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Chapter 1 

1 Introduction 
 
Geologic hazards including slope failures, landslides, mudflows, debris flows, etc. and 
hydrological hazards related to floods and stormwater surge can be destructive to 
transportation infrastructure and threaten property and human life along the 
highway, railroads and roads. Landslides alone cause thousands of deaths and many 
billions of dollars in damage every year.  Therefore, there is a great need in advancing 
our knowledge in slope instability and failure risks and developing technologies in 
detecting and monitoring, and preventing landslides, in turn sustaining the safety of 
transportation infrastructure and system operations in a changing environment [1] 
 

As a member of the USDOT National University Transportation Center (UTC) 
– Safety 21 program led by Carnegie Mellon University, Morgan State University team 
proposes a multi-phase interdisciplinary project focusing on the safety of 
transportation infrastructure systems by preventing geohazards, specifically slope 
failure and landslides and minimizing impacts of geohazard along the highway, 
railroads, and roads. This project will employ an integrated approach of geotechnical 
and AI/Machine Learning methods for assessing conditions of geotechnical assets, 
such as cut slopes and embankment of the DOT/SHA and delineating landslides and 
high-risk areas [1].  
 

This report summaries research findings of Phase 2 of the project titled 
Improve Highway Safety by Reducing the Risks of Landslides, sponsored by National 
UTC – Safety 21 program. The report is organized in the following order. In the 
introduction section we will provide a brief background about geological hazards and 
objectives of the research project. We follow with geotechnical asset management and 
current status (Chapter 2). The updates on field and lab investigation were provided 
in Chapter 3. Applications of LiDAR data in detection and characterization of 
landslides in Prince George’s County were discussed in Chapter 4. To better 
understanding the roles of precipitation in triggering landslides soil moisture 
mapping procedures using Sentinel I data with ML approaches were proposed and 
tested with a case study in Prince George’s County Maryland (Chapter 5). The 
numerical model development for quantitative landslide risk assessment was 
discussed in Chapter 6, aiming at establishing a robust, interpretable, and 
quantitatively grounded framework for Landslide Risk Assessment (LRA) by 
integrating physics-based numerical modeling with machine learning approaches. At 
the last integrating GIS-Based susceptibility mapping and machine learning 
framework for landslide prediction and early warning in in Baltimore County, 
Maryland was introduced.  
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1.1 Geological hazards 
Geologic hazards, such as landslides, land subsidence and earth fissures, and 
earthquakes, etc. and hydrological hazards, such as floods and stormwater surge 
owing to extreme weather events (tropical storms, hurricanes, tornadoes, etc.), 
compounding with sea-level rising due to global warming and climate change, have 
caused great impacts on transportation infrastructure and traffic, in turn resulting in 
great economic damages. Landslides are among the most devastating and costly 
natural disasters, causing thousands of deaths and many billions of dollars in damages 
annually [2–4].  
 

The majority of landslides are precipitation-triggered [5] even though they 
occur over a broad range of lithological, climatological, and hydrological conditions, 
and land use types [6]. However, for most precipitation-triggered landslides, other 
complex atmospheric, surface, and subsurface conditions also play a role in slope 
failure by increasing the effects of downgradient forces and/or reducing the strength 
of the underlying slope soils/rocks [7, 8]. The effect of precipitation from these 
confounding factors is thus essential both for enhancing fundamental understanding 
of landslides and for evaluating the impact of climate change on slope failure. 

 
1.2 Updates on landslides detection and warning smart 

system framework 
We noted that it is common practice in many regions around the world to create an 
inventory of landslide, debris flow and/or slope failure occurrences. In addition, many 
studies have attempted to quantify the likelihood of the occurrence of landslides or 
identify areas that are susceptible to slope failures or instability, e.g., landsides 
susceptibility (LS) analysis based on GIS models and machine learning models [9]. 
MDOT/SHA manages an extensive portfolio of geotechnical assets, including slopes, 
embankments, and ground modifications, along the State of Maryland’s roadway 
infrastructure. Its geotechnical asset management (GAM) plan establishes MDOT 
SHA’s asset class strategy with a robust plan to guide infrastructure decisions; 
optimize the total cost of ownership; and meet performance, reliability, and risk 
objectives [10]. With MDOT/SHA sponsorship, MSU and Carnegie Mellon University 
initiated a project for incorporating precipitation data into the geotechnical asset 
management.   
 

With additional support from the National UTC Safety 21 program, Morgan 
State University team carried out a multi-phase (multi-year) project focusing on the 
safety of transportation infrastructure systems by preventing geohazards, specifically 
slope failure and landslides and minimizing impacts of geohazards.  This project 
employed an integrated approach of geotechnical and AI/Machine Learning methods 
for assessing conditions of geotechnical assets, such as cut slopes and embankment of 
the DOT/SHA and delineating landslides and high-risk areas. Figure 1.1 shows a 
framework for landslides detection and monitoring smart system built on a GIS 
platform.  
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Figure 1.1: Framework for landslide risk assessment and monitoring smart system 
(modified from [1]).  

 

1.3 Objectives of the project (Phases 1 and 2) 
This project is unique by integrating geotechnical and machine learning approaches 
in assessing slope instability and risk of landslides and mapping high-risk areas along 
highway, railroad and roadways. This project is built upon an ongoing project 
sponsored by Maryland Department of Transportation/State Highway Administration 
(MDOT/SHA).  
 

The objectives (tasks) of the project include: (1) with AI/Machine Learning 
approaches assess the risks of landslides based on soil/rock types, weather conditions, 
mechanical properties of slope materials, and the status of existing retaining 
structures along the selected highway sections, using Maryland as case studies, (2) 
identify and map the high-risk areas based on controlling factors such as geometry 
and mechanical properties of soil or rock, and triggering factors, including 
gravitational and hydraulic forces, using available survey data, remote sensing and 
LIDAR data and other factors like transportation modes, (3) design and test protocols 
for real time monitoring at selected sites in consultation with DOT SHA staff, and (4) 
recommend strategies for reducing the risks of landslides with real-time monitoring 
for the high-risk areas, and improving the safety of the transportation infrastructure. 
All the methods and strategies can be transferred to other states or regions with 
similar geological conditions and engineering configurations [1]. Phase 1 of this 
project covered task 1 and part of task 2. Phase 2 of this project continued to cover part 
of Task 1 and Task 2. 
 

1.4 Alignment with the USDOT strategic plan 
The proposed project will address transportation safety, especially physical 
infrastructure systems and roadway design, covering the following US DOT goals [1, 
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11]:  
• Update roadway design standards to protect vulnerable road users and vehicle 
occupants.  
• Use regulatory and policy tools to advance roadway safety to reduce fatalities 
and injuries across modes. 
• Support the adoption and maturation of safety management systems across 
modes. 
• Use data and data analytics to take proactive actions to address emerging safety 
risks and support compliance. 
 
The project will provide technical assistance to better identify, assess, and address 
critical physical vulnerabilities. 
• Incorporate physical protections in the standards for design of emerging 
automated and connected systems and technologies, such as real-time sensing and 
monitoring systems. 
• Strengthen system response and recovery plans and protocols to minimize the 
effects of system disruptions and hasten system recovery from the natural disasters. 
• Promote guidelines on vulnerability assessments with enhancement of AI/ML 
approaches.  
 
The project will assess and mitigate the vulnerability of transportation infrastructure 
to extreme weather conditions and natural disasters: 
• Assess the vulnerability of assets and identify novel hazards mitigation 
strategies. 
• Enhance resilience throughout transportation planning and project 
development processes by updating guidance and regulations. 
• Conduct case studies and pilot projects to develop and evaluate new and 
innovative adaptation and resiliency technologies, tools, and opportunities, such as 
motion sensors and early warning systems.  
 

This project will build research capacity in the critical area of designing resilient 
infrastructure for geohazards and extreme weather conditions. It will also provide 
educational opportunities for graduate and undergraduate students to gain knowledge 
and experience in this important new area for resilient engineering. Thus, the project 
will also build human capacity to address the challenge of geohazard adaptation and 
mitigation related to transportation systems [1].  
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Chapter 2 

2 Review of Geotechnical Asset 
Management Frameworks for 
Highway System 

John Tanimola, Joshua Nash, Yi Liu, Zhuping Sheng, Oludare Owolabi 

 
 

2.1 Introduction 
Geotechnical Asset Management (GAM) applies strategic asset management 
principles such as lifecycle planning, risk evaluation, and data-driven decision-making 
to geotechnical assets including slopes, embankments, retaining walls, rockfall 
mitigation systems, and subgrades [1]. National Cooperative Highway Research 
Program (NCHRP) Report 903 defines GAM as a risk-based approach designed to 
extend traditional asset management frameworks, incorporating tools like GAM 
Planner and lifecycle-cost templates to support decision-making on geotechnical 
infrastructure [12]. Urban resilience hinges not only on structures like roads and 
bridges but critically on the stability of geotechnical assets. These earthworks often lie 
hidden beneath developed areas and can cause severe service disruptions and safety 
hazards upon failure [12]. As climate change amplifies the frequency and intensity of 
weather extreme events such as heavy rainfall and flooding, the stress on slopes and 
embankments increases, underscoring the essential role of GAM in ensuring urban 
infrastructure remains robust and adaptable [13]. 
 

Urban regions like Maryland, face growing vulnerability to geohazards 
including landslides, embankment failures, soil erosion, and slope instability driven 
by aging infrastructure, changing climate patterns, and increasing human activities. 
While transportation agencies have advanced in managing roads and bridges through 
data-driven asset management, geotechnical assets such as retaining walls, cut slopes, 
embankments, and subgrade systems have often been overlooked, treated largely as 
unpredictable risk sites with high liability potential. The consequences of geotechnical 
asset failures can include service disruptions, collateral damage to adjacent 
infrastructure, and public safety threats [12].  
 

The Maryland Department of Transportation’s Strategic Asset Management 
Plan (SAMP) outlines a proactive, risk-based lifecycle approach for its multimodal 
infrastructure, targeting long service lives and system reliability [14]. However, the 
SAMP is missing targeted strategies for managing geotechnical components even as 
these assets play a critical role in supporting pavements, bridges, culverts, and other 
highway infrastructures [14]. This omission signifies a substantial gap in Maryland’s 
ability to anticipate, assess, and mitigate geohazard risks effectively. To close this gap, 
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this study seeks to review established GAM frameworks adopted by different state 
Departments of Transportation, assessing their applicability for Maryland’s 
infrastructure management strategy. 
 

2.2 Summary of geohazards prevalent in Maryland 
Over the past two decades, Maryland has experienced numerous geohazard events 
including landslides, sinkholes, slope failures, and major erosion that have directly 
impacted highways, roads, and related transportation infrastructure. These events, 
often triggered by extreme weather conditions or long-term geological instability, have 
led to substantial repair costs, prolonged road closures, and safety risks for commuters 
and freight movement. A review of documented incidents reveals that responses to 
such geohazards have historically been reactive rather than preventive. For example, 
landslides like the 2014 collapse on East 26th Street in Baltimore (Figure 2.1) or the 
recurring slope failures in Allegany and Washington Counties were addressed only 
after catastrophic events occurred, often resulting in emergency repairs and costly 
detours. Similarly, sinkholes in Montgomery, Frederick, and Harford Counties have 
emerged without structured risk prediction or targeted monitoring of vulnerable 
corridors. These underscore the importance of ongoing geotechnical monitoring and 
infrastructure resilience efforts in the state. 
 

 
Figure 2.1: Retaining Wall failure leading to a Collapsed One Lane of East 26th Street 
in Baltimore after heavy rain on April 30, 2014. (Berlin, 2014 
nationalgeographic.com; washingtonpost.com). 

 

2.3 Geotechnical Assets in Transportation Systems 
Geotechnical assets including cut slopes, embankments, retaining walls, subgrades, 
and other earthworks play vital roles in sustaining highway systems. These assets 

https://www.nationalgeographic.com/science/article/140502-baltimore-sinkhole-landslide-geology-science#:~:text=It%20occurred%20a%20day%20after,next%20to%20CSX%20freight%20tracks
https://www.nationalgeographic.com/science/article/140502-baltimore-sinkhole-landslide-geology-science#:~:text=It%20occurred%20a%20day%20after,next%20to%20CSX%20freight%20tracks
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support pavements and roadway alignments, control drainage, and prevent slope 
failures and erosion that can interrupt travel and risk safety [1]. Unlike bridges or 
pavements, geotechnical features have not always received structured asset-
management attention, even as failures cost agencies millions and pose liability and 
operational risks [12]. 

Recent studies have advocated integrating geotechnical assets into formal Asset 
Management Systems (AMS), using data-driven methods such as GIS-based 
inventories, hazard scoring, risk-based prioritization, and predictive modeling to 
address potential failures before they result in emergencies [1]. These tools provide 
necessary visibility into hidden infrastructure vulnerabilities and align with modern 
resilience objectives in transportation [1]. Effective management of geotechnical 
assets requires a strategic, systematic approach encompassing operation, 
maintenance, upgrades, and expansion throughout the asset lifecycle. This approach 
emphasizes both business and engineering practices for resource allocation and 
utilization, with the objective of better decision making based upon quality 
information and well-defined objectives. According to the Alaska DoT and PF 
technical report, geotechnical asset management processes can be summarized as 
illustrated in Figure 2.2. 
 

 
Figure 2.2: Geotechnical Asset Management Processes [15]. 

 

2.4 Geotechnical Asset Taxonomy 
The asset taxonomy illustrated in Figure 2.3 is adapted from Alberta Transportation’s 
GAM framework, which emphasizes structured classification by asset type, 
construction origin (natural or constructed), material composition (e.g., soil, rock, 
concrete), and controlling behavior (e.g., erosion, slope instability, settlement). This 
classification system allows for consistent inventory development and enables the 
application of tailored deterioration models for each asset class. While Alberta’s 
framework focuses heavily on slopes, embankments, and retaining walls, this 
taxonomy has been expanded for Maryland's context to include unique features such 
as subsidence-prone subgrades, tunnel sections, and geologically sensitive formations 
like Cretaceous Outcrops and the Marlboro Clay Layer (Paleocene). These additions 
reflect the localized geotechnical risks and support the development of a more 
inclusive and responsive asset register in Maryland's highway infrastructure. 
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Figure 2.3: Geotechnical Asset Taxonomy (Adapted from Alberta’s (Canada) GAM 
Framework [16]. 
 

2.5 Review of existing GAM frameworks in the U.S. 
Tables 2.1 and 2.2 below summarize the state of practice in GAM for ten U.S. states, 
covering both formal DOT programs and pilot/research initiatives. Key dimensions 
include asset covered, system/GIS integration, strengths, gaps, implementation 
status, and sources of information.  
 
Table 2.1: Overview of Geotechnical Asset Management Program in the United States 
State Type of Asset Covered System / GIS Integration Ref. 

Alaska 

● Rock Slopes 
● Unstable Soil Slopes  
● Embankments 
● Retaining Walls 
● Material Sites 

(borrow 
pits/quarries) 

 

● ArcGIS-based system 
for inventory and 
visualization. Data is 
stored in a GIS 
geodatabase;  

● ArcGIS Online “Story 
Map” provides an 
interactive GAM 
overview. Asset 
Inventory Interface and 
Event Tracker are 

[15] 
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accessible via GIS web 
maps. 

Missouri 

● Slopes (Rock & Soil), 
● Engineered 

Embankments  
● Retaining Walls 
● Subgrades &  
● Subsidence  

● Data is integrated into 
MoDOT’s enterprise 
systems.  

● The field data (via 
Survey123) feeds into 
MoDOT’s TMS and GIS 
databases.  

● Asset locations are 
GPS-tagged and 
viewable on maps 
(KMZ layers were 
produced for 
inventoried assets).  

[17] 

Ohio 

● Rock slopes (rock 
cuts) 

● Landslide-prone soil 
slopes along 
highways. 

● Retaining Walls  
● Abandoned 

Underground 
● Sinkholes & 
● Culverts in separate 

programs 

● Geotechnical data 
integrated in enterprise 
GIS (TIMS – 
Transportation 
Information Mapping 
System, Figure 2.4).  

● GIS is used for planning 
and to communicate 
hazard locations to 
district offices and 
maintenance. 

[18] 

California 

● Cut Slopes and 
● Embankments – 

particularly those 
prone to landslides 
or erosion along  

● Retaining Structures  

● No public geotechnical 
asset GIS map 
statewide.  

[12] 

Oregon 

● Rockfall sites (rock 
cut slopes prone to 
rockfall 

● Landslides / 
Unstable Soil 
Slopes,  

● Debris flow prone 
sites  

● Retaining walls and 
 material sources are 
handled separately  

● ODOT’s Unstable 
Slopes data is stored in 
a database with a GIS 
interface. Internal users 
can view slope 
locations, ratings, and 
details via a map-based 
application. 

● Oregon has not 
published the map due 
to data infancy as noted, 
but internally GIS is 
integral. 

[19] 

Washingto
n 

● Unstable Slopes 
(soils and rocks) 

● WSDOT Geospatial 
Open Data Portal, 

[12][20] 
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● retaining wall 
● Foundations 
● Embankments  

●  Online Map Center, 
GeoPortal 

Colorado 

● Culverts,  
● Embankments  
● Geo-hazards  
● Slopes  
● Retaining wall 
● Subgrades  
● Tunnels 

● OTIS: Online 
transportation 
information system 

● C-Plan: interactive 
online mapping 
platform 

● GeoHub: Internal 
ArcGis for portal site 

[21][22] 

Vermont 
● Retaining walls  
● Unstable slopes  

● Planned – The Vermont 
Asset Management 
Information System 
(VAMIS) 

● integration is not 
complete – essentially 
no geotechnical layer 
exists in their public 
asset maps yet. 

[23] 

Georgia 
● Retaining walls  
● Slopes 
● Embankments  

● In development – The 
envisioned G-GAMS will 
be an information system 
to manage these assets, 
presumably with a GIS 
interface.  

[24] 

Louisiana 

● Embankments 
● Retaining walls,  
● Slopes,  
● Soil borings,  
● Tunnels 

● ArcGIS database and a 
mobile ArcGIS Field Maps 
app for use with the GAM 
guide. (La DOTD ArcGIS 
Online) 

[25] 

 
 
Table 2.2: Implementation Status of Geotechnical Asset Management Program in the 

United States 

State 
Implementation 
Status 

Strengths & Weaknesses 
Summary 

Ref. 

Alaska Transitioning to practice 

Nation-leading GAM effort 
using NCHRP 903 guidance 
and GIS; incomplete 
inventory, not yet 
institutionalized 

[15] 

Missouri Pilot completed (2023) 

Strong GIS integration and 
user-friendly tools; only 2 
districts piloted, lacks risk 
history data 

[17] 

Ohio Operational (partial) Long-standing inventories; [26][18] 
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fragmented systems hinder 
integration; reactive for 
lower-priority assets 

California Ad-hoc 

Extensive disaster response 
experience; lacks formal 
GAM program or statewide 
inventory 

 

Oregon 

Emerging program; risk-
based ranking to guide 
proactive slope fixes 
(shifting from reactive). 

Robust BCR-based 
prioritization; limited 
funding, excludes walls 

[19][12] 

Washingto
n 

Fully implemented 
(slopes) 

Pioneer GAM model for 
slopes with dedicated funds; 
other geotech assets excluded 

[12] 

Colorado Mature & evolving 
Integrated into TAMP with 
strong risk modeling; scale of 
risk challenges full coverage 

[21] 

Vermont Conceptual stage 

Acknowledges need for GAM; 
lacks data and funding to 
move beyond reactive 
posture 

[23] 

Georgia Initiation phase (2024) 
Structured plan with 
academic backing; no 
existing inventory yet 

[24] 

Louisiana Early implementation 
Focus on MSE walls with GIS 
support; broader geohazards 
not yet covered 

[25] 

 

 
Figure 2.4: Ohio Department of Transportation (2025). Rock Slope Dashboard [Data 
visualization]. Retrieved July 20, 2025 from [26]. 
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The bar chart in Figure 2.5 illustrates the frequency of geotechnical asset types 
managed across various U.S. state DOTs based on documented frameworks. Slopes 
(10 states), retaining walls (10), and embankments (7) are the most commonly 

 
Figure 2.5: Summary of geotechnical assets covered across ten US states. 
 
included assets, reflecting their critical role in highway stability. Less frequently 
managed assets include material sites, tunnels, foundations, subgrades, etc., 
suggesting gaps in comprehensive inventory practices across states. This underscores 
the need for standardized inclusion of all key geotechnical assets in asset management 
systems. 
 

2.5.1 Alaska DOT&PF (Geotechnical Asset Management Program) 
Alaska was a pioneer state in geotechnical asset management, developing one of the 
nation’s first comprehensive programs. The Alaska DOT&PF’s program focuses on 
four asset classes critical to highway performance. They are rock slopes, unstable soil 
slopes and embankments, material sites (borrow pits), and retaining walls. Statewide 
inventory and condition surveys have been conducted on these assets (e.g., all 
rock/soil slopes along National Highway System routes), and a standardized condition 
state evaluation was established as part of the program. The department also 
developed tools to track geotechnical incidents (e.g. landslides, rockfalls); over a 
decade’s worth of maintenance records (7,000+ geotechnical events) were mapped to 
identify risk “hot spots”. Alaska’s research-driven plan quantified the overall 
condition and value of geotech assets finding an estimated $19 billion in replacement 
costs for slopes and walls (roughly three times the value of Alaska’s bridges). Although 
formal performance targets (e.g., % of slopes in good condition) were not yet in place, 
Alaska used risk and financial impact as key performance considerations. The 
program employs risk-based deterioration modeling and scenario analysis at a 
network level. Fiscal modeling showed clear benefits to proactive maintenance: 
extending the service life of slopes and walls yields cost savings over time; “every dollar 
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invested in preservation pays for itself and saves an additional $1.06 in long-term 
costs” by averting expensive failures. In essence, Alaska’s models predict that early 
interventions on geotechnical assets have a positive lifecycle ROI. The Alaska 
DOT&PF integrates geotechnical assets into its Transportation Asset Management 
approach, using a corridor-level risk analysis to prioritize investments. High-risk sites 
(those whose failure would significantly impact mobility or safety) are addressed first, 
and the program’s cost-benefit findings support allocating funds to preservation of 
slopes and walls as a statewide strategy. This risk-informed, performance-based 
approach helps Alaska justify geotechnical mitigation projects alongside traditional 
assets like bridges and pavements [15]. 
 

2.5.2 Washington State DOT  
Washington State DOT (WSDOT) manages geotechnical assets, particularly slopes, 
through its Unstable Slope Management System (USMS). The USMS covers all known 
unstable slopes, including chronic rockfall areas in the Cascades, coastal bluffs, and 
landslide-prone slopes statewide. WSDOT uses a quantitative rating system to 
evaluate slope condition and hazard, assigning numerical scores based on factors like 
slope geometry, observed instability, traffic exposure, and potential consequences. 
This system allows for consistent comparison of hundreds of slopes. WSDOT’s 
Geotechnical Office maintains a GIS-enabled database for these assets, with district 
maintenance personnel able to input observations via a web interface. Performance 
measures focus on risk reduction, with a key metric being the number of high-risk 
slopes mitigated over time. Washington allocates about $30 million per biennium for 
slope stabilization, aiming to keep highways open and safe from slope failures. The 
decline in overall network risk is tracked as slopes are stabilized. The USMS rating 
system provides a predictive outlook by identifying slopes likely to fail. WSDOT refines 
predictions with site-specific monitoring, using instruments and surveys for high-risk 
slopes. With data from the 1990s, WSDOT can calibrate predictions based on 
historical scores preceding failures. In 2017, WSDOT reviewed slope mitigation 
structures to ensure their condition feeds into future needs predictions. WSDOT’s 
investment strategy prioritizes projects based on risk and benefit-cost, focusing on the 
most at-risk slopes on critical corridors. The $30M biennial funding addresses top-
ranked sites, integrating geotechnical fixes into the capital program. Although broader 
Geotechnical Asset Management Program expansion was shelved due to funding 
constraints, the core unstable slopes program remains effective, guided by data and 
asset management principles [12, 27]. 
 

2.5.3 Colorado DOT (Retaining Wall and Geohazard Management) 
Colorado DOT (CDOT) has integrated geotechnical assets into their asset 
management plans, focusing on retaining walls and geohazards. As of 2021, CDOT 
monitored approximately 2,928 retaining walls, totaling about 14 million square feet 
of wall face area. These include Mechanically Stabilized Earth (MSE) walls, gabion 
walls, and crib walls along highways. CDOT’s Geohazards Program addresses natural 
slope hazards such as rockfalls, landslides, embankment settlements, and sinkholes 
[21]. CDOT established a Retaining Wall Inspection and Asset Management Manual 
to standardize wall inspections, assigning condition ratings based on signs of distress. 
The Geohazards Program uses field assessments and a scoring system to evaluate 
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slope conditions and risks. This system is maintained at the state level to log hazard 
locations and their status [21]. In Colorado’s risk-based Transportation Asset 
Management Plan (TAMP), geotechnical assets are included as “Tier II” assets with 
performance projections over a 10-year period. CDOT sets goals for its wall program, 
such as maintaining a certain percentage of wall area in fair or better condition. For 
geohazards, performance is measured by the reduction in roadway closures or 
incidents due to natural hazards [21]. CDOT’s predictive models for retaining walls 
consider factors like age and known failure modes to estimate remaining life. For 
geohazards, the program monitors precipitation and freeze-thaw cycles in known 
trouble spots to anticipate slides or rockfalls. This data informs when and where the 
next geotechnical failure might occur [21]. Colorado has institutionalized investment 
in geotechnical assets by creating specific programs and budget lines. The Geohazards 
Program directs funds to high-priority slope hazard mitigations and handles 
emergency responses for landslides and rockfalls. The retaining wall asset program 
justifies funding for repairs or replacements as part of asset preservation. By including 
walls and geohazards in the TAMP, CDOT competes for funds alongside bridges and 
pavements, emphasizing cost-effectiveness and proactive management [21]. 
 

2.5.4 Alberta, Canada 
Alberta’s GAM framework, developed chiefly through collaboration between Alberta 
Transportation and Tetra Tech Canada, transforms its long-standing Geohazard Risk 
Management Program (GRMP) into a proactive, risk-based asset management 
system. A key innovation is the GAM Planner, an enhanced Excel-based decision-
support tool adapted from NCHRP Report 903 that integrates site-specific inputs such 
as inspection data, traffic volume, detour lengths, monetized risk, lifecycle costs, and 
inventory condition to prioritize intervention timing and funding based on economic 
and risk criteria [28]. 
The framework follows a logical sequence: 

1. Asset taxonomy and inventory data collection for slopes, embankments, 
retaining walls, and subgrades approximately 500 geohazard sites identified. 

2. Risk-based rating, calculating probability and consequence factors to yield 
monetized risk scores, then classifying sites for action. 

3. Site-specific deterioration modeling, which underpins targeted treatment 
categories (e.g., maintain, rehabilitate, reconstruct). 

4. Lifecycle investment planning, using agency and user cost analyses to 
determine NPV and BCR for treatments. 

5. Annual update cycle, aligning with capital planning and budgeting, enabling 
consistent, data-driven decisions [16]. 

Through this structured Excel-driven system, Alberta effectively combines inspection, 
risk assessment, predictive modeling, and economic analysis into a comprehensive 
GAM process delivering strategically prioritized, cost-effective interventions that 
substantially strengthen provincial highway resilience. Tetra Tech’s overall approach 
for the GAM framework development and pilot-scale implementation is summarized 
in the process flow chart in Figure 2.6. The flow chart shows the sequence and 
interdependency of components in the framework. 
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Figure 2.6: GAM Framework Development Process Flowchart [28]. 
 

2.6 Predictive Modeling in GAM 
Predictive modeling is increasingly vital in GAM to anticipate geotechnical asset 
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deterioration or failure, enabling proactive management and optimized investment 
planning. The suite of methods ranges from traditional statistical models to advanced 
machine learning (ML) and probabilistic approaches. 
 

2.6.1 Statistical & Probabilistic Techniques 
Markov and semi-Markov models: An essential component of effective GAM is 
the integration of deterioration models that forecast asset performance over time, 
enabling strategic budgeting and lifecycle planning. Unlike pavements or bridges, 
where gradual decline is common, geotechnical assets often display stepwise 
deterioration and sudden drops in condition due to rare but severe events. Despite 
this, the aggregated behavior of asset networks remains predictable by using 
probabilistic models. One such model is the Markov chain which depicts the likelihood 
of an asset transitioning between condition states annually, based on the current 
condition. These transitions are quantified through same-state and next-state 
probabilities derived from median transition times between states [12, 15]. Alaska 
DOT’s GAM Plan provides a practical example: expert-elicited Markov models outline 
deterioration for soil slopes, rock slopes, retaining walls, and material sites. For 
instance, soil slopes exhibit a 0.9875 probability of remaining in their current state 
each year and a 0.0125 probability of transitioning to the next-worse state 
corresponding to a 55-year median time between State 1 and State 2 [15]  
The general probability formula used is  
 

Pjj = (0.5)1/t        (2.1) 
 
where  j = condition state (before and after 1 year) and 
t = transition time in years. 
 
Such models enable GAM systems to simulate future conditions by applying these 
transition probabilities year after year, guiding interventions linked to risk thresholds 
and cost-benefit outcomes. As GAM systems mature like Alberta’s GAM Planner, these 
models can be further refined with real condition monitoring, strengthening 
predictive capabilities and investment prioritization [16]. 
 

2.6.2 ML & Predictive Modeling in GAM 
Recent research highlights the transformative power of machine learning (ML) in 
enhancing Geotechnical Asset Management, especially for slope stability forecasting. 
A pivotal study by Li et al. [29] reported >90% accuracy in predicting shallow slope 
failures through an ensemble random forest framework that couples physical models 
with unsaturated soil moisture dynamics under rainfall conditions. The study 
demonstrated similar predictive performance to traditional methods like Scoops3D 
while greatly reducing computational time [30]. Complementing these findings, 
Aminpour et al. [30] developed ML-based surrogate models (using Random Forest, 
SVM, and Bagging ensembles) to approximate Monte Carlo reliability analyses for 
heterogeneous slopes, achieving >85% accuracy in classifying slope failure and 
reducing computational time from several months to just hours. 

These advances suggest a practical roadmap for integrating ML within GAM 
frameworks: ensemble models to predict near-term factor-of-safety (FoS), surrogate 
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ML tools for fast probabilistic failure assessments, and Bayesian-inspired models to 
support time-dependent life-cycle planning. Importantly, states like Alberta, Alaska, 
and Oregon already maintain rich geotechnical conditions and risk datasets, ideal 
foundations for training and refining ML models as part of predictive GAM systems 
[29, 30].  Embracing these tools can substantially accelerate asset risk estimation and 
economic evaluation, paving the way for more targeted and timely interventions. 
 

2.6.3 Implications for Maryland 
Maryland SHA’s pilot slope inventory with condition and risk scores provides 
foundational data essential for predictive modeling. The next phase could involve: 

● Implementing ML classification or regression models for categorical condition 
and FoS prediction. 

● Developing surrogate models to enable fast, parameterized risk analysis across 
wide geotechnical asset portfolios. 

● Building time-dependent deterioration emulators to inform life-cycle cost 
analysis and schedule interventions. 

 
Introducing one or multiple modeling methods ML-based classification, 

Bayesian degradation emulation, or surrogate probabilistic analysis would 
significantly enhance the adaptive and data-driven capacity of Maryland's GAM 
framework. 
 

 
Figure 2.7: Implementation of Predictive modeling in GAM. 
 

 

2.7 Investment Analysis in GAM 
Investment analysis in Geotechnical Asset Management focuses on systematically 
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determining the optimal allocation of limited funds to geotechnical assets such as 
slopes, walls, embankments by comparing costs, risks, and benefits over their entire 
lifecycle [12] 
 

2.7.1 Theoretical Foundations & Business Case 
GAM is underpinned by the integration of economic evaluation tools that support 
data-driven decision-making. One of the core theoretical models in GAM is presented 
in NCHRP Report 903 [32], which offers a spreadsheet-based Net Present Value 
(NPV) GAM Planner and lifecycle cost templates. These tools facilitate informed 
treatment selection and investment timing by calculating the long-term economic 
consequences of failure and repair. Globally, GAM systems have shown impressive 
financial benefits, with reported cost savings ranging from 3% to 38% through 
proactive and risk-based investment strategies. Notably, the United States Army 
Corps of Engineers (USACE) estimates a typical return on investment (ROI) of 15–
40% for projects managed under GAM principles. The efficacy of these systems lies in 
their ability to support risk-based business cases, where agencies can quantify asset 
consequences and maintenance costs, thus enabling proactive rather than reactive 
infrastructure investment [12]. 
 

2.7.2 Lifecycle Cost-Benefit Approaches 
Lifecycle cost-benefit analysis (LCCA) is an essential methodology within GAM, 
allowing transportation agencies to compare the long-term financial impact of 
preventative interventions against the potential cost of post-failure repairs. This 
analysis extends beyond initial construction costs to include future maintenance, user 
delays, and safety consequences. [31]. For example, the Alaska Department of 
Transportation and Public Facilities (DOT&PF) documented notable economic 
returns, achieving a 38% ROI for rock slope preservation, 148% for retaining wall 
stabilization, and an extraordinary 882% haul-cost reduction through proactive 
material site management [15]. Similarly, the Oregon DOT incorporates cost-benefit 
ranking into its Unstable Slope Management Program to ensure that projects 
delivering the highest risk reduction per dollar spent are prioritized. These practices 
demonstrate that early geotechnical intervention offers substantial financial and 
operational advantages compared to reactive maintenance [31]. 
 

2.7.3 Cross-Asset Integrative Investment Planning 
Modern GAM frameworks are expanding to support cross-asset investment planning, 
allowing agencies to evaluate trade-offs between geotechnical assets and other 
infrastructure categories such as pavements and bridges. This integrative approach 
leverages multi-objective decision frameworks to ensure limited resources are 
allocated for maximum benefit across asset types [31]. 
Tools like AssetManager NT (for network-level decisions) and AssetManager PT (for 
program-level prioritization), developed under previous NCHRP projects, exemplify 
this shift toward system-wide investment coordination. These tools enable 
transportation agencies to develop comprehensive and optimized investment 
portfolios, balancing geotechnical needs with broader transportation system 
objectives [33]. 
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2.7.4 Challenges & Data Needs 
Despite these advances, the full implementation of GAM remains constrained by 
several challenges. A critical limitation is data scarcity; many Departments of 
Transportation (DOTs) do not possess sufficient long-term cost, delay, and 
performance data, hindering the reliability of lifecycle cost analyses. Another major 
hurdle is the difficulty of estimating indirect costs such as user delays, safety impacts, 
and environmental consequences. These estimates often rely on modeling and 
assumptions that introduce uncertainty and potential bias. Furthermore, the lack of 
integration between GAM-specific tools and broader Transportation Asset 
Management (TAM) systems presents logistical issues. Currently, GAM tools often 
operate in silos, making it cumbersome for agencies to perform cross-asset trade-offs 
and consolidate programmatic decision-making [31]. 
 

2.7.5 Implications for Maryland 
To implement effective investment analysis, Maryland could: 

● Adapt the NCHRP 903 GAM Planner and cost templates for local 
geotechnical contexts [32] 

● Collate data on incident frequency, repair and delay costs, and potential 
consequences (detours, safety risks)  

● Integrate with MDOT SHA’s existing asset management and budgeting tools 
(e.g., VAMIS, TMS)  

● Develop a cross-asset tradeoff platform (inspired by AssetManager NT) to 
evaluate geotech investment against other transportation needs  

This approach would enable Maryland to go beyond reactive maintenance investing 
strategically, reducing long-term costs, and enhancing resilience. 
 

2.8 Summary and Future Work 
This report presents a critical review of GAM frameworks with a focus on their 
applicability to highway systems in Maryland. It begins by examining Maryland’s 
increasing vulnerability to geohazards such as landslides, sinkholes, and slope 
failures, while emphasizing the shortcomings of traditional reactive maintenance 
approaches. The study evaluates well-established GAM programs from states 
including Alaska, Washington, and Colorado, highlighting key tools such as GIS-based 
inventories, risk-scoring mechanisms, and lifecycle cost models. Notably, Alberta’s 
Excel-based GAM Planner and the use of predictive models ranging from Markov 
chains to machine learning algorithms demonstrate how deterioration forecasting can 
guide investment planning. A cross-state comparative analysis involving ten U.S. 
DOTs outlines varying levels of program maturity, implementation challenges, and 
strategic innovations. Techniques such as Net Present Value (NPV) analysis and cross-
asset trade-off frameworks are explored to support cost-effective decision-making. 
The review recommends that Maryland adopt best practices from these models, 
improve data integration capabilities, and develop customized predictive tools to 
embed geotechnical asset management within its broader transportation asset 
management system. 
 
An important future direction is the development of a Maryland-specific GAM 
Planner; a decision-support tool that integrates geotechnical asset inventory, 
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condition ratings, risk profiles, and lifecycle cost calculations. Inspired by the Alberta 
GAM Planner and tools documented in NCHRP Report 903, this planner would enable 
engineers and asset managers in Maryland to simulate treatment scenarios, compare 
investment strategies, and optimize maintenance schedules using Net Present Value 
(NPV) and Benefit-Cost Ratio (BCR) frameworks. 
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3.1 Introduction 
Landslides represent a hazardous phenomenon that can lead to injuries, fatalities, 
environmental damage, and the destruction of infrastructure. The major trigger for 
landslides is human actions, such as deforestation, slope excavation for construction 
purposes, and development in precarious hillside regions driven by population 
expansion and urban growth. Natural slopes may suddenly collapse or become 
unstable due to various factors, including rugged terrain, hydrological conditions, 
significant elevation changes, and the properties of the underlying rocks [34]. 
According to [35], landslides are defined as the downward movement of rocks and 
earth triggered by either translational or rotational rupture inside the earth's crust.  
Particularly vulnerable to landslides during and after periods of intense precipitation 
are mountainous areas, which can cause fatalities and disruptions to the built 
environment.  Human-caused processes such as weathering, deforestation, and slope 
collapses make mountain slopes more vulnerable and increase the likelihood of 
landslides in lowland regions. Slope geometry, relative relief, groundwater conditions, 
lithology and structures, and shifts in land cover and use are some of the major 
contributors to slope instability.  Building and growing transportation networks in 
hilly areas may inadvertently result in natural slope shift circumstances, which would 
compromise the stability of excavated slopes [36]. Understanding and mitigating the 
risk of landslides in susceptible areas requires a thorough understanding of 
geotechnical assessments and slope stability evaluations. Slope stability analysis in 
landslide hazard zones requires the characterization of the rock and soil.  This may 
entail determining the underlying soil characteristics, geological formations, and 
environmental elements that contribute to slope instability.  Shear resistance (which 
depends on density, cohesion, plasticity, and internal friction angle), porosity, 
permeability, grain size, moisture content, and organic matter content are among the 
geotechnical soil factors that affect slope stability. Slope stability may be impacted by 
a number of discontinuity properties, including joint orientation, opening, continuity, 
filling material, and degree of weathering.  The moisture content and the properties of 
the materials used to fill the fractures have a significant impact on the stability of 
fractured rocks [34]. Essential geotechnical characteristics, including permeability, 
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moisture content, consolidation, and shear strength, are frequently neglected. This 
lack of data obstructs accurate landslide forecasting and diminishes emergency 
response effectiveness. In the absence of thorough soil assessments, efforts for 
mitigation and adaptation will continue to be inadequate. Consequently, soil testing is 
crucial for comprehending slope dynamics and aiding in hazard mapping. The 
objective of this project is to produce critical geotechnical information that promotes 
long-term risk mitigation and enhances infrastructure resilience planning. The 
objectives of this study are to conduct a thorough soil assessment in areas of Maryland 
that are vulnerable to landslides and floods, evaluate geotechnical hazards, develop 
hazard prediction, and assist in the development of resilient infrastructure planning 
and efficient mitigation techniques.  The following specific goals will help achieve this. 

a. Identify Flood- and Landslide-Prone Areas / Sample Collection. 
b. Perform soil classification and consistency evaluation using sieve analysis 

techniques, including Grain size distribution, moisture content determination, 
and Atterberg Limits testing. 

c. Conduct UC Triaxial Tests to evaluate key soil strength parameters, including 
shear strength, consolidation behaviour, and saturation levels. 

 

3.2 Materials and Methodology 
3.2.1 Materials  

Labelled sample bags; trowels, augers, and scoops for collection; drying trays; 
moisture cans; a precision weighing balance (±0.01 g); an oven maintained at 105–
110°C; a Standard Proctor mold (1/30 ft³ volume, 4-inch diameter) with a 5.5 lb 
rammer and 12-inch drop; a straightedge and extruder; a large mixing bowl and scoop; 
and a Consolidated Undrained (CU) triaxial testing system, including a test cell, 
sample holder, manual load frame, pressure gauge and back-pressure system, dial 
gauges, rubber membranes, O-rings, filter papers, and de-aired water 
 

3.2.2 Field Survey and Data Collection 
A couple of days were dedicated to a preliminary field survey to collect general 
information about the various sites.  For this survey, sites were visually examined to 
collect information about slope stability and landslip threats.  To identify and locate 
critical slope portions, a thorough field survey was carried out. The fieldwork included 
a variety of measurements, including joint spacing, discontinuity orientation 
assessment, and geometric variables (height and distance) measurement 
 

The sites examined include the Montgomery US 29 SWM Retrofit site, as 
shown in Figure 3.1 (latitude 39.05301, longitude -76.97719), where disturbed soil 
samples labelled as Site 1A and Site 1B were collected and tested to assess their 
properties influencing landslide susceptibility. Soil samples for Site 1A, representing 
topsoil, were taken at depths of 1–2 ft, while samples for Site 1B were taken at depths 
of 1–3 ft with an auger (Figure 3.2). 
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                              Figure 3.1: Montgomery US 29 SWM Retrofit site. 

 

  
Figure 3.2: Sample Collection. 

 

3.2.3 Laboratory Procedure 
The soil samples were analyzed in a lab after completing the field investigation. The 
soil's geotechnical characteristics, including its natural moisture content, specific 
gravity, unit weight, shear strength, Atterberg limits, and grain size distribution using 
both sieve and hydrometer methods, were evaluated following ASTM guidelines. 
Figures 3.3, and 3.4 below illustrate the steps involved in analyzing the steps used in 
the laboratory testing. Therefore, the procedure involves. Sampling and preparation 
for sieve size analysis, as shown in Figure 2, where disturbed soil samples were 
collected from Sites 1A, 1B, and 15 using trowels, augers, and scoops. The samples were 
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placed in labelled sample bags for proper field identification and transported to the 
laboratory. Moisture content was determined by using moisture cans to measure wet 
and dry weights, a precision balance (±0.01 g), and an oven maintained at 105–110°C 
to dry the samples to a constant weight. Grain size distribution was assessed through 
sieve analysis with a mechanical sieve shaker, complete sets of ASTM standard sieves 
(including No. 4 [4.75 mm] and No. 200 [0.075 mm]), along with a brush and pan for 
cleaning and collecting fines. 
 

 
Figure 3.3: Sampling and preparation for sieve size analysis. 

Figure 3.4 shows the Sampling and preparation for CU triaxial Test. Disturbed 
soil samples were collected from Sites 1A, 1B, and 15 using trowels, augers, and scoops. 
Each sample was placed in a labeled bag for proper field identification and transported 
to the laboratory. Moisture content determination was conducted using moisture cans 
for wet and dry weight measurements, a precision weighing balance (±0.01 g), and an 
oven maintained at 105–110°C to dry the samples to a constant weight. Compaction 
characteristics were determined with the Standard Proctor Test, using a Proctor mold 
(1/30 ft³ volume, 4-inch diameter), a rammer with a 12-inch drop, a straightedge, and 
an extruder. Soil samples were thoroughly mixed in a large mixing bowl and layered 
into the mold for compaction testing. Shear strength and consolidation properties 
were assessed through Consolidated Undrained (CU) triaxial testing on the disturbed 
soil samples. The CU triaxial setup included a test cell, sample holder, and manual 
loading frame for axial loading. A pressure gauge and back-pressure system were used 
for saturation, while dial gauges measured deformation during loading. Rubber 
membranes, O-rings, and filter papers sealed the specimens, and de-aired water was 
used for saturation and back-pressure to ensure accurate strength and deformation 
measurements. 

 

Figure 3.4: Sampling and preparation for CU triaxial Test. 
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3.2.4 Mohr-Coulomb Failure Criteria 
This study examines soil’s shear strength based on the Mohr-Coulomb Failure 
Criteria, which is a geotechnical model describing the conditions under which soil or 
rock undergoes shear failure. It states that shear strength depends on cohesion c, 
normal stress σ, and the angle of internal friction ϕ. The Mohr-Coulomb failure 
envelope is expressed as: 

 

𝜏𝑓 = 𝐶 + 𝜎 𝑡𝑎𝑛 𝑡𝑎𝑛 𝜙   (3.1) 

 

where τ = shear strength  

C= cohesion, 
σ = normal stress, 
ϕ = angle of internal friction  
 

3.3 Test Results and Analysis 
3.3.1 Sieve Size Analysis 

Analysis of particle size is a crucial method for describing the mechanical properties 
of materials.  A widely used method for separating particles by size is sieve analysis, 
which uses a stack of sieves with varying mesh sizes.  Tables 3.1, 3.2, and 3.3 present 
the comprehensive sieve analysis of the cumulative retained and passing percentages, 
respectively. Figures 3.5, 3.6, and 3.7. illustrate a semi-logarithmic graph depicting 
the grain size distribution derived from the sieve study. A logarithmic scale is 
employed to represent grain size, while the natural scale is used to plot the percentage 
of finer grains. The coefficient of uniformity and the coefficient of curvature were 
determined from Figures 3.5, 3.6, and 3.7, respectively. 

Tables 3.1, 3.2, and 3.3 present the grain size distribution data for Site 1A, Site 
1B, and Site 15(M). These tables include sieve sizes, individual weights retained, 
cumulative weights, percentages of mass retained, and percentages passing. The total 
sample masses for Site 1A, Site 1B, and Site 15(M) are 403.6 g, 358.5 g, and 575.2 g, 
respectively, after washing and oven drying. The percentages of coarse-grained soils 
retained on the No. 4 sieve (4.75 mm) for Site 1A, Site 1B, and Site 15(M) are 20.12%, 
17.71%, and 7.88%, respectively. The sample from Site 1A shows a broad distribution 
across fine and coarse particles, with approximately 32.66% passing the 0.2489 mm 
sieve, while the sample from Site 1B shows about 43.65% passing, and the sample from 
Site 15(M) shows 34.79% passing. 

     The mass retained and percentage passing are calculated using the following 
equation 

% 𝑀𝑎𝑠𝑠 𝑅𝑒𝑡𝑎𝑖𝑛𝑒𝑑 =
𝐶𝑢𝑚𝑚 𝑊𝑒𝑖𝑔ℎ𝑡

𝑇𝑜𝑡𝑎𝑙 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑆𝑜𝑖𝑙 𝑆𝑎𝑚𝑝𝑙𝑒
∗ 100 

% 𝑀𝑎𝑠𝑠 𝑃𝑎𝑠𝑠𝑖𝑛𝑔 = 100 −  𝑀𝑎𝑠𝑠 𝑅𝑒𝑡𝑎𝑖𝑛𝑒𝑑 
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Table 3.1: Particle Size Distribution (Site 1A) 
Sieve 

Opening 
(mm) 

Individual 
Weight (g) 

Cum 
Weight (g) 

% Mass 
Retained 

Percent 
Passing 

4.75 81.2 81.22 20.119 79.881 

2 21.7 102.9 25.496 74.504 

0.841 26.8 129.7 32.136 67.864 

0.4191 54.7 184.4 45.689 54.311 

0.2489 87.4 271.8 67.344 32.656 

0.1499 71.5 343.3 85.059 14.940 

0.1041 30.1 373.4 92.517 7.482 

0.0737 22.3 395.7 98.043 1.957 

PAN 7.9 403.6   

Total 403.6    

      

 

Table 3.2: Particle Size Distribution (Site 1B) 
Sieve Opening 

(mm) 

Individual 

Weight (g) 

Cum Weight 

(g) 

% Mass 

Retained 

Percent 

Passing 
4.75 63.5 63.5 17.713 82.287 

2 20 83.5 23.291 76.708 

0.841 25.9                      109.4 30.516 69.484 

0.4191 38.1                       147.5 41.144 58.856 

0.2489 54.5                      202 56.346 43.654 

0.1499 60.9 262.9 73.333 26.667 

0.1041 40.5 303.4 84.630 15.369 

0.0737 37.7                      341.1 95.146 4.854 

PAN 17.4 358.5   

Total 358.5    
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Table 3.3: Particle Size Distribution (Site 15M) 

 

 

 
Figure 3.5: Particle Size Distribution Curve (Site 1A). 
 

𝐶𝑢 =
𝐷60

𝐷10
=

0.52

0 ⋅ 14
= 3.71 

𝐶𝐶 =
𝐷30

2

𝐷60𝐷10
=

(0.23)2

(0 ⋅ 52)(0 ⋅ 14)
= 3.71 

 

Sieve 

Opening 

(mm) 

Individual 

Weight (g) 

Cum Weight 

(g) 

% Mass 

Retained 

Percent 

Passing 

4.75 45.3 45.3 7.8756 92.124 

2 14.9 60.2 10.466 89.534 

0.841 15.9 76.1 13.230 86.770 

0.4191 121.3 197.4 34.318 65.682 

0.2489 177.7 375.1 65.212 34.788 

0.1499 95.4 470.5 81.798 18.202 

0.1041 42.6 513.1 89.204 10.710 

0.0737 35.8 548.9 95.428 4.572 

PAN 26.3 575.2   

Total 575.2    
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Figure 3.6: Particle Size Distribution Curve (Site 1B). 
 

𝐶𝑢 =
𝐷60

𝐷10
=

0 ⋅ 45

0.09
= 5 

𝐶𝐶 =
𝐷30

2

𝐷60𝐷10
=

(0.18)2

(0 ⋅ 45)(0 ⋅ 09)
= 5 

 
3.3.2 Classification 

The classification for sites 1A and 1B is done by using the Unified Soil Classification 
Chart (After ASTM 2011). 
Site 1A 

- The percentage of mass retained in No 200 sieve is 98.04%, hence it is coarse–

grained soil. 

- The percentage of fines passing in No 4 sieve is 79 .88%, hence it is considered 

as sand. 

- The percentage of fines passing No. 4 sieve is 1.9% which is less than 5%, hence, 

it is classified as clean. Since Cu = 3.71 less than 6, and Cc = 0.73, it is poorly 

graded sand (SP) 
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Figure 3.7: Particle Size Distribution Curve (Site 15M). 
 

𝐶𝑢 =
𝐷60

𝐷10
=

0 ⋅ 38

0.10
= 3.8 

𝐶𝐶 =
𝐷30

2

𝐷60𝐷10
=

(0.22)2

(0 ⋅ 38)(0 ⋅ 10)
= 1.27 

 

Site 1B 
- The percentage of mass retained in the No. 200 sieve is 95.146%, hence it is 

coarse–grained soil. 

- The percentage of fines passing in No. 4 sieve is 82.28%, hence, it is considered 

as sand. 

-  The percentage of fines passing No. 4 sieve is 4.854% which is less than 5%, 

hence, it is classified as clean sands and. Since Cu = 5.0, greater than 6, and Cc 

= 0.8, it is well-graded sand (SW). 

Site 15M 
- The percentage of mass retained in No. 200 sieve is 95.43%, hence it is coarse–

grained soil. 

- The percentage of fines passing in No. 4 sieve is 92.12%; hence, it is considered 

as sand. 

- The percentage of fines passing No. 200 sieve is 4.6% which is less than 5%; 

hence, it is classified as clean sands. Since Cu = 3.8 and Cc = 1.27, it is well–

graded sand (SW). 
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3.3.3 Moisture content 

Moisture content is an important geotechnical characteristic that indicates the volume 
of water in a sample of rock or soil.  Engineering behavior, such as strength, 
compressibility, and permeability, is significantly impacted.  Valid geotechnical data 
requires precise measurements of moisture content [34]. The study examined soil 
samples taken from the top (disturbed and undisturbed) and bottom of landslides at 
site 21 and site 27 (10-inch and 10- to 17-inch landslides.  In contrast, the landslide 
soil at site 21 (top) had moisture contents of 31.32% and 32.50%, and site 21 (bottom) 
had moisture contents of 37.20% and 24.68%, respectively, according to the data. The 
soil at site 27 had a moisture content of 26.10% and 20.39%.  Since excessive moisture 
content can increase soil weight and decrease shear strength, increasing the risk of 
landslides, these comparatively low moisture levels indicate that the soils are generally 
stable. The sample was weighed again, and the results are presented in Table 3.4. 
 

Table 3.4: Moisture content for the various landslide soil samples. 
S/No. Site 27 

(10 inch) 
 

Site 27 
(10 – 17 

inch) 

Site 21 
(Sample 
#2 Top, 

D) 

Site 21 
(Sample 
#2 Top, 

UD 

Site 21 
(Sample 
#3, Btm, 

Disturbed) 

Site 21 
(Sample 
#3, Btm, 

UD) 

Weight of 

can/tare, g 

22.7 22.6 22.7 20.6 22.6 22.8 

Weight of 

can + 

Sample 

(wet), g 

112.7 166.1 125.0 184.1 103.0 191.0 

Weight of 

can + 

sample 

(dry), g 

94.1 141.8 100.6 144.0 81.2 157.7 

Moisture 

content 

(%) 

26.10 20.39 31.32 32.50 37.20 24.68 

 
3.3.4 CU Triaxial Test 

This is a fundamental geotechnical technique used to determine the shear strength 
parameters of a soil sample. Critical properties, including shear strength, cohesion, 
and the angle of internal friction, are measured by shearing a specimen positioned 
between two plates along a predetermined plane. These parameters are essential for 
engineering designs involving slopes, retaining walls, and foundations. Results from 
CU as shown in Figure 3.8 through 3.13 indicate that Site 1A has an effective stress 
friction angle of 33.5° and cohesion of 0.606 psi, Site 1B has an effective stress friction 
angle of 29.2° and cohesion of 1.12 psi, and Site 15 has an effective stress friction angle 
of 29.6° and cohesion of 2.62 psi. Under total stress conditions, Site 1A exhibited a 
friction angle of 20.6° and cohesion of 1.74 psi, Site 1B showed a friction angle of 17.9° 
and cohesion of 2.74 psi, and Site 15 showed a friction angle of 17.2° and cohesion of 
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1.33 psi. All values were determined under confining pressures of 5, 10, and 20 psi. 
 

 
Figure 3.8: Mohr: Coulomb Failure Envelope for Total Stress (Site 1A). 

 
Figure 3.9: Mohr: Coulomb Failure Envelope for Effective Stress (Site 1A). 
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Figure 3.10: Mohr: Coulomb Failure Envelope for Total Stress (Site 1B). 

 
Figure 3.11: Mohr: Coulomb Failure Envelope for Effective Stress (Site 1B). 
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Figure 3.12: Mohr: Coulomb Failure Envelope for Total Stress (Site 15M). 

 

 
Figure 3.13: Mohr: Coulomb Failure Envelope for Effective Stress (Site 15M). 

 

Three series of consolidated undrained (CU) triaxial tests were conducted on soil 
specimens from Sites 1A, 1B, and 15M, each representing slightly different depths and 
compaction characteristics. In Site 1A, samples molded with 5.875 in height, 2.8 in 
diameter, underwent a stage CU triaxial test, and a dry density of 101.7 pcf was tested 
at vertical effective consolidation stresses of 5.049 psi, 9.999 psi, and 19.98 psi. With 
a moisture content of 12.2% and full saturation confirmed by a B-value of 0.95, shear 
strength increased from 5.237 psi to 13.38 psi with increasing consolidation. Deviator 
stress and effective major principal stress followed this trend, confirming that higher 
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effective stress enhances shear resistance in saturated conditions. 

In Site 1B, samples of similar dimensions, 5.79 in height and 2.8 in diameter, 
underwent a stage CU triaxial test but with higher moisture content (25.6%) and lower 
dry density (97.2 pcf) were tested. Void ratios ranged from 0.706 to 0.734, and full 
saturation was again achieved (B = 0.95). The applied vertical effective consolidation 
stresses were 4.982 psi, 9.998 psi, and 19.98 psi. Correspondingly, shear strength 
increased from 5.933 psi to 12.2 psi, and the deviator stress peaked at 26.4 psi, with 
the major principal stress at 35.28 psi. These results reaffirm the direct relationship 
between increased effective consolidation and improved shear strength under 
saturated conditions. 

For Site 15M, it underwent three series of consolidated undrained (CU) triaxial tests 
and had a uniform moisture content of 25.7%. The heights are 5.909, 5.912, and 5.88 
in with the diameters of 2.796, 2.784, and 2.783, respectively. The dry density ranged 
from 100.8 to 102.3 pcf, but B-values varied from 0.67 to 0.94, indicating differing 
saturation efficiency. The vertical effective consolidation stresses applied were 4.982 
psi, 9.977 psi, and 19.95 psi. Shear strength correspondingly increased from 5.332 psi 
to 10.18 psi, with the highest deviator and major principal stresses observed in the 
most saturated sample. Notably, the variation in saturation levels (B-value) influenced 
the minor principal stress, highlighting the importance of full saturation in strength 
development. 

3.3.5 Summary of the Results 
CU test results are summarized in Table 3.5.  
 

Table 3.5: Results of CU Triaxial Tests. 

 
 
 

Site Soil Type Total 
Stress 

Frictional 
angle (Ø) 

Total 
Stress 

Cohesion 
(psi) 

Effective 
stress 

Frictional 
angle 
(Ø´) 

Effective 
stress 

Cohesion 
C´ (psi) 

Site 1A Poorly 
graded 

sand (SP) 

20.6 1.74 33.5 0.606 

Site 1B Well–
graded 

sand (SW) 

17.9 2.74 29.2 1.12 

Site 15 
(Middle) 

Poorly 
graded 

sand (SP) 

17.2 1.33 29.6 2.62 
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3.4 Conclusions and Future Research 
This study demonstrates that rigorous geotechnical investigation is essential for 
accurately assessing and mitigating landslide risks in Maryland and surrounding 
regions, where climate-driven environmental pressures continue to intensify. By 
analyzing soil samples from the Montgomery US 29 SWM Retrofit site (latitude 
39.05301, longitude -76.97719) and additional sites, this research establishes how 
fundamental soil properties moisture content, shear strength, and particle size 
distribution, govern slope stability and failure potential. 

The laboratory findings reveal distinct behaviors across sites, underscoring the 
variability in soil response under stress. Site 1A, classified as poorly graded sand (SP) 
from 1- 2 ft depths, displayed a high friction angle (33.5°) but low cohesion (0.606 psi) 
under effective stress, characteristics that make it more prone to movement when 
saturated or destabilized. Site 1B, a well-graded sand (SW) from 1 - 3 ft, exhibited 
higher cohesion (1.12 psi) but a lower friction angle (29.2°), while Site 15, also poorly 
graded sand (SP), demonstrated the highest cohesion (2.62 psi) with a moderate 
friction angle (29.6°), suggesting greater stability under loading or saturated 
conditions. Total stress analyses under confining pressures of 5, 10, and 20 psi further 
confirmed the variability in soil strength, with cohesion reaching up to 2.74 psi in Site 
1B despite reduced friction angles. 

These results not only clarify the engineering behavior of soils in a landslide-prone 
corridor but also provide critical design parameters for slope stability analyses, 
physical modelling, and predictive risk assessments. By integrating standardized 
laboratory testing with field observations, this study enhances the reliability of hazard 
mapping and informs the development of proactive, science-driven strategies for 
infrastructure planning and climate resilience in Maryland. 

Future research should broaden the geographic scope of sample collection to 
encompass a wider variety of geological conditions and soil types throughout 
Maryland and other study areas. Additionally, monitoring ground movement, pore 
water pressure, and moisture variation over an extended period of time might improve 
landslip risk prediction modelling. Finally, incorporating forecasts of climate data 
would enable evaluations of the potential effects of shifting weather patterns on soil 
behavior and slope stability in the future. 
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Chapter 4 

4 Detection and Mapping of 
Landslides with Remote Sensing 
LiDAR data in Prince George’s 
County, Maryland 

Micheal Oketunde Okegbola, Caleb Mincey, Oludare Owolabi, Zhuping Sheng. Yi Liu 

 
4.1 Introduction 

Landslides can be defined as the downslope movement of a mass of soil and/or bedrock 

materials [37]. Landslides are among the most destructive and widespread natural hazards, 

often triggered by intense or prolonged rainfall, seismic activity, or anthropogenic 

disturbances. Globally, landslides result in considerable socio-economic losses, environmental 

degradation, and human casualties. According to the World Health Organization (WHO) [38], 

landslides affected approximately 4.8 million people and caused more than 18,000 deaths 

worldwide between 1998 and 2017. These impacts are expected to increase in frequency and 

severity because of ongoing climate change and the intensification of extreme weather events 

[39]. 

Landslides vary in type, magnitude, and spatial extent, and their occurrence is closely 

related to terrain morphology, geological structure, soil type, and land cover. Accurate and 

timely detection and mapping of landslides are essential for hazard assessment, risk reduction, 

and sustainable land-use planning among other mitigating strategies. Conventional field-based 

mapping techniques, although effective, are time-consuming, labor-intensive, and often 

limited in spatial coverage [40]. To address these limitations, recent advancements in remote 

sensing technologies, particularly the use of Light Detection and Ranging (LiDAR), have 

significantly improved landslide detection, mapping, and susceptibility modelling by enabling 

the capture of high-resolution elevation data over large areas [41, 42]. 

LiDAR-derived Digital Elevation Models (DEMs) provide sub-meter resolution 

elevation data that can reveal subtle topographic changes associated with landslide processes, 

including surface displacement, scarps, and accumulation zones (Pradhan, 2010). When 

acquired for multiple time periods, LiDAR DEMs allow for the computation of DEM of 

Difference (DoD) layers, facilitating the identification of terrain elevation changes indicative 

of slope instability [43]. These DEMs can also be used to extract geomorphometric parameters 

such as slope, aspect, curvature, Stream Power Index, and Topographic Wetness Index (TWI), 

which are fundamental in understanding the factors influencing landslide initiation and 

movement [44]. 

Several studies have integrated remote sensing with spatial modeling techniques to 

generate landslide susceptibility maps. Approaches such as logistic regression [45, 46], 
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frequency ratio, and multi-criteria decision analysis [47] have demonstrated robust results in 

various terrains. These models, when combined with historical landslide inventories and field 

validation, enhance the reliability and predictive power of susceptibility assessments [48]. 

In Maryland, particularly in Prince George’s County, the combination of diverse 

terrain, weather variability, and land-use changes creates a predisposition to landslides. Despite 

this, comprehensive, high-resolution landslide mapping and susceptibility modeling are 

limited. This study addresses this gap by leveraging high-resolution LiDAR data from multiple 

years (2014, 2018, 2020) and GIS-based analytical methods to detect and map landslide-prone 

areas in Prince George’s County. Through the extraction of geomorphometric parameters and 

the comparison of DEMs over time, the study aims to identify zones of significant elevation 

change that may correspond to landslide activity. The results will support proactive hazard 

mitigation, spatial planning, and contribute to the growing body of knowledge on remote 

sensing-based geohazard analysis. 

4.1.1. Problem Statement 

Prince George’s County, Maryland, faces increasing susceptibility to landslides due to its 

varied topography, intense precipitation patterns, and urban expansion. This is evident in the 

fact that the county has the highest records of landslide occurrences (39 landslide inventories) 

in Maryland, yet it lacks high-resolution, spatially detailed landslide detection and 

susceptibility mapping based on advanced remote sensing techniques such as LiDAR. 

4.1.2. Research Aim and Objectives 

The research ais is to detect and map landslide-prone areas in Prince George’s County using 

multi-temporal LiDAR data and GIS-based remote sensing techniques.  Following are research 

objectives:  

a. To preprocess high-resolution LiDAR DEMs for selected years covering Prince 

George’s County. 

b. To derive geomorphometric parameters such as slope, aspect, curvature, TWI, and 

DoD. 

c. To detect and map potential landslide zones based on terrain deformation and 

susceptibility indicators. 

d. To validate identified landslide zones using historical inventories and spatial analysis. 

 

 

4.2 Study Area 

The study focuses on Prince George’s County (Fig. 4.1a), located in the central region of the 

state of Maryland, United States, within the Mid-Atlantic coastal plain and Piedmont Plateau 

physiographic provinces. The county lies approximately from 38.5°N and 39.1°N  
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(a) 

 

(b) 

Figure 4.1: (a) Study Area (Prince George’s County) and (b) Area of Interest within PG 

County 

latitude, and 76.6°W and 77.1°W longitude, encompassing diverse topographic conditions, 

urban development, and critical transportation corridors (Fig. 4.1b focused more on selected 
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highways as the area of interest within the PG County). Its complex terrain and proximity to 

the Potomac River make it a suitable region for assessing landslide susceptibility using high-

resolution LiDAR elevation data. 

 

4.3. Literature Review 

Landslide susceptibility mapping and detection have evolved significantly over the past two 

decades, largely driven by advances in remote sensing, geospatial analysis, and modeling 

techniques. As a geohazard, landslides are complex events influenced by multiple 

environmental and anthropogenic factors, including slope angle, geological structure, land use, 

soil moisture, and rainfall intensity [4]. Understanding these factors and their spatial interaction 

is critical for hazard assessment and risk management. 

 

4.3.1. Remote Sensing and LiDAR for Landslide Mapping 

The spatial accuracy of landslide mapping has greatly increased with the introduction of high-

resolution remote sensing data. LiDAR has gained recognition for producing high-resolution 

Digital Elevation Models (DEMs) that can uncover micro-topographic features hidden beneath 

vegetation cover. For recognizing and categorizing landslide events, these characteristics, such 

as accumulation zones, displaced debris, and scarps, are essential indicators [41, 42]. DoD, a 

technique for identifying elevation changes over time, can be computed using multi-temporal 

LiDAR datasets. This makes it easier to identify terrain deformation that is consistent with 

landslide movement [43]. 

Landslide-prone areas have made extensive use of LiDAR's ability to penetrate canopy 

and provide precise terrain data. The usefulness of LiDAR in probabilistic landslide hazard 

assessments at the basin size was shown by [41]. Similarly, Scudero and De Guidi [42] created 

comprehensive landslide susceptibility maps in northeastern Sicily, Italy, using LiDAR-

derived topographic parameters. 

 

4.3.2. Geomorphometric and Hydrologic Factors 

When modeling terrain instability, geomorphometric factors like slope, aspect, curvature, and 

drainage patterns that are obtained from DEMs are crucial. Since steeper slopes are frequently 

associated with greater vulnerability, slope gradient is a key element. While curvature aids in 

identifying concave (depositional) or convex (erosional) terrain features that may suggest 

movement zones, aspect affects moisture retention and vegetation growth [12]. Furthermore, 

DEM-derived hydrological indices like the Stream Power Index (SPI) and Topographic 

Wetness Index (TWI) are crucial for comprehending surface runoff and possible erosion zones 

[43]. 

 

4.3.3. Landslide Susceptibility Modeling 

There are several methods for mapping landslide vulnerability. These consist of expert-based 

approaches like the Analytical Hierarchy Process (AHP), statistical models (such as logistic 
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regression and frequency ratio), and hybrid approaches. Akgun [45] conducted a comparison 

of multi-criteria decision analysis (MCDA), logistic regression, and likelihood ratio 

approaches for susceptibility mapping in İzmir, Turkey, and concluded that hybrid approaches 

perform better. Similarly, Pourghasemi, Pradhan, and Gokceoglu [47] combined Analytical 

Hierarchy Process (AHP) with fuzzy logic to map landslides in Iran's Haraz watershed, 

producing accurate findings in settings with little data. 

In Malaysia, Lee and Pradhan [46] created hazard maps with high predictive 

performance by combining logistic regression and frequency ratio models. The usefulness of 

combining statistical modeling with parameters generated from remote sensing was 

highlighted by Pradhan [49], who also investigated multivariate techniques for landslide 

mapping. Using topographic and lithologic data, Ayalew and Yamagishi [44] performed a GIS-

based logistic regression study for landslide susceptibility in the Kakuda-Yahiko Mountains, 

Japan. Their findings demonstrate how reliable logistic regression is when paired with high-

quality spatial datasets. 

 

4.3.4. Risk Zonation and Validation Challenges 

Despite methodological advancements, landslide hazard and risk zonation remain challenging. 

According to Van Western et al., [40], discrepancies often arise from variations in data quality, 

spatial resolution, and subjective expert judgements in factor weighting. Moreover, the absence 

of reliable or sufficient landslide inventories complicates model calibration and validation 

while using Machine Learning (ML) in Landslide modeling. Petrucci [50] emphasized the 

importance of systematic reviews and structured inventories to improve fatality risk 

assessments and support global monitoring frameworks. 

Zezere et al. [48] advocated for the integration of spatial and temporal data in hazard 

modeling, allowing for the definition of different risk scenarios over time. Their work in the 

Lisbon region of Portugal underscored the importance of combining terrain factors with 

historical landslide events for a more comprehensive susceptibility analysis. 

 

4.4. Materials and Methodology 
This study employed a remote sensing and Geographic Information System (GIS-based) 

analytical approach using multi-temporal high-resolution LiDAR-derived DEM datasets 

(2014, 2018, and 2020) covering Prince George’s County, Maryland. LiDAR DEM processing 

and analysis were conducted using ArcGIS Pro 3.1.0, with the Spatial Analyst and 3D Analyst 

among other extensions enabled. Historical landslide inventories were also used for the study. 

The Methodology involved a structured workflow (Fig. 4.2) beginning with 

preprocessing of the LiDAR DEM, including projection, sink filling, and clipping to the Area 

of Interest (AOI). Geomorphometric parameters such as slope, aspect, curvature, Topographic 

Wetness Index (TWI), Contour, and DoD were derived to highlight terrain dynamics 

associated with landslides. To identify spatial correlation with infrastructure, buffering and 

overlay operations were performed along highways within the AOI. 

Detected landslide zones, derived through raster classifications, were converted to 

polygons for spatial filtering and zonal analysis. These results were validated using available 
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historical landslide inventories and expert interpretation. The final outputs were landslide 

susceptibility maps delineating Downward displacement, Stable, and Upward 

Displacement Zones including a point map of detected landslides. 

 
 

Figure 4.2: Methodology Flowchart for Landslide Detection and Susceptibility Mapping 

 

4.4.1. LiDAR DEM Acquisition and Preprocessing 
The LiDAR DEM data were readily available through the Maryland Department of 

Transportation (MDOT) data services website 

(https://doitdataservices.maryland.gov/s/N9xGBYPKq4QSZNq). Figure 4.3 shows the 

downloaded DEMs of Prince George’s County for the years 2014, 2018, and 2020. All other 

processed DEM for the three (3) years is included in the appendices section. The DEMs were 

projected to the same coordinate reference system (WGS 84 UTM Zone 18S), fill all sinks for 

any holes, clipped to the Area of Interest (AOI), and resampled to the same pixel dimension 

for proper and further spatial comparison and analysis (see Fig. 4.4 for DEM’s preprocessing 

workflow). 

Through the raster calculator tool in ArcGIS Pro, the DoD) between 2014 and 2018, 2018 and 

2020, and 2014 and 2020 were determined to obtain the terrain variations within these epochs. 

Other terrain factors (such as slope, aspect, curvature, contour etc.) were also generated 

through the ArcGIS Pro spatial analysis tool; these factors were then classified based on an 

expert model and weighting classifications (previous relevant studies) to detect areas that 

highly suggest susceptibility to landslides. Results of the analysis and maps are attached to the 

appendices. 
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Figure 4.3: LiDAR DEMs of Prince George’s County 

 

 
Figure 4.4: Preprocessing workflow for the LiDAR DEM. 

 

4.4.2 Resolutions of the Digital Elevation Models 
The study utilized high-resolution LiDAR-derived Digital Elevation Models (DEMs) acquired 

for Prince George’s County, Maryland, across three time periods: 2014, 2018, and 2020, (Table 

4.1). The spatial resolution of the DEMs progressively improved over the years, with the 2014 

DEM captured at a 0.9 meters (3 feet) resolution, the 2018 DEM at 0.6 meters (2 feet), and the 

 

 
 Input LiDAR DEM 

 
 Clip to Area of Interest (AOI) 

 
 Project all Datasets to same Coordinate Reference System 

 
 Convert all DEM to same Elevation Units 

 
 Resample all DEM to same Pixel Dimension 
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2020 DEM at 0.3 meters (1 foot). These increasingly finer resolutions enabled the detection of 

subtle topographic variations critical for accurate landslide identification, especially when 

performing DoD analysis and extracting terrain attributes such as slope, curvature, and surface 

deformation. 

Table 4.1: LiDAR DEMs (Raw Data Metadata) 

S/No. County Year DEM Hz. 

Resolution 

Required 

Vz. 

Accuracy 

by ASPRS 

RMSE 

(z) 

DEM Vz. 

Accuracy 

RMSE(z) x 

1.9600 

Horizontal 

Coordinate 

Reference 

System 

1 Prince 

George 

2014 0.9m / 3 

feet 

0.643 ft 0.059m 0.11564m /  

0.37940ft 

NAD 83 

HARN State 

Plane 

2 Prince 

George 

2018 0.6m / 2 

feet  

0.643 ft 0.298ft 0.58408ft / 

0.17803m 

NAD 83 

HARN State 

Plane 

2 Prince 

George 

2020 1 foot / 

0.3m 

0.643 ft 0.051m 0.10000m /  

0.32808ft 

NAD 83 

HARN State 

Plane 

 

4.4.3 Geomorphometric factor generation, classification, landslide 
detection and mapping 

High-resolution LiDAR-derived DEMs were utilized to extract key geomorphometric 

parameters including slope, aspect, curvature, contour (Fig. 4.5), and Topographic Wetness 

Index (Fig. 4.6) which are critical in understanding terrain instability and hydrological 

response. Fig. 4.7 shows a DoD which was generated by subtracting elevation surfaces across 

temporal datasets (2014, 2018, and 2020), to detect areas of significant vertical displacement, 

indicative of slope failures. These derived factors were reclassified into susceptibility classes 

using classification schemes with thresholds calibrated based on previous studies and terrain 

analysis (Fig. 4.5). 

Landslide-prone areas were identified and mapped by integrating these 

geomorphometric layers with spatial overlays, including proximity to highways and historical 

landslide data. The resulting outputs delineated three distinct zones: Downward displacement, 

Stable, and Upward displacement zones, providing a geospatial basis for targeted risk 

mitigation and future monitoring. (See results in appendices). 
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Figure 4.5: Sample generated factor maps. 

Topographic Wetness Index (TWI) was derived through the raster calculator in ArcGIS Pro 

using:  

                   (4.1) 

where: 

 a = specific catchment area (from Flow Accumulation) 

 β = slope in radians. 

The Flow Direction and Flow Accumulation parameters were also obtained through the spatial 

analyst tools in ArcGIS Pro. 

Flow Direction: Spatial Analyst Tools – Hydrology – Flow Direction 

Input Surface Raster = FillSink_DEM.tif; Output Flow Direction Raster = FlowDir.tif 

Flow Accumulation: Spatial Analyst Tools – Hydrology – Flow Accumulation 

Input Flow Direction Raster = FlowDir.tif; Output Accumulation Raster = FlowAcc.tif 

 
Figure 4.6: Topographic Wetness Index (TWI). 
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Figure 4.7: Sample Reclassified DEM of Difference (DEM 2018 minus DEM 2014). 

More factor maps generated are included in the appendices. 

 

4.4.4 Buffering and Overlay Operations (Area of Interest) 
Due to the large size of the LiDAR datasets, a specific Area of Interest (AOI) was carved out 

within Prince George’s County, focusing on selected corridors with notable topographic 

variation and infrastructure relevance. Buffering and overlay operations were then performed 

on major highways within this AOI to analyze the spatial interaction between landslide-prone 

zones and transportation infrastructure. Buffer zones (100 meters from the centerline at both 

sides) were generated around these highways to establish impact corridors, which were 

overlaid with classified susceptibility maps and DoD results (see Fig. 4.8). This approach 

enabled the identification of critical segments (Fig. 4.9) where terrain deformation closely 

intersects roadways, informing risk prioritization and supporting resilient infrastructure 

planning. 
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(a)                                                               (b) 

Figure 4.8: (a) Buffering (100 meters) and Overlay (b) Detected Probable Landslide Zones 

(Polygons). 

 

    
Figure 4.9: Detected (new) probable landslide risk points. 

 

4.5 Results 
The integration of LiDAR-derived DEMs for the years 2014, 2018, and 2020 enabled the 

extraction of key geomorphometric parameters essential for landslide analysis, including slope, 

aspect, curvature (profile and plan), contour, TWI, and DoD (Fig. 4.10). The derived slope and 

curvature maps revealed localized steep gradients and concave terrain segments, which 

corresponded closely with observed mass movement areas. Aspect analysis showed a 

predominance of instability on south-facing slopes, potentially linked to microclimatic 

influences on soil moisture dynamics. 
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Figure 4.10: Reclassed Factor Maps from different years. 

The DoD analysis provided clear spatial differentiation of elevation changes over the selected 

years and focused areas, allowing for the detection of terrain displacement patterns consistent 

with landslide events. Notably, positive and negative DoD values indicated upward and 

downward displacements, respectively, while the near-zero values are stable zones. These 

results were overlaid through other factor maps such as slope, aspect, and others, which 

highlighted and corroborated areas that coincide with active or historical landslide sites (see 

Fig. 4.11 for sample result). 
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Figure 4.11: Showing correlations between factor maps overlaid with historical landslide 

sites. 

Landslide susceptibility classification was performed using a weighted overlay of all 

geomorphometric factors, based on methodologies previously adopted in relevant studies and 

documented literature. The resulting susceptibility map was categorized into five zones: very 

low, low, moderate, high, and very high. High susceptibility areas were predominantly located 

near sharp slope transitions and concave curvature profiles. 

Overlay analysis with buffered highway corridors revealed that segments of transportation 

infrastructure within the AOI intersected stable to downward displacement (landslide-prone) 

zones. These intersections represent potential risk hotspots for future slope failure, warranting 

geotechnical interventions and continuous monitoring. The buffering and overlay process 

further validated the relevance of spatial proximity between anthropogenic activities and 

geomorphic processes.  

4.6 Summary and Future Work 
This study effectively demonstrated the utilization of LiDAR-derived geomorphometric 

parameters for identifying landslide-prone zones within Prince George’s County. These 

parameters included slope, aspect, curvature, contour, Topographic Wetness Index (TWI), and 

DoD. The analysis was conducted across the years 2014, 2018, and 2020. Temporal DEM 

analysis enabled the detection of terrain instability, while buffer and overlay operations 

confirmed the vulnerability of key transportation corridors to geomorphic hazards, reinforcing 

earlier findings by Galli et al. [51] on the importance of geospatial integration for landslide 

detection and infrastructure risk assessment. 

 

In alignment with the previous studies [49, 50, 52], future work will focus on expanding 

the landslide inventory through field-based validation using ground truthing and the collection 

of soil samples from newly detected probable landslide sites. These will be compared with 
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existing inventory points for verification and soil classification with terrain behavior. In 

addition, InSAR time-series deformation data will be integrated with LiDAR-based outputs to 

enhance temporal sensitivity [54]. Quantitative modeling using statistical and machine 

learning techniques such as logistic regression and random forest by Corominas et al., [55], 

Yilmaz, [56]; Chen et al., [57] will be pursued to improve landslide susceptibility mapping and 

prediction accuracy. These efforts aim to strengthen disaster preparedness and inform resilient 

transportation planning. 
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Chapter 5 

5 Surface soil moisture mapping 
for slope instability analysis in 
Maryland using machine learning 
model 

Atieh Hosseinizadeh*, Kayla Collymore, Zhuping Sheng, Yi Liu, Oludare Owolabi 

 

(*Part of material in this chapter will be submitted to a journal for consideration of 

publication) 

 

5.1 Introduction 

Soil moisture is a critical component of the land surface system, influencing water and energy 

exchanges that affect hydrological processes and slope stability. It plays a vital role not only 

in agriculture and drought monitoring but also in geohazard modeling, especially for landslide 

prediction. Accurate soil moisture data are essential for developing prediction models used in 

early warning systems and risk mitigation in landslide-prone areas [58]. However, soil 

moisture varies significantly across time and space due to complex climate-soil interactions, 

making precise measurement and modeling challenging [59]. Recent research has 

demonstrated that including realistic soil moisture conditions substantially improves landslide 

forecasting accuracy, emphasizing that rainfall alone is insufficient for reliable predictions 

[67]. 

Advances in remote sensing and machine learning have enhanced soil moisture 

estimation for landslide forecasting. Satellite missions such as Sentinel-1, Sentinel-2, and 

SMAP, combined with in-situ and model data, provide soil moisture information at various 

depths and resolutions [60, 61]. Deep learning models like attention-based LSTM, CNN-

LSTM, and GAN LSTM have shown strong performance in capturing temporal moisture 

dynamics relevant to slope failure [62, 63, 64]. These models integrate meteorological 

variables, vegetation indices, and terrain features to better represent environmental factors 

affecting subsurface water movement and slope stability [65, 66]. Interpretability methods such 

as SHAP further help clarify the role of input variables, facilitating operational use in landslide 

monitoring [63]. 

Despite these advances, significant research gaps remain. Many models are developed 

for specific regions or land uses, limiting their transferability. For example, some focus only 

on unirrigated wheat systems or single locations without remote sensing inputs [64, 65]. Others 

face challenges related to limited explainability or uncertain performance across different 

climates [60]. Most studies also emphasize long-term seasonal dynamics without thoroughly 

addressing spatial resolution or terrain complexity [58, 59]. Traditional remote sensing 
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methods, including microwave retrievals and GPS bistatic radar, report limitations in 

sensitivity and spatial detail, particularly in rough or vegetated terrain [68-70]. 

One of the major obstacles in closing the existing gap is the significant computational 

burden involved in processing full-resolution raster datasets over hundreds of time steps and 

multiple input layers. Conventional machine learning pipelines, which often require loading 

entire rasters into memory, are not well-suited for managing datasets of this scale. To address 

this, the present research proposes an innovative deep learning architecture for spatiotemporal 

soil moisture estimation. 

Meanwhile, traditional soil moisture monitoring techniques and most supervised 

machine learning approaches often depend on in-situ measurements or gravimetric sampling 

to serve as observational inputs or training labels. While these methods offer precise data at 

specific points, they lack broad spatial coverage and are often too costly to deploy at large 

scales. This spatial limitation may result in overfitting to specific locations, reducing the ability 

of models to generalize across diverse terrain. Satellite-based remote sensing provides a more 

extensive spatial reach through missions like SMAP, SMOS, and ASCAT. However, their 

coarse resolution typically ranges from 10 to 36 km, which makes them unsuitable for 

applications like landslide hazard assessments that require fine-scale soil moisture data. 

To tackle these issues and close the current gaps in soil moisture mapping, this study 

introduces a deep learning framework designed to generate high-resolution spatiotemporal 

surface soil moisture (SSM) maps. The model employs a convolutional long short-term 

memory (ConvLSTM) network capable of learning from a blend of static features (such as 

DEM, slope, and soil properties), time-varying meteorological variables (including 

precipitation, temperature, humidity, wind, and evapotranspiration), and seasonal vegetation 

dynamics. By utilizing dense, high-resolution SSM labels derived from Sentinel-1 imagery 

through a self-calibrated change detection method, the approach eliminates reliance on sparse 

field observations while preserving physical consistency. This enables the continuous 

prediction of soil moisture at fine spatial and temporal scales, offering a critical tool for 

modeling infiltration, forecasting hydrological responses, and evaluating landslide 

susceptibility in regions with limited data and complex terrain. 

5.2 Related Works 
5.2.1 Reviewed Papers on Remote Sensing Models  

Li et al. [62] developed an attention-aware LSTM model (ILSTM_Soil) for predicting soil 

moisture and temperature 1 to 7 days ahead using data from ten FLUXNET sites. The model 

integrates predictor and temporal attention mechanisms, allowing it to identify key input 

features and relevant time steps. ILSTM_Soil outperformed baseline models including 

Random Forest, SVR, Elastic-Net, standard LSTM, and A-LSTM in terms of RMSE and R². 

While the attention layers improved model interpretability, the study was limited by its 

geographic scope and did not address deeper soil layers or long-term seasonal forecasting. 

Jiang et al. [65] enhanced an LSTM-based model for soil moisture prediction by 

incorporating autocorrelation between soil depths and meteorological variables. Trained on 

data from six unirrigated wheat-field monitoring sites in the Yellow and Huaihai regions, the 

model outperformed the standard LSTM in predictive accuracy and error reduction. The results 
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showed better alignment with observed soil conditions. However, the study is limited to 

seasonal wheat systems and has not been validated under irrigated conditions or with other 

crop types. 

Wang et al. [63] conducted a comprehensive evaluation of ten deep learning models 

for soil moisture prediction, including standard LSTM, feature-attentive LSTM (FA LSTM), 

and generative adversarial network-based LSTM (GAN LSTM). These models were tested 

across multiple soil types and depths to assess their robustness and adaptability. Results 

showed that FA LSTM and GAN LSTM consistently outperformed the baseline LSTM model 

in terms of predictive accuracy and stability across time. The inclusion of attention 

mechanisms allowed the models to focus more effectively on relevant temporal and feature-

level information, enhancing both performance and interpretability. SHAP analysis further 

contributed to transparency by identifying the relative importance of different input variables 

in the prediction process. Despite these strengths, the study highlights key limitations: the 

models demand large volumes of high-quality input data and were only validated in a few 

specific climate regions. This raises questions about their scalability and reliability in more 

diverse or data-sparse environments. 

Kone et al. [64] developed hybrid models combining convolutional neural networks 

(CNN) with LSTM (CNN LSTM) and bidirectional LSTM (Bi LSTM) to predict next-day soil 

moisture using climate and soil data. These models were benchmarked against a standard 

LSTM, with CNN LSTM achieving the best performance, exhibiting an R² of approximately 

0.98 and RMSE near 0.37, slightly outperforming both LSTM (R² ~ 0.97) and Bi LSTM. The 

study highlights the strength of CNN LSTM in capturing spatial-temporal features relevant to 

soil moisture dynamics. However, the approach was limited by its testing on specific soil types 

at a single location, without incorporating remote sensing data or evaluating the models across 

diverse terrains and moisture regimes, thus constraining its broader applicability. 

5.2.2 Reviewed Papers on Machine Learning for Soil Moisture 
Estimation  

Batchu et al. [60] proposed a machine learning regression network that fuses multi-source data 

including Sentinel-1 SAR, Sentinel-2 optical imagery, SMAP satellite data, SoilGrids, 

GLDAS, and ground-based measurements to estimate 5 cm soil moisture globally at a spatial 

resolution of 320 meters. Evaluated across approximately 1,300 monitoring stations, the model 

achieved an average correlation coefficient of 0.727 and an RMSE of 0.054, demonstrating 

promising accuracy in soil moisture retrieval. Despite these encouraging results, the study 

identified significant limitations related to the model’s low explainability and inconsistent 

performance across different climatic zones and sensor data inputs. These challenges restrict 

its immediate application in hybrid physical AI systems where interpretability and robustness 

across diverse conditions are critical. 

Ahmad et al. [66] applied support vector machines with kernel regression to estimate 

soil moisture in the top 0 to 10 cm layer using TRMM precipitation data and NDVI from 

AVHRR at ten sites within the Colorado River Basin. Their results demonstrated that SVM 

outperformed artificial neural networks and showed strong agreement with VIC model 

benchmarks. However, the study focused solely on surface soil moisture and was limited by 

sparse sampling, restricting its ability to capture moisture dynamics at greater depths and over 

seasonal timescales. 
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Liu et al. [61] compared six machine learning algorithms including artificial neural 

networks (ANN), Bayesian methods, classification and regression trees (CART), k-nearest 

neighbors (KNN), Random Forest, and support vector machines (SVM) to improve the spatial 

resolution of satellite-derived soil moisture data using inputs such as digital elevation model 

(DEM), land surface temperature (LST), normalized difference vegetation index (NDVI), and 

albedo across multiple climate zones. The study found that Random Forest consistently 

delivered the highest accuracy, achieving the strongest correlation and lowest error metrics in 

four different regions. Despite these strengths, some models, notably ANN, CART, and SVM, 

showed inconsistent performance across varying surface types and faced challenges in 

generalizing to diverse environmental conditions. This highlights the need for further research 

to enhance model robustness and adaptability. 

Orth and Sungmin [59] used LSTM neural networks trained on soil moisture data from 

over 1,000 stations to estimate daily soil moisture at multiple depths (0 to 10, 10 to 30, and 30 

to 50 centimeters) spanning from 2000 to 2019. Their results demonstrated strong temporal 

performance and improvements compared to satellite retrievals and traditional model outputs. 

However, the study noted that the spatial resolution remains relatively coarse, originally at 

0.25 degrees and improved only to 0.1 degrees, and that there has been limited evaluation of 

error characteristics specific to each soil depth. These limitations suggest the need for further 

refinement in resolution and depth-specific accuracy assessment. 

Senyurek et al. [71] applied machine learning techniques to estimate soil moisture from 

CYGNSS satellite data, incorporating ground measurements across the United States. The 

study demonstrated that this approach outperforms previous CYGNSS-based methods by 

providing more accurate soil moisture estimates that closely match in situ observations while 

offering broader spatial and temporal coverage. Despite these improvements, challenges 

remain in obtaining reliable estimates in areas with dense vegetation and complex terrain. 

Additionally, the model’s performance outside the tested regions has not yet been validated, 

highlighting the need for further evaluation to ensure generalizability. 

Persson and Haridy [72] estimated soil water content using electrical conductivity 

measurements obtained from short time-domain reflectometry (TDR) probes. Their results 

showed that this method provides accurate and reliable soil moisture estimates that closely 

match actual water content. However, the study noted that soil texture and salinity levels can 

influence conductivity readings, potentially introducing errors in the estimation process. This 

limitation points to the need for further investigation into how varying soil properties affect 

measurement accuracy. 

Vereecken et al. [58] reviewed the role of soil moisture measurements in vadose zone 

hydrology, emphasizing their importance for understanding water flow and transport 

processes. Their findings indicate that accurate soil moisture data contribute to improved 

calibration of hydrological models, reduce uncertainties, and enhance the reliability of model 

predictions. Despite these benefits, the review identified significant limitations in current 

measurement techniques, particularly their insufficient spatial and temporal resolution. The 

authors highlighted the need for improved methods to integrate soil moisture observations with 

models across varying scales to advance hydrological understanding. 

 

5.2.3 Reviewed Papers on ML Models for Soil Moisture in Geoscience  
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Jackson et al. [68] used an airborne microwave radiometer to measure soil moisture and 

validate AMSR-E satellite sensor data during the Soil Moisture Experiment 2002 (SMEX02). 

Their results showed that airborne measurements closely matched ground-based soil moisture 

observations, confirming the accuracy of AMSR-E soil moisture products. However, the study 

noted that airborne measurements are limited to relatively small areas, and additional 

validation is required across diverse soil types and vegetation conditions to fully assess the 

satellite sensor’s performance. 

Masters et al. [69] investigated the use of airborne GPS bistatic radar measurements to 

estimate soil moisture during the Soil Moisture Experiment 2002 (SMEX02). Their results 

demonstrated that this radar-based approach provides reliable soil moisture estimates that 

correspond closely with ground observations. Despite these positive findings, the study 

highlighted the need to improve spatial resolution and to evaluate the method across diverse 

terrain types and vegetation covers to better understand its broader applicability. 

Paloscia et al. [70] developed a multifrequency algorithm to estimate soil moisture on 

a large-scale using microwave data from the SMMR and SSM/I satellites. Their results showed 

that this algorithm provides more accurate soil moisture estimates across different regions 

compared to single-frequency approaches. However, the study noted challenges in accounting 

for surface roughness and vegetation effects, which can reduce estimation accuracy under 

certain conditions. These limitations indicate a need for further improvements to address these 

factors. 

 

5.3Materials and Methods 
5.3.1 Study Area  

The study area is Prince George’s County, located in central Maryland. This region was 

selected for its geographic diversity, varied topography, and history of extreme weather events, 

including heavy rainfall and landslides. Covering approximately 500 square miles, the county 

includes a representative mix of urban, suburban, and rural land uses, reflecting the broader 

environmental variability found across the Mid-Atlantic region. Due to its combination of 

physical and climatic characteristics, Prince George’s County provides a practical setting for 

developing and testing the machine learning model at a localized scale, with plans to later 

expand the framework to the wider Maryland area and other regions.  

Prince George’s County lies within the transitional zone between the Atlantic Coastal 

Plain and the Piedmont Plateau, creating a geologically complex landscape. This setting results 

in varied terrain, diverse soil types, and a range of slope gradients that directly influence both 

hydrological processes and slope stability. The county experiences a humid subtropical climate 

with consistent precipitation throughout the year, offering favorable conditions for studying 

rainfall-driven processes such as soil moisture fluctuations and slope failures. According to the 

most recent landslide inventories compiled by the State Highway Administration (SHA), the 

United States Geological Survey (USGS), and NASA, Maryland recorded 129 landslides 

between 2008 and 2019, with most classified as shallow failures (Fig. 5.1). 



- 55 - 
 

 
Figure 5.1: Historical landslide location in Maryland and the selected case study area, Prince 

George’s County. 

 

Figure 5.2(a) shows that Prince George’s County has recorded the highest number of 

landslide events in Maryland, accounting for approximately 30 percent of the state’s total 

occurrences. Since the county is also one of the most densely populated in the state, assessing, 

forecasting, and reducing landslide risk is especially important for protecting communities and 

infrastructure. Figure 5.2(b) shows a clear temporal pattern between rainfall and landslide 

frequency, with peak activity in 2011, 2014, and 2018. These years also saw the highest annual 

rainfall totals, emphasizing the strong role of precipitation and subsequent infiltration as key 

triggering factors for landslides in the region.    

Figures 5.2(c) and 5.2(d) depict how the frequency of 132 landslide events relates to 

both rainfall intensity and soil moisture levels. The analysis shows that many landslides 

occurred during periods of relatively low rainfall, indicating that some vulnerable slopes in 

Maryland can fail even with light precipitation. In contrast, a stronger correlation is observed 

between landslide occurrences and elevated soil moisture, emphasizing the critical role of 

subsurface moisture in slope instability. This underscores the importance of incorporating soil 

moisture monitoring into predictive models rather than relying solely on rainfall data. 

To explore these patterns more thoroughly, this study focuses on Prince George’s 

County—a well-documented and representative area. Its susceptibility to climate-driven 

hazards, rapid urbanization, and stormwater challenges makes it an ideal case for advancing 

landslide prediction models. 
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(a)                                                                                           (b) 

   (c)                                                                                                   (d) 

Figure 5.2: Landslide analysis in Maryland: (a) Number of landslides by county; (b) 

Annual precipitation vs. number of landslides; (c) Three-day cumulative rainfall vs. 

number of landslides; (d) Surface soil moisture (from Open-Meteo) vs. number of 

landslides. 

 

5.3.2 Data Preparation 

Figure 5.3 shows the workflow used in this study to develop a machine learning based surface 

soil moisture model (ML SSM) using soil moisture maps derived from Sentinel 1 satellite data. 

The diagram outlines the key datasets required to train the model, including the target variable 

(surface soil moisture), weather conditions, and geological characteristics. These inputs 

include both spatial and temporal data such as soil moisture maps, weather variable maps, and 

land use or land cover maps, as well as static spatial data such as soil type, topography, and 

slope.  

5.3.2.1 Sentinel-1 Data to Generate SSM Maps 

The evaluation of the ML-SSM model utilizes surface soil moisture (SSM) maps derived from 

Sentinel-1 radar imagery, captured at six-day intervals. Sentinel-1 is part of the European 

Space Agency's Copernicus initiative and has offered high-resolution radar data since 2014. 

Its C-band Synthetic Aperture Radar (SAR) system ensures consistent data collection in all 

weather and lighting conditions [73], making it well-suited for soil moisture applications. 
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Sentinel-1A and Sentinel-1B, operating on alternating 12-day cycles, collectively provide 

imagery with a six-day revisit frequency [74]. This frequent temporal resolution supports 

ongoing SSM monitoring for large-scale hydrological analysis and landslide hazard 

evaluation. The imagery used in this research comes from the Interferometric Wide (IW) swath 

mode, which spans 250 km with a ground resolution of approximately 20 m by 22 m [75]. 

SSM values were retrieved using vertical-vertical (VV) polarization, and the final maps were 

resampled to a 15-meter spatial resolution. 

 

Figure 5.3: Workflow chart of the research. 

5.3.2.2 Weather Data 

To develop the ML SSM model, a time series of daily climate variables was compiled, 

including precipitation, maximum and minimum temperature, relative humidity, wind speed, 

and evapotranspiration. These datasets were sourced from the Open Meteo database at a spatial 

resolution of 9 kilometers. Since this resolution is too coarse for detailed spatial modeling, the 

data were interpolated and resampled to create weather variable maps at a finer 15-meter 

resolution. In this study, the Inverse Distance Weighting (IDW) method was used to interpolate 

all climate variables. IDW is a widely accepted technique for estimating meteorological 

conditions such as precipitation and temperature, especially when measurement stations are 

limited and spatial variability is relatively smooth [76]. The locations of the original weather 

stations used in the interpolation process are shown in Figure 5.4. 

5.3.2.3 Geological Data 

A detailed soil map was acquired from the Maryland Soil Survey Geographic Database 

(SSURGO) for the creation of static maps. Soil polygons along highways that lacked attribute 

information on soil properties and materials were identified, and the percentages of clay, silt, 

and sand for these polygons were estimated by averaging values from neighboring polygons. 

At the same time, topographic features were extracted using 1/3 arc-second LiDAR-based 
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Digital Elevation Models (DEMs) specific to Maryland. The slope map was then derived from 

the DEM using ArcGIS tools. Vegetation changes over time were tracked by creating 

Normalized Difference Vegetation Index (NDVI) maps from Sentinel-2 satellite imagery 

within the Google Earth Engine (GEE) platform. 

Figure 5.4: Spatial distribution of weather observation points from the Open-Meteo 

database used for interpolation. 

 

Sentinel-2, part of the Copernicus program by the European Space Agency (ESA), delivers 

high-resolution optical imagery with a spatial resolution of up to 10 meters and a revisit time 

of 5 days, making it particularly suitable for vegetation analysis [77]. NDVI was calculated 

using the standard formula:  

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
                                           (5.1) 

where NIR and RED represent reflectance values from the near-infrared (Band 8) and red 

(Band 4) wavelengths, respectively. In Google Earth Engine (GEE), Sentinel-2 surface 

reflectance data were pre-processed to mask clouds using the QA60 band and a cloud 

probability threshold. NDVI was then calculated for each image and temporally aggregated to 

create consistent NDVI maps aligned with the acquisition dates of the SSM maps. These NDVI 

maps offer valuable information on vegetation cover, an important factor affecting surface soil 

moisture and rainfall infiltration [78]. Figure 5.5 shows the spatial distribution of all input 

parameters used in building the ML-SSM model for the study area, including meteorological 

variables, topographic features, land use, and soil properties. 
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Figure 5.5: SInput data to ML-SSM model: (a) Rainfall; (b) Maximum temperature; (c) 

Minimum temperature; (d) Relative humidity; (e) Wind speed; (f) Evapotranspiration; (g) 

NDVI; (h) Elevation; (i) Slope angle; (j) Silt content; (k) Clay content; (l) Sand content. 
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5.3.3 Methodology  

5.3.3.1 Producing SSM Maps using Sentinel-1 

This study uses the SSM retrieval algorithm based on the TU Wien Change Detection Model 

[79] to produce SSM maps from Sentinel-1 data as target maps for the ML model. This 

physically based model estimates soil moisture directly from radar backscatter coefficients (σ0), 

which indicate surface reflectivity. It assumes that changes over time in backscatter mainly 

reflect variations in soil moisture, while factors like surface geometry, roughness, and 

vegetation structure remain constant over time. 

The model operates through a self-calibrated, pixel-based approach that uses long-term 

backscatter time series to determine site-specific dry and wet reference values, denoted as σ₀
dry 

and σ₀
wet. For each acquisition at time t and local incidence angle θ, the observed backscatter 

is normalized to a reference angle Θ and scaled between the dry and wet reference values to 

derive the relative surface soil moisture (SSM) as a percentage, calculated by: 

                  (5.2) 

This normalization mitigates the impact of vegetation and surface roughness by focusing on 

temporal changes at each pixel location, enabling consistent and reliable surface soil moisture 

(SSM) estimates across broad regions. The SSM retrieval algorithm is implemented using the 

Google Earth Engine (GEE) platform to generate SSM maps at six-day intervals over the study 

period from 2016 to 2024. The analysis specifically uses Sentinel-1 data in vertical-vertical 

(VV) polarization mode. In VV mode, radar signals are both transmitted and received with 

vertical polarization, making the backscatter more sensitive to dielectric properties such as soil 

moisture and less affected by vegetation compared to vertical-horizontal (VH) polarization. 

VH polarization, influenced more by volume scattering from vegetation, yields weaker 

backscatter signals and is less suitable for detecting soil moisture. Therefore, this study uses 

VV polarization to ensure more accurate and robust SSM retrieval, emphasizing sensitivity to 

surface wetness while minimizing interference from vegetation. 

In Sentinel-1 data, the orbitProperties-pass field indicates the satellite’s orbit direction relative 

to the Earth’s surface, with values of ASCENDING and DESCENDING. During an ascending 

orbit, the satellite travels from south to north, usually capturing data during nighttime or early 

morning hours. These cooler, less evaporative conditions typically correspond to higher 

surface soil moisture levels. In contrast, the descending orbit moves from north to south and 

collects images during the daytime when increased solar radiation leads to higher 

evapotranspiration rates, often resulting in lower apparent moisture levels. 

Both ascending and descending passes provide valuable information for mapping surface soil 

moisture using Sentinel-1 SAR data. The ascending orbit is especially useful for estimating 

peak moisture conditions, while descending orbit data help analyze moisture variability during 

drier periods. By combining data from both orbits, the temporal resolution is improved, and 

the accuracy and reliability of soil moisture retrieval are enhanced by capturing different 

hydrological states of the surface. 
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5.3.3.2. Develop ML-SSM Model  

The ML-SSM framework consists of five key steps designed to predict surface soil moisture 

maps based on spatial and temporal environmental inputs.  

Step 1: Data Preparation and Patch Extraction 

Temporal raster maps of weather variables, including rainfall, maximum temperature, 

minimum temperature, relative humidity, wind speed, and evapotranspiration, were collected 

along with NDVI and static environmental parameters such as elevation, slope, silt, sand, and 

clay contents. All datasets were spatially aligned. For each available SSM date, a two-step time 

window of input data was created and stacked with static layers, resulting in a twelve-band 

spatiotemporal tensor. These tensors and corresponding SSM maps were divided into smaller 

patches of sixteen by sixteen pixels using a sliding window with a defined stride. Each patch 

represented a local spatial area with temporal context and was saved to disk because of memory 

limitations. Global min-max normalization was applied across each variable to reduce scale 

sensitivity during training. 

Step 2: Patch Dataset Management 

The extracted patches were indexed and split into three non-overlapping subsets: training with 

eighty percent, validation with ten percent, and testing with ten percent. A custom data 

generator was created to load these patches in batches during model training to avoid memory 

overload and to enable efficient and scalable model development. 

Step 3: Patch Data Generators 

Custom TensorFlow Sequence generators were implemented to load the input (X) and target 

(y) patches from disk in batches. This ensured smooth feeding of spatiotemporal data into the 

model along with random shuffling of training samples between epochs to enhance 

generalization and prevent overfitting. 

Step 4: Model Architecture and Training 

A Convolutional Long Short-Term Memory neural network was designed to learn both spatial 

and temporal patterns from the sequence of input raster patches. This model extends the 

standard LSTM architecture introduced by Shi et al. [80] by replacing matrix multiplications 

with convolutional operations in both input-to-state and state-to-state transitions. This allows 

the model to preserve spatial structure while capturing temporal dynamics, making it effective 

for spatially distributed variables evolving over time. This approach has been successful in 

precipitation nowcasting [80], flood mapping [81], and soil moisture prediction [82]. The final 

model architecture, selected after extensive testing, takes input tensors shaped (2, 16, 16, 12) 

representing two consecutive time steps of sixteen by sixteen patches with twelve 

environmental features. It begins with a ConvLSTM2D layer with 32 filters and a 3 by 3 kernel, 

configured to return the full temporal sequence and capture spatial and temporal dependencies. 

Batch normalization and dropout layers follow to improve stability and prevent overfitting. A 

second ConvLSTM2D layer compresses the sequence into a single spatial output, again 

followed by batch normalization and dropout. The output passes through a Conv2D layer with 

16 filters and ReLU activation for spatial feature refinement. Finally, a Conv2D output layer 

with a single filter and sigmoid activation generates the predicted surface soil moisture map 

normalized between zero and one. The model was trained using the Adam optimizer and means 

absolute error loss function with early stopping based on validation loss. This architecture 
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allows simultaneous learning of how terrain, soil type, and temporal weather dynamics 

influence soil moisture levels. 

Step 5: Model Evaluation 

After training, the model’s performance was evaluated on unseen validation and test patches 

using mean absolute error, root mean squared error, and the coefficient of determination (R²). 

Predictions were flattened and compared with actual surface soil moisture values to assess 

accuracy and generalization across different locations and conditions. 

5.3.3.3. Estimating Infiltration from SSM Maps 

 Once the ML-SSM model is developed, it can predict SSM maps under various weather 

conditions, supporting real-time applications and future scenario analyses. However, for future 

landslide susceptibility assessments, it is important to estimate infiltration depth rather than 

soil moisture alone. Therefore, the next step involves converting the predicted SSM maps into 

infiltration maps, which represent the depth of water penetration into the soil and are more 

directly related to slope stability and landslide triggering. According to Wagner et al. [79], 

SSM can be interpreted as the degree of saturation, which allows estimation of volumetric soil 

moisture by multiplying SSM by soil porosity. With volumetric moisture determined, the 

Green-Ampt equation [83] will be applied, as previous studies have demonstrated its 

effectiveness for estimating infiltration from soil moisture. The equation is:  

                            (5.3) 

where f is the potential infiltration rate, Ks is the effective saturated hydraulic 
conductivity (permeability coefficient), Ψ is average suction across the wetting front, 

∆θ = θs − θi is the moisture deficit, θs is the saturated water content, θi is the initial 

water content, and F is the cumulative infiltration. The actual depth of the wetting 

front is given by H =
𝐹

△𝜃
. 

 



- 63 - 
 

 

Figure 5.6: ConvLSTM model architecture used in the ML-SSM framework. 

 

Table 5.1 shows the amount of saturated hydraulic conductivity, suction across the wetting 

front, and saturated water content for different soil types [84, 85].  

Table 5.1: Green-Ampt parameter estimates based on soil texture. 

Soil No. USDA Texture
             Saturated 

Water
 

 

Saturated Hydraulic 

Conductivity (Ks) 

(cm/h) 

Suction at Wetting 
Front (Ψ) (cm) 

1 Sand 0.417 23.56 9.62 

2 Loamy sand 0.401 5.98 11.96 

3 Sandy loam 0.412 2.18 21.53 

4 Loam 0.434 1.32 17.5 

5 Silt loam 0.486 0.68 32.96 

6 Sandy clay 
loam 

0.330 0.30 42.43 

7 Clay loam 0.390 0.20 40.89 

8 Silty clay 
loam 

0.432 0.20 53.83 

9 Sandy clay 0.321 0.12 46.65 

10 Silty clay 0.423 0.10 57.77 

11 Clay 0.385 0.06 62.25 

 

 

https://docs.google.com/document/d/18RXHyvJWf_dADyF0NVS9YIRRgClrdckB/edit#heading=h.s4jcre4o6oec
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5.4 Preliminary Results 
In this study, various model configurations were tested to determine the optimal architecture 

for accurate SSM prediction. Initially, a 2-layer ConvLSTM model was implemented, but due 

to its limited performance, the model depth was increased to four layers. Figure 5.7 presents 

the training and validation loss graphs for the 1-day configuration, in which weather data for 

the same date as the SSM observations were used as input features. In this configuration, the 

model was trained for 40 epochs with 16 filters to assess how filter size affects performance. 

 

 

Figure 5.7: Predicted SSM values using ML-SSM model (1Day, 40 epochs, 16 filters) versus 

observed SSM. 

 

Figure 5.8 illustrates the results for a 2-day configuration, where rainfall and ET were 
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accumulated over two days, and other variables were averaged. This model used 32 filters and 

was trained for 20 epochs. As shown, increasing the number of filters significantly improved 

the model's performance, even with fewer training epochs. 

 

 

Figure 5.8: Predicted SSM values using ML-SSM model (2Day, 20 epochs, 32 filters) versus 

observed SSM. 

 

Figure 5.9 shows the best model performance achieved so far using the 2-day configuration 

with 32 filters and 40 epochs. The improvement in model accuracy can also be attributed to 
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proper preprocessing, as in earlier configurations, negative and missing SSM values were not 

masked correctly, leading to errors in loss computation. 

 

 

Figure 5.9: Predicted SSM values using ML-SSM model (2Day, 40 epochs, 32 filters) versus 

observed SSM. 

 

Despite the improvements, the model consistently underestimates SSM values above 0.6. To 

understand the cause of this, a histogram analysis of the training data was conducted (Figure 

5.10). The results show that more than 97% of SSM values are below 0.6, indicating a strong 

class imbalance. As a result, the model primarily learns from the majority of data in the lower 

SSM range and fails to accurately predict higher values. 

To address this issue, a rebalancing strategy was introduced in the patch generation process. 
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By ensuring that more samples with higher SSM values are included in the training data, the 

model is expected to better learn the full distribution and improve prediction accuracy for 

underrepresented high SSM values. 
 

 

M Value Distribution (excluding masked values): 
  0–0.2      : 2,161,907 pixels (56.89%) 
  0.2–0.4: 1,354,086 pixels (35.63%) 
  0.4–0.6: 251,954 pixels ( 6.63%) 
  0.6–0.8:  28,446 pixels ( 0.75%) 
  0.8–1.0:   3,779 pixels ( 0.10%) 
 

 

Figure 5.10: SSM data histogram and distribution 

 

5.5. Conclusion and Future Works 
This study presents a novel deep learning framework for high-resolution, spatiotemporal SSM 

mapping using a ConvLSTM architecture. By integrating static terrain and soil parameters with 

multi-temporal meteorological and vegetation data, the model successfully captures both 

spatial and temporal dependencies influencing soil moisture dynamics. The use of Sentinel-1-

derived SSM maps as training targets, produced through a self-calibrated change detection 

approach, eliminates the dependence on sparse in-situ measurements and ensures consistent, 
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fine-scale labeling. The results demonstrate the potential of this model to generate accurate 

and continuous SSM predictions across diverse landscapes. Performance evaluations indicate 

strong generalization capabilities, although prediction accuracy for high soil moisture values 

remains a challenge due to class imbalance in the training data. Addressing this issue through 

targeted rebalancing strategies has shown promising improvements. Importantly, the 

framework supports downstream applications such as infiltration estimation and landslide 

susceptibility assessment by enabling the conversion of SSM predictions into infiltration maps 

using the Green-Ampt model. This capability is particularly valuable in topographically 

complex and data-scarce regions where traditional physically based models are 

computationally intensive and hard to generalize. 

Overall, the proposed ML-SSM approach offers a scalable, adaptable, and physically 

meaningful solution for modeling soil moisture at the landscape scale. It lays the groundwork 

for more accurate hydrological forecasting and geohazard risk assessment, particularly for 

rainfall-induced landslides. 

 

Future work will focus on enhancing model performance through systematic use of 

rebalanced patches to improve the prediction of both low and high SSM values. Following the 

SSM prediction, the next step involves converting the SSM maps into infiltration estimates 

using the Green-Ampt equation to support physically meaningful hydrological modeling. In 

the final phase of this research, a hybrid physical–machine learning approach will be developed 

to produce landslide susceptibility maps, bridging the gap between data-driven predictions and 

physically based slope stability assessments. 
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Chapter 6  

6 Numerical model development 
for quantitative landslide risk 
assessment 

Seok Jun Kang, Samuel Fadipe, Sunil Lamsal, Yi Liu, Zhuping Sheng, Oludare 
Owolabi 

 

6.1 Introduction 
 
Landslides are among the most destructive natural hazards, resulting in significant 
human casualties and substantial economic losses worldwide. Regions characterized 
by mountainous topography and steep slopes are particularly susceptible due to the 
complex interplay of geological, geomorphological, and climatic factors. In such 
regions, precise risk assessment and the establishment of proactive prevention and 
mitigation strategies are regarded as essential components of disaster management. 

Existing methodologies for landslide risk assessment can be broadly classified 
into four categories considering their approaches for data processing and 
interpretation: (1) GIS-Based Qualitative Approaches for Large-Scale Assessment, (2) 
Physically Based, Site-Specific Quantitative Analysis, (3) Simplified Models for 
Quantitative Slope Stability Assessment, and (4) Integrating Physics and Data: 
Physics-Guided Machine Learning. 

 

(1) GIS-Based Qualitative Approaches for Large-Scale Assessment 

Many large-scale studies rely heavily on Geographic Information Systems (GIS) to 
collect, manage, and analyze spatial data for identifying areas susceptible to 
landslides. These approaches involve quantifying various terrain-conditioning 
factors—including topography, soil types, land use, rainfall patterns, and vegetation—
and analyzing their correlation with known landslide occurrences to generate 
Landslide Susceptibility Maps (LSMs) [86, 87]. 

While early models employed statistical methods such as frequency ratio and 
logistic regression [88], recent advancements have introduced machine learning (ML) 
and deep learning (DL) techniques to enhance predictive accuracy [89, 90]. 
Algorithms such as Random Forest, Support Vector Machines (SVMs), Artificial 
Neural Networks (ANNs), and Gradient Boosting Machines have shown high 
performance in susceptibility classification tasks. In addition, Convolutional Neural 
Networks (CNNs) are increasingly used for learning complex spatial patterns from 
geospatial data [91]. 

These models offer scalability and automation, enabling the rapid generation 
of susceptibility maps across large areas. However, they are fundamentally limited by 
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their dependence on statistical associations rather than physical mechanisms. In 
particular, the accuracy of these models tends to deteriorate in regions with limited 
landslide inventories or uncommon terrain configurations [88, 90]. Moreover, most 
GIS-based approaches focus primarily on spatial features, often neglecting temporal 
dynamics such as seasonal rainfall, antecedent moisture conditions, and climate 
variability—factors that critically influence landslide triggering [87]. 

 

(2) Physically Based, Site-Specific Quantitative Analysis 

For areas with historical landslide activity or identified geotechnical vulnerability, 
detailed site-specific quantitative analyses are commonly employed. These analyses 
use field investigations and in-situ measurements to build numerical or theoretical 
models that simulate the underlying physical processes driving slope instability. Such 
models provide quantitative estimates of slope stability, failure probability, and 
potential run-out distances [92-94]. 

For instance, the TRIGRS (Transient Rainfall Infiltration and Grid-based 
Regional Slope-Stability) model simulates the time-dependent increase in pore-water 
pressure due to rainfall infiltration, enabling real-time assessment of rainfall-induced 
landslide risk [95]. Additionally, finite element and finite difference software such as 
GeoStudio and PLAXIS allow for advanced stress-strain analysis and failure scenario 
modeling under realistic ground conditions [94]. 

Physically based models have the advantage of explicitly representing key 
triggering mechanisms, such as pore pressure buildup, hydraulic conductivity 
contrasts, and soil mass mobilization [94]. However, they require extensive site-
specific data, high-resolution parameterization, and substantial computational effort, 
limiting their scalability and generalizability to broader contexts [96]. 

 

(3) Simplified Models for Quantitative Slope Stability Assessment 

To bridge the gap between complex numerical simulations and purely statistical 
models, simplified analytical models such as the Infinite Slope Model and Limit 
Equilibrium Methods (LEM) have been widely adopted [96]. These models assume 
simplified geometries—typically planar or circular slip surfaces—and calculate the 
Factor of Safety (FoS) as the ratio of resisting to driving forces, based on parameters 
such as slope angle, shear strength, unit weight, and groundwater position. 

The Infinite Slope Model is particularly suited for analyzing shallow slope 
failures, while LEM includes methods such as Bishop’s, Janbu’s, and Morgenstern–
Price formulations, which can handle more complex geometries and loading 
conditions [97]. These methods are grounded in classical geotechnical theory and are 
widely used in engineering practice due to their simplicity and computational 
efficiency. 

However, simplified models may oversimplify nonlinear soil behavior, 
heterogeneous layering, and soil–water interactions, potentially leading to 
discrepancies between modeled and actual failure behavior [98]. Additionally, their 
ability to incorporate temporal factors such as rainfall infiltration is limited and often 



- 71 - 
 

requires additional assumptions or external coupling [99]. 

 

(4) Integrating Physics and Data: Physics-Guided Machine Learning 

To address the limitations of purely data-driven and purely physics-based models, 
hybrid approaches, particularly Physics-Guided Machine Learning (PGML), have 
gained increasing attention. This emerging methodology combines the flexibility of 
ML algorithms with the interpretability of physics-based models by incorporating 
physically meaningful variables—such as FoS, slope geometry, and shear strength—as 
constraints or features in ML models [86]. 

For example, temporal changes in slope stability simulated through numerical 
models can be used to train ML models, enabling the latter to learn from physical 
insights while improving generalizability across diverse terrain conditions. This 
approach allows for the enhancement of sparse observational datasets and supports 
the development of robust, scalable models for landslide risk assessment [100]. 

In summary, GIS-based qualitative models are effective for rapid, large-scale 
assessments but are limited in representing the actual physical mechanisms behind 
landslides. In contrast, site-specific quantitative models provide high-fidelity physical 
interpretations but lack general applicability and require significant resources. 
Simplified analytical models offer a practical middle ground but struggle with complex 
or dynamic conditions. 

To overcome these challenges, there is a growing need for the development and 
application of quantitative, physics-informed methodologies that integrate numerical 
modeling and data-driven techniques. Such approaches are essential for enabling 
accurate, scalable, and dynamic landslide risk assessments in both data-rich and data-
scarce environments. 

 

6.2 Objectives 
6.2.1 Overall Research Objectives 

The overarching goal of this study is to establish a robust, interpretable, and 
quantitatively grounded framework for Landslide Risk Assessment (LRA) by 
integrating physics-based numerical modeling with machine learning. The research 
aims to overcome the limitations of conventional qualitative or empirical methods by 
introducing a novel approach that ensures both physical validity and spatial 
generalizability. 

Conventional LRA methodologies often suffer from structural limitations, 
including poor interpretability, limited applicability across varying terrain conditions, 
and inadequate treatment of temporal factors. To address these issues, this study 
seeks to develop a dynamic, generalizable, and mechanistically interpretable LRA 
system. The research includes the following objectives: 

(1) Evaluation of physics-based, quantitative assessment methods that reflect the 
underlying mechanisms of slope failure; 

(2) Development of a simplified, generalizable numerical model capable of simulating 
typical slope instability scenarios; 
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(3) Construction of a numerical simulation-based dataset capturing the relationship 
between key input variables (geometry, material properties, water head) and slope 
stability metrics (e.g., Factor of Safety); 

(4) Training and evaluation of ML models using the constructed dataset to identify 
optimal predictive frameworks; 

(5) Extension to a GIS-integrated risk mapping system and eventual incorporation of 
real-time rainfall data for spatio-temporal LRA. 

 

6.2.2 Objectives of the Current Stage (Stage 2) 
 In this second stage of the research project, efforts were focused primarily on the 
following key objectives from the long-term plan: 

(1) Establishment of a physics-based slope stability analysis framework: A simplified 
numerical model was developed to represent typical slope failure mechanisms, 
enabling the computation of the FoS under various conditions. Three numerical 
approaches—Infinite Slope, PLAXIS 2D LE, and FLAC3D—were examined to 
evaluate their relative accuracy, applicability, and computational characteristics. 

(2) Development and validation of a generalized slope model: The numerical model 
was designed to reflect representative slope conditions rather than site-specific 
cases, with the aim of building a generalizable analysis framework. Model 
assumptions, boundary conditions, and saturation behavior were carefully 
structured to support extensibility. 

(3) Preliminary construction of an input–output mapping dataset: A parametric 
analysis was partially conducted using combinations of slope geometry, soil 
properties, and water head. Although not fully completed at this stage, the initial 
simulations enabled the identification of key trends in FoS responses and laid the 
groundwork for a more comprehensive dataset in future stages. 

This stage of the project primarily focused on building the core numerical 
infrastructure and verifying the feasibility of a generalized, physics-informed LRA 
model. These foundational efforts will support subsequent development of a full-scale 
simulation-based dataset and the integration of ML-based predictive modeling in later 
phases. 

 
 

6.3 Methodology 
 

6.3.1 Overview of Methodology 
 This study aims to evaluate and compare three representative quantitative 
approaches for assessing slope stability in the context of Landslide Risk Assessment. 
The selected methods reflect increasing levels of analytical complexity and modeling 
fidelity: 

(1) Infinite Slope Model – A classical analytical model based on limit equilibrium 
theory, assuming infinite slope geometry. 
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(2) PLAXIS 2D LE – A commercial geotechnical software implementing two-
dimensional Limit Equilibrium Methods, offering various slip surface algorithms 
(e.g., Bishop Simplified). 

(3) FLAC3D – A three-dimensional numerical tool based on the Finite Difference 
Method (FDM), capable of simulating nonlinear and stress-path-dependent 
behavior. 

All three methods were used to compute the FoS under consistent input conditions. 
In this stage, five key parameters affecting slope stability were varied across 
simulations: Slope angle (°), Soil friction angle (°), Soil Cohesion (kPa), Soil unit 
weight (kN/m³), and Groundwater level (m). In all simulations, the slope geometry 
was kept consistent across cases, with the exception of the slope angle. The height of 
the slope varied depending on the angle, while the slope width was uniformly 
maintained at 10 meters. 

 

6.3.2 Modeling details for each methodology 
(1) Infinite Slope Model 

The Infinite Slope model assumes a shallow failure surface that runs parallel to the 
ground surface. This method is suited for simplified, planar slopes under drained 
conditions and is commonly used for preliminary or GIS-based risk screening. 

The FoS is calculated using the following equation [97]: 

 

𝐹𝑜𝑆 =
𝑐+𝛾′𝑧𝑐𝑜𝑠2(𝛽)𝑡𝑎𝑛 (∅)

𝛾𝑧𝑐𝑜𝑠𝛽𝑠𝑖𝑛𝛽
                                          (6.1) 

 

where c: cohesion, ϕ: friction angle, γ: unit weight of soil, γ’= γ- γwater: effective unit 
weight of soil, z: depth to failure surface, and 𝛽: slope angle. The water table is 
assumed to coincide with the failure surface, and the ground under the water table is 
assumed to be fully saturated. 

(2) Limit Equilibrium Model (PLAXIS 2D LE) 

PLAXIS 2D LE employs the Limit Equilibrium Method, offering several analytical 
techniques. In this study, the Bishop, Swedish Circle, Janbu, and Lowe models were 
applied for assuming the slip surface under plane strain conditions [101]. The 
boundary conditions were defined such that the bottom boundary was fixed in the 
vertical direction, while the side boundaries were allowed to deform vertically but were 
laterally constrained using roller supports. To mitigate boundary effects, continuous 
ground regions were modeled beneath and alongside the slope, each with the same 
length as the slope itself. Soil behavior was modeled using the Mohr–Coulomb failure 
criterion under effective stress conditions. Once the slope geometry, geotechnical 
properties, and groundwater level were specified, the software automatically 
identified the critical slip surface and calculated the Factor of Safety using the selected 
Limit Equilibrium formulation [101]. 

 



- 74 - 
 

(3) Finite Difference Model (FLAC3D) 

FLAC3D offers advanced 3D continuum modeling capabilities based on explicit FDM. 
It can account for nonlinear behavior, post-failure deformation, and pore pressure-
stress interactions. In this study, the slope was modeled with a very narrow width to 
ensure a two-dimensional geometry, thereby facilitating a consistent comparison 
between the two 2D-based analytical approaches. 
The simplified slope geometry consists of the slope itself along with continuous 
ground extensions at the bottom and lateral boundaries, designed to eliminate 
boundary effects in the numerical analysis. 

In the numerical simulations, boundary conditions were defined to realistically 
represent slope behavior. The bottom boundary was fully fixed in the vertical 
direction, while the side boundaries were constrained only in the horizontal direction, 
allowing for vertical displacement. The top surface was modeled as a free surface to 
account for potential infiltration and changes in matric suction. The Mohr–Coulomb 
failure criterion was adopted as the constitutive model, and the FoS was computed 
using the Strength Reduction Method (SRM) under effective stress conditions. For 
meshing, 8-node hexahedral elements were employed, with local mesh refinement 
applied near anticipated slip surfaces to enhance accuracy. A mesh sensitivity analysis 
was also performed to determine the minimum mesh resolution required for stable 
FoS estimates, while coarser meshes were applied to peripheral zones to reduce 
computational demands [102] as shown in Fig. 6.1. The results of the sensitivity 
analysis based on the fixed slope geometry scale are presented in Figure 6.2. As the 
mesh becomes finer and the number of elements increases, the FoS shows a gradual 
decrease and eventually converges to a stable value. This indicates that a mesh size 
yielding more than 2,000 elements is required to obtain reliable FoS estimates for this 
model. To ensure both accuracy and computational efficiency, the optimal mesh size 
was determined to produce approximately 2,200 elements. 

 

 
Figure 6.1: Finite difference model with the optimal mesh configuration. 
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Figure 6.2: Sensitivity analysis for the FoS according to the mesh number. 

 

6.3.3 Groundwater Modeling and Pore Pressure Simulation 
Proper modeling of groundwater conditions is critical in landslide risk assessment, as 
pore water pressure significantly influences slope stability by reducing effective stress 
and shear strength. Each numerical method employed in this study incorporates 
groundwater modeling differently, based on its dimensionality, governing equations, 
and degree of physical realism. 

(1) Infinite Slope Model 

In the Infinite Slope model, groundwater influence is simplified through the water 
table height (h), where the water table aligns parallel to the slip surface. The factor of 
safety is calculated using the classical formula: 

𝐹𝑜𝑆 =
𝑐′+𝑧(𝛽) [(1−𝑚)𝛾𝑠𝑜𝑖𝑙−𝑚𝛾′]𝑡𝑎𝑛 (𝜙′)

𝑧𝑐𝑜𝑠𝛽𝑠𝑖𝑛𝛽[(1−𝑚)𝛾𝑠𝑜𝑖𝑙−𝑚𝛾′ ]
        (6.2) 

where c′: effective cohesion, ϕ′: effective friction angle, γ: unit weight of soil or water, 
z: depth to failure surface, h: water level, m=h/z (slope is not fully saturated), and θ: 
slope angle. 

This approach assumes hydrostatic pore pressure and uniform infiltration, and does 
not account for lateral flow or transient effects. 

(2) Numerical Methods 

Numerical modeling approaches allow for the water table (phreatic surface) to be 
defined independently of the slope geometry. To reflect a more realistic groundwater 
profile, the Dupuit-Forchheimer model [103] was applied. Under the assumptions of 
homogeneous and isotropic soil, steady-state conditions, and horizontal flow only, the 
water table follows a parabolic distribution (Figure 6.3), which can be expressed by 
the following equation: 
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ℎ(𝑥) = √𝐻1
2 + (𝐻2

2 − 𝐻1
2) ∙

𝑥

𝐿𝑝
    (6.3) 

where H1: higher water head at one end of the slope, H2: lower water head at the 
opposite end, x: horizontal distance from the left boundary of the slope, and Lp: 
horizontal length of the phreatic surface. 

According to the Dupuit-Forchheimer model, the shape of the phreatic surface 
is governed by the hydraulic head difference between the upper and lower ends of the 
slope and the length of the slope. The head difference, in turn, is affected by the soil's 
permeability and the steady-state flow rate, which follows Darcy’s Law: 

𝐻2 = 𝐻1 −
𝑞

𝐾
𝑥         (6.4) 

where q: Darcy’s velocity (flow rate in unit area) and K: permeability.  

To define the phreatic surface in the numerical model, three parameters were 
determined: the higher head value, hydraulic conductivity, and unit discharge. In 
some cases, this formulation can lead to an unrealistic situation where the phreatic 
surface is computed to be higher than the actual slope surface. To prevent this, the 
initial phreatic surface was checked, and if any portion exceeded the slope surface, the 
water table was adjusted to follow the slope surface instead (Figure 6.4). 

 

 

 
Figure 6.3: Phreatic surface assumption on the simplified slope geometry. 
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Figure 6.4: Phreatic surface adjustment considering outlet through slope surface. 

 

Once the phreatic surface was defined, it was assumed that the soil below it was 
fully saturated. Based on this assumption, the pore water pressure and effective stress 
at different depths were computed, using the following effective strength equation: 

𝜏 = 𝑐′ + (𝜎𝑣 − 𝑢)𝑡𝑎𝑛 (𝝓′)          (6.5) 
 

where τ is the shear strength, 𝜎𝑣 is the total vertical stress, u is the pore water pressure, 
c′ is the effective cohesion, and ϕ′ is the effective friction angle. 

This approach enables the slope stability analysis to reflect the reduced strength of 
saturated soil, thereby enhancing the accuracy of the FoS calculation. 

 

6.3.4 Parametric Case Design 
To systematically investigate the influence of individual geotechnical parameters on 
slope stability, a parametric study was conducted using a defined control case, with 
each key parameter varied independently while keeping the others constant. 

The control slope geometry and soil properties were set as: 

• Slope angle (β): 30° 

• Friction angle (ϕ): 30° 

• Cohesion (c): 3 kPa 

• Unit weight (γ): 19.6 kN/m³ 

• Phreatic surface: Bottom boundary (no water) 

This baseline scenario was considered representative of a typical shallow failure-prone 
slope under moderate soil strength and hydrological conditions. Each parameter was 
independently varied across representative values to evaluate its influence on the 
computed Factor of Safety. The variations were designed to cover realistic field 
conditions while maintaining numerical stability, as summarized in Table 6.1.  
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Table 6.1: Input parameters variation 
Parameter Range of Values Simulated 
Slope angle (β) 10 – 50 ° 
Friction angle (ϕ) 2 – 45 ° 
Cohesion (c) 0 – 180 kPa 
Unit weight (γ) 17.6 – 21.4 kN/m³ 
Water level Bottom – Toe of Slope 

 

Variations in groundwater level were simulated by first assuming the lower 
water head (H₂) to be located at the slope toe, and then systematically varying the unit 
discharge (q) to derive corresponding higher water head (H₁) values. This approach 
allowed for the generation of 11 representative phreatic surface scenarios that 
commonly occur in natural slopes. 

In each simulation, only one parameter was changed at a time, and the others 
were fixed at the control case values. This allowed for isolated sensitivity analysis and 
consistent dataset generation for ML model training. 

 

6.4 Preliminary Results and Discussion 
 

6.4.1 Slope Failure Surface 
The Infinite Slope Method, which assumes a planar failure surface parallel to the slope, has 
limitations in realistically simulating actual slope failures. In contrast, the two numerical 
methods employed in this study allow for relatively reliable predictions of failure surface 
geometry. 

In the control case—characterized by a slope angle equal to the friction angle and a low 
cohesion value, representing a highly failure-prone condition—both the Limit Equilibrium 
Method and the Finite Difference Method produced similar results. The calculated FoS was 
1.4 for LEM and 1.5 for FDM, and the predicted failure surfaces appeared as circular slip 
surfaces of comparable shape (Fig. 6.5). 

However, when cohesion was reduced to near-zero under the same slope condition, 
notable discrepancies between the two methods emerged. The FoS values dropped to 1.0 in 
LEM and 1.2 in FDM, and the predicted failure surfaces diverged significantly in shape and 
location (Fig. 6.6), indicating increased sensitivity of the models to changes in shear strength 
parameters. 
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(a) (b) 

Figure 6.5 Slope failure shape derived from (a) Limit Equilibrium and (b) Finite 
Difference models in the control case (c=3kPa, γ=19.6kN/m3, friction angle=30°, 

and slope angle=30°) 
 

  
(a) (b) 

Figure 6.6 Slope failure shape derived from (a) Limit Equilibrium and (b) Finite 
Difference models in the cohesionless condition (c=0.001kPa, γ=19.6kN/m3, friction 
angle=30°, and slope angle=30°) 

 
The failure surface predicted by the LE method under cohesionless conditions 
appeared highly unrealistic. This is likely due to the inherent nature of LE methods, 
which search through numerous potential circular or elliptical slip surfaces and select 
the one that yields the lowest FoS. In cases where the slope angle is equal to the friction 
angle and the soil exhibits very low cohesion, any considered failure surface would 
tend to produce similar FoS values. As a result, under near-critical conditions (i.e., 
FoS ≈ 1), there is a high likelihood of selecting an implausible failure geometry. As 
shown in Fig. 6.6(a), the LE method predicted an extremely small circular failure 
surface, which is physically unrealistic.  

In contrast, the failure surface derived from the FDM indicated local failure 
occurring near the upper part of the slope, where the vertical stress is lower and thus 
the frictional shear strength is reduced due to the absence of cohesion. This result is 
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mechanically reasonable and aligns with expected failure mechanisms in weak, 
cohesionless soils. 

This comparison highlights fundamental differences in performance between 
LE and FDM approaches. Importantly, incorrect assumptions regarding the failure 
surface in LE can also lead to erroneous FoS calculations. Therefore, when conducting 
large-scale parametric analyses using LE methods across a range of slope conditions, 
it is essential to carefully inspect the predicted failure geometries. If the results show 
unrealistic failure surfaces, those specific cases should be re-evaluated or excluded 
from interpretation. 

 

6.4.2 Parametric analysis for FoS Calculation 
The results of the parametric analysis using soil unit weight, cohesion, friction angle, 
and slope angle as variables are summarized in Figure 6.7. The influence of each 
parameter on the FoS showed consistent trends across all three methods employed in 
this study. Despite the wide range of input values considered, unit weight exhibited 
minimal impact on the FoS. This observation aligns with theoretical expectations, as 
unit weight contributes to both the driving and resisting forces in slope stability 
analysis, effectively offsetting its net influence. 

Cohesion, a key factor in determining shear strength, showed varying degrees 
of influence on FoS depending on the method used. The Infinite Slope model exhibited 
a linear relationship between cohesion and FoS due to its simplified assumptions and 
decoupled input variables. In contrast, both numerical methods displayed nonlinear 
behavior, as changes in cohesion affected the failure surface geometry, leading to more 
complex interactions within the model. 

For slope angle and friction angle, all three methods exhibited similar trends. 
This consistency is attributed to the control case settings, where either the slope angle 
or the friction angle was held constant while the other was varied, leading to a 
proportional change in their relative magnitudes. However, it is expected that the 
influence of these angles on FoS would vary significantly if cohesion values were 
altered, given their interplay with the overall shear strength. 

To further investigate key input variables prior to conducting a more extensive 
parametric study, a focused preliminary analysis was conducted using both the 
theoretical Infinite Slope model and the FDM, specifically examining the influence of 
slope angle and cohesion. The results revealed that while the Infinite Slope model 
exhibited predictable, directly proportional behavior in response to parameter 
changes—consistent with its analytical formulation—FDM results showed abrupt 
trend shifts under certain conditions. These shifts occurred when slope angles became 
excessively gentle or when cohesion values became overly large. 
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(a) (b) 

  
(c) (d) 

Figure 6.7: Parametric analysis on the FoS with varying (a) Soil unit weight, (b) 
Cohesion, (c) Slope angle, and (d) Friction angle. 
 

Upon inspecting the failure surfaces in such cases, it was observed that very 
shallow slopes or high-cohesion conditions prevented the simulation of slope failure 
under the strength reduction method. Instead, local instability within the model—
unrelated to typical slope failure mechanisms—was reflected in the calculated FoS. 
These cases produced FoS values exceeding 1.8, which fall well outside the range of 
concern for landslide risk assessments, even when considering safety margins and 
model uncertainty. 

Therefore, for the purposes of reliable dataset generation, scenarios with overly 
stable slopes—specifically those with very low slope angles or extremely high cohesion 
leading to FoS values above 1.8—should be excluded. This consideration can be 
practically addressed during the definition of parameter ranges, by avoiding input 
values that represent unrealistically stable slope conditions. 
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(a) (b) 

Figure 6.8: Parametric analysis with varying (a) Slope angle and (b) Cohesion, 
including unrealistic ranges 
 
 

6.4.3 Effect of Groundwater Table Distribution 
Using two numerical methods, a variety of realistic water table distributions were 
modeled by assuming a water outlet at the slope toe and varying the flow rate (refer to 
Section 6.3.4). Increasing the flow rate (Darcy’s velocity) resulted in higher hydraulic 
heads, which indirectly simulate rising groundwater levels due to rainfall. Figure 6.9 
presents the resulting changes in the Factor of Safety (FoS) in response to elevated 
groundwater conditions. As the water level rises, pore water pressure increases in 
accordance with hydrostatic pressure, leading to a reduction in effective stress and, 
consequently, shear strength. 

This shift affects both the location and size of the slip surfaces predicted by LE 
methods, while in the FDM, the distribution of failure zones—captured via strain 
localization—changes more significantly. As a result, the relationship between FoS and 
increasing groundwater level appeared nonlinear, exhibiting two local extrema. When 
applying different LE models, significant variations in FoS were observed due to 
differing failure surface assumptions and calculation schemes. To reduce model-
specific bias, the arithmetic mean of FoS values calculated by four different LE models 
was used as a representative value for comparison with FDM results. 

At lower Darcy velocities—i.e., when water levels were low—LE and FDM 
produced similar FoS estimates. However, as groundwater levels rose, FDM began to 
yield lower FoS values. This discrepancy indicates that the LE method, which assumes 
circular slip surfaces, fails to adequately capture the spatial variation in shear strength 
resulting from pore pressure increases, particularly in the lateral direction. 
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Figure 6.9: Effect of Darcy velocity (flow rate) on the FoS. 

 
To more clearly evaluate the evolving failure surface under rising water levels, 

six numerical models were selected at equal intervals along the range of increasing 
Darcy velocities. These numerical models follow the conditions of the control case 
(slope length = 10  m, slope angle = 30°, soil density = 18  kN/m³, soil cohesion = 
3kPa, soil friction angle = 30°), but the variations in the water table were applied 
differently to each model depending on the flow rate. These were used to conduct a 
sequential analysis simulating prolonged rainfall leading to eventual slope failure. 
This six-stage simulation began with an initial condition (Stage 0) where the water 
table reached only the slope toe, and progressed toward a scenario in which the entire 
slope became saturated due to continuous infiltration (Figure 6.10). 

In the early stages (Stages 0–2), with FoS greater than 1.0, no visible shear 
strain or failure was observed. Initial failure was captured at Stage 3, where FoS 
dropped below 1.0. As the simulation progressed through Stages 4 and 5, both the 
magnitude of shear strain and the extent of the failure surface increased. Since the 
simulation was conducted sequentially, rather than as independent static cases, it 
effectively captured the accumulation of shear deformation under prolonged rainfall. 
The failure initiated at the slope toe and gradually extended toward the upper part of 
the slope. While this analysis does not simulate material detachment or debris flow 
(due to the continuum assumption in FDM), it nonetheless offers valuable insight for 
landslide risk assessment by indicating how failure zones may evolve in response to 
groundwater rise. 

Compared to LE, which produced less realistic changes in FoS and failure 
surface geometry under varying water tables, the FDM approach provided more 
reliable and plausible results. 
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Figure 6.10: Sequential slope failure simulation cases according to water table rise. 
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Figure 6.11: Slope failure according to increased water tables. 
 

6.5 Conclusions and Future Works 
 

This study investigated slope stability under varying geotechnical and hydrological 
conditions using three methods: the infinite slope model, LEM, and FDM. A series of 
numerical simulations and parametric analyses were conducted to evaluate each 
method's capacity to estimate the Factor of Safety (FoS) and predict failure surface 
geometry under realistic slope conditions. 

Numerical modeling has been proven to be an effective approach for visualizing 
failure mechanisms and quantifying slope stability. The use of the Dupuit model 
enabled the simulation of phreatic surface changes induced by infiltration and allowed 
for realistic water table distributions across a range of scenarios. Sequential 
simulations further captured the progression of failure surfaces due to rising water 
tables, providing insight into rainfall-induced landslide behavior. 

Among the three methods, the infinite slope model consistently produced 
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conservative and overly simplified results, while LEM, despite its widespread use, 
showed clear limitations under cohesionless or near-critical conditions—often 
predicting unrealistic slip surfaces due to its reliance on circular failure assumptions 
and minimum FoS search algorithms. These shortcomings highlight the importance 
of validating LEM results, especially for marginally stable slopes. 

In contrast, FDM demonstrated the highest level of reliability and physical 
realism. It effectively captured nonlinear responses in FoS due to variations in 
cohesion, slope angle, and groundwater level, while also representing internal failure 
mechanisms and strain localization. Importantly, FDM was the only method that 
consistently responded to changing hydrological conditions with credible shifts in 
both FoS values and failure geometries. 

Based on these findings, FDM was identified as the most robust and 
trustworthy method for slope stability analysis among those evaluated. It aligns 
closely with the objectives of this research, particularly the need to simulate realistic 
failure behavior for a broad range of input conditions. As such, FDM will be used as 
the foundation for future synthetic dataset generation and the training of machine 
learning models for landslide prediction and risk assessment. This approach holds 
strong potential for extending slope stability research into data-driven domains, 
enabling more reliable and scalable hazard evaluations in geotechnical practice. 

 

6.5.2 Future Works  

Building upon the validated performance of the FDM for slope stability analysis, 
future research will focus on leveraging this method for large-scale data-driven 
modeling and landslide risk prediction. The proposed workflow (Fig. 6.12) is 
structured to systematically integrate numerical modeling with deep learning-based 
predictive systems and culminate in a real-time early warning application. The 
following key tasks are planned: 

(1) Synthetic Dataset Generation via FDM 

Using FDM, a wide range of slope stability scenarios will be simulated by 
systematically varying soil properties, slope geometry, and groundwater 
conditions. This process will generate a robust synthetic dataset that reflects both 
realistic and extreme conditions under which slope failure may occur. 

(2) Training and Evaluation of Deep Learning Models 

The generated dataset will be used to train various deep learning models. The 
performance of these models will be evaluated not only based on predictive 
accuracy but also on computational efficiency, to ensure scalability for real-time 
applications. Through this comparative analysis, the most suitable DL model will 
be identified. 

(3) Application of the Optimal Model to Real-World Data 

The selected DL model will be applied to perform a large-scale Landslide Risk 
Assessment across the Maryland region, using spatially distributed geotechnical 
and geomorphological data. The model’s robustness will be further evaluated 
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through regional sensitivity analysis and parameter contribution techniques (e.g., 
SHAP). 

(4) Development of a Real-Time Early Warning System 

The optimal DL model will be integrated with real-time rainfall data to establish 
an automated landslide Early Warning System (EWS). This system aims to provide 
timely alerts based on forecasted slope stability conditions under changing 
hydrological scenarios. 

(5) Model Feedback Loop and Enhancement 

As part of a long-term vision, insights from real-world performance and domain 
expert feedback will be used to continually refine both the numerical and ML 
models. This includes improving the FEM-based simulation framework used in 
dataset generation, resulting in an enhanced end-to-end modeling loop. 

This structured future direction enables the transition from reliable numerical 
analysis to scalable, intelligent prediction systems capable of supporting proactive 
landslide hazard management. 

 

 
Figure 6.12: Workflow for future works.   
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Chapter 7  

7 Integrating GIS-Based 
Susceptibility Mapping and 
Machine Learning for Landslide 
Prediction and Early Warning in 
in Baltimore County, Maryland 

Oyinkansola Aladeokin, Ollie Hare, Zhuping Sheng, Yi Liu, Oludare Owolabi 

 

 

7.1 Introduction 
Landslides remain one of the most devastating natural hazards, causing extensive 
economic damage,      disruption, loss of life, and economic degradation in highly 
susceptible areas worldwide. Its occurrence is closely associated with complex 
interactions among geological, hydrological, morphological, and anthropogenic 
elements, frequently intensified by extreme weather events and unpredictable 
changes to the climate [104-106]. As the rapid expansion of urban communities 
gradually changes into hazard-prone areas, it is crucial to mitigate this occurrence 
with the generation of a comprehensive landslide susceptibility mapping (LSM). LSM 
offers geographical assessments of landslide occurrence probability, functioning as an 
essential instrument for risk mitigation, urban planning, and infrastructure resilience 
[107, 108].  
Various conventional landslide susceptibility mapping approaches have been used by 
researchers, some of which include heuristic, statistical, and physically based models. 
These approaches have limitations in accurately capturing the complex nonlinear 
relationships between landslide occurrence and the causative factors [109, 110]. 
However, the recent advancements in artificial intelligence (AI) and machine learning 
(ML) techniques have provided significant improvements in LSM. Machine learning 
algorithms, such as Support Vector Machines (SVM), Random Forest (RF), Logistic 
Regression (LR), and Gradient Boosting Machines (GBM), have demonstrated 
superior performance due to their ability to handle large datasets, model complex 
relationships, and produce highly accurate predictive results [111, 112].  
Despite the breakthrough in technological advancement, there still remain challenges 
such as model interpretability, generalization across diverse geographic locations, and 
the effective management of data imbalances that is characterized in landslide 
datasets [113]. Addressing these challenges is crucial for developing robust and 
reliable susceptibility maps that can be effectively integrated into various decision-
making processes. This study focuses on the application and assessment of various 
modern machine learning methods (SVM, RF, LR, GBM) to develop an effective and 
reliable landslide susceptibility map for Baltimore County, Maryland. The study seeks 
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to enhance the precision and applicability of susceptibility maps by utilizing diverse 
geographic and environmental parameters, thereby improving landslide risk 
management and facilitating informed planning and development initiatives. 

7.1.1 Research goals and objectives 
The primary goals of this project are to (1) develop and validate a machine learning 
framework for predicting landslide susceptibility in Baltimore County, Maryland, and 
(2) integrate the predictive model into an early warning system to support proactive 
geohazard mitigation and transportation infrastructure safety. 
The objectives include: 

• Identify and map high-risk areas by analyzing contributing and triggering 
factors such as slope, aspect, soil content, curvatures, and vegetation cover etc. 
using historical data. 

• Develop and test an early warning system that leverages susceptibility 
outputs and real-time monitoring protocols for hazard detection and risk 
communication. 
 

7.2 Related Works 
While physical models provide an extensive understanding of slope dynamics, they 
are resource-demanding and necessitate considerable data, hence limiting their 
application in regions with limited data availability [114, 115] conducted a 
comprehensive analysis of conventional landslide hazard assessment methods, 
analyzing statistical, heuristic, and deterministic models. Their research highlighted 
the imperative for probabilistic and data-driven approaches capable of addressing 
intricate geological, topographical, and climatic factors. While their assessment 
established a solid basis for further research, it was lacking in extensive real-world 
applications of machine learning implementations. Statistical methods, like the 
Frequency Ratio Method (FRM), have been widely employed due to their simplicity 
and effectiveness in quantifying the relationship between landslide events and the 
various causative factors [110]. These models often inadequately capture the nonlinear 
relationships and spatial variability characteristic of landslide processes [116]. The 
frequency ratio method (FRM) and logistic regression were utilized to conduct 
landslide susceptibility mapping in Malaysia [110]. Their research includes 
categorizing many environmental variables affecting landslides and assessing the 
probability of landslide events using historical data. The findings indicated that 
logistic regression offered a solid framework for anticipating landslide vulnerability; 
however, it presented limitations related to the assumptions of linearity and 
independence of variables. 

 
With the emergence of machine learning (ML), LSM evolved into a more data-

driven, scalable, and adaptive framework capable of processing high-dimensional, 
nonlinear datasets. Machine learning models have been successfully employed in 
LSM, exhibiting superior classification performance relative to traditional approaches 
[117-119]. Numerous studies have assessed machine learning performance in various 
geographic applications; for example, Support Vector Machines (SVM) was employed 
for identifying landslide vulnerability in northern Italy [118]. Their methodology 
entailed the application of kernel functions to limited datasets, resulting in elevated 
accuracy and generalization proficiency. However, they observed challenges with the 
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model's interpretability due to its dense character. A comparative investigation of 
various machine-learning approaches, including Random Forest (RF), Support Vector 
Machines (SVM), and Decision Trees (DT), was performed for susceptibility mapping 
in Vietnam [112]. Their findings demonstrated that RF offered enhanced accuracy and 
stability owing to its ensemble learning features; however, the interpretability of 
results continued to pose challenges, requiring subsequent explanatory methods. 
Additionally, Support vector machines were successfully employed with radial basis 
function kernels for susceptibility mapping in Hong Kong, efficiently navigating 
complex terrain conditions [120]. Nevertheless, the authors highlighted challenges 
with model calibration and susceptibility to outliers. While LSTM networks were 
implemented for predicting rainfall-induced landslides in southwestern China [121], 
demonstrating enhanced prediction accuracy relative to ANN and linear regression 
models, it was attributed to the temporal memory characteristic of LSTM. Studies by 
Goetz et al. [122] integrated physical and empirical modeling techniques, discovering 
that ensemble-based methods, especially Gradient Boost Machine and Random 
Forests, outperformed simpler statistical models in effectively representing 
complexities’ spatial dependencies in landslide susceptibility mapping due to their 
resilience to overfitting and ability to capture complex interactions. Similar 
comparison by utilizing Frequency Ratio, Support Vector Machine, Logistic 
Regression, and Random Forest, also confirmed that the ensemble-based models 
exhibited enhanced predictive accuracy and resilience [123].  

In summary, the integration of machine learning with the Frequency Ratio 
Method presents a promising hybrid framework that merges the interpretability of 
statistical techniques with the predictive capabilities of machine learning [124]. This 
research employs a dual approach for landslide susceptibility mapping (LSM) in 
Baltimore County, Maryland, utilizing frequency ratio modeling (FRM) to create an 
initial landslide susceptibility index (LSI) and applying four machine learning 
classifiers—logistic regression (LR), support vector machine (SVM), random forest 
(RF), and gradient boosting machine (GBM)—to enhance spatial and 
temporal predictions. A dataset consisting of 12 parameters contributing to landslides 
(e.g., elevation, slope, NDVI, SPI, TWI, soil texture, and aspect) along with balanced 
landslide and non-landslide points was utilized. The models were assessed using 
performance metrics      such as using Accuracy, Precision, Recall, F1 Score, and Area 
Under the Curve (AUC), with SVM and RF attaining the maximum classification 
accuracy. These results offer significant insights for incorporating predictive modeling 
into early warning systems, disaster management, and sustainable land-use planning. 

 

7.3 Materials and Methods 
7.3.1 Study Area 

This study focuses on Baltimore County, Maryland, as the selected area for landslide 
susceptibility mapping. Located in the north-central part of the state, Baltimore 
County was chosen because of its varied landscape, diverse environmental conditions, 
and past occurrences of landslides linked to heavy rainfall. The county spans about 
682 square miles and includes a mix of urban, suburban, agricultural, and forested 
areas. This variety makes it a suitable location for developing a machine learning 
model that can account for different physical and land use conditions. Although there 
have been no recorded landslides in the county since 2014, the natural terrain and 
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weather patterns suggest that certain areas remain at risk. As a result, Baltimore 
County offers a valuable opportunity to test and improve prediction tools that can later 
be applied in other parts of Maryland and similar regions with transportation systems 
exposed to slope instability. Geologically, the county lies at the boundary between the 
Piedmont Plateau and the Atlantic Coastal Plain, creating a mix of hills, slopes, and 
flatlands. This setting results in a wide range of soil types, rock formations, and slope 
angles, all of which affect how water moves through the ground and how stable the 
slopes are. The county has a humid subtropical climate, with steady rainfall 
throughout the year and occasional storms. While recent landslide activity has been 
limited, the combination of rainfall and complex terrain still creates conditions where 
slope failures could occur, especially during extreme weather. This makes Baltimore 
County an important area for improving early-warning systems and supporting safer 
transportation planning. 
 

7.3.2 Data sources 
This research employed landslide data from three principal sources in Maryland: the 
Maryland State Highway Administration (SHA), the U.S. Geological Survey (USGS), 
and the National Aeronautics and Space Administration (NASA). These datasets 
collectively recorded 129 landslides in Maryland from 2008 to 2019 (Fig. 7.1). The 
datasets offer spatial and spatiotemporal information used for spatial and temporal 
analysis, respectively. 

 
Figure 7.1: Recorded landslide location across Maryland and the selected case study 
area, Baltimore County. 
 

According to the dataset, Baltimore County has the second highest number of 
landslide events in Maryland, with 23 out of 129, accounting for approximately 18.37 
percent of all occurrences shown in Fig. 7.2. Due to the county’s large population and 
extensive built environment, careful evaluation and proactive management of 
landslide hazards are critical to minimize potential impacts on public safety and 
critical infrastructure. 
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Figure 7.2: Distribution of Landslides by County in Maryland.      
  
 

7.3.3 Methodology 
The conceptual architecture of the intelligent landslide detection and early warning 
system is shown in Figure 7.3. This framework outlines the essential components and 
processes that drive this research. The steps in this framework consist of the following: 
(1) gathering the landslide inventory for the study area, (2) selecting landslide 
causative environmental factors, and reclassifying the generated input; (3) Frequency 
Ratio Analysis: analyzing each factor using the frequency ratio (FR) method to 
determine its FR values, which are then used to calculate the Landslide Susceptibility 
Index (LSI). An initial susceptibility map is created based on this index, designating 
non-landslide areas as 0 and potential landslide areas as 1; (4) creation of the output 
dataset, which is used to develop prediction models using four machine learning 
algorithms: Support Vector Machine (SVM), Random Forest (RF), Logistic Regression 
(LR), and Gradient Boosting Machine (GBM); and (5) integration of the best-
performing predictive model into an early warning signal system. 

7.3.3.1 Data Preparation 
Spatial factors provided in a polygon shapefile format were extracted from geospatial 
databases, with the Digital Elevation Model (DEM) serving as the foundational 
dataset. The DEM captures the Earth's bare terrain. Causative factors, such as slope, 
aspect, plan curvature, etc., were derived from calculations from the elevation data. 
All DEM-based variables used in this study maintain a spatial resolution of 10 meters. 
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Figure 7.3: Design Architecture of an Intelligent Landslide Detection and Alert 
System. 
 
Twelve causative factors were chosen for Landslide Susceptibility Mapping, shown in 
Table 1. These selected causative factors are related to geology, hydrology, and land 
cover [108, 125]. Additionally, a comprehensive soil map was obtained from the 
Maryland Soil Survey Geographic Database (SSURGO) for the extraction of soil 
content variables. The highway polygon was devoid of soil data; thus, an estimate was 
derived using the average values from adjacent soil polygons.  
 

Table 7.1: Landslide Causative Factors 

Type of factors Causative factors 

Topography 

Slope, aspect, elevation, plan curvature, 

soil content (sand, clay, and silt), and 

field capacity 

Hydrology 
Stream power index (SPI), topographic 

wetness index (TWI) 

Land use/cover 
Normalized Difference Vegetation 

Index (NDVI) 

  

7.3.3.2 Landslide Susceptibility Computation 
Landslide susceptibility indicates the likelihood of landslides occurring under certain 
environmental and geological factors. It is an essential tool for identifying high-risk 
locations and mitigating landslide hazards. In previous investigations, various 
assessment methodologies such as physics-based, knowledge-based, and data-driven 
techniques were examined. Based on the several benefits of data-     driven approach 
from previous literature, a hybrid approach is adopted in this study. The Frequency 
Ratio (FR) approach, known for its simplicity and demonstrated efficacy in prior 
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research, is integrated with machine learning (ML) methods to enhance accuracy 
forecasting and identify nonlinear correlations. The model included twelve causal 
factors, comprising topographic (e.g., slope, elevation), hydrological (e.g., stream 
power index), and land cover (e.g., NDVI) variables. The landslide susceptibility map, 
created with ArcGIS Pro, is a high-resolution resource for hazard evaluation and 
infrastructure design in Baltimore County. Figure 7.4 illustrates the spatial and 
temporal raster layers of all input parameters. These parameters were extracted and 
included in the FR modeling framework to facilitate accurate landslide prediction.  

7.3.3.3 Frequency Ratio Method 
The Frequency Ratio Method (FRM) is a widely used bivariate statistical technique in 
landslide susceptibility modeling, valued for its simplicity, interpretability, and 
efficiency in determining the influence of causative environmental factors. It evaluates 
the spatial correlation between landslide occurrences and the attribute classes 
associated with various geo-environmental factors by analyzing their spatial frequency 
distributions.  

Landslide occurrences are generally affected by nonlinear and intricate 
interactions with topography and environmental variables; thus, the FRM provides a 
quantitative method to quantify the contribution of each factor class to landslide 
susceptibility. To use the approach, each causal factor is initially segmented into 
classes to effectively capture internal data variance. These intervals serve as the 
foundation for developing grid-based factor layers, whereupon spatial overlays with 
landslide inventory data facilitate pixel-level frequency analysis. The frequency ratio 
(FR) for each class i of a factor is calculated using the following equation: 

FRi = Xi / X 

          Yi / Y                                                                            (7.1) 

where: 
Xi is the number of landslide pixels within the i-th class of the factor, 
X is the total number of landslide pixels in the study area, 
Yi is the number of pixels in the i-th class of the factor, 
Y is the total number of pixels in the study area. 
Equation 7.1 defines the ratio of the percentage of landslide occurrences within a 
particular class to the percentage of area that the class occupies in the overall study 
area. When the value of FRi exceeds 1, this signifies that a landslide is likely in that 
class, indicating a positive correlation. An FRi value below 1 indicates that the factor 
class is unfavorable for landslide occurrence and adversely affects susceptibility. 
Upon computing the frequency ratios for all classes across all causative factors, the 
Landslide Susceptibility Index (LSI) can be determined for each pixel by aggregating 
the corresponding FR values using equation 7.2. 

                                                                                         (7.2) 

FR(j) represents the frequency ratio for the j-th factor at a given pixel, while m signifies 
the total number of causative factors. Higher LSI value indicates an increased 
likelihood of landslide occurrence, and a lower value indicates a reduced likelihood of  
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Figure 7.4: Causative factors of Landslides (a) Elevation; (b) Slope; (c) Aspect; 

(d) Plan profile; (e) NDVI; (f) Sand content; (g) Clay content; (h) Silt content; 

(i) SPI; (j) TWI; (k) Field Capacity; (l) Soil texture. 
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landslide occurrence. A landslide susceptibility map is then generated by classifying 
the LSI values into susceptibility zones ranging from very low to very high.  

 

Table 7.2: Frequency ratios of causative factors. 

Factor Class Class pixels 
Class pixels 

(%) 
Landslide 

pixels 
Landslide 
pixels (%) 

FR 

Elevation -0.77 ~ 58.15 3168245 19.73 13 56.52 2.87 

  58.15 ~ 117.07 2842506 17.70 4 17.39 0.98 

  117.07 ~ 175.99 5780526 35.99 6 26.09 0.72 

  175.99 ~ 234.91 3758498 23.40 0 0.00 0.00 

  234.91 ~ 294.79 510624 3.18 0 0.00 0.00 

    16060399   23   4.57 

              

Slope 0 ~5° 9763489 60.89 14 60.87 1.00 

  5 ~ 15° 5629879 35.11 9 39.13 1.11 

  15 ~ 25° 584349 3.64 0 0.00 0.00 

  25 ~ 35° 52459 0.33 0 0.00 0.00 

  35 ~ 90.0° 3629 0.02 0 0.00 0.00 

    16033805       2.11 

              

Aspect 135 ~ 225° 4526207 29.05 7 30.43 1.05 

  112.5 ~ 135° 1121622 7.20 1 4.35 0.60 

  225 ~ 292.5° 4643679 29.80 5 21.74 0.73 

  22.5 ~ 67.5° 3500251 22.47 8 34.78 1.55 

  337.5 ~ 22.5° 1788668 11.48 2 8.70 0.76 

    15580427       4.69 

              

Plan 30 ~ -72.35 21 0.0 0 0.00 0.0 

  10 ~ -30 430 0.00 0 0.00 0.0 

  -10 ~ -10 16059021 99.994 23 100.00 1.0 

  -30 ~ -10 554 0.0034 0 0.00 0.0 

  -49.14 ~ -30 9 0.00006 0 0.00 0.0 

    16060035       1.0 
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Table 7.2: Frequency ratios of causative factors (cont.). 

Factor Class Class pixels 
Class pixels 

(%) 
Landslide 

pixels 
Landslide 
pixels (%) 

FR 

              

Sand 
content 

0 ~ 18.51% 118810 1.84 0 0.00 0.00 

  18.51 ~ 37.02% 922153 14.31 0 0.00 0.00 

  37.02 ~ 55.53% 6443451 99.99 3 75.00 0.75 

  55.53 ~ 74.04% 6953264 107.90 16 400.00 3.71 

  74.05 ~ 83.33% 1622334 25.18 4 100.00 3.97 

    16060012       8.43 

Clay 
content 

0 ~ 6.89% 1603496 9.98 2 8.70 0.87 

  6.89 ~ 13.78% 1426899 8.88 5 21.74 2.45 

  13.78 ~ 20.67% 10408680 64.81 16 69.57 1.07 

  20.67 ~ 24.11% 550014 3.42 0 0.00 0.00 

  24.11 ~ 31% 2070923 12.89 0 0.00 0.00 

    16060012       4.39 

Silt 
content 

0 ~ 17% 1475080 9.18 2 8.70 0.95 

  17 ~ 34% 710334 4.42 0 0.00 0.00 

  34 ~ 51% 8643837 53.82 3 13.04 0.24 

  51 ~ 68% 5042793 31.40 16 69.57 2.22 

  68 ~ 76.5% 187968 1.17 2 8.70 7.43 

    16060012       10.83 

NDVI 0.6 ~ 1.0 4298448 26.76 0 0.00 0.00 

  0.4 ~ 0.6 7233883 45.04 3 13.04 0.29 

  0.2 ~ 0.4 2933074 18.26 7 30.43 1.67 

  0.0 ~ -0.2 1059594 6.60 13 56.52 8.57 

  -1.0 ~ -0.0 536208 3.34 0 0.00 0.00 

    16061207       10.52 

Texture 1 760808 4.74 0 0.00 0.00 

  2 10214131 63.60 6 26.09 0.41 

  3 4509018 28.08 17 73.91 2.63 

  4 24378 0.15 0 0.00 0.00 

  5 551677 3.44 0 0.00 0.00 

    16060012       3.04 

FC 0.26 ~ 0.33% 1356270 8.45 2 8.70 1.03 

  0.34 ~ 0.41% 829108 5.16 0 0.00 0.00 

  0.42 ~ 0.48% 6443920 40.12 3 13.04 0.33 

  0.49 ~ 0.55% 5970541 37.18 13 56.52 1.52 

  0.56 ~ 0.63% 1460173 9.09 5 21.74 2.39 

    16060012     0.00 5.27 
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Table 7.2: Frequency ratios of causative factors (cont.). 

Factor Class Class pixels 
Class pixels 

(%) 
Landslide 

pixels 
Landslide 
pixels (%) 

FR 

SPI 0 ~ 4.0e5 16033786 100.00 23 100.00 1.00 

  4.0 ~ 8.0e5 324 0.00 0 0.00 0.00 

  8.0 ~ 1.2e6 39 0.00 0 0.00 0.00 

  1.2 ~ 1.6e6 4 0.00 0 0.00 0.00 

  1.6 ~ 2.0e6 5 0.00 0 0.00 0.00 

    16034158       1 

TWI -0.47 ~ 17.06 13365903 99.89 23 100.00 1.00 

  17.06 ~ 35.17 14901 0.11 0 0.00 0.00 

  35.17 ~ 53.29 28 0.00 0 0.00 0.00 

  53.29 ~ 71.41 1 0.00 0 0.00 0.00 

   71.41 ~ 87.88 3 0.00 0 0.00 0.00 

    13380836       1.00 

 

Table 7.2 presents the frequency ratio (FR) values that quantify the correlation 
between various causative factors and landslide occurrences in Baltimore County. An 
FR value greater than 1 indicates a strong positive correlation between a specific class 
of a factor and the likelihood of landslides, while an FR below 1 implies a weak or 
negligible association. For instance, certain aspect classes—particularly between 22.5° 
and 67.5°—showed a notably high FR of 1.55, indicating a strong susceptibility to 
landslides in that directional range. Similarly, for soil-related parameters, sand 
content ranging from 55.53% to 74.04% had an FR of 1.61, and silt content between 
51% and 68% had an FR of 2.22, both suggesting a significant contribution to landslide 
potential.  
 

Upon calculation of the Frequency Ratio (FR) values for each causative factors 
classes, the Landslide Susceptibility Index (LSI) was computed by using the 
expression in Equation (7.2). The resulting LSI values were classified into five 
susceptibility levels ranging from very low, low, moderate, high, and very high, using 
equal interval classification in ArcGIS. The final Landslide Susceptibility Map (LSM), 
presented in Figure 7.5, highlights areas with varying degrees of landslide risk across 
Baltimore County. To strengthen the robustness of the training dataset, 
potential landslide points were generated from regions classified within the high and 
very high susceptibility zones of the LSM, while non-landslide points were generated 
within the very low and low susceptibility zones. These synthesized samples 
enhance the initial landslide inventory, facilitating a more proportionate dataset for 
model training. This practice is comparable with emerging trends in literature [126, 
127]. 
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Figure 7.5: LSM generated by Frequency Ratio Method. 

 

Table 7.3 highlights the relationship of susceptibility zones with their associated 
landslide probabilities, serving as an essential input for further machine learning-
based landslide prediction. 
 
Table 7.3. Relationship between susceptibility classes and landslide probability. 

Susceptibility Class Probability of Landslide 

Very Low 0-20% 

Low 20-40% 

Medium 40-60% 

High 60-80% 

Very High 80-100% 
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7.3.4.4 Machine Learning Method 
Recent years have seen a significant increase in the adaptation of machine learning 
(ML) algorithms in landslide susceptibility modeling, largely due to its superiority in 
accurately analyzing vast amounts of temporal and spatial data, accuracy over 
conventional techniques in intricate modeling, and nonlinear relationships. 
Additionally, its ability to automatically identify patterns in high-dimensional datasets 
and enhance prediction accuracy in contrast to deterministic or knowledge-driven 
systems. Machine learning models such as Random Forest, Support Vector Machine, 
and Gradient Boosting Machine, which identify subtle interdependence between 
landslide occurrence and causative causes, have been used to make informed data-
driven decision-making for hazard risk mitigation. In this research, a high-resolution 
Landslide Susceptibility Map for Baltimore County was created by integrating 
machine learning models with FR-based LSI values. 
 

This landslide prediction research is approached as a binary classification 
model. The study area was categorized as either a potential landslide zone or a non-
landslide-prone zone based on the correlation between landslide susceptibility and the 
selected causative factors. To provide accurate predictions, four different machine 
learning (ML) methods were used: logistic regression (LR), support vector machine 
(SVM), random forest (RF), and gradient boosting machine (GBM). Logistic 
Regression is a linear model that uses a logistic function to predict the likelihood of 
class membership, making it appropriate for datasets with linear input-output 
relationships. In scenarios with well-separated classes, the Support Vector Machine 
creates a hyperplane that maximizes the margin between classes in a high-
dimensional feature space, resulting in excellent performance. Random Forest, an 
ensemble of decision trees trained on random subsets of data and characteristics, 
enhances classification accuracy and robustness by aggregating predictions from 
numerous trees. Gradient Boosting Machine, another ensemble method, constructs 
models progressively, with each iteration attempting to rectify the flaws of the 
preceding one, resulting in excellent predicted accuracy, particularly on complex 
datasets. These models were chosen due to their demonstrated reliability and ease of 
interpretation in extensive prior geohazard research. 
 
Step 1 Data preparation 
A total of 292 landslides were used in the database created as input for ML models. 
The model for LSM considers twelve landslides causative factors shown in Table 7.1. 
To train a ML model to recognize the pattern of features for various classes in a binary 
classification task, positive and negative sample features are required. As a result, the 
study area is sampled with 146 non-landslides labeled as 0 and 146 existing and 
potential landslides labeled as 1 respectively. A section of the input database used is 
as shown in Figure 7.6. 
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Figure 7.6: Machine Learning Input database. 

 

Step 2: Data Preprocessing 
The first step to training a machine learning (ML) model is training of a predetermined 
dataset. After this first training phase, data not used during training is used to evaluate 
the model's predictive capabilities. To thoroughly assess the ML model's 
generalizability, common practice is to separate the original dataset into separate 
training and testing subsets. A 70%/30% split was used in this study, with 70% of the 
data used for training the model and the remaining 30% used for testing and 
evaluating the predicted accuracy of the model. 
 
Step 3: Model Evaluation 
Evaluating the performance of machine learning (ML) models is essential for 
determining how well a model adapts to new data and makes predictions. These 
assessment matrices help to determine overall accuracy and how well the model 
recognizes positive cases and reduces false alarms.  
 
Five evaluation metrics: Accuracy, Precision, Recall, F1 Score, and AUC Score, were 
used to evaluate the effectiveness of machine learning models for landslide 
susceptibility classification. The metrics obtained from the confusion matrix offer a 
thorough insight into how successful the model accurately predicts potential landslide 
areas and non-landslide areas [128]. Accuracy provides a comprehensive performance 
assessment, whereas Precision and Recall emphasize the correctness and 
completeness of positive predictions. The F1 Score establishes a balance between these 
two, particularly when decisions are required. The AUC Score assesses model efficacy 
across all potential categorization levels utilizing the ROC curve. Table 7.4 summarizes 
the evaluation metrics, and their corresponding formulas used for this study. 
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Table 7.4: Performance Metrics for Binary Classification Models. 

 

Where: 
● TP (True Positive): Model correctly predicts the potential landslide (positive) 

class. 
● TN (True Negative): Model correctly predicts the non-landslide (negative) 

class. 
● FP (False Positive): Model incorrectly predicts the potential landslide (positive) 

class. 
● FN (False Negative): Model incorrectly predicts the non-landslide (negative) 

class. 
● TPR: True Positive Rate 
● FPR: False Positive Rate 

 
7.4 Preliminary Results 

To evaluate the prediction performance of the machine learning models, each method 
was trained and tested on a standardized dataset with a five-fold cross-validation 
strategy. The preliminary findings show how well each model distinguishes between 
potential landslide and non-landslide areas using the given environmental factors. 
Key performance measures including accuracy, precision, recall, F1 score, and AUC 
were calculated to provide a thorough evaluation. The results of these measures 
provide insights into each model's strengths and limitations, as well as a basis for 
comparison when determining the best technique for predicting landslide 
vulnerability.  

Table 7.5 compares the model performance of the four algorithms and finds 
that SVM outperforms the other three algorithms in terms of classification 
performance. The SVM technique has the highest AUC value of the four models, at 
0.99, indicating excellent accuracy in categorizing landslides and non-landslides at 
various probability thresholds. As a result, the trained SVM model will be used to 
forecast the likelihood of landslides occurring across the entire study area. 
Specifically, twelve landslide causative factors are assigned to each pixel in the study 
area, and the trained model is used to estimate the likelihood of a landslide for each 
one.  
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Table 7.5: Model classification across ML models 
Model Accuracy Precision Recall F1 AUC 

LR 0.94 0.95 0.94 0.94 0.99 
SVM 0.98 0.98 0.98 0.98 0.99 
RF 0.98 0.98 0.98 0.98 0.98 

GBM 0.95 0.95 0.95 0.95 0.98 
Avg. 0.95 0.96 0.95 0.96 0.98 

 
Figure 7.6 displays confusion matrices for all four models, illustrating the distribution 
of true positives, true negatives, false positives, and false negatives. As observed, SVM 
and RF produced higher true positive rates with fewer incorrect classifications. 

 

 
Figure 7.6: Confusion matrices for (a) Support Vector Machine, (b) Random Forest, 
(c) Logistic Regression, and (d) Gradient Boosting Machine showing model 
predictions versus actual class labels. 
 
The Receiver Operating Characteristic (ROC) curves for the four models are illustrated 
in Figure 7.7. These plots clearly show that all models perform well above the diagonal 
baseline, with SVM and LR exhibiting near-perfect classification behavior, as 
indicated by their AUC scores (0.99). 
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Figure 7.7: ROC curves of the four ML models with AUC scores. SVM and LR show 

the best performance (AUC = 0.99). 
 

Figure 7.8 shows feature importance plots to help understand how each causative 
element affects model outcomes. These plots show that, across all four machine 
learning models, sand content and NDVI were consistently the most influential 
parameters influencing landslide susceptibility. Both characteristics had high 
significance scores in Gradient Boosting and Random Forest models, demonstrating 
significant predictive value in ensemble-based learning. Similarly, the SVM and 
Logistic Regression models awarded significant coefficients (positive or negative) to 
these variables, emphasizing their importance. While sand content was positively 
related to landslide risk across models, implying that places with high sand content 
are more prone to landslides, NDVI was generally negative, showing that vegetated 
areas are less susceptible. Other features such as Field Capacity, Silt content, and Clay 
content were moderately important in tree-based models (RF, GBM), while their 
influence was less obvious in linear models (SVM, LR). Topographic variables such as 
slope, aspect, and TWI exhibited relatively low relevance across all models, indicating 
a restricted role in this dataset and location. 
 
 

7.5 Conclusions  
This study demonstrates the feasibility of employing machine learning models for 
landslide susceptibility mapping by providing an effective framework for binary 
classification based on environmental variables. Among the four models examined, 
SVM demonstrated exceptionally excellent prediction capability. The comparison of 
important performance indicators such as accuracy, precision, recall, F1 score, and 
AUC reveals each model's strengths and limitations. The study adds to the increasing 
body of geospatial predictive analytics and establishes the framework for 
incorporating advanced machine learning algorithms into operational early warning 
systems. With additional improvements such as ground-truth validation and an alert 
system, the suggested methodology has the potential to improve disaster 
preparedness and reduce landslide risks. 
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Figure 7.8. Feature importance across ML models.  
 

7.6 Future Work 
Future work will focus on creating a thorough Landslide Susceptibility Map (LSM) 
with the Support Vector Machine (SVM) model, which was found as one of the best-
performing classifiers in this study. The LSM will be integrated into a real-time 
landslide early warning system that uses spatial and temporal analytics to anticipate 
the chance of landslides occurring at specific locations and times. This technology will 
help with proactive risk mitigation by sending timely notifications to individuals. 
Furthermore, the model's predictive capabilities will be evaluated by ground-truthing 
activities, which will involve checking predicted landslide-prone locations with field 
observations and existing records in order to increase reliability and operational 
readiness. These improvements are intended to bridge the gap between susceptibility 
modeling and actionable geohazard management systems. 
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Chapter 8  

8 Summaries 
 

8.1 Conclusions 
This report summarizes work completed for the phase 2 of the project. They include:  

 Review of geotechnical asset management (GAM) framework. current status 
and recommendations for implementing in Maryland.  

 Updates on field and lab investigation with geotechnical test results. 

 Applications of LiDAR data in detection and characterization of landslides in 
Prince George’s County. 

 Test soil moisture mapping procedures using Sentinel I data with ML 
approaches with a case study in Prince George’s County Maryland. 

 Numerical model development for quantitative landslide risk assessment, 
aiming at establishing a robust, interpretable, and quantitatively grounded 
framework for Landslide Risk Assessment (LRA) by integrating physics-
based numerical modeling with machine learning approaches 

 Integrating GIS-Based Susceptibility Mapping and Machine Learning 
framework for Landslide Prediction and Early Warning with a case study in 
in in Baltimore County, Maryland.    

They are parts of the multi-phase project, aiming development of landslides risk 
assessment and early warning smart system. The Phases 1and 2 work provides a 
strong foundation for next phase.  
 

8.2 Future Work 
The phase 3 will expand site investigation with additional survey and soil sampling 
as well as inventory of landslides along railroad. Additional laboratory tests will be 
carried out. LiDAR and InSAR images processing and interpretation will be further 
enhanced by integrating with other photo imaging approaches and site image 
acquisition. Integrated soil moisture mapping and physics based slope instability 
risk assessment will be further developed. Multiple scenarios will be simulated to 
gain a better understanding controlling and triggering factors, which will be feed into 
the machine learning model to assess risk assessment of slope failure. Protocols for 
real time monitoring network will be developed and tested at selected sites in 
consultation with agencies and organizations (such as DOT SHA, Federal Railroad 
Administration) and in cooperation with MSU AI/ML program, CMU and other 
partners within UTC Safety 21 program and beyond.    
 
 
 
 
 

  



- 106 - 
 

 

Chapter 9  

9. Appendices 
 

Appendix A  

A: Research Products for this 
Project 

 
A.1 Conference Publications  

1. Hosseinizadeh, A., Z. Sheng, Y. Liu. The Impact of Climate Change on Soil Water 
Content with Considering Machine-Learning Methods as a Downscaling Tool, EWRI 
World Environmental and Water Congress, Anchorage Alaska, May 18-21, 2025 
[Abstract, Presentation].  
2. Hosseinizadeh, A., A. Olude, K. Nieto, S. Qian, B. Gui, Y. Liu, J. Li, Z. Sheng, O. 
Owolabi, Samuel Fedipe. Enhancing Rainfall-Induced Landslide Risk Mapping  & 
determining the landslide location using LiDAR data for improving transportation 
safety. The USDOT National Safety Summit of University Transportation Centers. 
March 27, 2025 [Poster presentation].   
3. Sheng Z.  Improve Highway Safety by Reducing the Risks of Landslides with Smart 
Alert & Warning Systems. NSF CyberTraining in Disaster Management Webinar, 
March 19, 2025. 
4. Sheng, Z., Liu, Y., Owolabi, O. Research Highlights: Integrated hydrological model 
and GIS-based model to map rainfall-induced landslide risk, UTC Safety 21, CMU, 
Faculty Seminar, February 27, 2025. 
5. Hosseinizadeh, A., Isola, F., Sheng, Z. Liu, Y., Owolabi, O., Lamsal, S., Olude. A., 
Walrath, B.J., Nur, N.N. Integrated Hydrological Model and GIS-based Model to Map 
Landslides Risks within the Anacostia Watershed of Maryland, the 104th 
Transportation Research Board annual meeting, Washington DC, January 5-9, 2025 
[Paper, oral presentation]. 
6. Hosseinizadeh, A., Z. Sheng, 2024. Machine Learning-Based Downscaling of GCM 
Precipitation Data: A Case Study of the Anacostia Watershed, Maryland, AGU Fall 
Meeting 2024, Washington DC, December 9-13 [Poster Presentation].  
7. Atieh Hosseinizadeh, Adebayo Olude, Sean Qian, Bin Gui, Yi Liu, Jiang Li, Zhuping 
Sheng, Oludare Owolabi, Samuel Fadipe. Integrated Hydrological Model and GIS 
based Model to Map Landslides Risks within the Anacostia Watershed of Maryland 
for improvement of transportation safety, National University Transportation Center 
–Safety 21 Deployment Partners Consortium Symposium, November 14, 2024, 
Pittsburgh, PA [Poster presentation].   
8. Samuel Fadipe, Adebayo Olude, Sunil Lamsal, Atieh Hosseinizadeh, Yi Liu, Zhuping 
Sheng, Oludare Owolabi, Sean Qian, Benjamin Walrath. Prediction of Landslides 
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Risks to Improve Highway Safety Using TRIGRS Approach, National University 
Transportation Center –Safety 21 Deployment Partners Consortium Symposium, 
November 14, 2024, Pittsburgh, PA [Poster presentation].   
9. Adebayo Olude, Katherine Nieto, Ahmir Muley, Oludare Owolabi, Atieh 
Hosseinizadeh, Yi Liu, Zhuping Sheng, Sunil Lamsal, Samuel Fadipe. Identifying and 
Comparing Potential Slope Failures Using Remote Sensing Techniques: LiDAR and 
InSAR, National University Transportation Center –Safety 21 Deployment Partners 
Consortium Symposium, November 14, 2024, Pittsburgh, PA [Poster presentation].   
10. Hosseinizadeh, A., A. Olude, K. Nieto, S. Qian, B. Gui, Y. Liu, J. Li, Z. Sheng, O. 
Owolabi, S. Fadipe. Precipitation threshold for triggering landslides & detecting 
landslides using LiDAR and InSAR data for enhancement of transportation system 
safety, The Inaugural USDOT Future of Transportation Summit, Washington, DC, 
August 13-15, 2024 [Poster Presentation]. 
 

 

A.2 Datasets  
 
A.2.1 Appendices for Chapter 4 

 
Appendix 4A: Data and Data Source 
 

S/No Item Data Source/Download Link 

1. DEM Data Download https://doitdataservices.maryland.gov/s/N9xGBYPKq4QSZNq 

 
 
 
 
Appendix 4B: Prince George’s LiDAR Maps 

 

4B1: Prince George’s DEM 

 

https://doitdataservices.maryland.gov/s/N9xGBYPKq4QSZNq
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4B2: Prince George’s Processed DEM 

 

4B3: DEMs of Difference (DoD) maps 

 
 

 

 
Appendix 4C: Generated Risk Map  
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Appendix 4D: Result validation: Detected sample probable landslide sites overlaid on 
Google earth for visualization 
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A.2.2 GIS coverages for Historical Landslides 
 

Table C2.2: Merged landslides (updated) 

File Name Detail Format Link 

Merge_landslides 

Including 
landslide 

inventories 
collected from 

SHA, USGS 
website, and 

NASA website 

.Shp 

merged data 
from SHA 

information, 
USGS, and NASA 

 

 

A.3  Research Symposium  
1. 2025 Summer Research Symposium: Improve Highway Safety by Reducing 

the Risks of Landslides with Smart Warning Systems, July 23, 2025. 
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