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Chapter 1. Introduction 

1.1 Background and Motivation 

Heavy-duty vehicles (HDVs), particularly tractor-trailers, are indispensable to the U.S. economy, 

moving over 70% of freight by weight and underpinning nearly every supply chain (Rezapour 

Mashhadi et al. 2018; U.S. Department of Transportation Bureau of Transportation Statistics, U.S. 

Department of Commerce Census Bureau 2012). Yet, their sheer size, weight, and mechanical 

complexity make them disproportionately involved in fatal and severe crashes. Between 2013 and 

2022, the fatal crash rate for large trucks rose from 1.43 to 1.76 per 100 million vehicle miles 

traveled, a 23% increase in less than a decade (National Center for Statistics and Analysis 2024). 

In 2022 alone, 5,936 people were killed in crashes involving large trucks, of which 71% were 

occupants of other vehicles (National Center for Statistics and Analysis 2024). The economic 

consequences are staggering, with each HDV-involved fatal crash costing an estimated $3.6 

million when accounting for medical, legal, and productivity losses. 

Beyond general crash risks, rear and side crashes involving tractor–trailers are particularly 

devastating. Between 2019 and 2021, fatal rear crashes with large trucks where passenger vehicles 

underride the trailer increased from 16.8% to 18.0%. Side crashes are also frequent, often caused 

by vehicles encroaching into truck lanes or remaining in blind zones near the trailer, which 

accounted for 36% of critical pre-crash events in 2021. Drivers frequently underestimate the safe 

distance required to follow or overtake heavy vehicles due to their mass, braking dynamics, and 

road conditions. Moreover, blind spots along the trailer sides exacerbate collision risks, 

particularly in poor lighting or adverse weather. These dynamics underscore the importance of 

dynamic safety zones and visibility-aware sensing strategies, forming the foundation of the near-

miss PIRL framework developed in this project. 

Although driver behavior is a primary contributor, vehicle-related factors account for 

approximately 10% of HDV crashes, with defective brakes responsible for nearly 29% of such 

cases (FMCSA (Federal Motor Carrier Safety Administration) 2006). Tire failures and lighting 

malfunctions are additional leading causes, collectively forming the most common inspection 

violations recorded during post-crash analyses (NHTSA (National Highway Traffic Safety 

Administration) 2008). In 2021, brake defects were present in 15.6% of HDVs involved in crashes, 

while lighting issues accounted for 15.7% and tire problems 7.3%. These findings highlight 

persistent weaknesses in vehicle maintenance and inspection practices. 

Small motor carriers are disproportionately burdened. Although fleets with 30 or fewer vehicles 

represent only about 8% of registered trucks, they were associated with 76% of HDV-involved 

fatalities in 2021. Smaller carriers often operate with limited budgets, restricted access to advanced 

technologies, and fewer dedicated safety personnel compared to large fleets. Regulatory measures, 
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such as the Electronic Logging Device (ELD) mandate of 2017, improved hours-of-service 

compliance but failed to reduce crash rates among small carriers; in some cases, accidents even 

increased, possibly due to unsafe compensatory behaviors like speeding (Scott et al. 2019). These 

outcomes suggest systemic weaknesses in safety management among small carriers, where 

financial constraints, operational pressures, and limited workforce expertise amplify risks. 

Beyond these organizational disparities, modern HDVs themselves are becoming more complex. 

The increasing integration of new mechanical elements, electronic subsystems, and multi-modal 

technologies makes inspection and maintenance more challenging (Barat and Das 2024). 

Inspectors must contend with vast vehicle state spaces, uncertain fault modes, and variability 

across manufacturers and configurations. Human inspectors rely on tacit knowledge developed 

through experience, but this knowledge is unevenly distributed and difficult to transfer, leading to 

inconsistent inspection outcomes (Johnson et al. 2019). At the same time, AI-driven systems for 

predictive maintenance and crash prevention are limited by sparse historical datasets, 

interoperability issues, and workforce adoption barriers (Cantor et al. 2014; Goettee et al. 2010). 

This convergence of mechanical failures, organizational vulnerabilities, and socio-technical 

challenges underscores the urgent need for innovative approaches that combine physics-based 

modeling, data-driven analysis, and human-centered strategies to improve HDV safety. 

1.2 Problem Statement 

Traditional road safety strategies rely heavily on reactive measures such as post-crash analysis 

(Butt and Shafique 2025). While informative, these methods are constrained by under-reporting, 

exposure bias, and the rarity of crash events (Skaug et al. 2025; Yang et al. 2021). Consequently, 

they provide limited predictive value for identifying risks before they manifest as accidents. 

Near-miss events, close calls that do not result in crashes but carry high collision potential, 

represent a promising proactive safety indicator (Xu et al. 2024a). These events occur more 

frequently than crashes, encode rich behavioral and environmental information, and often precede 

severe incidents. Yet, quantifying near-misses remains a challenge, particularly for HDVs where 

large blind spots, articulation, and complex dynamics complicate visibility and sensor coverage 

(Wang et al. 2022a). Current approaches to near-miss analysis often rely on static distance 

thresholds or handcrafted reward functions in reinforcement learning models, both of which 

struggle to generalize across diverse environments (Ibrahim et al. 2024). 

At the same time, inspection practices remain inconsistent. Studies show that vehicles without 

valid inspections are up to three times more likely to be involved in serious crashes (Blows et al. 

2003). Even when inspections are conducted, variability in inspector expertise and decision-

making leads to uneven enforcement (Berthet 2022). Small carriers, in particular, face challenges 
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in maintaining compliance due to resource limitations, workforce shortages, and weak safety 

cultures (Cantor et al. 2016). 

Finally, while AI and sensor technologies show promise in addressing these challenges, their 

adoption is constrained by cost, interoperability, durability, and human trust (Bergoffen et al. 2012; 

Summerskill et al. 2016). A “one-size-fits-all” strategy for sensor deployment fails to account for 

regional, operational, and fleet-level differences, especially in small carrier contexts where every 

dollar of investment must be optimized. 

Together, these gaps highlight the need for approaches that: 

1. Predict risks proactively, using near-miss analysis grounded in physics and data. 

2. Customize technology deployment to the unique contexts of small carriers. 

3. Address socio-technical barriers in inspection practices, workforce adaptation, and trust in 

AI systems. 

1.3 Research Objectives 

This project, conducted under the Safety21 University Transportation Center, set out to address 

these intertwined challenges through a combination of physics-informed AI methods and socio-

technical strategies. The original proposal defined two primary thrusts: 

1. Near-miss detection using physics-informed reinforcement learning (PIRL): Develop a 

dynamic, context-sensitive framework to estimate near-miss probabilities for tractor-

trailers under varying sensor configurations and roadway conditions. This thrust advances 

proactive crash prevention by moving beyond static threshold-based definitions. 

2. Customized safety sensor deployment for small carriers: Use crash and inspection datasets 

to design tailored strategies for deploying brake, tire, and lighting sensors according to 

vehicle age, operating region, and fleet characteristics, enabling small carriers to maximize 

safety returns under budget constraints. 

Building on these technical objectives, the project expanded in scope to include complementary 

socio-technical contributions: 

1. A systematic review of over 80 studies: Synthesizing challenges and opportunities in HDV 

safety across domains such as workforce training, human-technology interaction, trust, and 

data integration. 

2. Human-centered studies of inspection practices, including surveys and decision-making 

experiments, to capture how inspectors prioritize features, refine strategies, and adapt 

under uncertainty. These studies demonstrate the value of human heuristics in overcoming 

data limitations and inform collaborative human-AI frameworks for inspection reliability. 
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1.4 Safety21 Context and Contributions 

The Safety21 UTC is dedicated to promoting safety in transportation through cutting-edge 

technology and human-centered design. This project contributes to that mission by integrating 

physics-based safety modeling, data-driven sensor strategies, and socio-technical insights into a 

coherent framework for improving HDV safety. Specifically, it delivers: 

• A PIRL-based framework for quantifying near-miss probabilities in tractor-trailers. 

• Region- and age-specific recommendations for safety sensor adoption in small fleets. 

• A socio-technical analysis of barriers to technology adoption, highlighting the workforce 

and organizational contexts that shape outcomes. 

• Insights into human learning and decision-making in inspections, supporting training and 

AI collaboration. 

The remainder of this report is organized as follows: Chapter 2 reviews the literature and 

state of practice. Chapter 3 details the research approach and methodologies, including 

PIRL-based near-miss detection and sensor customization. Chapter 4 integrates industry 

perspectives. Chapter 5 presents the findings of the two main research thrusts. Chapter 6 

highlights an additional study on human learning in inspections. Chapters 7 and 8 

summarize the project outputs, outcomes, and recommendations. 
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Chapter 2. Literature Review 

2.1 Socio-Technical Challenges in HDV Safety 

Heavy-duty vehicle (HDV) safety is shaped not only by technical reliability but also by the broader 

socio-technical context of inspections, operations, and workforce practices. A systematic review 

of recent literature highlights several recurring challenges that constrain the effective adoption of 

advanced safety measures. The motor carrier industry, a critical component of the global supply 

chain, has seen significant advancements in safety technologies. However, small motor carriers 

(defined as those with ≤ 30 vehicles) face unique challenges in adopting these technologies, 

impacting their safety performance and overall compliance with regulations.  

Larger carriers are able to invest substantially in safety technologies and personnel (Miller 2020). 

In contrast, small carriers often struggle with limited budgets and safety cultures, hindering their 

ability to adopt advanced safety technologies (Goettee et al. 2010). This gap in technology 

adoption is not merely a matter of financial constraints but also reflects a lack of tailored safety 

management strategies suitable for small-scale operations (Bergoffen et al. 2012). In addition, 

smaller firms often lag to adopt new technologies, primarily due to cost considerations (Cantor et 

al. 2006). Furthermore, smaller carriers often have higher crash rates (Cantor et al. 2014), which 

can be attributed to less strict safety practices and lower technology adoption rates, constraints in 

human and physical capital resources, lack of investment in scientific knowledge, and fewer 

vehicle maintenance schedules (Cantor et al. 2016). 

The adoption of advanced technologies in heavy-duty equipment management is transforming 

operations, but the integration of human-centric design and usability remains a critical challenge. 

Effective interaction between humans and technology requires systems that align with workflows, 

reduce cognitive load, and facilitate decision-making processes. Many studies explore the 

intersection of usability and stakeholder collaboration, revealing the opportunities and challenges 

in this domain. recurring issue in heavy equipment operations is the misalignment between user 

expectations and system design. For example, augmented reality (AR) applications in excavation 

management have demonstrated potential for enhancing both safety and productivity; however, 

usability concerns such as interface complexity and cognitive overload hinder widespread adoption 

(Abdeen et al. 2024). Similarly, systems designed for task automation, such as real-time 

monitoring applications, often neglect to consider end-user feedback, leading to resistance from 

operators and managers (Kim et al. 2024). In the construction domain, this disconnect is 

particularly pronounced due to the diversity of stakeholders, ranging from equipment operators to 

project managers, each with unique needs and technical proficiencies (Liu et al. 2023). 

Data integration and interoperability also pose significant barriers. Safety-relevant data is 

fragmented across inspection records, crash reports, telematics feeds, and maintenance logs, each 

collected in different formats and for different purposes. The lack of harmonized data systems 
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reduces the effectiveness of predictive models and prevents holistic views of fleet risk (Cantor et 

al. 2014). 

Workforce and organizational challenges compound these problems. Inspections depend heavily 

on tacit knowledge gained through experience, yet this knowledge is unevenly distributed and 

difficult to transfer to new inspectors (Johnson et al. 2019). Inconsistent inspection practices and 

workforce shortages lead to variability in outcomes, leaving critical risks undetected. 

Finally, predictive maintenance limitations emerge from both technological and human 

constraints. Sensors are increasingly available for brakes, tires, and lighting, but adoption is 

uneven, especially among small carriers with limited budgets. Even when deployed, systems can 

fail without proper maintenance or skilled staff to interpret data. These socio-technical issues 

underscore why safety solutions must balance technical sophistication with usability, 

interpretability, and workforce readiness. 

At the same time, socio-technical literature warns that even when sensors are deployed, their 

effectiveness is mediated by workforce practices and organizational capacity. Without adequate 

training and integration into daily routines, sensors risk being ignored or underutilized. This dual 

technical and social challenge provides the backdrop for the project’s emphasis on tailored, 

context-sensitive sensor deployment. 

2.2 Near-Miss Modeling and Proactive Safety 

Visibility Constraints in Tractor-Trailers 

Visibility challenges in tractor-trailer systems are a major factor affecting road safety and 

operational efficiency. These challenges arise from the vehicles’ large size, complex articulation, 

and the limitations of both human and sensor-based perception, especially in dynamic or 

constrained environments. The multi-unit structure of tractor-trailers creates significant blind spots 

and makes it difficult for drivers to maintain awareness of the entire vehicle, especially during 

lane-keeping and turning maneuvers. The size and risk of blind zones increase during right turns, 

influenced by turning speed, radius, and vehicle configuration. Larger blind zones raise the risk of 

collisions, especially with vulnerable road users (Wang et al. 2022a). Even with mirrors, some 

blind spots remain. Enhancing driver awareness through ergonomic design and training is essential 

for maximizing the effectiveness of visibility systems (Barat and Das 2024). The geometry and 

articulation points introduce unique constraints that differ from single-unit vehicles, complicating 

both manual and automated control (Han et al. 2024; Zhao et al. 2023). The large physical size and 

changing relative positions between tractor and trailer lead to low overlapping fields of view for 

cameras and sensors, causing perception gaps and misalignment in visual data. This is further 

complicated by asynchronous vibrations and pose changes between the units (Liang et al. 2025). 

These limitations increase the likelihood of crashes and near-miss events, especially involving 
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adjacent vehicles, cyclists, or pedestrians; however, these incidents often go undocumented, 

leaving a gap in the literature. 

Visibility Enhancement Technologies for Tractor-Trailers 

Passive solutions, like reflectorized lighting and markings, have shown effectiveness in reducing 

crash rates; (Burger et al. 1985) observed collision reductions of 16.3% during daylight and 21.2% 

at night. Active technologies such as Camera/Video Imaging Systems (C/VIS) improve merge 

performance and nighttime awareness (Camden et al. 2011; Fitch et al. 2010), although challenges 

like glare and side coverage persist (Summerskill et al. 2016). Blind spot monitoring has also 

influenced behavior, with (Schaudt et al. 2010) reporting reductions in risky driving and seatbelt 

violations. Prototype-level integration of deep learning systems (Anwar et al. 2022) shows promise 

but lacks large-scale fleet deployment data. Despite advancements in these active systems, 

persistent gaps in sensor coverage and limitations in real-world validation pose significant 

measurement challenges, particularly in accurately identifying and quantifying visibility-induced 

near-miss events. 

Visibility-Induced Near-Misses 

Measuring these near-misses is challenging due to the complexity of visibility fields, dynamic 

environments, and the limitations of current measurement methods. Visibility failures such as, 

delayed detection, occlusions, or unexpected pedestrian interactions, are rarely tracked as 

standalone metrics. (Burger et al. 1980) proposed volumetric visibility maps to guide safety spec 

development, but direct correlation with near-miss occurrences is lacking. Accurately mapping 

complex visibility fields is difficult, particularly as the vehicle moves and the environment 

changes. In addition, operators often need to monitor both forward and rear fields of view, which 

can be obstructed by the trailer or cargo, making real-time assessment of near-miss situations 

challenging. Advanced techniques like terrestrial laser scanning can provide detailed, accurate 

measurements of visibility fields, but require specialized equipment and expertise, and may not 

capture all real-time operational scenarios (Zvěřina et al. 2022). (Fitch et al. 2010) emphasized 

that driver behavior, cab geometry, and contextual factors complicate quantifiable evaluations, 

making surrogate measures (like eye tracking or spatial judgment tests) essential in visibility 

assessments. Measuring near-misses requires not just static compliance but also dynamic 

monitoring during actual operation, which is rarely addressed in current standards or measurement 

protocols (Zvěřina et al. 2022). Therefore, addressing visibility-induced near-misses necessitates 

novel, integrated measurement approaches that combine advanced sensing technologies, dynamic 

operational assessments, and human factors analyses beyond current standardized protocols. 

Physics-Informed Safety Modeling 

To overcome data scarcity around visibility-related near-misses, Physics-Informed Reinforcement 

Learning (PIRL) offers a viable modeling approach. Safety probabilities can be characterized as 

solutions to partial differential equations (PDEs) (Chern et al. 2021), which possess well-structured 

properties such as low-dimensional representations (Wang et al. 2024) and 
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decomposability (Yasunaga et al. 2024). These PDEs govern how risk propagates across states and 

time horizons, enabling the extraction of risk information from samples from safe trajectories and 

near-miss events. To exploit this merit,  (Hoshino and Nakahira 2024) introduced a framework that 

estimates maximal safety probability by enforcing the PDEs information in the objective function 

in reinforcement learning, allowing agents to learn safe control policies from sparse binary 

rewards. These physics-based loss functions act as analogs to reward shaping, making safety 

estimation feasible without dense crash or near-miss data. Their Deep Q-Network (DQN)-based 

PIRL structure demonstrated accurate safety boundary learning during lane-keeping tasks. 

(Hoshino et al. 2024) extended PIRL into extreme scenarios such as (Hoshino et al. 2024) 

autonomous drifting on racing circuits. Using high-fidelity simulations, such as 

CARLA (Dosovitskiy et al. 2017), agents learned to navigate safely under high-speed, low-traction 

conditions using only sparse binary rewards. Unlike traditional model-based drifting (Hindiyeh 

and Christian Gerdes 2014) or reinforcement learning agents requiring complex reward 

shaping (Cai et al. 2020; Cutler and How 2016), PIRL achieved safe maneuvering without 

reference trajectories. This result emphasizes PIRL’s ability to learn under high uncertainty, 

making it an ideal candidate for simulating visibility-induced near-misses where ground truth is 

hard to define. 

Comparative Safety Assessment Frameworks 

Across multiple studies, physics-informed models consistently outperform data-driven baselines, 

especially when historical data is limited or noisy. (Geng et al. 2023) reported up to 70% reduction 

in trajectory prediction error using physics-informed machine learning in driver modeling, 

while (Huang and Agarwal 2022) achieved 7.9% improvement in traffic state estimation. (Jurj et 

al. 2021) validated physics-guided reinforcement learning in adaptive cruise control, observing 

improved time headway and reduced conflicts. These hybrid approaches integrate domain 

knowledge with neural learning, offering more robust and interpretable safety estimates than 

purely empirical models. The convergence of visibility technology and physics-informed modeling 

holds substantial potential. By simulating how visibility systems interact with environmental 

uncertainty, researchers can evaluate near-miss likelihood without waiting for incidents to occur. 

PIRL methods enable this evaluation by learning control boundaries through sparse event 

feedback, while visibility systems supply real-time sensory data. Future research should focus on 

combining volumetric blind spot data with PIRL-based safety estimators. This integration will turn 

passive visibility tools into active decision-making aids that can predict and prevent near-misses. 

2.3 Human Learning and Inspection Practices 

Studies reveal that vehicles without valid inspections face significantly higher crash risks. In New 

Zealand, such vehicles are three times more likely to cause serious incidents (Blows et al. 2003). 

Similarly, Australian research links higher inspection failure rates to increased mechanical-failure- 

related crashes (Assemi and Hickman 2018). These patterns highlight the importance of regular 

and reliable inspections in reducing road risks (Assemi et al. 2021). 
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Despite the critical role of inspections, ensuring their consistency and effectiveness remains a 

challenge, as inspection outcomes often depend on human decision-making strategies shaped by 

heuristics, experience, and contextual factors. Understanding these strategies is crucial for 

improving inspection processes, especially in high-uncertainty environments where traditional 

analytical methods may fall short. Research on smart heuristics in civil engineering demonstrates 

how these simple yet effective decision-making strategies can help individuals navigate complex 

tasks by focusing on the most relevant information and adapting to the context (Love 2025). 

Human decision-making strategies, particularly in safety-critical contexts often depend on fast-

and-frugal heuristics, simple, adaptive rules that prioritize efficiency over exhaustive information 

processing (Wang et al. 2022b). These heuristics enable inspectors to focus on important features, 

and disregard less relevant details, allowing for timely and effective decisions. As (Gigerenzer et 

al. 2022). emphasize, such smart heuristics are grounded in ecological rationality, aligning 

decision-making strategies with the structure of the task environment to optimize outcomes under 

constraints like time, uncertainty, or incomplete data. These insights are particularly valuable for 

vehicle inspections, where inspectors must navigate sparse or inconsistent datasets and identify the 

most impactful features to ensure safety and reliability. 

Human heuristics provide critical insights into decision-making processes, yet identifying and 

quantifying the features prioritized by inspectors remains a challenge. Inverse Contextual Bandits 

(ICB) has been applied in domains such as healthcare and application areas like recommender 

systems to model non-stationary behaviors and evolving decision-making patterns (Hüyük et al. 

2022; Xu et al. 2024b). While reinforcement learning (RL) and cognitive modeling approaches 

have been explored for decision-making analysis, these methods often require extensive labeled 

training data and predefined reward structures, making them less adaptable to dynamic, heuristic-

based tasks like vehicle inspections. The BICB framework is particularly suited for capturing 

evolving human heuristics in environments with limited supervision, aligning well with the 

complexities of HDV inspections. By focusing on feature prioritization in dynamic environments, 

ICB provides a structured framework that allows researchers to integrate human heuristics with AI 

tools through systematic analysis, thereby refining inspection strategies and enhancing reliability. 

2.4 Synthesis and Research Needs 

The literature points to three interconnected needs that frame this project: 

1. Proactive safety modeling: Traditional crash-based approaches lack predictive power. 

Near-miss detection, supported by PIRL and grounded in physical dynamics, provides a 

promising alternative for HDVs. 

2. Customized sensor adoption: Small carriers require risk-based, region- and age-specific 

strategies for adopting brake, tire, and lighting sensors, balancing cost constraints with 

safety imperatives. 
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3. Socio-technical integration: Human learning, inspection practices, and organizational 

readiness must be considered alongside technical innovation to ensure effective adoption 

and consistent safety outcomes. 

Together, these needs establish the foundation for this project. By integrating PIRL-based near-

miss detection, customized sensor deployment, and socio-technical insights, the project advances 

both the technical and organizational dimensions of HDV safety. 
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Chapter 3. Research Objectives and Approach 

3.1 Research Objectives 

This project aims to address persistent safety challenges in heavy-duty vehicles (HDVs) by 

integrating physics-informed artificial intelligence with data-driven safety sensor strategies. Based 

on the proposal and gaps identified in the literature, two primary objectives were defined: 

1. Develop a proactive framework for near-miss detection in tractor-trailers. This objective 

aimed to move beyond static crash-based safety analysis by applying Physics-Informed 

Reinforcement Learning (PIRL) to estimate safety probabilities in rear and side crash 

scenarios, capturing how speed, clearance, and trailer geometry interact to create risk. 

2. Design customized safety sensor deployment strategies for small motor carriers. This 

objective focused on developing data-driven recommendations for allocating brake, tire, 

and lighting sensors based on vehicle age and operating region, enabling small carriers to 

maximize safety returns under budget constraints. 

Together, these objectives were designed to advance the Safety21 mission of promoting proactive 

and equitable safety improvements by combining new AI methods with practical deployment 

strategies. 

3.2 Research Approach 

Near-Miss Detection with PIRL: 

A simulation framework was developed to model tractor-trailer dynamics and interactions with 

obstacles in rear-end, side, and lane-keeping scenarios. PIRL was used to estimate safety 

probabilities under sparse event data, embedding vehicle dynamics into the learning process to 

generate interpretable reported safety maps. Comparative experiments with standard Deep Q-

Networks (DQN) highlighted PIRL’s superior performance in capturing non-linear safety 

boundaries, particularly when trailer-side sensors were included. 

Customized Sensor Deployment: 

Crash and inspection datasets were analyzed to identify high-risk vehicle populations based on age 

and operating region. Using probabilistic methods, the study revealed that vehicles aged 6–23 in 

rural regions face the highest risks across all three sensor categories, while vehicles aged 24–29 in 

urban regions are especially vulnerable to brake and lighting violations. These results demonstrate 

that targeted sensor deployment can achieve meaningful safety improvements without requiring 

comprehensive fleet-wide adoption, which is often infeasible for small carriers. 
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3.3 Integration and Extensions 

While these two branches address the core objectives of the project, technical innovations must be 

situated within human and organizational contexts. To extend the socio-technical perspective, an 

additional line of research was pursued on human learning and decision-making in inspections. 

This work, presented in a separate chapter, analyzes how inspectors adapt feature prioritization 

strategies and how human heuristics can be integrated into AI frameworks to improve inspection 

consistency. By linking near-miss modeling, sensor deployment, and inspection practices, the 

project forms an integrated research agenda that combines technical, data-driven, and socio-

technical insights into HDV safety as illustrated in Figure 1. 

Figure 1. Integrated framework connecting sensor customization, PIRL-based near-miss 

detection, and human-centered inspection analysis under proactive and human-centered HDV 

safety 

3.4 Anticipated Impacts 

The approach was designed to produce impacts across three dimensions: 

• Technical: New AI models for proactive near-miss detection. 

• Operational: Practical, cost-sensitive recommendations for sensor adoption in small 

fleets. 

• Socio-Technical: Insights into workforce learning and adoption that support more 

reliable and trusted safety practices. 

The following chapters detail the methodologies, industry perspectives, and findings for each 

research branch. 
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Chapter 4. Methodology 

This project employs a dual methodological approach to advance heavy-duty vehicle safety 

through both physics-informed modeling and statistical analysis. First, we develop a Physics-

Informed Reinforcement Learning (PIRL) framework to estimate safety probabilities in tractor–

trailer systems under rear-end, side, and lane-keeping scenarios, embedding vehicle dynamics and 

physical constraints into the learning process to quantify near-miss risks. Second, we analyze crash 

and inspection datasets to identify region and age-specific patterns of brake, tire, and lighting 

violations in crashes, enabling the design of customized safety sensor deployment strategies for 

small motor carriers. Together, these complementary approaches link proactive risk modeling with 

practical sensor allocation, forming an integrated framework for enhancing HDV safety. 

Near-miss detection and safe zone with PIRL  

Problem formulation 

We consider a stochastic dynamical system with 𝑤-dimensional Brownian motion {𝑊𝑡}𝑡∈ℝ+ 

starting from 𝑊0 = 0. The stochastic differential equation (SDE) governing the system is given 

by 

d𝑋𝑡 = 𝑓(𝑋𝑡 , 𝑈𝑡) d𝑡 + 𝜎(𝑋𝑡 , 𝑈𝑡) d𝑊𝑡 . 

Here, 𝑋𝑡 ∈ 𝕏 ⊂ ℝ
𝑛 is the system state, and 𝑈𝑡 ∈ 𝕌 ⊂ ℝ

𝑚 is the control input. We assume that the 

functions 𝑓 and 𝜎 satisfy the necessary regularity conditions to ensure that the SDE admits a 

unique strong solution. The magnitude of 𝜎(𝑋𝑡 , 𝑈𝑡) captures uncertainties arising from 

disturbances, unmodeled dynamics, and prediction errors of environmental variables. 

To approximate numerical solutions of the SDE and address optimal control problems, we 

consider the state 𝑋𝑡 at discrete time steps 𝑡 ∈ 𝖳 with step size Δ𝑡, where 𝖳 = {0,1,… , 𝜏} and 𝜏 

is the time horizon. The discretized system is given by 

𝑋𝑡+1 = 𝐹
𝜋(𝑋𝑡 , Δ𝑊𝑡), 

where Δ𝑊𝑡 : = 𝑊(𝑡+1)Δ𝑡 −𝑊𝑡Δ𝑡, and 𝐹𝜋 is the state transition function derived from the control 

policy 𝜋: [0,∞) × 𝐗 → 𝐔. From an optimal control perspective, using a Markov policy is not 

restrictive when the value function has sufficient smoothness under appropriate technical 

conditions. 

Safety of the system is defined using a safe set 𝖢 ⊂ 𝕏. For the discretized system and a given 

control policy 𝜋, the safety probability Φ𝜋 of the initial state 𝑋0 = 𝑥 over the time horizon 𝖳 is 

characterized as the probability that the state 𝑋𝑡 remains within the safe set 𝖢: 

Φ𝜋(𝜏, 𝑥) := ℙ[𝑋𝑡 ∈ 𝖢,  ∀𝑡 ∈ 𝖳 ∣ 𝑋0 = 𝑥, 𝜋]. 
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Consider the system starting from an initial state 𝑥 ∈ 𝖢. The maximal safety probability is defined 

as 

Φ∗(𝜏, 𝑥) := sup
𝜋∈𝚷

Φ𝜋(𝜏, 𝑥), 

where 𝚷 is the class of bounded and Borel measurable Markov control policies, and the 

corresponding optimal safe control policy is 𝜋∗ : = argsup𝜋∈𝚷Φ
𝜋 

Here the authors build upon the Physics-Informed Reinforcement Learning (PIRL) framework for 

safety probability estimation from (Hoshino and Nakahira 2024) and (Hoshino et al. 2024). They 

first summarize the essential formulations here and then describe their specific application for 

HDV. 

With the backbone of standard Deep Q-Network (DQN), the authors employed a Physics-Informed 

Neural Network (PINN) as the function approximator that penalizes the discrepancy from a PDE 

condition that the safety probability should satisfy. Here, they considerded the augmented state 

space 𝕊 := ℝ × 𝕏 ⊂ ℝ𝑛+1 and the augmented state 𝑆𝑘 ∈ 𝕊 where they denote the first element of 

𝑆𝑘 by 𝐻𝑘 and the other elements by 𝑋𝑘, i.e., 

𝑆𝑘 = [𝐻𝑘 , 𝑋𝑘
⊤]⊤, 

where 𝐻𝑘 represents the remaining time before the outlook horizon 𝜏 is reached and 𝑋𝑘 denotes 

the vehicle (and environment) states. Then, consider the stochastic dynamics starting from the 

initial state 𝑠 := [𝜏, 𝑥⊤]⊤ ∈ 𝕊 for all 𝑘 ∈ ℤ+, 

𝑆𝑘+1 = {
𝐹̃𝜋(𝑆𝑘 , Δ𝑊𝑘), 𝑆𝑘 ∉ 𝖲abs,
𝑆𝑘 , 𝑆𝑘 ∈ 𝖲abs,

 

with the function 𝐹̃𝜋 given by 

𝐹̃𝜋(𝑆𝑘 , Δ𝑊𝑘) : = [
𝐻𝑘 − 1

𝐹𝜋(𝑋𝑘 , Δ𝑊𝑘)
], 

and the set of absorbing states 𝖲abs given by 

𝖲abs : = {[𝜏, 𝑥
⊤]⊤ ∈ 𝕊 | 𝜏 < 0 ∨  𝑥 ∉ 𝖢}. 

The absorbing states represent scenarios where the HDV enters unsafe conditions, such as 

departing from the roadway, experiencing collisions, or exceeding safe operational limits. 

The major advantages of PIRL are its sparse reward learning capability and physics-informed 

generalization, eliminating the need for complex hand-crafted reward design. Consider the 

system starting from an initial state 𝑠 and the reward function 𝑟: 𝕊 → ℝ given by 

𝑟(𝑆𝑘) = {
1, 𝐻𝑘 = 0 ∧ 𝑆𝑘 ∉ 𝖲abs

0, otherwise
 

Then, the value function 𝑣𝜋 for a given control policy 𝜋 is defined as: 
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𝑣𝜋(𝑠) := 𝔼 [∑ 𝑟
𝑁𝑓
𝑘=0 (𝑆𝑘) | 𝑆0 = 𝑠, 𝜋], 

where 𝑁𝑓 : = inf{𝑗 ∈ ℤ+ | 𝑆𝑗 ∈ 𝖲abs}, which takes a value in [0,1] and is equivalent to the safety 

probability Φ𝜋(𝜏, 𝑥): 

𝑣𝜋(𝑠) = Φ𝜋(𝜏, 𝑥). 

We formulate an episodic RL problem where the action-value function under a policy 𝜋 is: 

𝑞𝜋(𝑠, 𝑎) = 𝔼 [∑𝑟

𝑁𝑓

𝑘=0

(𝑆𝑘) ∣ 𝑆0 = 𝑠, 𝑈0 = 𝑎, 𝜋], 

with rewards defined to reflect whether the HDV remained within safety margins. 

As an extension of DQN with the PINN, the loss function is given by three components: 

𝐿 = 𝐿𝐷 + 𝜆𝐿𝑃 + 𝜇𝐿𝐵, 

where 𝐿𝐷 is the standard DQN data loss, 𝐿𝑃 is the physics loss that enforces the PDE constraint, 

𝐿𝐵 is the boundary loss that enforces the boundary conditions, and 𝜆 and 𝜇 are weighting 

coefficients for the physics-informed regularization terms. 

The data loss follows standard DQN methodology. Each episode initializes with an augmented 

state 𝑠0 = [ℎ0, 𝑥0
⊤]⊤ sampled from distribution 𝑃𝐷: 

𝑃𝐷(𝑠0) = {

1

|Ω𝐷|
, ℎ0 = 𝜏𝐷 ∧ 𝑥0 ∈ Ω𝐷

0, otherwise

 

where 𝜏𝐷 ∈ ℝ+ represents the data acquisition time interval, Ω𝐷 ⊂ 𝕏 defines allowable initial 

vehicle states, and |Ω𝐷| denotes the volume of this set. Experience transitions (𝑠𝑘 , 𝑎𝑘 , 𝑟𝑘 , 𝑠
′
𝑘) are 

stored in replay memory 𝖣. Target values for a minibatch 𝖲𝐷 are calculated using target Q-function 

𝑄̂: 

𝑦𝑗 = {
𝑟𝑗 , if 𝑠𝑗′ ∈ 𝖲abs

𝑟𝑗 +max
𝑎
𝑄̂(𝑠𝑗′ , 𝑎; Θ̂), otherwise

 

where 𝖲abs represents absorbing states corresponding to episode termination or unsafe conditions. 

The data loss is computed as: 

𝐿𝐷(Θ) =
1

|𝑆𝐷|
∑(𝑦𝑗 − 𝑄(𝑠𝑗 , 𝑎𝑗; Θ))

2

𝑗

 

The physics loss enforces PDE constraints derived from Hamilton-Jacobi-Bellman theory. States 

𝑠𝑙 = [ℎ𝑙 , 𝑥𝑙
⊤]⊤ are sampled from distribution 𝑃𝑃: 
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𝑃𝑃(𝑠𝑙) = {

1

𝜏|Ω𝑃|
, ℎ𝑙 ∈ [0, 𝜏] ∧ 𝑥𝑙 ∈ Ω𝑃

0, otherwise

 

where Ω𝑃 ⊂ 𝖢 specifies the PDE enforcement domain within the safe set. For each sample, the 

greedy action is determined as: 

𝑎𝑙
∗ = argmax

𝑎
𝑄(𝑠𝑙 , 𝑎; Θ) 

The physics loss quantifies PDE residual violations: 

𝐿𝑃(Θ) =
1

|𝑆𝑃|
∑(𝑊𝑃(𝑠𝑙 , 𝑎𝑙

∗; Θ))2

𝑙

 

where the residual function is: 

𝑊𝑃(𝑠𝑙 , 𝑎𝑙
∗; Θ) = ∂𝑠𝑄(𝑠𝑙 , 𝑎𝑙

∗; Θ)𝑓(𝑠𝑙 , 𝑎𝑙
∗) +

1

2
tr[𝜎̃(𝑠𝑙 , 𝑎𝑙

∗)𝜎̃(𝑠𝑙 , 𝑎𝑙
∗)⊤ ∂𝑠

2𝑄(𝑠𝑙 , 𝑎𝑙
∗; Θ)] 

Here, 𝑓 and 𝜎̃ represent augmented system dynamics incorporating the time dimension, and ∂𝑠𝑄 

and ∂𝑠
2𝑄 denote the gradient and Hessian of the Q-function with respect to the augmented state. 

The boundary loss ensures proper Q-function behavior at domain boundaries. Boundary states 

𝑠𝑚 = [ℎ𝑚 , 𝑥𝑚
⊤ ]⊤ are sampled from: 

𝑃𝐵(𝑠𝑚) =

{
 
 

 
 

1

2|Ω𝑃|
, ℎ𝑚 = 0 ∧ 𝑥𝑚 ∈ Ω𝑃

1

2𝜏|Ω𝐵|
, ℎ𝑚 ∈ [0, 𝜏) ∧ 𝑥𝑚 ∈ Ω𝐵

0, otherwise

 

where Ω𝐵 ⊂ ∂𝖢 represents the spatial boundary of the safe set. The boundary loss is formulated 

as: 

𝐿𝐵(Θ) =
1

|𝑆𝐵|
∑(𝑊𝐵(𝑠𝑚 , 𝑎𝑚

∗ ; Θ))2

𝑚

 

with residual function: 

𝑊𝐵(𝑠𝑚 , 𝑎𝑚
∗ ; Θ) = 𝑄(𝑠𝑚 , 𝑎𝑚

∗ ; Θ) − 𝑙𝜖(𝑥𝑚) 

The target boundary value 𝑙𝜖(𝑥) provides a smoothed approximation: 

𝑙𝜖(𝑥) = max (1 −
dist(𝑥, 𝐶𝜖)

𝜖
, 0) 
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where 𝐶𝜖 ⊂ 𝐶 represents a contracted safe set with margin 𝜖 > 0, and dist(𝑥, 𝐶𝜖) denotes the 

Euclidean distance from state 𝑥 to the interior of 𝐶𝜖. This formulation ensures continuous boundary 

conditions while maintaining numerical stability during training. Detailed descriptions about the 

loss are shown in (Hoshino and Nakahira 2024). 

Experiment 

We consider a tractor system modeled using a bicycle model approach, where the tractor and trailer 

are represented as interconnected rigid bodies with single-track dynamics shown in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Tractor and trailer nonlinear dynamic system. 

The complete tractor-trailer state is characterized by five key variables that capture the positioning, 

orientation, and motion of the system: 

𝑥v = [𝑥tl, 𝑦tl, 𝜃, 𝛽, 𝑣]
⊤ ∈ ℝ5, 

where 𝑥tl and 𝑦tl denote the global coordinates of the center of the trailer’s rear axle, 𝜃 is the 

orientation angle of the trailer in the global frame (with 𝜃 = 0 corresponding to the east direction), 

𝛽 represents the articulation angle between the tractor and trailer (𝛽 = 0 indicating perfect 

alignment), and 𝑣 is the longitudinal velocity of the vehicle. The geometric configuration of the 



23 
 

vehicle is characterized by several parameters: the hitch length 𝑀 (the distance from the tractor’s 

rear axle to the trailer’s front axle), the length and width of the tractor (𝐿1 and 𝑊1), the length and 

width of the trailer (𝐿2 and 𝑊2), and the diameter and width of the wheels (𝐿wheel and 𝑊wheel). The 

dynamics is described as: 

𝑥̇ = 𝑣cos𝛽 (1 +
𝑀1
𝐿1
tan𝛽tan𝛿) cos𝜃

𝑦̇ = 𝑣cos𝛽 (1 +
𝑀1
𝐿1
tan𝛽tan𝛿) sin𝜃

𝜃̇ = 𝑣 (
sin𝛽

𝐿2
−
𝑀1
𝐿1𝐿2

cos𝛽tan𝛿)

𝛽̇ = 𝑣 (
tan𝛼

𝐿1
−
sin𝛽

𝐿2
+
𝑀1
𝐿1𝐿2

cos𝛽tan𝛿)

𝑣̇ = 𝛼

 

For other subjects in the environment such as other vehicles, trees, traffic lights, and lane 

boundaries, we model them as geometric entities with predefined safety zones. Here, we consider 

𝑛 surrounding objects, and for each specific object 𝑋o
(𝑗)

, we define the states as: 

𝑥o
(𝑗)
= [𝑥o

(𝑗)
, 𝑦o

(𝑗)
, 𝜔(𝑗), 𝑣o

(𝑗)
, 𝑑th

(𝑗)
, 𝑑tk

(𝑗)
, 𝑑tl

(𝑗)
]⊤ ∈ ℝ7, 

where 𝑥o
(𝑗)

 and 𝑦o
(𝑗)

 are the world coordinates of the 𝑗-th object’s center, 𝜔(𝑗) is the object’s heading 

angle, 𝑣o
(𝑗)

 is the object’s velocity, and 𝑑th
(𝑗)

, 𝑑tk
(𝑗)

, 𝑑tl
(𝑗)

 represent the threshold distance, the distance 

from the object to the tractor’s center, and the distance from the object to the trailer’s center, 

respectively. We consider that the vehicle enters an unsafe region if 𝑑tk
(𝑗)
< 𝑑th

(𝑗)
 or 𝑑tl

(𝑗)
< 𝑑th

(𝑗)
. 

In the PIRL setting, the states 𝑠 should consist of the vehicle state 𝑥 and the outlook horizon 𝜏 as: 

𝑠 = [𝜏, 𝑥⊤]⊤, 

and 𝑥 can be further decomposed into the above 𝑥v and 𝑥o except we should get rid of the world 

coordinates as the learning algorithm focuses on relative positioning and local interactions rather 

than absolute global positioning. Therefore, the vehicle state 𝑥 becomes: 

𝑥 =

[
 
 
 
 

𝜃, 𝛽, 𝑣
⏟

𝑥′v

, {𝜔(𝑗), 𝑣o
(𝑗)
, 𝑑th

(𝑗)
, 𝑑tk

(𝑗)
, 𝑑tl

(𝑗)

⏟

𝑥′o
(𝑗)

}𝑗∈[1,2,⋯𝑛]

]
 
 
 
 
⊤

, 

where 𝑥′v, 𝑥
′
o
(𝑗)

 denote the modified vehicle and object states respectively, with global coordinates 

removed to focus on relative spatial relationships. As the HDV is the only one we can control, the 

control action 𝑎 is given by 

𝑎 = [𝛿, 𝛼] 
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where 𝛿 is the steering angle and 𝛼 is the longitudinal acceleration. 

To investigate the impact of sensor configurations on safety probability estimation, we consider 

two different observability scenarios representing current industry practice and enhanced sensing 

capabilities: 

• Agent 1: Standard industry configuration (tractor-only sensors): This represents typical 

commercial vehicle setups with sensors primarily on the tractor, providing limited trailer 

position awareness, which is a common constraint in current industry practice. In this case, 

we set 𝑑tl for each surrounding object to a large number (e.g., infinity) to represent the lack 

of trailer position sensing. By setting 𝑑tl = ∞, the safety condition 𝑑tl
(𝑗)
< 𝑑th

(𝑗)
 can never 

be triggered, effectively removing trailer-based collision detection from the safety 

assessment and forcing the agent to rely solely on tractor-based sensing for safety 

decisions. 

• Agent 2: Proposed enhanced configuration (tractor + trailer sensors): This incorporates 

trailer-mounted sensors providing full observability of all state variables, including trailer-

to-object distances, representing potential future HDV sensing capabilities. 

In our experiments, we focus on zoomed micro-level scenarios rather than global map-based 

simulations. This approach is motivated by the structure of PIRL, which is designed to operate on 

compact. In particular, PIRL emphasizes learning from and responding to risky situations that are 

present at the onset of each scenario, as opposed to relying on the occurrence of rare or hazardous 

events during long rollouts on a full map. Therefore, our experimental setup does not include a full 

driving map; instead, we formulate each trial as a single, critical decision-making episode starting 

from a high-risk initial condition. This design allows us to directly evaluate how effectively a 

policy can navigate through specifically crafted risky situations, aligning with the strengths of 

PIRL and enabling more targeted safety assessment. 

To evaluate the effectiveness of the proposed Physics-Informed Reinforcement Learning 

framework in modeling near-miss safety probabilities for HDVs, the authors conducted 

experiments across three distinct as shown in Figure 3 and compared PIRL with DQN to see how 

the reported safety probabilities look like. The first scenario involves a static and dynamic obstacle 

on the side of the tractor-trailer. The second setting involves a dynamic obstacle (e.g., passenger 

car) at the rear of the tractor-trailer. In the third setting, they considered lane keeping problem. In 

all three scenarios, the authors estimate the safety probability as a function of the trailer-to-object 

distance (𝑑tl) and vehicle velocity. These parameters are chosen to reflect the critical spatial and 

dynamic interactions that influence safety in real-world HDV operations, particularly under 

limited visibility. 
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Figure 3. Three distinct settings (left to right): 1) Near-miss involving dynamic and static 

obstacles on the side of the tractor-trailer 2) Near-miss involving a dynamic obstacle at the rear 

of the tractor-trailer 3) Lane-keeping 

Sensor Customization for Small Carriers  

In this section, the authors collected and analyzed vehicle inspection and crash datasets to capture 

how the inspection outcomes can serve as indicators of safety-critical sensors for vehicles widely 

used by small motor carriers, and what regions and environments of vehicle operations need 

customized safety sensor use. The authors collected a national motor carrier performance dataset 

with crash and vehicle information, and a local vehicle inspection dataset with vehicle mileage and 

detailed inspection results compared with the national dataset. A summary of the data content used 

in this research is provided in  

The authors then employed an analytical approach, focusing on the relationship between vehicle 

age, regional factors, and crash incidences in Pennsylvania. The methodology encompassed data 

preprocessing, probabilistic analysis, and data visualization, using a combination of automated 

decoding, data grouping, and statistical calculations. Error! Reference source not found. 

illustrates the overall research process.  
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Table 1.  

The authors then employed an analytical approach, focusing on the relationship between vehicle 

age, regional factors, and crash incidences in Pennsylvania. The methodology encompassed data 

preprocessing, probabilistic analysis, and data visualization, using a combination of automated 

decoding, data grouping, and statistical calculations. Error! Reference source not found. 

illustrates the overall research process.  

 

 

 

 

Table 1. Data source summary 

Source Local Vehicle Inspection Dataset National Crash and Inspection 

Violation Datasets 

Description Annual vehicle inspection records from 

Pennsylvania 

Annual crash report and roadside 

inspection violation records of the 

United States 

 

Coverage 

Period 

 

2005-2021 2017-2021 

Types of 

Data 

Collected 

VIN, make, model, model year, carrier 

location and ZIP code, component 

inspection outcomes, odometer 

readings 

VIN, make, model, model year, 

inspection violation category, DOT 

of the motor carriers, carrier 

location 

 

Decoding the Department of Transportation (DOT) numbers was the initial step to ascertain the 

power units of each motor carrier. This step was crucial to support the claims regarding the safety 

issues made by small fleets.  

 

 

Figure 5 shows the process of comparing the safety performance of small carriers with large and 

mid-size carriers. 

The authors used a region classification scheme provided by the Center for Disease Control’s 

National Center for Health Statistics (NCHS 2017) to classify the carrier regions based on 
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population density, ranging from large central metros (coded as 1) to non-core areas (coded as 6). 

This classification was derived from state and county codes in the datasets. Figure 6 shows the 

distribution of different region types in Pennsylvania. 

Then, the authors calculated the crash and inspection violations (for brake, tire, and lighting) 

probabilities using the equation below. The local vehicle inspection source for Pennsylvania is 

considered as the total population, and only Pennsylvania-specific records are used from the 

national datasets, representing the observed events. 

P(𝐸) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑒𝑣𝑒𝑛𝑡𝑠 (𝑐𝑟𝑎𝑠ℎ𝑒𝑠 𝑜𝑟 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑒𝑎𝑐ℎ 𝑔𝑟𝑜𝑢𝑝)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑖𝑒𝑠  (𝑡𝑜𝑡𝑎𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑔𝑟𝑜𝑢𝑝)
 

In this analysis, the authors applied the Fixed Quantile Threshold method to define high-risk 

groups based on crash probabilities and inspection violation probabilities, identifying significant 

deviations from the norm and typical patterns. Thresholds set at the 80th and 90th percentiles 

distinguished groups with high probabilities - exceeding 5% for crashes, 37% for brakes, 23% for 

tires, and 19% for lighting violations - highlighting areas in need of urgent intervention. 
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Figure 4. Research process designation 
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Figure 5. Separating motor carriers based on their fleet size and comparing their safety 

performance 

 

 

 

 

 

 

 

 

 

Figure 6. Region classification of Pennsylvania based on the population density 
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Chapter 5. Industry Perspectives 

To complement the technical methodologies, this project incorporated direct feedback from 

industry stakeholders, including fleet managers, inspection experts, and maintenance 

professionals. Their insights highlight that the barriers to adopting advanced safety and predictive 

maintenance technologies are not purely technical, but deeply socio-technical. 

From the interviews on human factors, several recurring themes emerged. Fleet operators 

emphasized that operational efficiency, cargo security, compliance, and uptime are the most 

pressing challenges. Driver retention and workforce shortages were cited as major social issues, 

compounded by an aging workforce with limited appeal to younger generations. Technically, while 

IoT and telematics devices can provide real-time insight into vehicle health, fleets often lack the 

resources and expertise to consolidate and act on this data. Interoperability remains a persistent 

problem: multiple communication protocols, incompatible data streams, and short hardware 

lifecycles make it difficult to build unified fleet management systems. 

Interviews reinforced these points with concrete examples. Inspection experts noted 

inconsistencies in manual inspections; technicians under time pressure often miss critical 

components, leading to unsafe vehicles remaining in service. Automated inspection pads and 

sensor-based systems have demonstrated significant improvements, yet adoption is slowed by cost 

concerns and resistance among technicians who fear job loss or increased monitoring. Fleet 

managers reported that while sensors for brakes, tires, and steering can transform safety outcomes, 

many companies still rely heavily on mechanic intuition rather than automated alerts. This creates 

a gap where failures occur between scheduled inspections, leaving vehicles vulnerable to 

undetected risks. 

Privacy and trust also surfaced as recurring concerns. The deployment of in-cab cameras or 

telematics often meets resistance from drivers who perceive them as surveillance rather than safety 

tools. Industry leaders explained that acceptance improves when the purpose is clearly 

communicated and when the technology demonstrates value; for example, exonerating drivers in 

crash investigations or preventing claims. However, distrust lingers when technologies cause false 

alerts, such as automated braking triggered by roadside objects, undermining both driver 

confidence and organizational buy-in. 

Interviewees agreed that predictive maintenance and AI-based decision support hold promise, but 

that cultural and organizational barriers remain. Training, transparency, and incremental 

integration are critical for building trust. Without these, even well-designed systems risk rejection. 

Importantly, industry experts stressed that solutions must be co-designed with practitioners, not 

imposed from academia or manufacturers alone. 

These findings align closely with the project’s emphasis on socio-technical integration. By 

embedding industry feedback into the research framework, the project ensures that advances in 
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PIRL-based near-miss detection and customized sensor deployment are not only technically sound 

but also realistic, scalable, and acceptable in practice. In doing so, the research bridges the gap 

between state-of-the-art technology and the workforce realities that ultimately determine its 

success. 
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Chapter 6. Results and Findings 

Results from Safety probability heatmaps 

Figure 7 illustrates a comparative analysis of safety probability heatmaps learned by the standard 

Deep Q-Network (DQN) and the proposed Physics-Informed Reinforcement Learning (PIRL) 

models across three critical driving scenarios: rear-end, side obstacle, and lane-keeping. Each 

figure visualizes the estimated probability of remaining within the safe set as a function of trailer 

distance (𝑑tl) and vehicle velocity (𝑣), with yellow indicating high safety and blue indicating low 

safety. These probability maps define the safe region as the subset of states with safety probabilities 

close to 1, and enable a continuous representation of dynamic near-misses, characterized by steep 

gradients at the boundary between safe and unsafe regions. Rather than using fixed thresholds, this 

approach captures how proximity and speed interact to form context-specific safety risks. 

In the rear-end scenario, the DQN agent outputs a nearly uniform heatmap, lacking strong gradients 

and showing minimal responsiveness to changing 𝑑tl and 𝑣. In contrast, PIRL captures meaningful 

interactions between distance and speed: safety probability increases with greater distance and 

decreases with higher velocity. The sharper and physically consistent gradients indicate PIRL’s 

ability to reflect longitudinal dynamics and temporal risk accumulation. 

The side scenario further underscores PIRL’s advantage. The DQN result remains flat and 

uninformative, while PIRL reveals a broader and more nuanced safety field. Safety improves as 

lateral clearance increases and is sensitive to velocity, effectively modeling interactions with 

roadside or adjacent-lane obstacles. This is especially important in limited visibility conditions, 

addressed by our visibility-aware framework. 

In the lane-keeping scenario, DQN again fails to differentiate risk across spatial deviations and 

speeds. PIRL, however, displays a clear decline in safety at high speeds and large lateral deviations. 

This aligns with well-known rollover and off-tracking risks in articulated vehicles, and 

demonstrates PIRL’s ability to encode complex vehicle geometry and stability margins. 

Overall, PIRL significantly outperforms DQN in all three scenarios. It learns sharper, more 

interpretable safety maps by integrating physical knowledge, sparse rewards, and geometric 

awareness. These findings validate PIRL’s scalability and generalization capability. PIRL not only 

enables proactive safety estimation in data-sparse environments but also offers a principled 

alternative to static threshold-based definitions of near-misses. 

In addition, to study the impact of trailer-side sensors on safety estimation, we compare the PIRL 

agent’s safety probability maps in the side-obstacle scenario under two observability settings: with 

and without access to the trailer-to-object distance 𝑑tl. 

As shown in Figure 9, the presence of trailer-sensing significantly enhances the agent’s ability to 

detect unsafe configurations. When 𝑑tl is available as input, the PIRL agent produces a safety 
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heatmap that reflects intuitive risk boundaries: safety decreases rapidly as the trailer approaches 

the obstacle, especially at high speeds. The safety probability drops below 0.2 for 𝑑tl < 1.5 m at 

𝑣 > 20 m/s, aligning with real-world risk expectations in blind-spot invasion scenarios. 

To illustrate the comparative performance of the proposed PIRL framework against a baseline 

DQN, Figure 8 shows the average episode reward during training for the side-crash near-miss 

scenario, computed as a running average with a window of 100 episodes. The results indicate that 

while both agents are capable of achieving high rewards, their stability and learning efficiency 

differ significantly. PIRL converges more quickly to near-optimal performance and sustains 

consistently high rewards, reflecting the benefits of embedding vehicle dynamics into the learning 

process. In contrast, the DQN baseline exhibits substantial variability, with frequent drops in 

performance and slower recovery, suggesting greater sensitivity to stochasticity and less reliable 

policy behavior. This comparison highlights PIRL’s advantage in generating stable and 

interpretable safety-aware policies in side-crash contexts, where blind spots and lateral clearance 

are critical for heavy-duty vehicle safety. 

By contrast, when 𝑑tl is not shown to the agent during training, the resulting safety field becomes 

diffuse and insensitive to lateral proximity. The agent fails to recognize spatial risk patterns, and 

safety appears to depend primarily on velocity. Without trailer-side sensors, the agent fails to 

recognize safe conditions even when the trailer is located at a sufficient distance from the obstacle. 

This lack of situational awareness can result in inappropriate actions, ultimately leading to unsafe 

outcomes. 

This comparison clearly illustrates that PIRL relies on sensor observability to accurately model 

nonlinear spatial risk, and that trailer-mounted sensors provide essential information for learning 

interpretable and context-aware safety boundaries. Without sensors, the agent underestimates side 

risks, compromising predictive power in near-miss conditions as shown in Figure 9. 
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DQN Rear-end Scenario PIRL Rear-end Scenario 

Figure 7. Safety Probability Heatmaps across scenarios with sensors installed: Rear-end, Side, 

and Lane-Keeping for DQN and PIRL Models 

DQN Side Scenario PIRL Side Scenario 

DQN Lane-Keeping 

PIRL Lane-Keeping 
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Figure 8. Learning curves comparing baseline DQN and Physics-Informed Reinforcement 

Learning (PIRL). PIRL achieved more stable and consistently high average episode rewards, while 

DQN exhibited greater variability and performance drops. 
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With Sensor Side Scenario Without Sensor Side Scenario 

 

With Sensor Rear-end Scenario Without Sensor Rear-end Scenario 

With Sensor Lane-keeping Scenario Without Sensor Lane-keeping Scenario 

Figure 9. Comparison of PIRL safety probability heatmaps with and without sensor-enabled 

trailer-side visibility 
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Results from statistical analysis for sensor customization 

Over the five years from 2017 to 2021, the heatmaps in Figure 10 illustrate a varying landscape of 

crash probabilities across different age groups and regions in Pennsylvania, shedding light on 

critical trends that inform safety sensor deployment strategies. 

The heatmaps depicting crash probabilities from 2017 to 2021 in Figure 10 suggest that Region 6 

has consistently been a focal point for crashes across multiple age groups, particularly for those 

aged 18 to 29. However, in 2020 and 2021, this trend does not hold as strongly, indicating a 

potential shift in crash probabilities towards younger vehicles. The data supports the need for 

region-specific and age-targeted safety sensor deployments.  

In addition, based on motor-carrier level analysis for crashes in 2021, the authors found that the 

rate of crashes per power unit for small motor carriers in Region 6 is 11%, while for larger carriers 

this rate is 1%. The result suggests that although small carriers own much fewer vehicles in 

comparison to larger carriers, they contribute to more crashes in non-core areas of Pennsylvania.  

The analysis of brake violation probabilities in crashes across various regions and age groups from 

2017 to 2021, as demonstrated in Figure 11, shows that vehicles in Region 6, aged 6 to 23 exhibit 

higher probabilities of brake violations. This outcome is closely followed by vehicles within the 

24 to 29 age range in Region 1 and the 18 to 23 age group in Region 3, with brake violation 

probabilities of 0.38 and 0.37, respectively. Similarly, Figure 12, which indicates the probabilities 

of tire violations in crashes during the same period, illustrates that vehicles aged 12 to 17 in Region 

6 have the highest risk with a probability of 0.36, followed by the oldest vehicles, those above 30 

years old, in Region 1 with a probability of 0.3. Additionally, vehicles aged 6 to 11 and 18 to 23 in 

Region 6 are other critical groups in terms of tire sensor adoption.  Moreover, lighting violation 

probabilities in crashes, as outlined in Figure 13, suggest that vehicles aged 6 to 23 in Region 6 

with average lighting violation probabilities of 0.24, 0.23, and 0.20, and vehicles aged 24 to 29 in 

Region 2 with violation probability of 0.21, should be prioritized for lighting sensor 

implementation. 

Overall, the patterns reveal that Region 6, particularly for vehicles aged 6 to 23, stands out as a 

critical risk area for all three types of inspection violations. This consistent finding emphasizes the 

need for targeted adoption of brake, tire, and lighting sensors for these specific age groups in non-

core areas to enhance vehicular safety and compliance. 
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Figure 10. Crash probabilities in different age groups and regions from 2017 to 2021 
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Figure 11. Probabilities of brake violations in different age groups and regions in crashes from 

2017 to 2021 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Probabilities of tire violations in different age groups and regions in crashes from 

2017 to 2021 
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Figure 13. Probabilities of lighting violations in different age groups and regions in crashes from 

2017 to 2021 
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Chapter 7. Human-Centered Analysis of Inspection 

Practices 

In addition to the proposal’s two primary research thrusts (physics-informed near-miss detection 

and customized sensor adoption) this project pursued an extended line of inquiry into inspection 

practices from a human-centered perspective. The rationale is straightforward: even the most 

advanced safety sensors or predictive algorithms ultimately depend on inspectors and fleet 

personnel for effective deployment. Understanding how humans learn, prioritize, and make 

decisions in inspection settings therefore provides critical insights into the adoption and reliability 

of technical solutions. This chapter presents the methodology and findings of that study, 

highlighting how human heuristics and adaptive learning can be leveraged to design more 

consistent and trustworthy inspection frameworks. 

Methodology 

This study examines how human inspectors identify critical features and adapt strategies under 

uncertainty. Extracting this knowledge is challenging, as it requires capturing both semantic 

reasoning and behavioral insights. To address this challenge, the authors integrated a structured 

survey with the Bayesian Inverse Contextual Bandit (BICB) framework to analyze and model 

dynamic decision-making processes. 

Survey Design and Data Collection 

The survey required 20 participants (11 male and 9 female) from engineering backgrounds, none 

of whom held an inspection license, to complete 40 trials across five rounds, evaluating eight 

vehicles in each trial. Nine key safety-related features, illustrated in Table 2. Features used in 

vehicle inspections described each vehicle. These features were chosen based on data 

availability constraints and their established relevance in prior studies on HDV inspections and 

align with key indicators identified by industry experts and regulatory agencies as critical for 

assessing vehicle safety and maintenance needs.  Participants made binary decisions-to inspect 

or not inspect a vehicle-based on these features, while the ground truth determined whether an 

inspection was actually required. The iterative structure of the survey encouraged participants 

to refine their feature prioritization and decision-making strategies through feedback and 

repeated attempts. After each round, participants selected the features they believed most 

influenced their decisions, allowing the capture of explicit reasoning.  

Figure 14 shows an example of a vehicle from the survey for which participants decided whether 

to inspect it or not. Participants needed to achieve a score of at least 75 out of 100 in each round to 

progress to the next round. Those who failed had to revise their decisions and repeat the round 

until they met the threshold. 

Before beginning the trials, participants completed two training sessions. The first session 

introduced them to the vehicle features and provided an overview of current regulations for vehicle 

inspections.  In the second session, participants practiced decision-making by evaluating four 
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sample vehicles, deciding whether to inspect each one, and receiving immediate feedback on their 

decisions. After each round, participants selected the features that influenced their decisions. This 

task captured how their reasoning evolved over time. To create diverse inspection conditions and 

reduce bias, the survey randomized vehicle assignments across trials, prompting participants to 

develop flexible and adaptive decision-making strategies. 

 

Table 2. Features used in vehicle inspections 

Features  Description 

Vehicle Make The brand of the vehicle 

Vehicle Body The type of vehicle, such as Truck or Truck-Tractor 

Gross Vehicle Weight Classification based on weight (Class 7 or 8) 

Region The region where the vehicle operates (e.g., Large 

fringe metro or non-core area) 

Vehicle Age The age of the vehicle in years 

Odometer in the Last Inspection Distance traveled since the last inspection, measured in miles 

Mileage Driven in the Last Year Distance covered by the vehicle in the past year, 

measured in miles 

Brake Location Specifies the location of the brake, such as Left Front, Rear 

Left 

Brake Pad Thickness Measurement of the brake pad’s thickness during the last 

inspection 

 

Figure 14. Example of a vehicle used for inspection decisions in the survey 
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Framework for Decision-Making Analysis 

This study employs the BICB framework to model decision- making dynamics during vehicle 

inspections. The BICB framework is particularly well-suited to this task because it captures 

how decision-making strategies evolve over time and adapt to the sequential nature of the 

task (Hüyük et al. 2022). In this study, participants made binary decisions-whether to inspect 

or not inspect vehicles-over five rounds of trials. The framework infers participants’ feature 

prioritization and belief updates based on observed actions, enabling a deeper understanding 

of their decision-making processes. The vehicle inspection task was formulated as a contextual 

bandit problem, where the key components were defined as follows: 

• State (𝑥𝑡): A set of nine key features representing each vehicle, as detailed in Error! 

Reference source not found.. 

• Action (𝑎𝑡): Binary decisions made by participants for each vehicle: inspect (𝑎𝑡 = 1) or 

not inspect (𝑎𝑡= 0). 

• Reward (𝑟𝑡): The reward captures the alignment of participants’ actions with inferred 

feature importance, providing feedback on their prioritization of vehicle features rather 

than decision correctness. 

The BICB framework models participants’ beliefs about the importance of vehicle features 

as a multivariate Gaussian distribution. These beliefs are iteratively updated as new actions 

and rewards are observed. The belief parameters—mean (𝜇𝑡) and covariance (Σ𝑡)—are updated 

using equations ((1) and (2), respectively. Here, µ𝑡 represents the inferred feature importance 

vector at time t, and 𝛴𝑡 quantifies uncertainty in these beliefs. These updates enable the 

framework to capture how participants refine their understanding of vehicle features across 

rounds.  

𝜇𝑡+1 ≔ Σ𝑡+1 (Σ𝑡
−1𝜇𝑡 +

1

𝜎2
𝑟𝑡𝑥𝑡[𝑎𝑡]) 

                                      

(1) 

Σ𝑡+1 ≔ (Σ𝑡
−1 +

1

𝜎2
𝑥𝑡[𝑎𝑡]𝑥𝑡[𝑎𝑡]

𝑇)
−1

 
                                     

(2) 

 

The decision policy in this framework balances exploration and exploitation, allowing participants 

 to both experiment with different strategies and utilize their learned feature prioritization, where α 

is the softmax temperature parameter that controls the stochasticity of decisions. A higher α 

encourages exploration, while a lower α favors exploitation of the inferred feature importance. The 

reward function reflects participants’ perceived prioritization of vehicle features, providing 

feedback that informs their learning process. It is formulated as: 
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𝜋∗(𝑥𝑡)[𝑎𝑡] =
exp(𝛼R(𝑥𝑡 , 𝑎𝑡))

∑ exp(𝛼R(𝑥𝑡 , 𝑎
′))𝑎′∈𝐴

, 
                                     

(3) 

𝑟𝑡 =∑(𝑥𝑡[𝑎𝑡])𝑖

𝐾

𝑖=1

⋅ 𝜌env[𝑖] + 𝜎 ⋅ 𝜂, 
                                     

(4) 

 

where 𝑥𝑡 [𝑎𝑡] is the feature vector corresponding to the chosen action 𝑎𝑡, 𝜌env represents the 

inferred feature importance vector, 𝜎 is the noise level, and 𝜂 ∼ 𝒩 (0, 1) is a standard normal 

random variable. The agent dynamically updates its beliefs about feature importance by sampling 

from a posterior distribution, incorporating prior knowledge and observed actions and rewards. The 

logic of the agent is rooted in Bayesian updating, where the feature importance vector is treated as 

a multivariate Gaussian distribution. The agent refines its posterior beliefs iteratively as it observes 

new actions and rewards. Table 3. Hyperparameters used for training the agent lists the 

hyperparameters used for training the BICB agent. 

 

Table 3. Hyperparameters used for training the agent 

Hyperparameter Value 

α (Softmax temperature parameter) 20 

σ (Noise level for reward simulation) 0.10 

Ɛ (Regularization term for matrix operations) 1 × 10−6 

Iterations 100 

Learning rate 

 

0.001 

Results 

The BICB framework’s inferred feature prioritization aligns with self-reported survey data, 

with brake pad thickness (0.77), vehicle age, and mileage consistently receiving the highest 

importance scores. Figure 15. Feature importance reported by the participantsFigure 15 and 

Figure 16 confirm this alignment, emphasizing their role in inspection decisions. However, 

discrepancies in feature rankings reveal complexities in human decision-making. The model 

assigns higher importance to region and brake location in some rounds, potentially detecting 

implicit learning or exploratory behaviors that participants did not consciously report. These 

variations may also stem from the small sample size, limiting the model’s ability to capture 

broader decision-making trends. On the other hand, the variance in self-reported data could 

result from individual biases, such as memory gaps or misunderstandings of the survey questions 

(Jensen et al. 2019). Experts emphasize the importance of key features such as brake pad 

thickness, mileage, vehicle age, and odometer readings, with additional features like region 
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and brake location considered only in challenging cases. Participants, based on self-reported 

data and their decision trends, appear to align with experts in identifying these critical features, 

reflecting an understanding of their importance in decision-making. 

As participants improved their feature prioritization decisions in the final rounds—aligning with 

expert opinions on critical features such as brake pad thickness and mileage—the learning curve 

in Figure 17 illustrates their progress. The average number of attempts required to reach the 

passing score of 75% steadily decreases from approximately six attempts in Round 1 to just 

over three in Round 5, highlighting the effectiveness of the training process. Figure 18 

provides the individual learning curves across the five rounds. Several participants, such as 

Participant 1 and Participant 12, demonstrated consistent improvement with fewer attempts per 

round, reflecting steady progress in learning. 

In contrast, others, like Participant 3 and Participant 4, exhibited greater variability in their 

attempts, potentially due to different strategies or fluctuations in task understanding. Notably, 

some participants required a significantly higher number of attempts initially, such as 

Participant 10, who made 25 attempts in Round 1, but subsequently improved in later rounds. 

These observations underline the diversity in participants’ learning trajectories and decision 

makings and highlight the need for better understanding and addressing inconsistencies in 

inspection strategies. 

Conclusion 

This study highlights the challenges of achieving consistent and reliable heavy-duty vehicle 

inspections due to variability in human decision-making and the increasing complexity of vehicle 

systems. By conducting a survey and analyzing feature prioritization through the BICB 

framework, the study offers insights into how human heuristics can be captured to enhance 

inspection strategies. Participants’ alignment with expert-identified critical features, such as 

brake pad thickness and mileage, underscores the importance of integrating tacit knowledge into 

data-driven approaches. The observed 33% reduction in inspection attempts demonstrates the 

utility of structured analysis in improving decision-making processes.  Given the diverse 

backgrounds of participants, variability in decision-making strategies was expected. To 

mitigate potential biases, vehicle assignments were randomized across trials to ensure that no 

participant consistently encountered similar inspection conditions. Additionally, participants 

underwent structured training before the trials to standardize baseline knowledge. While some 

participants exhibited faster learning curves than others, the overall trend across rounds 

indicated convergence toward expert-identified feature prioritization. However, this study did 

not include expert inspectors, limiting direct validation of participants’ decision strategies 

against real-world inspection practices. Future research will address this by conducting 

interviews and structured evaluations with expert inspectors to compare their decision-making 

patterns with those of study participants. These interviews will help identify key differences in 

feature selection, learning speed, and prioritization strategies. These findings support the 

development of a collaborative human-AI framework that leverages human insights to address 
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data limitations and refine inspection strategies. While the findings remain valuable for 

understanding inspector decision-making, future research will expand this survey to include a 

larger and more diverse participant pool and employ advanced analytical tools, such as 

knowledge graphs, to capture and explore learning behaviors in greater detail. 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Feature importance reported by the participants 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Feature importance across 5 rounds captured by BICB 
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Figure 17. Average learning curve across five rounds 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Learning curves of each 20 participants across five rounds 
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Chapter 8. Conclusions and Recommendations 

8.1 Conclusions 

This project advanced the Safety21 mission by integrating physics-informed modeling, data-

driven sensor strategies, and socio-technical insights to improve heavy-duty vehicle (HDV) safety. 

The research demonstrated that: 

1. Physics-Informed Reinforcement Learning (PIRL) enables proactive safety 

modeling. 

By embedding vehicle dynamics and physical constraints into reinforcement learning, 

PIRL produced interpretable safety probability maps for tractor-trailers under rear, side, 

and lane-keeping scenarios. Results showed that PIRL outperformed standard DQN by 

capturing realistic risk gradients based on clearance, speed, and articulation. Importantly, 

trailer-side sensor inputs proved critical for accurate estimation, underscoring the value of 

enhanced observability in reducing blind-spot-related near-misses. 

2. Customized sensor deployment strategies improve small-carrier safety outcomes. 

Analysis of crash and inspection datasets revealed significant variations in brake, tire, and 

lighting violations across vehicle age groups and operating regions. For example, Region 

6 vehicles aged 6–23 exhibited high violation rates across all three components, while 

Region 1 and 2 vehicles aged 24–29 were most vulnerable to brake and lighting issues. 

These findings highlight the inadequacy of one-size-fits-all mandates and support 

tailored, risk-based sensor adoption policies that prioritize high-risk carriers while 

respecting financial constraints. 

3. Human-centered analysis of inspections reveals adaptive but inconsistent decision-

making. 

Survey-based experiments demonstrated that inspectors improve feature prioritization 

with experience, aligning more closely with expert risk factors such as brake pad 

thickness, mileage, and vehicle age. The use of Inverse Contextual Bandit (ICB) models 

captured these learning trajectories, showing convergence toward expert strategies while 

also highlighting individual variability. These insights suggest that human heuristics can 

be formalized and integrated with AI to enhance inspection reliability. 

4. Industry perspectives confirm socio-technical barriers. 

Interviews with fleet managers and inspectors emphasized barriers such as workforce 

shortages, data integration challenges, privacy concerns, and resistance to change. While 

predictive maintenance and AI-based decision support hold promise, successful adoption 

requires transparency, training, and incremental integration into existing practices. 
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Together, these findings show that HDV safety cannot be addressed by technology alone. Solutions 

must integrate technical advances with organizational readiness, workforce practices, and trust-

building measures. 

8.2 Recommendations 

Based on the results, several recommendations are proposed for research, policy, and practice: 

1. Integrate telematics and real-world fleet data into PIRL models. 

Extending PIRL beyond simulation requires combining telematics, event-based video, 

and inspection data to validate safety probability estimations under real-world operating 

conditions. Partnerships with fleet operators and DOTs will be critical for scaling. 

2. Pilot customized sensor adoption programs with small carriers. 

Federal and state agencies should incentivize targeted deployments of brake, tire, and 

lighting sensors in high-risk regions and age groups. Pilot programs should test cost-

sharing models, ensuring that small carriers can participate without disproportionate 

financial burdens. 

3. Develop workforce training programs aligned with predictive maintenance. 

Inspectors and fleet personnel require training that combines tacit knowledge with data-

driven tools. Simulation-based training and AR-enhanced modules could improve 

workforce adoption and reduce variability in inspections. 

4. Strengthen data interoperability standards. 

Regulators and technology providers should prioritize common data formats and 

communication protocols to address fragmentation across telematics, inspection, and 

maintenance records. Improved interoperability will enable more robust predictive 

models and cross-fleet benchmarking. 

5. Build trust and transparency into AI-based safety systems. 

Driver and inspector acceptance depends on clear communication of system benefits, 

safeguards against misuse, and demonstrable value (e.g., exonerating drivers in crashes, 

preventing costly breakdowns). Explainable AI models and transparent feedback 

mechanisms are essential to overcoming resistance. 

8.3 Future Research 

Future work should focus on: 

• Expanding PIRL validation with real-world sensor data from fleet partners. 

• Exploring multi-agent PIRL for interactions between HDVs and passenger vehicles. 

• Investigating knowledge graph methods to integrate human heuristics, inspection data, and 

predictive maintenance models into unified decision-support frameworks. 
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