectively for confidence in AV safety and willingness-to-
ride, with the simulations applying each policy’s estimated effects to baseline distributions to generate 
expected values and probability profiles for each group. Across both cities, baseline confidence in AV safety 
strongly shapes simulated policy responses for both confidence and willingness-to-ride outcomes. In SF 
and SA, Scenarios 1 and 2 amplify pre-existing differences — low-confidence groups remain at the bottom 
of the scale, while high-confidence groups sustain much higher values — indicating that these policies 
polarize perceptions. In contrast, Scenarios 3 and 4 produce a convergence effect, pulling all baseline groups 
toward midscale values and reducing heterogeneity. For willingness-to-ride, high-confidence groups in both 
cities consistently score higher and show more balanced distributions across higher willingness categories, 
whereas low-confidence groups cluster in the lowest categories. Mid-confidence respondents respond most 
to Scenario 2 in both contexts. While patterns are similar across cities, policy impacts appear slightly more 
pronounced in SF, particularly in elevating mid- and high-confidence respondents’ willingness-to-ride. 
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Table 7. Scenario-Based Simulations of Confidence in AV Safety for San Francisco, Stratified by 
Baseline Confidence Levels 

Level Weight (%) E[Level] E[mid%] P(Level=0) P(Level=1) P(Level=2) P(Level=3) P(Level=4) 

Sc1 – Pedestrians always prioritized 
0 9.1 0.435 18.697 0.79 0.056 0.111 0.014 0.028 
1 11.9 0.907 28.137 0.499 0.25 0.116 0.116 0.02 
2 20.5 1.847 46.936 0.197 0.197 0.298 0.175 0.132 
3 23.3 2.328 56.553 0.129 0.143 0.172 0.385 0.172 
4 35.2 2.882 67.644 0.141 0.077 0.09 0.141 0.55 
Low (0–1) 21 0.703 24.055 0.625 0.166 0.114 0.072 0.023 
Mid (2) 20.5 1.847 46.936 0.197 0.197 0.298 0.175 0.132 
High (3–4) 58.5 2.661 63.229 0.136 0.103 0.122 0.238 0.4 

Sc2 – Passengers prioritized if pedestrian breaks laws 
0 9.1 0.449 18.974 0.762 0.098 0.098 0.014 0.028 
1 11.9 1.022 30.438 0.403 0.288 0.231 0.039 0.039 
2 20.5 1.998 49.966 0.016 0.016 0.938 0.017 0.014 
3 23.3 2.684 63.677 0.072 0.072 0.157 0.499 0.2 
4 35.2 2.972 69.434 0.103 0.052 0.18 0.103 0.563 
Low (0–1) 21 0.774 25.481 0.559 0.206 0.173 0.028 0.034 
Mid (2) 20.5 1.998 49.966 0.016 0.016 0.938 0.017 0.014 
High (3–4) 58.5 2.857 67.142 0.09 0.06 0.171 0.261 0.419 

Sc3 – Pedestrians prioritized if children 
0 9.1 1.961 49.217 0.213 0.198 0.197 0.196 0.195 
1 11.9 1.978 49.57 0.203 0.205 0.198 0.197 0.197 
2 20.5 1.996 49.92 0.197 0.2 0.208 0.199 0.195 
3 23.3 2.015 50.292 0.196 0.197 0.201 0.208 0.198 
4 35.2 2.023 50.462 0.198 0.196 0.198 0.199 0.208 
Low (0–1) 21 1.971 49.417 0.208 0.202 0.198 0.196 0.196 
Mid (2) 20.5 1.996 49.92 0.197 0.2 0.208 0.199 0.195 
High (3–4) 58.5 2.02 50.394 0.198 0.196 0.199 0.203 0.204 

Sc4 – Pedestrians prioritized if more numerous 
0 9.1 1.98 49.603 0.207 0.199 0.198 0.198 0.198 
1 11.9 1.99 49.797 0.202 0.201 0.2 0.198 0.198 
2 20.5 1.996 49.916 0.199 0.201 0.204 0.2 0.197 
3 23.3 2.007 50.137 0.199 0.198 0.2 0.203 0.2 
4 35.2 2.013 50.252 0.199 0.198 0.198 0.2 0.205 
Low (0–1) 21 1.986 49.713 0.204 0.2 0.199 0.198 0.198 
Mid (2) 20.5 1.996 49.916 0.199 0.201 0.204 0.2 0.197 
High (3–4) 58.5 2.01 50.207 0.199 0.198 0.199 0.201 0.203 
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Table 8. Scenario-Based Simulations of Confidence in AV Safety for San Antonio, Stratified by 
Baseline Confidence Levels 

Level Weight (%) E[Level] E[mid%] P(Level=0) P(Level=1) P(Level=2) P(Level=3) P(Level=4) 

Sc1 – Pedestrians always prioritized 
0 32.1 0.435 18.697 0.79 0.056 0.111 0.014 0.028 
1 16.4 0.907 28.137 0.499 0.25 0.116 0.116 0.02 
2 29.6 1.847 46.936 0.197 0.197 0.298 0.175 0.132 
3 15.1 2.328 56.553 0.129 0.143 0.172 0.385 0.172 
4 6.9 2.882 67.644 0.141 0.077 0.09 0.141 0.55 
Low (0–1) 48.4 0.594 21.885 0.692 0.121 0.113 0.049 0.025 
Mid (2) 29.6 1.847 46.936 0.197 0.197 0.298 0.175 0.132 
High (3–4) 22 2.502 60.039 0.133 0.122 0.146 0.309 0.291 

Sc2 – Passengers prioritized if pedestrian breaks laws 
0 32.1 0.449 18.974 0.762 0.098 0.098 0.014 0.028 
1 16.4 1.022 30.438 0.403 0.288 0.231 0.039 0.039 
2 29.6 1.998 49.966 0.016 0.016 0.938 0.017 0.014 
3 15.1 2.684 63.677 0.072 0.072 0.157 0.499 0.2 
4 6.9 2.972 69.434 0.103 0.052 0.18 0.103 0.563 
Low (0–1) 48.4 0.642 22.845 0.641 0.162 0.142 0.023 0.032 
Mid (2) 29.6 1.998 49.966 0.016 0.016 0.938 0.017 0.014 
High (3–4) 22 2.774 65.486 0.082 0.065 0.164 0.375 0.314 

Sc3 – Pedestrians prioritized if children 
0 32.1 1.961 49.217 0.213 0.198 0.197 0.196 0.195 
1 16.4 1.978 49.57 0.203 0.205 0.198 0.197 0.197 
2 29.6 1.996 49.92 0.197 0.2 0.208 0.199 0.195 
3 15.1 2.015 50.292 0.196 0.197 0.201 0.208 0.198 
4 6.9 2.023 50.462 0.198 0.196 0.198 0.199 0.208 
Low (0–1) 48.4 1.967 49.336 0.21 0.201 0.198 0.196 0.196 
Mid (2) 29.6 1.996 49.92 0.197 0.2 0.208 0.199 0.195 
High (3–4) 22 2.017 50.345 0.197 0.197 0.2 0.205 0.201 

Sc4 – Pedestrians prioritized if more numerous 
0 32.1 1.98 49.603 0.207 0.199 0.198 0.198 0.198 
1 16.4 1.99 49.797 0.202 0.201 0.2 0.198 0.198 
2 29.6 1.996 49.916 0.199 0.201 0.204 0.2 0.197 
3 15.1 2.007 50.137 0.199 0.198 0.2 0.203 0.2 
4 6.9 2.013 50.252 0.199 0.198 0.198 0.2 0.205 
Low (0–1) 48.4 1.983 49.669 0.206 0.2 0.199 0.198 0.198 
Mid (2) 29.6 1.996 49.916 0.199 0.201 0.204 0.2 0.197 
High (3–4) 22 2.009 50.173 0.199 0.198 0.2 0.202 0.201 
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Table 9. Scenario-Based Simulations of Willingness-to-Ride with AV for San Francisco, Stratified by 
Baseline Willingness Levels 

Level Weight (%) E[Level] E[mid%] P(Level=0) P(Level=1) P(Level=2) P(Level=3) P(Level=4) 

Sc1 – Pedestrians always prioritized 
0 8 1.585 2.585 0.347 0.18 0.165 0.157 0.151 
1 14.2 1.618 2.618 0.244 0.304 0.175 0.144 0.133 
2 15.3 1.912 2.912 0.092 0.1 0.673 0.073 0.062 
3 33.5 1.93 2.93 0.176 0.214 0.239 0.246 0.125 
4 29 2.124 3.124 0.19 0.19 0.176 0.194 0.25 
Low (0–1) 22.2 1.606 2.606 0.281 0.26 0.171 0.149 0.139 
Mid (2) 15.3 1.912 2.912 0.092 0.1 0.673 0.073 0.062 
High (3–4) 62.5 2.02 3.02 0.182 0.203 0.21 0.222 0.183 

Sc2 – Passengers prioritized if pedestrian breaks laws 
0 8 1.597 2.597 0.33 0.207 0.144 0.174 0.145 
1 14.2 1.827 2.827 0.149 0.302 0.256 0.161 0.133 
2 15.3 1.989 2.989 0.02 0.022 0.922 0.021 0.016 
3 33.5 2.118 3.118 0.136 0.137 0.3 0.325 0.101 
4 29 2.1 3.1 0.156 0.21 0.214 0.217 0.203 
Low (0–1) 22.2 1.745 2.745 0.214 0.268 0.216 0.165 0.137 
Mid (2) 15.3 1.989 2.989 0.02 0.022 0.922 0.021 0.016 
High (3–4) 62.5 2.11 3.11 0.145 0.171 0.26 0.275 0.148 

Sc3 – Pedestrians prioritized if children 
0 8 1.632 2.632 0.336 0.184 0.154 0.162 0.164 
1 14.2 1.702 2.702 0.203 0.303 0.219 0.141 0.134 
2 15.3 1.959 2.959 0.086 0.094 0.66 0.092 0.067 
3 33.5 2.092 3.092 0.162 0.179 0.222 0.278 0.159 
4 29 2.234 3.234 0.174 0.166 0.187 0.2 0.274 
Low (0–1) 22.2 1.677 2.677 0.251 0.26 0.196 0.149 0.145 
Mid (2) 15.3 1.959 2.959 0.086 0.094 0.66 0.092 0.067 
High (3–4) 62.5 2.157 3.157 0.168 0.173 0.205 0.242 0.212 

Sc4 – Pedestrians prioritized if more numerous 
0 8 1.632 2.632 0.336 0.184 0.154 0.162 0.164 
1 14.2 1.701 2.701 0.203 0.303 0.218 0.141 0.134 
2 15.3 1.958 2.958 0.087 0.095 0.659 0.092 0.067 
3 33.5 2.091 3.091 0.163 0.179 0.221 0.278 0.159 
4 29 2.235 3.235 0.174 0.165 0.187 0.2 0.274 
Low (0–1) 22.2 1.676 2.676 0.251 0.26 0.195 0.149 0.145 
Mid (2) 15.3 1.958 2.958 0.087 0.095 0.659 0.092 0.067 
High (3–4) 62.5 2.158 3.158 0.168 0.173 0.205 0.242 0.213 
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Table 10. Scenario-Based Simulations of Willingness-to-Ride with AV for San Antonio, Stratified by 
Baseline Willingness Levels 

Level Weight (%) E[Level] E[mid%] P(Level=0) P(Level=1) P(Level=2) P(Level=3) P(Level=4) 

Sc1 – Pedestrians always prioritized 
0 25.2 1.585 2.585 0.347 0.18 0.165 0.157 0.151 
1 22 1.618 2.618 0.244 0.304 0.175 0.144 0.133 
2 20.8 1.912 2.912 0.092 0.1 0.673 0.073 0.062 
3 24.5 1.93 2.93 0.176 0.214 0.239 0.246 0.125 
4 7.5 2.124 3.124 0.19 0.19 0.176 0.194 0.25 
Low (0–1) 47.2 1.6 2.6 0.299 0.238 0.169 0.151 0.143 
Mid (2) 20.8 1.912 2.912 0.092 0.1 0.673 0.073 0.062 
High (3–4) 32.1 1.976 2.976 0.179 0.208 0.224 0.234 0.154 

Sc2 – Passengers prioritized if pedestrian breaks laws 
0 25.2 1.597 2.597 0.33 0.207 0.144 0.174 0.145 
1 22 1.827 2.827 0.149 0.302 0.256 0.161 0.133 
2 20.8 1.989 2.989 0.02 0.022 0.922 0.021 0.016 
3 24.5 2.118 3.118 0.136 0.137 0.3 0.325 0.101 
4 7.5 2.1 3.1 0.156 0.21 0.214 0.217 0.203 
Low (0–1) 47.2 1.705 2.705 0.245 0.251 0.196 0.168 0.14 
Mid (2) 20.8 1.989 2.989 0.02 0.022 0.922 0.021 0.016 
High (3–4) 32.1 2.114 3.114 0.141 0.155 0.28 0.3 0.125 

Sc3 – Pedestrians prioritized if children 
0 25.2 1.632 2.632 0.336 0.184 0.154 0.162 0.164 
1 22 1.702 2.702 0.203 0.303 0.219 0.141 0.134 
2 20.8 1.959 2.959 0.086 0.094 0.66 0.092 0.067 
3 24.5 2.092 3.092 0.162 0.179 0.222 0.278 0.159 
4 7.5 2.234 3.234 0.174 0.166 0.187 0.2 0.274 
Low (0–1) 47.2 1.665 2.665 0.274 0.239 0.184 0.152 0.15 
Mid (2) 20.8 1.959 2.959 0.086 0.094 0.66 0.092 0.067 
High (3–4) 32.1 2.125 3.125 0.165 0.176 0.213 0.26 0.186 

Sc4 – Pedestrians prioritized if more numerous 
0 25.2 1.632 2.632 0.336 0.184 0.154 0.162 0.164 
1 22 1.701 2.701 0.203 0.303 0.218 0.141 0.134 
2 20.8 1.958 2.958 0.087 0.095 0.659 0.092 0.067 
3 24.5 2.091 3.091 0.163 0.179 0.221 0.278 0.159 
4 7.5 2.235 3.235 0.174 0.165 0.187 0.2 0.274 
Low (0–1) 47.2 1.664 2.664 0.274 0.239 0.184 0.152 0.15 
Mid (2) 20.8 1.958 2.958 0.087 0.095 0.659 0.092 0.067 
High (3–4) 32.1 2.125 3.125 0.165 0.176 0.213 0.259 0.186 

 



 28 

6. Concluding Remarks 
This study develops and applies a Dynamic Bayesian Network (DBN) framework to model changes in 
public confidence in AV safety and willingness-to-ride under hypothetical pedestrian–passenger 
prioritization policies. Using baseline survey data from San Francisco (SF) and San Antonio (SA), the 
model incorporates both intra-slice and inter-slice dependencies, enabling scenario-based simulations and 
counterfactual analyses. The empirical-mix results show that SF respondents generally begin with higher 
baseline confidence and willingness-to-ride, yet are more sensitive to policy changes, exhibiting significant 
declines when policies strongly prioritized pedestrians. In contrast, SA respondents display comparatively 
stable or slightly positive responses, especially under policies that prioritized passengers and balanced 
priorities. Stratifying results by baseline confidence revealed that some policies amplify pre-existing 
differences, while others promote convergence toward midscale attitudes, highlighting heterogeneous 
policy impacts across confidence segments. 

While the DBN approach offers valuable insights into causal and temporal dynamics in AV policy 
acceptance, the present study has several limitations. The analysis relies on stated preferences datasets, 
which may not fully reflect actual behavior in real-world settings. The temporal dimension is limited to two 
time slices, restricting the capture of longer-term attitude evolution. Moreover, the policy scenarios 
examined are specific to pedestrian–passenger prioritization in crash-imminent contexts, which may limit 
generalizability to other AV policy domains. Future research should integrate revealed preferences and 
longitudinal panel data, expand to a broader set of policy interventions, and explore richer temporal 
structures in DBNs to capture multi-stage adoption processes. Incorporating additional contextual variables, 
such as media exposure, trust in institutions, and prior AV experience, could further enhance the explanatory 
power and policy relevance of the framework. 
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