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1. Introduction

1.1. Background and Motivation

Transportation systems are undergoing a foundational transformation, propelled by the
convergence of connectivity, autonomy, and advanced computing. Connected and autonomous
transportation systems (CATS) integrate vehicle-to-everything (V2X) communications, high-
fidelity sensing, and artificial intelligence (AI) to enable real-time perception, prediction, and
decision-making that collectively enhance safety, efficiency, and sustainability [1-3]. However,
these same capabilities that underpin their transformative potential simultaneously introduce cyber
vulnerabilities that are growing in sophistication, frequency, and scale, with the capacity to
compromise operational reliability and public trust [4—7]. Consequently, modern transportation
has emerged as a tightly coupled cyber-physical ecosystem in which the confidentiality of critical
information, the integrity of operational data, and the availability of essential services are as
indispensable to safe and resilient operations as the robustness of the physical infrastructure itself.

Documented incidents demonstrate that cyber attacks on transportation systems can be
highly targeted and disruptive. At the vehicle level, researchers have exploited controller area
network (CAN) bus vulnerabilities to remotely assume safety-critical functions such as steering,
braking, and acceleration [8], while sensor-level adversarial manipulations, such as LiDAR
spoofing and camera feed falsification, have triggered false object detection and lane boundary
misinterpretation in autonomous driving systems [9, 10]. In positioning, navigation, and timing
(PNT) systems, spoofing of global navigation satellite systems (GNSS) has been used to misdirect
vehicles and disrupt fleet logistics [11, 12]. On the infrastructure side, attackers have infiltrated
traffic signal control networks through unsecured communication channels, maliciously altering
signal phase and timing plans to induce localized congestion and degrade throughput [13, 14]. At
the network layer, falsified global positioning system (GPS) coordinates and Sybil attacks have
fabricated congestion patterns, manipulating routing algorithms in navigation platforms such as
Google Maps and Waze to generate adversary-preferred detours [15—17]. The strategic salience of
such cyber threats is underscored by the identification of transportation as one of the four most
ransomware-targeted U.S. critical infrastructure sectors in 2022, highlighting that cyber-induced
disruptions pose direct risks to mobility, public safety, and national resilience [18].

In light of the rapidly growing cyber attack surfaces and the demonstrated cyber disruptions
in CATS, cyber resilience has transitioned from a desirable capability to an operational imperative.
Defined as the capacity to anticipate, withstand, recover from, and adapt to cyber incidents while
preserving essential functions throughout the system lifecycle, even under successful attacks,
cyber resilience transcends the preventive focus of conventional cybersecurity to encompass
operational continuity and restoration [19-23]. This broader scope is crucial given the unknown,



zero-day, and strategically adaptive nature of smart adversarial threats, whose nonstationary and
evolving patterns defy exhaustive enumeration or purely probabilistic, historically grounded risk
modeling. It also differentiates cyber resilience from physical or natural hazard resilience [24, 25],
where hazard patterns are comparatively stationary and can be addressed using probabilistic, risk-
based approaches rooted in historical data. The need for cyber resilience in CATS is further
motivated by the transportation sector’s dual role as safety-critical and highly interconnected,
where even transient disruptions can cascade across vehicles, infrastructure, and networked
services. Addressing this challenge requires integrated strategies that combine proactive defense
with real-time monitoring, rapid recovery, and adaptive response to sustain operational continuity
under evolving cyber threats.

1.2. Objective and Scope

Building on the motivation established in Section 1.1, this survey positions itself as both a
conceptual framework and a knowledge synthesis of the cyber resilience of CATS. Its primary
objective is to provide a structured foundation for understanding how cyber threats emerge, how
they compromise system functions, and how defenses can be designed, evaluated, and advanced.
The scope of the survey encompasses three layers of inquiry: foundations, frontiers, and vision.
The foundations cover conceptual constructs, attack-defense typologies, and resilience principles.
The frontiers highlight methodological advances across theoretical approaches (optimization,
game theory, and control theory), learning-based techniques (Al and adversarial machine
learning), and emerging paradigms (quantum and post-quantum), with emphasis on their dual roles
as both enablers of resilience and sources of new vulnerabilities. The vision extends beyond
current practices to outline major research gaps and directions for future research, providing a
roadmap for advancing cyber resilience theory, methods, and applications in CATS.

The survey is organized around three axes that together provide systematic coverage of the
transportation cyber resilience landscape. The first axis relates to the functional domain and
cyber-physical components compromised, which distinguishes between attacks on connectivity
and autonomy as the two defining pillars of CATS, and on their enabling components of sensing,
control, and networking. Connectivity encompasses V2X communication infrastructures that
coordinate vehicles, roadside units, and networked services, but are also vulnerable to attacks such
as eavesdropping, session hijacking, and denial-of-service. Autonomy encompasses perception,
decision-making, and actuation processes within vehicles and infrastructure, which introduce
attack surfaces such as sensor spoofing, data poisoning, model poisoning, model extraction, and
backdoor attacks. At the cyber-physical component level, sensing systems (e.g., cameras, LiDAR,
GNSS) can be compromised through spoofing, jamming, or perception overload, while control
systems (e.g., vehicle controllers, roadside units, and traffic signal logic) are exposed to threats
such as firmware tampering, command injection, or poisoning of Al models, and networking
systems (e.g., in-vehicle buses, and V2X links) face threats such as message tampering and Sybil



attacks. Examining connectivity and autonomy in tandem with their enabling cyber-physical
components highlights both their critical role in sustaining CATS operations and their
susceptibility to exploitation, thereby grounding cyber resilience analysis in the concrete attack
surfaces summarized in Section 2.

The second axis is the operational scale, which situates vulnerabilities and defenses across
micro-, meso-, and macro-systems. At the micro-scale, vehicle-level functions such as in-vehicle
networks, perception sensors, and local decision-making are prime targets for cyber attacks that
compromise data integrity, availability, or control logic. At the meso-scale, corridor- and fleet-
level systems such as traffic signals, cooperative adaptive cruise control, and vehicle platooning
are exposed to both cyber disruptions (e.g., spoofing and denial-of-service) and cyber-physical
disruptions that propagate through traffic operations. At the macro-scale, network-wide operations,
intermodal coordination, and regional infrastructure management must withstand coordinated,
large-scale threats capable of cascading across jurisdictions and transportation modes. Positioning
cyber resilience across these nested scales highlights not only cascading risks but also the need for
defense architectures that integrate across scales rather than remain siloed within them.

The third axis is the threat-defense mapping, which structures cyberattacks and defense
approaches in systematic correspondence. Threats are organized along the confidentiality-
integrity-availability (CIA) triad, which provides comprehensive coverage of attack surfaces
without requiring exhaustive enumeration, an infeasible task given the prevalence of unknown and
zero-day attacks. Confidentiality refers to preserving privacy and preventing unauthorized access,
with threats such as eavesdropping and data exfiltration. Integrity refers to maintaining correctness
and trustworthiness of information, with threats such as spoofing, data tampering, and poisoning
of models or signals. Availability refers to ensuring continuous access to system functions, with
threats such as denial-of-service. Defenses are aligned with resilience objectives that span
robustness, detection, response, recovery, and adaptation, thereby capturing the full resilience
lifecycle. At the same time, defenses can be further distinguished by their typologies, which
include heuristic approaches that are lightweight but often brittle, certified methods that provide
provable guarantees, probabilistic techniques that quantify uncertainty, and architectural measures
that exploit system design (e.g., modular redundancy or fallback modes) to contain failures.
Methods are explicitly treated as dual-use, with Al, optimization, and quantum or post-quantum
techniques relevant both as defensive instruments and as attack enablers. This axis also
incorporates evaluation and assurance mechanisms including digital twins, testbeds, cyber ranges,
and benchmarking protocols, which are integral to verifying defense efficacy.

This three-axis framing provides a structured lens to capture transportation cyber resilience
across scales, domains, and defense objectives, while aligning directly with the study’s
organization. Section 2 establishes the foundational concepts and taxonomies. Section 3 surveys
methodological and assurance frontiers. Section 4 outlines a forward-looking research agenda. The



scope is therefore not merely descriptive but integrative, linking disparate lines of research into a
coherent framework that can guide both academic inquiry and practical deployment in CATS.

1.3. Contributions

Existing surveys on cyber resilience and security in transportation have advanced the field
but remain fragmented along several dimensions. Some specialize by the functional domain of
attack surface, considering either connectivity or autonomy. Vehicular communications and V2X
surveys focus on confidentiality and authentication in protocol-level security [26, 27], while
reviews of autonomous vehicles emphasize attacks on perception, decision-making, and control
[4, 28, 29]. Others focus on the cyber-physical component compromised. Surveys of in-vehicle
intrusion detection focus primarily on networking components such as the CAN bus and related
protocols [30], while studies of traffic signal control and traffic management emphasize control
components at the intersection and corridor levels [13, 14, 31]. By contrast, comparatively fewer
reviews explicitly examine the sensing components of vehicles, despite the growing literature on
perception attacks such as sensor spoofing and data poisoning [6, 28]. Moreover, other surveys
differentiate by the operational scale of CATS. Vehicle-level surveys investigate onboard
networks and sensors [28, 30], corridor-level reviews consider cooperative adaptive cruise control,
platooning, and traffic signals [13, 14], and network-level reviews address traffic management
systems and coordinated threats [31]. Yet these operational scales are treated independently,
without integrating micro-, meso-, and macro-systems into a unified resilience architecture.
Finally, surveys differ in their treatment of the threat-defense mapping. Most surveys concentrate
on specific attack surfaces, such as spoofing and tampering [4, 11, 28], data poisoning [6], or
denial-of-service [26], while others emphasize narrow sets of defense goals or typologies, such as
heuristic intrusion detection [30] or protocol-level cryptography [32], without integrating certified,
probabilistic or uncertainty-aware, and architectural strategies.

Beyond transportation, there is a growing body of cyber resilience surveys in other domains.
Domain-tailored reviews focus on sectors such as smart grids [33, 34] and healthcare cyber-
physical systems [35], providing insights into domain-specific vulnerabilities and regulatory
constraints but without addressing the connectivity-autonomy interplay or cascading traffic effects
unique to CATS. Additionally, cross-domain methodology surveys emphasize methodological
frameworks and techniques. In this line of research, comprehensive reviews of cyber resilience
strategies across cyber-physical systems [21, 36, 37], cyber resilience through reinforcement
learning [38], and surveys of resilient coordination or anomaly detection in cyber-physical systems
[39] illustrate methods with broad applicability but lack transportation-specific operational
contexts.

In view of the above gaps, the present survey makes three contributions. First, it develops a
taxonomy that systematically integrates attack surfaces, functional domains, cyber-physical



components, defense objectives, and defense typologies across micro-, meso-, and macro-scales.
Unlike prior surveys that treat functions, components, or scales in isolation, this taxonomy
establishes systematic correspondence across the full CIA triad, resilience objectives (robustness,
detection, response, recovery, adaptation), and defense typologies (heuristic, certified,
probabilistic, architectural). Second, it synthesizes methodological and assurance frontiers by
jointly considering theoretical approaches (optimization, game theory, and control theory),
learning-based techniques (Al and adversarial machine learning), and emerging paradigms
(quantum and post-quantum), together with assurance infrastructures such as digital twins,
testbeds, cyber ranges, and benchmarking frameworks. While existing surveys typically emphasize
either methods or infrastructures, this integration highlights their complementarity. Third, it
articulates a forward-looking research agenda that identifies persistent gaps, including cross-layer
resilience, unified trustworthiness, certified guarantees in safety-critical contexts, dual-use risks,
lifecycle-aware resilience, standardized benchmarking, and socio-technical integration, thereby
moving beyond descriptive taxonomies toward a strategic roadmap.

2. Foundations

The foundations of cyber resilience in CATS lie in the systematic characterization of how
attacks emerge, how they propagate across transportation system layers, and how defenses can be
organized to mitigate their impact. Establishing this foundation requires clear definitions of threat
surfaces, resilience objectives, and defense strategies, together with an understanding of the
architectures through which these elements interact. To this end, Section 2 introduces the
conceptual axes that structure this survey, encompassing (1) the operational scales of transportation
systems at the micro, meso, and macro levels, (2) the targeted functional domains of connectivity
and autonomy together with their enabling components of sensing, networking, and control, and
(3) the threat-defense mapping that aligns attack surfaces under the CIA triad with resilience
objectives spanning robustness, detection, response, recovery, and adaptation. Within this
framework, this section first details attack surfaces, then examines system functions and
components most frequently targeted, and finally discusses how resilience objectives organize
defense approaches. These foundational elements provide the taxonomy and concepts upon which
methodological and assurance frontiers are assessed in Section 3.

2.1. Cyber Attack Surfaces

The attack surfaces in CATS are continuously expanding as connectivity deepens and
autonomy advances. Unlike conventional transportation systems, CATS function as coupled cyber-
physical ecosystems in which vulnerabilities emerge across vehicles, infrastructure, data pipelines,
and communication networks. Exhaustively enumerating all cyber attacks is infeasible because
even known attacks may vary in timing, frequency, and sophistication, while unknown zero-day
exploits remain unpredictable. To establish systematic structure on this complexity, we organize



cyber attack surfaces along three complementary perspectives: 1) the confidentiality, integrity,
and availability (CIA) triad [40, 41], 2) the distinction between connectivity and autonomy
functions compromised, and 3) the targeted cyber-physical components that compose CATS.

CATS are multi-layered infrastructures. The physical layer includes infrastructure, vehicles,
sensors, actuators, and controllers. The cyber layer encompasses embedded processors, operating
systems, data analytics pipelines, and computational services at the edge or in the cloud. The
communication layer enables interaction among on-board units, roadside devices, and traffic
management centers. These layers interact through a closed-loop sense-process-decide-act cycle,
spanning sensing and localization, perception and fusion, prediction and planning, and control and
actuation. The interplay of connectivity and autonomy across these layers creates an expansive
attack surface. Confidentiality attacks compromise mobility data, communication records, or user
credentials [42]. Integrity attacks manipulate data streams, learning models, or control commands
through methods such as sensor spoofing, data poisoning, or controller tampering [6]. Availability
attacks disrupt system continuity through denial-of-service (DoS) or distributed denial-of-service
(DDoS) strategies that impair vehicle and infrastructure coordination [43]. Situating each threat
along the connectivity dimension (communication protocols and data flows) and the autonomy
dimension (inference, decision-making, and control logic), as well as identifying the targeted
cyber-physical components (sensors, controllers, or networks), provides a comprehensive and
streamlined framework for analyzing cyber attack surfaces in CATS.

2.1.1. Confidentiality Attacks

Confidentiality attacks in CATS concern the unauthorized access to or disclosure of sensitive
information, such as vehicle trajectories, traffic control logic, and traffic system states (e.g., traffic
flow). Breaches of confidentiality compromise privacy by exposing personally identifiable
information, undermine security by revealing exploitable system states, and degrade operational
performance by enabling informed integrity and availability attack planning. As summarized in
Table 1, confidentiality attacks may exploit vulnerabilities originated from the connectivity or
autonomy functions of CATS and target three main cyber-physical components, including sensors,
controllers, and networks. Each attack surface involves distinct threats with implications at micro
(vehicle-level), meso (intersection or corridor), and macro (network-level) scales. The following
sub-sections expand on each attack listed in Table 1.

2.1.1.1. Connectivity-Origin Confidentiality Attacks

Sensor-targeted attacks. One prominent confidentiality attack is radio-frequency (RF)
eavesdropping, in which adversaries passively intercept dedicated short-range communications
(DSRC) or cellular-vehicle-to-everything (C-V2X) messages to capture basic safety messages
(BSMs). At the micro scale, intercepted messages may reveal a vehicle’s precise position and
speed, enabling tracking of individual drivers. At the meso scale, repeated interception near



intersections could reveal traffic signal phase and timing (SPaT) data or vehicle platoon behavior.
At the macro scale, network-wide interception exposes mobility patterns of entire fleets. Empirical
demonstrations confirm that BSMs, even pseudonymized, leak trajectory data [42, 44]. Another
notorious sensor-targeted threat is traffic analysis, where attackers infer mobility or commuting
patterns by exploiting beaconing frequency or pseudonym changes. For instance, attackers
stationed along arterial roads can correlate pseudonym change intervals with recurring vehicle
appearances, enabling partial reconstruction of origin-destination (OD) flows. Simulation and field
studies further demonstrate that such pseudonym-linking attacks can compromise user privacy
even in dense urban networks [45]. More recent work shows that large-scale traffic analysis, when
combined with machine learning classifiers, can deanonymize travel corridors and reveal
commuting patterns despite pseudonym-switching strategies [46].

Table 1. Confidentiality attacks in CATS

Attack surface Specific attack examples
CATS cyber-physical Attack name Attack description
function component
Connectivity ~ Sensors RF eavesdropping Passive interception of DSRC/C-V2X signals to
capture basic safety messages
Traffic analysis Infers mobility patterns from beacon frequency or
pseudonym changes
Controllers API misconfiguration Poorly secured RSUs leak probe data or control
logic
Debug backdoors Exposed interfaces reveal traffic signal
scheduling or sensor feeds
Networks Session hijacking Intruder takes over active V2X sessions
Downgrade attack Forces fallback to weaker encryption, enabling
sniffing
Autonomy Sensors Data leakage Logs or calibration files reveal LIDAR/video data
or passenger patterns
Controllers Model inversion Reconstructs sensitive training data
Membership inference Identifies if data were included in training
Model extraction Clones trajectory models via queries
Networks Multi-tenant isolation failures ~ Edge/cloud leaks between tenants
Cloud data leakage Misconfigurations expose training or routing data

Controller-targeted attacks. Confidentiality risks extend to controllers such as roadside
units and traffic signal controllers. One critical vector is application programming interface (4PI)
misconfiguration, where poorly secured endpoints expose sensitive operational data [47]. For
example, improperly authenticated roadside unit APIs may leak probe vehicle datasets, disclosing
trajectories of connected vehicles in real time [48]. Another related confidentiality breach arises



from debug backdoors, which are diagnostic interfaces unintentionally left open after system
deployment. Debug backdoors allow adversaries to access detector feeds, internal logs, or incident
management protocols, creating a persistent leakage channel [49]. At the macro scale, such
vulnerabilities in traffic management centers can expose large-scale operational strategies,
including regional rerouting policies during emergencies, undermining trust in centralized
connected-traffic control.

Network-targeted attacks. At the communication layer, confidentiality is threatened by
session hijacking, in which adversaries intrude into active V2X sessions between vehicles and
RSUs. Once a session is hijacked, attackers can intercept routing instructions, vehicle identifiers,
or platoon membership information [50]. At the micro scale, this enables monitoring of individual
vehicle trips. At the meso scale, it exposes fleet-level routing preferences. At the macro scale,
hijacked sessions aggregate into a revealing picture of regional public transit or ride-hailing
demand. Another potent risk is the downgrade attack, where adversaries force communication
protocols to revert to weaker encryption standards, thereby enabling subsequent interception [51].
These attacks suggest that confidentiality breaches at the network layer not only compromise
individual privacy but also leak system-level mobility intelligence, which adversaries or
competitors can exploit.

2.1.1.2. Autonomy-Origin Confidentiality Attacks

Sensor-targeted attacks. A major confidentiality risk at the perception layer of autonomous
transportation systems is data leakage, in which raw or auxiliary sensor outputs inadvertently
expose sensitive information. At the micro scale, leaked LiDAR point clouds or camera calibration
logs can disclose pedestrian movement patterns or individual vehicle trajectories[52]. At the meso
scale, exposed fleet-level video feeds can enable re-identification attacks on drivers or pedestrians
through face and gait recognition. At the macro scale, aggregated LiIDAR, radar, or camera datasets
leaked from autonomous vehicle fleets may reveal regional commuting flows and population-level
traffic densities, providing attackers or competitors with sensitive mobility intelligence.

Controller-targeted attacks. At the autonomy control layer, confidentiality threats are
driven by machine learning-specific attack vectors. Model inversion attacks reconstruct sensitive
elements of training data by querying trajectory planning or perception models, exposing rare crash
trajectories or proprietary driver reaction traces [53, 54]. Membership inference attacks determine
whether a particular data record, such as an accident scenario or edge-case trajectory, was included
in the model’s training set, threatening the privacy of study participants and the integrity of safety
datasets [55]. Model extraction attacks allow adversaries to clone proprietary control policies (e.g.,
trajectory planning or platoon stability models) by systematically probing the outputs of deployed
application programming interfaces (APIs), effectively stealing intellectual property [56]. At the
micro scale, these attacks may expose an individual AV’s car-following or lane-change model. At
the meso scale, they may compromise fleet-level routing strategies. Whereas, at the macro scale,



they can lead to the leakage of proprietary urban traffic optimization policies.

Network-targeted attacks. The supporting cloud and edge infrastructure for autonomy is
subject to confidentiality breaches such as multi-tenant isolation failures and cloud data leakage.
In multi-tenant isolation failures, improper isolation on edge servers or roadside units allows data
from one tenant (e.g., a fleet operator) to be accessed by another, exposing trajectory logs, routing
preferences, or passenger demand distributions [57, 58]. As for cloud data leakage attacks,
misconfigurations or insecure APIs expose sensitive fleet-level datasets, such as dispatch plans,
rider histories, or traffic demand matrices [59]. At the micro scale, this could reveal an individual
passenger’s trip history. At the meso scale, leaked roadside unit logs may disclose fleet allocation
strategies. At the macro scale, exposure of mobility-as-a-service (MaaS) or autonomous vehicle
dispatch datasets may reveal population-scale passenger flows, which can be exploited by both
attackers and competitors.

2.1.2. Integrity Attacks

Integrity attacks aim to corrupt or manipulate data, models, or control logic so that CATS
make decisions based on incorrect information. Unlike confidentiality attacks that focus on
unauthorized access, integrity attacks seek to directly change system behavior by injecting false
information, tampering with models, or manipulating communications). Table 2 summarizes the
main classes of integrity attacks, grouped by their origin (connectivity and autonomy) and targeted
cyber-physical component (sensing, control, or networks).

Table 2. Integrity attacks in CATS

Attack surface Specific attack examples
CATS cyber-physical Attack name Attack description
function component
Connectivity ~ Sensors False data injection Malicious alteration of sensor data streams (e.g., loop
detectors, GPS)
Replay attack Legitimate sensor messages are recorded and re-sent
later to mislead operations
Controllers Command injection Insertion of malicious commands into traffic
controllers
Firmware tampering Modification of controller firmware to persistently
corrupt operations
Networks Message tampering Alteration of message payloads during transit

Intercepting and modifying communications between

Man-in-the-middle vehicles and infrastructure

Autonomy Sensors Sensor spoofing igj:gft;ﬁg)of corrupted sensor inputs (e.g., GNSS

Overwhelming perception systems with excessive or

P ti 1 .
erception overload conflicting data



Attack surface Specific attack examples

CATS cyber-physical Attack name Attack description
function component
Controllers Model poisoning Corppromlslng Al model training or updates to bias
decisions
Backdoor attack Hidden triggers embedded in Al models to cause
targeted misbehavior
Networks Sybil attack Fake identities created to distort cooperative systems

Adversarial biasing of distributed or federated

Consensus manipulation L .
decision-making

2.1.2.1. Connectivity-Origin Integrity Attacks

Sensor-targeted attacks. Integrity threats that originate at the sensing layer of connected
systems primarily manifest as false data injection and replay attacks. In false data injection,
adversaries deliberately alter measurement streams such as loop detector counts, GPS positions,
or probe vehicle data with the goal of misleading downstream estimation and control applications.
At the micro scale, manipulated detector readings may cause ramp meters or adaptive signals to
allocate green times inefficiently, creating localized congestion. At the meso scale, corrupted probe
vehicle data can bias arterial travel time estimation, leading to mistimed coordination across
signalized corridors. At the macro scale, falsified inputs to origin-destination estimation or
dynamic traffic assignment models may cause underestimation or overestimation of regional
demand, producing flawed system-wide routing or planning decisions. Studies confirm that even
modest falsification rates can trigger substantial performance deterioration in model-based and
data-driven control [6, 60]. Closely related are replay attacks, where adversaries capture valid
sensor data and retransmit them at later times. At the micro level, replaying outdated pedestrian
detection messages can trick traffic signals into activating walk phases unnecessarily. At the meso
level, replaying prior video or probe data can produce false incident reports or phantom congestion.
At the macro level, re-injected floating car data streams can suggest congestion at places where
none exists, distorting both real-time traveler information and long-term network management [61,
62]. Both false data injection and replay attacks thus compromise the integrity of the traffic sensing
backbone, undermining the reliability of connectivity-based control.

Controller-targeted attacks. Controllers that actuate connected transportation systems are
highly susceptible to command injection and firmware tampering. In command injection attacks,
adversaries compromise control channels to insert malicious instructions. At the micro scale, such
attacks could alter adaptive traffic signal logic (e.g., forcing unsafe signal phase sequences), while
at the meso scale they can disrupt coordination across signalized arterials and they can corrupt
traffic management centers at the macro scale, propagating false signal phase plans or routing
recommendations across entire networks [63—65]. Firmware tampering represents a more
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persistent form of attack, wherein adversaries modify firmware within roadside units, traffic signal
controllers, or connected infrastructure to systematically corrupt operations [66—68]. These
manipulations can miscommunicate with connected vehicles, generate biased V2X safety alerts,
or sustain long-term denial of reliable control, making firmware integrity a cornerstone of secure
controller deployment in connected transportation systems.

Network-targeted attacks. At the communication network layer, message tampering and
man-in-the-middle (MitM) attacks represent major integrity threats. Message tampering occurs
when adversaries alter communication payloads during transmission, resulting in false routing
guidance, corrupted traffic density estimates, or invalid basic safety messages. At the micro scale,
this can generate incorrect collision warnings between nearby vehicles. At the meso scale,
tampered cooperative awareness messages (CAMs) can distort corridor traffic state estimation. At
the macro scale, corrupted floating car or connected vehicle messages can bias system-wide
traveler information platforms [69, 70]. Man-in-the-middle attacks pose an even greater systemic
risk by enabling adversaries to intercept and selectively modify messages exchanged between
vehicles and infrastructure [71, 72]. Such attacks can alter congestion reports provided to traffic
management centers, leading to distorted network-wide routing and resource allocation. By
compromising the communication integrity of connected networks, message tampering and MitM
attacks destabilize both local safety-critical services and large-scale mobility management.

2.1.2.2. Autonomy-Origin Integrity Attacks

Sensor-targeted attacks. Autonomy-origin integrity threats on sensing systems are among
the most direct forms of attack on autonomous transportation systems. Sensor spoofing involves
directly forging false signals to mislead perception modules. GNSS spoofing, for example,
manipulates satellite navigation by transmitting counterfeit signals that override authentic ones,
thereby causing an autonomous vehicle to mis-localize its position [11, 73, 74]. Such attacks have
been demonstrated in both simulation and field experiments [75], with the potential to reroute
single vehicles, destabilize platoons [76], or disrupt large-scale network flows [77]. Perception
overload attacks further undermine sensor integrity by overwhelming perception systems with
adversarial inputs. Examples include adversarial stop signs that cause misclassification in deep
vision models [78], laser injection that creates phantom obstacles in LIDAR point clouds [79, 80],
and flooding attacks that degrade radar/LiDAR detection accuracy under high-noise conditions
[81]. At micro scales, these attacks compromise single-vehicle detection. At meso scales, they
destabilize platoons or cooperative maneuvers, while they distort network-level routing and safety-
critical perception at macro scales.

Controller-targeted attacks. Integrity threats also target the decision-making controllers of
autonomous transportation systems. Model poisoning attacks compromise learning pipelines by
inserting malicious updates into training or federated learning rounds, shifting model parameters
to induce unsafe behaviors. Such poisoning can degrade reinforcement learning for car-following,
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bias routing policies, or systematically redirect large-scale planning [82—-84]. Backdoor attacks are
a stealthier variant, embedding hidden triggers during training so that models behave normally
under standard conditions but produce unsafe actions when exposed to specific inputs. For
instance, a trigger pattern on a roadside sign can cause an autonomous vehicle to brake or swerve
unexpectedly [85, 86]. In federated settings, poisoning and backdoor attacks can bypass robust
aggregation methods and persist across global model updates [87]. These controller-level threats
are especially critical because they compromise the autonomy core, directly altering autonomous
decision policies.

Network-targeted attacks. Beyond sensors and controllers, integrity attacks extend to
collective autonomy mechanisms, where vehicles and infrastructure rely on distributed consensus.
Sybil attacks involve adversaries creating multiple fake identities, injecting false data to bias
cooperative decisions. At the micro scale, a single attacker may appear as a phantom platoon [88].
At the meso scale, cooperative adaptive cruise control synchronization can be disrupted [89]. At
the macro scale, distributed routing algorithms may be skewed toward attacker-preferred paths
[90]. Another critical integrity threat is consensus manipulation, in which adversaries bias
distributed protocols such as federated learning aggregation or decentralized traffic state
estimation. Recent work shows that even Byzantine-robust consensus protocols can be
manipulated by carefully crafted adversarial updates, leading to global deviation from optimal
equilibria [91, 92]. Such network-level integrity attacks threaten the scalability and trustworthiness
of collaborative autonomy frameworks, particularly in CATS.

2.1.3. Availability Attacks

Availability attacks aim to degrade or completely disrupt the operational continuity of CATS
by overwhelming system resources or obstructing communication. Unlike confidentiality and
integrity breaches, availability attacks aim to deny, degrade, or delay service, such as disrupting
traffic signal operations, blocking basic safety messages, or overloading vehicular computing
units. These disruptions are particularly dangerous in transportation as they can create cascading
safety-critical failures. A local outage at a single road intersection may ripple into regional traffic
congestion, or a delayed decision by one autonomous vehicle may propagate into multi-vehicle
accidents. By undermining the timeliness of information flow and the ability to act, availability
attacks strike at the real-time decision-making foundation of both connectivity and autonomy in
CATS. Availability attacks are primarily realized through denial-of-service (DoS) mechanisms and
their variants, as outlined below. These attacks can originate either from the connectivity layer
(targeting communication networks) or from the autonomy layer (targeting computational
resources and control modules).
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Table 3. Availability attacks in CATS

Attack surface Specific attack examples

CATS cyber-physical Attack name Attack description

function component

Connectivity ~ Sensors Jamming GNSS jamming, DSRC or C-V2X interference
Networks DoS, DDoS, flooding Traffic flooding against VANETs and RSUs

Autonomy Controllers Overloading autonomous vehicle perception and

Resource exhaustion DoS planning GPU with adversarial inputs

2.1.3.1. Connectivity-Origin Availability Attacks

Sensor-targeted attacks. Jamming attacks are the canonical availability threats against
sensors. By transmitting strong signals on the same frequencies used by GNSS, DSRC, or C-V2X,
an attacker can block vehicles or roadside units from receiving valid data. For GNSS, even small,
inexpensive jammers can disturb satellite signals, causing large errors in vehicle positioning and
timing that ripple through systems depending on location accuracy [93]. Large-scale monitoring
has shown that such interference events occur regularly in practice and can persist in specific areas,
making them a serious risk for traffic operations that depend on GPS or other GNSS services [94].
For V2X communications, jamming can reduce the success rate of safety messages. This can be
done by simply transmitting noise, or more subtly by targeting the rules used for channel access in
C-V2X, which prevents legitimate vehicles from successfully sending their messages [95, 96]. At
the micro level, this disrupts situational awareness for individual vehicles. At the meso level,
repeated interference near intersections can block SPaT information or disturb vehicle platoons.
At the macro level, corridor-wide interference can cause connectivity losses that translate into
regional traffic flow disruptions.

Network-targeted attacks. At the network layer, availability attacks appear as denial-of-
service (DoS) and its distributed variant (DDoS). In these attacks, adversaries overwhelm roadside
units, cloud servers, or vehicular backbone networks with excessive traffic, leaving no resources
for legitimate messages. Flooding attacks are a common case, where attackers inject a high number
of unnecessary messages into vehicular networks, consuming bandwidth and RSU processing
capacity. This prevents timely delivery of basic safety messages or other control information [97,
98]. Recent work has developed real datasets for vehicular flooding scenarios, making it possible
to test detection methods in realistic settings [99]. Countermeasures include simple rate limiting at
RSUs, congestion-control policies at the medium access control (MAC) layer, and anomaly
detectors that look for abnormal traffic volumes or timing patterns. Modern detection systems
show promise for real-time recognition of flooding and DDoS attacks with low false-alarm rates
[97, 100].
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2.1.3.2. Autonomy-Origin Availability Attacks

Controller-targeted attacks. Within vehicles or traffic management centers, availability
failures can also come from resource exhaustion attacks, where computational units such as CPUs,
GPUs, or controllers are overloaded by abnormal inputs. In the vehicle perception and planning
modules, crafted inputs can make algorithms take longer than expected to process, causing delays
or system stalls without directly corrupting the data [101]. For example, an attacker can feed inputs
that force the object detection system to run very slowly, delaying downstream modules for braking
or steering [102]. This type of attack may not produce incorrect decisions, but it disrupts the timing
of decision-making, which is critical for safety. At the controller and middleware layers, attackers
may also flood vehicles with control-plane or network messages that overload communication
queues and delay sensor fusion and actuation [103]. Defensive measures include setting processing
limits for each module, using algorithms that can return a “best effort” result quickly under heavy
load, and monitoring queues for abnormal traffic patterns. Despite this, a major open problem is
how to provide guaranteed timing performance in autonomous driving systems when they are
under attack, which is an issue closely tied to certification in safety-critical transportation.

2.2. Cyber Defense Objectives and Strategies

Cyber defense in CATS should be designed for continuity of system function under stress
rather than prevention alone. In practice, this means aligning defenses with a multi-stage resilience
characterization that spans preparation and robustness before an incident, graceful performance
under bounded disruption, fast and reliable detection when the system deviates from nominal
behavior, safe online containment when compromises occur, efficient restoration of services to
acceptable levels, and adaptive learning that reduces future exposure. This systems view is
consistent with cyber resilience engineering that emphasizes anticipating, withstanding,
recovering, and adapting across the lifecycle, and doing so in ways that respect the real-time,
safety-critical, and networked nature of transportation operations [ 104—106]. The remainder of this
section formalizes the objectives that such defenses should meet and subsequently analyzes
defense strategy typologies and deployment architectures that can deliver those objectives at the
micro, meso, and macro scales of transportation systems.

2.2.1. Defense and Resilience Objectives

We adopt a multi-stage characterization of cyber resilience that is tailored to transportation
cyber-physical operations and grounded in established resilience literature [104—106]. Robustness
is the pre-incident and during-incident capability to maintain acceptable performance under
bounded disturbances, uncertainty, or attack actions. In road transportation, robustness is reflected
in platooning or cooperative adaptive cruise control that preserves string stability despite bounded
communication delay and packet loss, thereby attenuating, rather than amplifying, disturbances
along a vehicle string [107-109]. Robustness is specified and engineered a priori and measured
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online through safety margins and performance envelopes. It is not a guarantee against every threat
but a commitment to degrade slowly and predictably when perturbations remain within design
bounds [107, 110].

Detection is the timely and reliable identification of departures from nominal system
behavior caused by faults, misuse, or adversary actions. In CATS, detection spans in-vehicle
intrusion detection for controller area network (CAN) traffic, anomaly and misuse detection on
V2X links, and integrity monitors for PNT. The related literature shows the feasibility and limits
of signal-, protocol-, and learning-based detectors for in-vehicle networks, including coverage
gaps introduced by stealthy, low-rate attacks and concept drift in real traffic [111-113]. In the PNT
domain, spoofing can be detected by signal-quality tests, multi-antenna spatial discrimination, and
consistency checks against inertial and map priors, but adversaries that mimic legitimate signals
can still pass simplistic monitors, motivating multi-sensor cross-validation and decision-level
fusion [114]. Across meso- and macro-scales, detection includes monitoring of traffic controller
setpoints and of network-wide traffic flows to flag impossible traffic states or policy-inconsistent
traffic signal timing plans [115, 116].

Response is the execution of safe, bounded interventions while the system is compromised,
such that hazards remain controlled and mission-critical services continue. Examples include
switching a vulnerable controller to a failsafe control law that trades throughput for safety, forcing
a vehicle to a minimum-risk condition when localization confidence collapses, or isolating a
corridor’s traffic signal control to time-of-day plans when central coordination is suspected
compromised. Runtime assurance frameworks from safety-critical CATS, such as control-barrier-
function safety filters, formalize this notion of online containment and have been extended to
autonomy settings where complete pre-deployment proofs are infeasible [117-120].

Recovery is the efficient restoration of nominal or near-nominal service levels once the
immediate hazard is contained. In transportation operations, this includes re-synchronizing traffic
signals after a controller rollback, re-establishing secure keys and routes on V2X, and restoring
degraded perception pipelines once trusted models are reloaded. Recovery metrics combine time-
to-restore and residual performance during restoration [121-125]. Lastly, adaptation refers to the
systematic learning and hardening that reduces future exposure through updating detection
thresholds after false-negative analysis, refining fallback policies to improve service under
degraded sensing, and redesigning trust and management procedures after incident [126, 127].
Cyber resilience, in this sense, is not a single mechanism but a closed-loop, multi-stage
characterization of robustness, detection, response, recovery, and adaptation that composes across
micro vehicle behavior, meso corridor control, and macro network management.

2.2.2. Defense strategy typologies and deployment architectures

Cyber defense strategies can be broadly organized along two complementary directions: (1)
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methodological guarantees (or lack thereof), encompassing heuristic and empirical methods,
statistical and probabilistic methods, and certified and provable methods; and 2) deployment
architecture, such as modular and end-to-end pipelines as well as centralized, decentralized,
distributed, or federated settings. The choice along each direction has concrete implications for
fault isolation, attack containment, latency, scalability, and certifiability at each operational scale
in CATS.

Heuristic and empirical defense strategies rely on specification conformance, signatures,
rule-based checks, and learned anomaly profiles. At the micro scale in CATS, these include
protocol sanity checks and payload plausibility tests on controller area network (CAN) [128],
timing-consistency checks on sensor streams [129, 130], and traffic-shaping on V2X interfaces
[131, 132]. At meso- and macro-scales, they include policy conformance checks on traffic signal
timing plans [133, 134] and integrity monitors on center-to-field messages, i.e., communication
between a traffic management center (the “center”) and field devices such as traffic signal
controllers and roadside units (the “field”) [31, 135]. Such methods are lightweight and practical,
but they are susceptible to evasion by adaptive adversaries and require continual re-tuning as
platforms, protocols, and traffic evolve [136]. Their advantage is speed and coverage for known
failure and misuse modes, whereas their limitation is the lack of guarantees outside the envelope
captured by rules and training data.

Statistical and probabilistic defense strategies make uncertainty explicit and seek to
quantify confidence in system state, detection decisions, and control actions. Examples include
residual-based detectors with false-alarm guarantees [137], Bayesian filters that fuse GNSS to test
for PNT anomalies [138], and traffic state estimators that flag infeasible traffic flows [139]. At the
control layer, stochastic model predictive control [140] and chance-constrained optimization [141]
trade performance against tail risk, thereby expressing robustness requirements as probability-of-
violation bounds. At the micro scale, this helps quantify when to invoke minimum-risk vehicle
maneuvers. At the meso scale, it guides when to cut over to pre-timed corridor signal control plans.
At the macro level, it supports admission control and rerouting under suspected data poisoning.
Overall, these methods generalize better than pure heuristics, but they still depend on modeling
assumptions about noise, dependence, and attack surfaces that adversaries can target.

Certified and provable defense strategies aim for formal guarantees. In autonomy, barrier-
certificate synthesis can prove that closed-loop vehicle trajectories remain within safety sets
despite bounded faults or disturbances and can be evaluated online for runtime shielding [142,
143]. In networked transportation, design for string stability and bounded delay can be proved for
cooperative vehicle control under realistic communication assumptions, thereby ensuring
disturbance attenuation across platoons and suppressing amplification that attackers could exploit
[108, 144]. For Al components, formal verification tools for neural networks can certify local
robustness to input perturbations in perception or decision modules, which complements but does
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not replace system-level assurance [145-148]. Certified defenses are attractive for safety-critical
functions in CATS, yet they typically incur higher computational cost, require conservative
modeling, and may need runtime assurance wrappers to remain effective under model error or
distribution shift [149, 150].

The deployment architecture shapes how the aforementioned defense methods compose at
scale. Modular pipelines (i.e., sensing, perception, prediction, planning, control) facilitate fault
isolation and targeted fallback strategies. They are amenable to component-level verification and
to runtime guards placed at well-defined interfaces [151-153]. By contrast, end-to-end pipelines
reduce computational overhead but complicate certification and containment, and therefore often
require external monitors and safety filters (e.g., [154]). With respect to organizational topology,
centralized architectures (e.g., corridor or network control from a transportation management
center) simplify global situational awareness and coordinated response but create single points of
failure. Decentralized or distributed architectures localize autonomy and control, which improves
containment and reduces latency at the cost of more complex synchronization and potential
performance loss in global objectives. In cooperative driving scenarios, for instance, theoretical
and empirical results show how communication topology and delay bounds interact with closed-
loop stability, illustrating the containment and scalability advantages of designs that preserve string
stability under realistic network constraints [ 144, 155]. Finally, federated or hierarchical data and
model management can reduce privacy and confidentiality risk by keeping raw data local while
exchanging aggregates or model updates. However, they introduce their own trust and integrity
challenges that must be controlled by robust aggregation and audit mechanisms [156, 157].

Across micro, meso, and macro scales of CATS, it is the alignment of defense objective,
method, and architecture (e.g., a certified runtime safety filter wrapped around a learned planner
in vehicles, policy-conformance and statistical monitors in the field, and conservative fallback in
the transportation management center) that yields transportation cyber resilience.

3. Frontiers

While the foundations (Section 2) establish what is being defended and how cyber resilience
can be defined, the frontiers address how cyber resilience is operationalized through
methodological advances. Section 3 surveys the principal analytical and computational approaches
that underpin state-of-the-art defenses, with emphasis on both their promise and limitations. These
include 1) analytical and theoretical methods, such as optimization, control, and game theory,
which provide structure and, in some cases, formal guarantees, 2) learning and computational
methods such as adversarial machine learning, anomaly detection, and reinforcement learning that
offer adaptivity but often lack rigorous assurance, and 3) emerging paradigms such as quantum
and post-quantum approaches that are beginning to reshape the cyber resilience landscape.
Complementing these methods are assurance infrastructures, including digital twins, cyber ranges,
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and benchmarking frameworks, which enable systematic evaluation and validation.

While the foundations in Section 2 define what is at stake and how cyber resilience can be
conceptualized, the frontiers turn to how resilience is enacted through methodological innovation.
Section 3 surveys the principal analytical and computational approaches that drive state-of-the-art
defenses, highlighting both their capabilities and their inherent limitations. These encompass: (1)
analytical and theoretical frameworks, including optimization, game theory, uncertainty
frameworks, and control theory, which embed structure and, in some cases, provable guarantees;
(2) learning-based and computational methods, such as adversarial machine learning and
reinforcement learning, that enable adaptivity but often lack rigorous assurance; and (3) emerging
paradigms, such as quantum and post-quantum approaches, which are beginning to redefine the
landscape of cyber resilience. Importantly, these methodological frontiers are complemented by
assurance infrastructures, including digital twins, cyber ranges, and benchmarking frameworks,
which provide the experimental settings needed to test, validate, and compare resilience strategies
under realistic conditions. However, as will be shown, the same innovations that advance resilience
simultaneously open new avenues for adversaries, underscoring the dual-use nature of
methodological progress.

3.1. Methodological Frontiers

Methodological innovations form the intellectual backbone of cyber resilient transportation.
To tackle the escalating sophistication of cyber-physical threats, researchers have advanced diverse
methodological frameworks that integrate rigorous theory, adaptive computation, and next-
generation technologies. These frontiers can be organized into three complementary categories.
First, theoretical and analytical frameworks, which ground cyber resilience in operations research
and control theory. Second, Al-centered frameworks, which span using Al as a defensive tool (i.e.,
Al for security) as well as guarding learning systems themselves from adversarial exploitation (i.e.,
security of Al). Finally, emerging paradigms, particularly including quantum information science
and engineering, which is set to redefine the boundaries of secure communication, inference, and
optimization. Each category addresses different dimensions of the CIA triad that underpins cyber
resilience. Despite these methodological innovations to enhance cyber resilience, a paradox
persists. The very techniques that offer cyber resilience often create new attack surfaces, as
adversaries exploit the same methodological advances to design stealthier, more adaptive, and
more scalable attacks.

3.1.1. Theoretical and Analytical Frameworks

Theoretical and analytical frameworks provide the foundational layer for designing cyber
resilient transportation systems. Unlike heuristic defenses discussed in Section 2.2.2, these
methods can offer provable guarantees and interpretability, enabling systematic reasoning about
adversarial behavior in CATS. Their value lies in embedding rigor and structure into resilience
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strategies, spanning from optimization formulations to dynamic control. Importantly, these
frameworks can address the three types of cyber attack surfaces (i.e., confidentiality, integrity, and
availability) by quantifying risks of data breaches, mitigating falsified or manipulated sensor
inputs, and ensuring continuity of operations under disruption. Broadly, these methods can be
grouped into four categories: 1) optimization approaches, 2) game-theoretic frameworks, 3)
probabilistic and uncertainty frameworks, and 4) control-theoretic approaches.

Optimization approaches. Optimization provides a structured means of designing resilient
decision rules in transportation systems. Robust optimization can protect against worst-case
realizations of cyber attacks by bounding uncertainty sets. This is particularly relevant for
maintaining availability, such as ensuring routing or scheduling decisions remain feasible under
DoS disruptions [158, 159]. Distributionally robust optimization (DRO) extends this by hedging
against adversarially shifted probability distributions, which is useful for countering integrity
attacks such as falsified travel time reports or sensor spoofing [160]. Chance-constrained
optimization further balances resilience with efficiency, controlling the probability of
confidentiality or availability failures under stochastic disruptions [161]. Example applications of
optimization approaches in transportation include network design under interdiction [162], traffic
signal control under uncertainty [163], and infrastructure hardening for multimodal systems [164].
However, these methods are only as resilient as their assumptions. That is, adversaries with
knowledge of the defender’s uncertainty sets can engineer stealthy disruptions that bypass
optimization safeguards. Thus, while optimization enhances resilience, it simultaneously creates
exploitable attack surfaces defined by modeling assumptions.

Game-theoretic approaches. Game theory explicitly models the strategic interplay between
defenders and adversaries, providing insight into adversarial intent and adaptive responses. In
Stackelberg security games, defenders pre-commit to strategies anticipating adversarial responses.
This is well-suited for preserving integrity, such as mitigating false data injection attacks where
adversaries exploit sensor networks [165, 166]. Bayesian games capture incomplete information,
where defenders face uncertainty about attacker capabilities, directly addressing confidentiality
concerns by incorporating hidden attacker types [167]. Repeated and stochastic games can further
capture persistence, deception, and adaptation over time, central to maintaining availability in
critical infrastructures targeted by long-term adversarial campaigns [168, 169]. Example
applications include transportation network interdiction [170], defense of connected vehicle
perception [171], and modeling cyber risks in infrastructure systems [172]. Despite these,
equilibria themselves can be double-edged in the sense that once equilibrium strategies are public
or learned, attackers may adapt to exploit them. This illustrates the paradoxical dual role of game-
theoretic methods as both a resilience enabler and a map of exploitable vulnerabilities.

Probabilistic and uncertainty frameworks. Probabilistic frameworks embed uncertainty
quantification into cyber resilience planning. Markov decision processes (MDPs) and their robust
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variants address availability attacks by guaranteeing continuity of control policies under uncertain
transitions caused by cyber disruptions [173]. Bayesian risk analysis quantifies uncertainty in
attacker intentions and outcomes, directly relating to confidentiality (e.g., estimating likelihood of
hidden surveillance) and integrity (e.g., bounding the probability of undetected falsified data)
[174]. Stochastic programming integrates uncertainty into optimization, balancing cost and
resilience by preparing against plausible scenarios of cyber disruption [175]. Example applications
in transportation systems comprise resilience assessment of critical infrastructure [176], cyber risk
quantification in vehicular networks [177], and uncertainty-aware routing under adversarial
conditions [178]. Despite their advantages, probabilistic defenses are inherently limited by the
accuracy of prior models, i.e., adversaries with superior information may manipulate assumptions,
rendering posterior-based defenses blind. This epistemic fragility underscores the need for careful
integration of probabilistic methods with real-time data-driven monitoring.

Control-theoretic approaches. Control-theoretic methods engage directly with system
dynamics, ensuring stability and observability under cyber interference. Robust and adaptive
control safeguard availability by stabilizing traffic flow even under packet drops or sensor failures
[179]. Resilient state estimation and observer-based anomaly detection can defend integrity by
identifying falsified sensor signals inconsistent with physical dynamics [180]. Control
watermarking and authentication-based feedback loops protect confidentiality, preventing
adversaries from reverse-engineering or predicting system responses [181]. Example applications
to transportation systems include secure traffic signal control [182], vehicle platoon stability under
adversarial communication [183], and resilient monitoring of networked infrastructures [184].
Analogous to other theoretical and analytical methods discussed above, informed adversaries can
align their attacks with system dynamics to create stealthy false data injections that evade
detection. Therefore, even control theory, long regarded as a rigorous framework in cyber-physical
systems, paradoxically defines the limits of stealth for attackers with structural knowledge.

3.1.2. Learning and Computational Frameworks

Al has emerged as a central methodological frontier in transportation cybersecurity because
of its ability to model complex spatiotemporal patterns, adapt to evolving adversaries, and infer
hidden attack signatures from large-scale data. Its contributions can be understood along two
intertwined dimensions: 1) Al for security, where Al methods and algorithms directly enable
detection, response, and resilience, and 2) security of Al, in which the learning systems themselves
become attack surfaces susceptible to adversarial exploitation. This dual framing is essential for
capturing the paradox of Al in CATS, i.e., the same Al algorithms that enhance cyber resilience
can be weaponized against it. Four major Al paradigms, encompassing supervised learning,
unsupervised learning, reinforcement learning, and generative Al, define the current landscape of
opportunities and risks.

Al for Security. Supervised learning methods leverage labeled data to identify attack
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patterns or abnormal conditions. In transportation systems, they have been used for intrusion
detection systems, anomaly classification in vehicular networks, and malware detection in
intelligent infrastructure [185-187]. Against the CIA triad, supervised classifiers primarily
strengthen integrity by flagging falsified sensor data, and confidentiality by detecting packet
sniffing or unauthorized access attempts. However, their reliance on labeled data makes them
vulnerable to concept drift, where adversaries deliberately introduce new attack variants not
represented in training sets. This limitation reflects both their defensive utility and susceptibility
to exploitation as adversaries can poison labeled datasets, leading to corrupted models that
misclassify attacks [188, 189].

Unsupervised learning, such as clustering, autoencoders, and graph-based methods, are
essential when labeled attack data is scarce. These approaches are particularly suited for
availability threats, where DoS or jamming attacks manifest as structural deviations in traffic or
communication flows [190, 191]. Autoencoders, for example, reconstruct expected signals and
flag anomalies when reconstruction error exceeds a threshold [192]. Graph neural networks extend
this by modeling interdependencies across network nodes, capturing anomalies in distributed
cyber-physical dynamics [193, 194]. As with other methods, unsupervised methods can themselves
be deceived as adversaries may design perturbations that mimic normal variability, bypassing
thresholds while still degrading integrity or availability.

Reinforcement learning (RL) provides a rigorous framework for adaptive cybersecurity
defense, where RL agents continuously interact with transportation networks to learn optimal
mitigation policies. Example applications include adaptive intrusion response [195, 196], traffic
signal control resilience [197, 198], and dynamic spectrum allocation in vehicular networks [199].
RL particularly addresses availability by ensuring continuity of service under DoS or network
congestion, while also tackling integrity threats by adjusting policies in the presence of falsified
data. However, RL models are acutely vulnerable to model poisoning attacks and adversarial
manipulation, since state observation attacks, reward tampering, and action perturbations can all
degrade RL policy learning [200].

Generative adversarial networks (GANs) and large-scale generative models hold promise
for simulating realistic cyber attack scenarios, augmenting scarce cybersecurity datasets, and
stress-testing cyber resilience strategies [201, 202]. For instance, GAN-based traffic injection can
simulate cyber attacks on sensor streams, enabling defenders to anticipate adversarial
manipulations [203-205]. As for defense, generative models can improve confidentiality through
synthetic data privacy preservation, while also enhancing integrity via adversarial training that
strengthens robustness [206, 207]. Despite its advantages, generative models are also double-
edged as they can be co-opted by attackers to synthesize stealthy perturbations indistinguishable
from normal traffic or communication flows, directly undermining CIA protections [208, 209].

Security of Al. As outlined earlier, the flip side of Al deployment is the vulnerability of
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learning algorithms themselves. Data poisoning attacks corrupt supervised training pipelines,
eroding model integrity [210]. Evasion attacks craft adversarial examples that bypass anomaly
detectors, threatening both confidentiality and availability [211, 212]. Model inversion and
membership inference attacks exploit learned models to recover sensitive training data, striking at
confidentiality [213, 214]. In reinforcement learning, policy manipulation through adversarial
perturbations can compromise adaptive defense, reducing availability [215]. Even generative Al
is not immune noting that adversaries can exfiltrate sensitive data from foundation models through
prompt injection or use them to craft highly realistic cyber attacks [216].

3.1.3. Emerging Paradigms

Quantum information science and engineering (QISE) represents a rapidly evolving frontier
for transportation cyber resilience. Unlike classical methods discussed in sections 3.1.1 and 3.1.2,
quantum methods harness fundamental principles of quantum mechanics, such as superposition
and entanglement, to introduce capabilities in computation, communication, and cryptography that
cannot be matched by conventional systems. For cyber resilient CATS, this transformation could
redefine how defenders and attackers interact. Within the CIA triad, quantum methods promise
stronger protection of sensitive communications, new safeguards against data manipulation, and
faster optimization for resilient operations. Similar to classical methods, the dual-use nature of
quantum methods creates risks as adversaries may exploit quantum computing to break existing
cryptosystems, accelerate cyber attack planning, or design stealthier adversarial AI methods.

Quantum-resistant cryptography (QRC). One of the most immediate implications of
QISE lies in protecting confidentiality. Algorithms such as Shor’s have demonstrated that once
scalable quantum computers are available, today’s widely deployed public-key cryptosystems
could be broken in polynomial time [217, 218]. To address this, post-quantum cryptography (PQC)
is being developed using mathematical problems such as lattices, error-correcting codes,
multivariate polynomials, and hash-based constructions [219-222]. These methods can be
computationally efficient on classical hardware and can be deployed in V2X communications,
roadside-vehicle authentication, and sensor-to-controller data exchanges. Importantly, PQC
strengthens confidentiality by preventing eavesdropping and spoofing, while also supporting
availability since lattice-based schemes are often suitable for resource-constrained vehicular
devices. However, these approaches remain vulnerable to side-channel attacks, premature
standardization risks, and interoperability challenges, which adversaries may exploit to degrade
confidentiality and availability in large-scale transportation networks [223, 224].

Quantum key distribution (QKD) and quantum networks. While post-quantum
cryptography resists quantum attackers using classical resources, quantum key distribution (QKD)
directly exploits physical quantum properties to guarantee confidentiality. Any attempt at
eavesdropping disturbs the transmitted quantum states, alerting communicating parties to the
intrusion [225, 226]. This means QKD enables information-theoretic secure key exchange, even
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against an adversary with unlimited computational power. For integrity, QKD strengthens message
authentication by ensuring that falsification attempts in control channels, such as fake vehicle
trajectory updates or altered traffic signal commands, are detectable [227-229]. Nevertheless,
QKD faces deployment barriers for availability. It requires specialized optical infrastructure, is
sensitive to noise and distance, and cannot yet scale across heterogeneous vehicular and roadside
systems without hybrid integration with classical cryptography [230, 231]. Hybrid infrastructures
that combine QKD for backbone communications and PQC for last-hop vehicular links may
provide a path toward resilient deployment in transportation networks [232].

Quantum-enhanced optimization and control. Beyond cryptography, quantum computing
has potential to transform optimization and control tasks that are critical for transportation cyber
resilience. Techniques such as the quantum approximate optimization algorithm [233] and
quantum annealing [234] are being tested for solving large-scale combinatorial optimization
problems faster than classical solvers [235]. In practice, this could enable real-time vehicle
rerouting during network disruptions, dynamic fleet scheduling under cyber constraints, or rapid
restoration of traffic flows after DoS attacks. By accelerating convergence and improving
exploration of solution spaces, quantum solvers enhance availability by reducing recovery time.
With regard to integrity, quantum-enhanced anomaly detection is being explored to analyze
massive high-dimensional cyber and traffic datasets, potentially distinguishing subtle
manipulations from natural variability [236, 237]. Despite these promising strengths, the same
strength could be weaponized as adversaries may use quantum solvers to craft undetectable
perturbations in reinforcement learning-based traffic signal controllers or to optimize coordinated
false-data injection [238-240].

3.2. Testing and Evaluation

Testing and evaluation form the practical foundation of cyber resilient transportation. While
theoretical and computational models discussed in section 3.1 provide insights into vulnerabilities
and defense strategies, their credibility rests on robust evaluation pipelines. These pipelines
encompass simulation-based studies, digital twins that closely mirror reality, and physical testbeds
and cyber ranges that integrate live hardware, communications, and adversarial tooling. Together,
they provide a continuum for assessing the resilience to CIA attack surfaces, enabling
reproducibility, benchmarking, and meaningful comparison across methods.

3.2.1. Simulation and Digital Twins

High-fidelity simulation environments are widely used to emulate traffic dynamics and
cyberattack scenarios without incurring safety risks. Microscopic traffic simulators, such as
SUMO and VISSIM, have been integrated with communication and network simulators to evaluate
DoS attacks, false data injection, and GPS spoofing in vehicular networks [241, 242]. These co-
simulation frameworks capture the coupling between mobility, control, and communication layers,
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making them valuable for analyzing availability and integrity threats at scale.

Beyond traditional simulation, digital twin architectures represent a frontier for cyber
resilience evaluation. Digital twins synchronize real-time traffic, infrastructure, and cyber data
with virtual models, allowing continuous monitoring, predictive assessment, and testing of defense
strategies [243—245]. For instance, in connected intersection control, digital twins can replicate
sensor feeds and controller states to evaluate the impact of adversarial packet loss or falsified
messages, while ensuring confidentiality by controlling access to mirrored data streams [246, 247].
However, the accuracy of digital twins depends critically on data fidelity and synchronization,
which themselves may become attack surfaces if adversaries compromise update channels.

3.2.2. Physical Testbeds and Cyber Ranges

Physical testbeds complement simulations by providing hardware realism and exposing
unforeseen vulnerabilities. Hardware-in-the-loop (HIL) systems integrate real controllers and
roadside units with simulated environments, enabling repeatable testing of availability disruptions
such as jamming [248-252]. Fleet pilots and roadway deployments extend realism further, but
raise concerns of safety governance and liability, necessitating careful instrumentation and
safeguards. Moreover, cyber ranges extend the physical paradigm into controlled adversarial
experimentation, in which they integrate networking equipment, programmable logic controllers,
and adversarial tools for safe red-team exercises [253, 254]. Cyber ranges provide reproducibility
and controlled exposure of confidentiality and integrity attack types, while allowing researchers to
validate cyber resilience metrics such as detection delay or recovery latency in environments close
to operational networks. However, scaling such platforms to large traffic systems remains resource
intensive, and interoperability between cyber ranges and transportation testbeds remains an open
challenge [255].

3.2.3. Benchmarks, Datasets, and Metrics

A crucial enabler of credible evaluation is the establishment of standardized benchmarks.
Datasets capturing traffic dynamics, communication traces, and cyber attack logs provide the
foundation for reproducibility. For example, open datasets on vehicular communications and
transportation networks can be used to evaluate intrusion detection systems against confidentiality
and integrity attacks [256—259]. However, many studies remain limited by proprietary datasets or
synthetic attack traces, raising questions of generalizability.

Cyber resilience metrics are equally important. Performance degradation measures capture
the loss of traffic throughput or increased delay under attack. Detection delay and false-alarm rates
quantify the responsiveness and precision of anomaly detection systems. Recovery latency
measures how quickly a system restores functionality after disruption, while cascading impact
analysis tracks how local failures propagate to system-wide disruptions [260—-263]. In addition,
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benchmarking protocols that systematically vary attack intensity, duration, and location enable fair
comparison across competing defenses. Without such shared protocols, resilience claims risk being
fragmented or incomparable.

4. Vision and Outlook

The conceptual foundations established in Section 2 and the methodological frontiers
outlined in Section 3 together provide a structured perspective for understanding both the current
state and future trajectory of cyber resilience in CATS. Section 2 introduced the multi-faceted
attack surfaces across the CIA triad, the defense and resilience objectives spanning robustness,
detection, response, recovery, and adaptation, and the contrasting architectural approaches such as
modular and end-to-end pipelines. Section 3 extended these insights by highlighting frontier
methodologies in optimization, game theory, Al, and quantum information science and
engineering, while also emphasizing the growing need for rigorous evaluation and benchmarking
infrastructures. Yet, the insights from Sections 2 and 3 also underscore persistent fragmentation in
the sense that defenses are studied at single scales rather than across them, methodological
advances are siloed without accounting for their dual-use nature, and evaluation infrastructures
remain immature. Therefore, Section 4 outlines a forward-looking vision that synthesizes these
gaps into a coherent research agenda, spanning cross-layer resilience, unified trustworthiness,
certified guarantees and trade-offs, dual-use vulnerabilities, emerging paradigms, lifecycle
composition of resilience objectives, benchmarking, and socio-technical governance.

4.1. Cross-Layer Resilience Across Scales, Functions, and Components

One of the most critical gaps is the lack of integrated resilience frameworks that operate
across transportation systems scales, system functions compromised, and targeted cyber-physical
components. Cyber threats against CATS do not remain confined to one level or module. Rather,
they propagate across micro, meso, and macro layers, and can simultaneously exploit
interdependencies among connectivity, autonomy, sensing, control, and network infrastructure.
For example, a falsified perception input may corrupt the sensing stack, destabilize cooperative
adaptive cruise control at the corridor level, and bias demand flows for network-level traffic
routing algorithms. Similarly, a DoS attack on V2X connectivity can disrupt communication
networks, impair autonomy decisions that rely on timely updates, and cascade into degraded
regional mobility. Yet existing research tends to address these boundaries in isolation through
intrusion detection for in-vehicle networks, cryptographic safeguards for connectivity, anomaly
monitors for arterial corridors, or redundancy in control modules. This siloed development leaves
systems vulnerable to adversaries capable of coordinating campaigns across scales, functions, and
components simultaneously. Addressing this challenge requires new abstractions for hierarchical
data fusion, compositional resilience guarantees that account for cross-domain interactions, and
architectures that ensure interventions at one level or module reinforce resilience across the
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broader system. Developing such cross-layer frameworks remains largely unexplored yet is
indispensable for preventing adversaries from exploiting the artificial boundaries that currently
fragment defenses.

4.2. Unified Trustworthiness Beyond CIA Silos

Closely related to the challenge of cross-layer resilience is the need to move beyond the
narrow framing of trustworthiness as isolated CIA objectives. Transportation systems must also
contend with safety, interpretability, accountability, and fairness, all of which interact with
resilience and security in complex ways. A single GNSS spoofing attack, for instance,
simultaneously violates integrity, undermines resilience, and jeopardizes safety. Similarly, an
anomaly detector that maximizes detection accuracy may sacrifice interpretability, eroding
operator trust and compliance. The siloed treatment of trustworthiness properties —more
specifically, confidentiality safeguarded by encryption, integrity by anomaly detection, availability
by redundancy, safety by runtime assurance, privacy by federated learning, and interpretability by
explainable AI— leads to brittle systems where gains in one dimension often come at the expense
of another. As a consequence, a major research gap is the absence of unified frameworks that
jointly model and optimize multiple trustworthiness dimensions. Such frameworks must quantify
interdependencies, articulate trade-offs (e.g., between privacy and interpretability, or safety and
efficiency), and design architectures that achieve balance rather than isolated protection. Only by
treating security, resilience, safety, interpretability, and related properties as an integrated whole
can CATS achieve trustworthy operation in adversarial and uncertain environments.

4.3. Guarantees and Trade-offs in Safety-Critical Contexts

A second and closely related gap lies in the limited availability of certified guarantees for
cyber resilience strategies across methods. While control-theoretic and optimization-based
techniques sometimes provide bounded assurances, Al, probabilistic, and quantum methods are
typically deployed with only empirical validation. As transportation applications become
increasingly safety-critical and latency-constrained, this reliance on empirical robustness becomes
insufficient. Systems that must guarantee safe stopping distances, real-time traffic signal
operations, or collision avoidance cannot depend on defenses that degrade unpredictably under
unforeseen attacks. Moreover, there exists a fundamental efficiency-resilience trade-off, where
stronger guarantees often require conservative assumptions or higher computational overhead,
which may reduce system efficiency or responsiveness. Conversely, methods tuned for efficiency
and adaptivity often sacrifice provable resilience. Hence, striking the right balance between
efficiency and resilience under strict safety and latency requirements is a pressing research
challenge, one that demands new frameworks for quantifying and optimizing these trade-offs.

4.4. Security of Methods: The Dual-Use Dilemma
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Beyond guarantees, a broader systemic gap arises from the dual-use nature of the very
methods deployed for cyber resilience. Optimization, game theory, control, Al, and quantum
techniques provide defenders with sophisticated tools for robustness, detection, and recovery, yet
adversaries can exploit the same methods to craft stealthier, more adaptive, and more scalable
attacks. Robust optimization can be inverted to design adversarial inputs that lie just outside
assumed uncertainty sets. Game-theoretic equilibria can be exploited by adversaries who anticipate
and adapt to defenders’ strategies. Control-theoretic approaches can be subverted by aligning
attacks with natural system dynamics, evading detection while destabilizing operations. Al
introduces vulnerabilities such as model poisoning, evasion, and concept drift that directly erode
its defensive value, while quantum solvers could equally empower adversaries to optimize
coordinated false-data injection or break cryptosystems. What is missing is a general theory for
bounding adversarial co-option of methods, along with architectures that explicitly account for the
possibility of methodological exploitation. Unless addressed, the dual-use dilemma risks
undermining cyber resilience at its very foundations.

4.5. Emerging Paradigms: Quantum and Post-Quantum Resilience

The potential of emerging paradigms such as post-quantum cryptography, quantum key
distribution, and quantum-enhanced optimization adds both opportunity and complexity to the
cyber resilience landscape. Existing work has demonstrated proof-of-concept deployments of PQC
in vehicular communication channels and evaluated the feasibility of hybrid PQC-classical
protocols, yet practical integration into latency-sensitive and resource-constrained vehicular
networks remains elusive. Similarly, quantum key distribution offers theoretically secure
communication, but its reliance on specialized infrastructure and sensitivity to noise hinder its
applicability in heterogeneous roadside environments. Quantum optimization and machine
learning have shown promise in accelerating routing and recovery tasks, but their runtime behavior
and stability under adversarial perturbations remain undefined. The dual-use nature of these
paradigms further complicates matters, since quantum solvers that accelerate resilience could
equally empower adversaries to design undetectable attacks or break cryptosystems. A rigorous
research agenda is thus needed to establish models of scalability, interoperability, and adversarial
symmetry, ensuring that emerging paradigms are operationalized with verifiable guarantees rather
than aspirational claims.

4.6. Lifecycle Composition of Cyber Resilience Objectives

Section 2.2 defined cyber resilience as a lifecycle of robustness, detection, response,
recovery, and adaptation. Yet, existing research often treats these stages as independent, developing
methods for robustness, anomaly detection, or adaptive recovery in isolation. In practice, however,
these stages are deeply interconnected, noting that delayed detection reduces the efficacy of
response, overly conservative robustness measures may limit adaptability, and adaptation
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strategies, if poorly guided, may reinforce adversarial patterns or degrade long-term stability. Few
models exist that systematically capture these lifecycle interactions or quantify resilience as a
temporally composed property [38]. A critical gap is therefore the development of lifecycle-aware
resilience frameworks that explicitly model dependencies among stages, quantify trade-offs across
objectives, and provide verifiable guarantees of end-to-end system behavior under attack. Such
frameworks would move cyber resilience research beyond isolated objectives toward holistic,
lifecycle-oriented assurance.

4.7. Standardization of Evaluation and Benchmarking

Another enduring limitation lies in the fragmentation of evaluation infrastructures. Although
simulation platforms, digital twins, and cyber ranges are increasingly employed, their deployment
remains inconsistent, relying on proprietary datasets, heterogeneous attack models, and non-
standard metrics. This fragmentation undermines reproducibility and comparability across studies,
with resilience claims often resting on narrowly scoped evidence. Without shared evaluation
protocols, the field lacks the cumulative knowledge base needed for scientific progress. As a result,
a pressing research need exists for standardized benchmarking frameworks that define canonical
attack-defense scenarios, open datasets spanning communication, control, and traffic layers, and
cyber resilience metrics that capture cascading impacts across scales. Establishing such standards
will not only enable fair comparison of competing methods but also accelerate the translation of
laboratory demonstrations into operational practice.

4.8. Socio-Technical Integration: Governance, Deployment, & Human Factors

Last but not least, cyber resilience must be understood not only as a technical property but
as a socio-technical capability shaped by governance, regulation, and human behavior.
Technological defenses may be robust and adaptive, but their effectiveness depends on operator
compliance, institutional support, and user trust. Trade-offs between robustness and efficiency,
privacy and availability, or safety and throughput cannot be resolved by technical design alone.
Rather, they require governance mechanisms and regulatory frameworks that align incentives and
enforce compliance. Moreover, human actors introduce their own vulnerabilities, considering that
operators may override safety mechanisms to maintain throughput, users may disable security
features for convenience, and agencies may under-invest in monitoring and evaluation. Thus,
future research must extend beyond technical design to include participatory governance,
compliance-aware architectures, and human-centered evaluation frameworks. Only by embedding
socio-technical considerations into cyber resilience design can CATS deliver security and
trustworthiness in real-world deployments.

4.9. Outlook

The path forward requires bridging fragmentation across layers, trust dimensions, resilience
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guarantees, methodological dual-use risks, lifecycle objectives, and socio-technical interfaces.
Doing so can transform cyber resilience from a fragmented aspiration into a provable, adaptive,
and deployable capability within CATS. By aligning innovations in Al, optimization, control, and
quantum with system-level governance and trustworthiness frameworks, researchers can ensure
that future transportation systems are not only efficient and autonomous but also secure, safe,
interpretable, and trustworthy in adversarial environments.
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