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Chapter 1

1 Introduction

Geologic hazards including slope failures, landslides, mudflows, debris flows, etc. and
hydrological hazards related to floods and stormwater surge can be destructive to
transportation infrastructure and threaten property and human life along the
highway, railroads and roads. Landslides alone cause thousands of deaths and many
billions of dollars in damage every year. Therefore, there is a great need in advancing
our knowledge in slope instability and failure risks and developing technologies in
detecting and monitoring, and preventing landslides, in turn sustaining the safety of
transportation infrastructure and system operations in a changing environment [1]

As a member of the USDOT National University Transportation Center (UTC)
— Safety 21 program led by Carnegie Mellon University, Morgan State University team
proposes a multi-phase interdisciplinary project focusing on the safety of
transportation infrastructure systems by preventing geohazards, specifically slope
failure and landslides and minimizing impacts of geohazard along the highway,
railroads, and roads. This project will employ an integrated approach of geotechnical
and AI/Machine Learning methods for assessing conditions of geotechnical assets,
such as cut slopes and embankment of the DOT/SHA and delineating landslides and
high-risk areas [1].

This report summaries research findings of Phase 2 of the project titled
Improve Highway Safety by Reducing the Risks of Landslides, sponsored by National
UTC - Safety 21 program. The report is organized in the following order. In the
introduction section we will provide a brief background about geological hazards and
objectives of the research project. We follow with geotechnical asset management and
current status (Chapter 2). The updates on field and lab investigation were provided
in Chapter 3. Applications of LiDAR data in detection and characterization of
landslides in Prince George’s County were discussed in Chapter 4. To better
understanding the roles of precipitation in triggering landslides soil moisture
mapping procedures using Sentinel I data with ML approaches were proposed and
tested with a case study in Prince George’s County Maryland (Chapter 5). The
numerical model development for quantitative landslide risk assessment was
discussed in Chapter 6, aiming at establishing a robust, interpretable, and
quantitatively grounded framework for Landslide Risk Assessment (LRA) by
integrating physics-based numerical modeling with machine learning approaches. At
the last integrating GIS-Based susceptibility mapping and machine learning
framework for landslide prediction and early warning in in Baltimore County,
Maryland was introduced.



1.1 Geological hazards

Geologic hazards, such as landslides, land subsidence and earth fissures, and
earthquakes, etc. and hydrological hazards, such as floods and stormwater surge
owing to extreme weather events (tropical storms, hurricanes, tornadoes, etc.),
compounding with sea-level rising due to global warming and climate change, have
caused great impacts on transportation infrastructure and traffic, in turn resulting in
great economic damages. Landslides are among the most devastating and costly
natural disasters, causing thousands of deaths and many billions of dollars in damages
annually [2—4].

The majority of landslides are precipitation-triggered [5] even though they
occur over a broad range of lithological, climatological, and hydrological conditions,
and land use types [6]. However, for most precipitation-triggered landslides, other
complex atmospheric, surface, and subsurface conditions also play a role in slope
failure by increasing the effects of downgradient forces and/or reducing the strength
of the underlying slope soils/rocks [7, 8]. The effect of precipitation from these
confounding factors is thus essential both for enhancing fundamental understanding
of landslides and for evaluating the impact of climate change on slope failure.

1.2 Updates on landslides detection and warning smart

system framework

We noted that it is common practice in many regions around the world to create an
inventory of landslide, debris flow and/or slope failure occurrences. In addition, many
studies have attempted to quantify the likelihood of the occurrence of landslides or
identify areas that are susceptible to slope failures or instability, e.g., landsides
susceptibility (LS) analysis based on GIS models and machine learning models [9].
MDOT/SHA manages an extensive portfolio of geotechnical assets, including slopes,
embankments, and ground modifications, along the State of Maryland’s roadway
infrastructure. Its geotechnical asset management (GAM) plan establishes MDOT
SHA’s asset class strategy with a robust plan to guide infrastructure decisions;
optimize the total cost of ownership; and meet performance, reliability, and risk
objectives [10]. With MDOT/SHA sponsorship, MSU and Carnegie Mellon University
initiated a project for incorporating precipitation data into the geotechnical asset
management.

With additional support from the National UTC Safety 21 program, Morgan
State University team carried out a multi-phase (multi-year) project focusing on the
safety of transportation infrastructure systems by preventing geohazards, specifically
slope failure and landslides and minimizing impacts of geohazards. This project
employed an integrated approach of geotechnical and AI/Machine Learning methods
for assessing conditions of geotechnical assets, such as cut slopes and embankment of
the DOT/SHA and delineating landslides and high-risk areas. Figure 1.1 shows a
framework for landslides detection and monitoring smart system built on a GIS
platform.
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Figure 1.1: Framework for landslide risk assessment and monitoring smart system
(modified from [1]).

1.3 Objectives of the project (Phases 1 and 2)
This project is unique by integrating geotechnical and machine learning approaches
in assessing slope instability and risk of landslides and mapping high-risk areas along
highway, railroad and roadways. This project is built upon an ongoing project
sponsored by Maryland Department of Transportation/State Highway Administration
(MDOT/SHA).

The objectives (tasks) of the project include: (1) with AI/Machine Learning
approaches assess the risks of landslides based on soil/rock types, weather conditions,
mechanical properties of slope materials, and the status of existing retaining
structures along the selected highway sections, using Maryland as case studies, (2)
identify and map the high-risk areas based on controlling factors such as geometry
and mechanical properties of soil or rock, and triggering factors, including
gravitational and hydraulic forces, using available survey data, remote sensing and
LIDAR data and other factors like transportation modes, (3) design and test protocols
for real time monitoring at selected sites in consultation with DOT SHA staff, and (4)
recommend strategies for reducing the risks of landslides with real-time monitoring
for the high-risk areas, and improving the safety of the transportation infrastructure.
All the methods and strategies can be transferred to other states or regions with
similar geological conditions and engineering configurations [1]. Phase 1 of this
project covered task 1 and part of task 2. Phase 2 of this project continued to cover part
of Task 1 and Task 2.

1.4 Alignment with the USDOT strategic plan
The proposed project will address transportation safety, especially physical
infrastructure systems and roadway design, covering the following US DOT goals [1,
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11]:

. Update roadway design standards to protect vulnerable road users and vehicle
occupants.

. Use regulatory and policy tools to advance roadway safety to reduce fatalities
and injuries across modes.

. Support the adoption and maturation of safety management systems across
modes.

. Use data and data analytics to take proactive actions to address emerging safety

risks and support compliance.

The project will provide technical assistance to better identify, assess, and address
critical physical vulnerabilities.

. Incorporate physical protections in the standards for design of emerging
automated and connected systems and technologies, such as real-time sensing and
monitoring systems.

. Strengthen system response and recovery plans and protocols to minimize the
effects of system disruptions and hasten system recovery from the natural disasters.

. Promote guidelines on vulnerability assessments with enhancement of AI/ML
approaches.

The project will assess and mitigate the vulnerability of transportation infrastructure
to extreme weather conditions and natural disasters:

. Assess the vulnerability of assets and identify novel hazards mitigation
strategies.

. Enhance resilience throughout transportation planning and project
development processes by updating guidance and regulations.

. Conduct case studies and pilot projects to develop and evaluate new and
innovative adaptation and resiliency technologies, tools, and opportunities, such as
motion sensors and early warning systems.

This project will build research capacity in the critical area of designing resilient
infrastructure for geohazards and extreme weather conditions. It will also provide
educational opportunities for graduate and undergraduate students to gain knowledge
and experience in this important new area for resilient engineering. Thus, the project
will also build human capacity to address the challenge of geohazard adaptation and
mitigation related to transportation systems [1].



Chapter 2

2 Review of Geotechnical Asset
Management Frameworks for
Highway System

John Tanimola, Joshua Nash, Yi Liu, Zhuping Sheng, Oludare Owolabi

2.1 Introduction

Geotechnical Asset Management (GAM) applies strategic asset management
principles such as lifecycle planning, risk evaluation, and data-driven decision-making
to geotechnical assets including slopes, embankments, retaining walls, rockfall
mitigation systems, and subgrades [1]. National Cooperative Highway Research
Program (NCHRP) Report 903 defines GAM as a risk-based approach designed to
extend traditional asset management frameworks, incorporating tools like GAM
Planner and lifecycle-cost templates to support decision-making on geotechnical
infrastructure [12]. Urban resilience hinges not only on structures like roads and
bridges but critically on the stability of geotechnical assets. These earthworks often lie
hidden beneath developed areas and can cause severe service disruptions and safety
hazards upon failure [12]. As climate change amplifies the frequency and intensity of
weather extreme events such as heavy rainfall and flooding, the stress on slopes and
embankments increases, underscoring the essential role of GAM in ensuring urban
infrastructure remains robust and adaptable [13].

Urban regions like Maryland, face growing vulnerability to geohazards
including landslides, embankment failures, soil erosion, and slope instability driven
by aging infrastructure, changing climate patterns, and increasing human activities.
While transportation agencies have advanced in managing roads and bridges through
data-driven asset management, geotechnical assets such as retaining walls, cut slopes,
embankments, and subgrade systems have often been overlooked, treated largely as
unpredictable risk sites with high liability potential. The consequences of geotechnical
asset failures can include service disruptions, collateral damage to adjacent
infrastructure, and public safety threats [12].

The Maryland Department of Transportation’s Strategic Asset Management
Plan (SAMP) outlines a proactive, risk-based lifecycle approach for its multimodal
infrastructure, targeting long service lives and system reliability [14]. However, the
SAMP is missing targeted strategies for managing geotechnical components even as
these assets play a critical role in supporting pavements, bridges, culverts, and other
highway infrastructures [14]. This omission signifies a substantial gap in Maryland’s
ability to anticipate, assess, and mitigate geohazard risks effectively. To close this gap,



this study seeks to review established GAM frameworks adopted by different state
Departments of Transportation, assessing their applicability for Maryland’s
infrastructure management strategy.

2.2 Summary of geohazards prevalent in Maryland

Over the past two decades, Maryland has experienced numerous geohazard events
including landslides, sinkholes, slope failures, and major erosion that have directly
impacted highways, roads, and related transportation infrastructure. These events,
often triggered by extreme weather conditions or long-term geological instability, have
led to substantial repair costs, prolonged road closures, and safety risks for commuters
and freight movement. A review of documented incidents reveals that responses to
such geohazards have historically been reactive rather than preventive. For example,
landslides like the 2014 collapse on East 26th Street in Baltimore (Figure 2.1) or the
recurring slope failures in Allegany and Washington Counties were addressed only
after catastrophic events occurred, often resulting in emergency repairs and costly
detours. Similarly, sinkholes in Montgomery, Frederick, and Harford Counties have
emerged without structured risk prediction or targeted monitoring of vulnerable
corridors. These underscore the importance of ongoing geotechnical monitoring and
infrastructure resilience efforts in the state.
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Figure 2.1: Retaining Wall failure leading to a Collapsed One Lane of East 26th Street
in Baltimore after heavy rain on April 30, 2014. (Berlin, 2014
nationalgeographic.com; washingtonpost.com).

2.3 Geotechnical Assets in Transportation Systems

Geotechnical assets including cut slopes, embankments, retaining walls, subgrades,
and other earthworks play vital roles in sustaining highway systems. These assets
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support pavements and roadway alignments, control drainage, and prevent slope
failures and erosion that can interrupt travel and risk safety [1]. Unlike bridges or
pavements, geotechnical features have not always received structured asset-
management attention, even as failures cost agencies millions and pose liability and
operational risks [12].

Recent studies have advocated integrating geotechnical assets into formal Asset
Management Systems (AMS), using data-driven methods such as GIS-based
inventories, hazard scoring, risk-based prioritization, and predictive modeling to
address potential failures before they result in emergencies [1]. These tools provide
necessary visibility into hidden infrastructure vulnerabilities and align with modern
resilience objectives in transportation [1]. Effective management of geotechnical
assets requires a strategic, systematic approach encompassing operation,
maintenance, upgrades, and expansion throughout the asset lifecycle. This approach
emphasizes both business and engineering practices for resource allocation and
utilization, with the objective of better decision making based upon quality
information and well-defined objectives. According to the Alaska DoT and PF
technical report, geotechnical asset management processes can be summarized as
illustrated in Figure 2.2.

(Goals and policies T

s Forecasting

t wAsset inventory ) __—|models ] Budget,
—L—{Enrﬂitim assessment and periormance modeling ]‘* -
———"|allocation

l—:{.E'.Iternati'.rL's evaluation and program optimization  Je
“—w3hort and long-range plans, programs, and targets ]

Program implementation )

h—H:PerTurmance manitoring and feedback } 4

Figure 2.2: Geotechnical Asset Management Processes [15].

2.4 Geotechnical Asset Taxonomy

The asset taxonomy illustrated in Figure 2.3 is adapted from Alberta Transportation’s
GAM framework, which emphasizes structured -classification by asset type,
construction origin (natural or constructed), material composition (e.g., soil, rock,
concrete), and controlling behavior (e.g., erosion, slope instability, settlement). This
classification system allows for consistent inventory development and enables the
application of tailored deterioration models for each asset class. While Alberta’s
framework focuses heavily on slopes, embankments, and retaining walls, this
taxonomy has been expanded for Maryland's context to include unique features such
as subsidence-prone subgrades, tunnel sections, and geologically sensitive formations
like Cretaceous Outcrops and the Marlboro Clay Layer (Paleocene). These additions
reflect the localized geotechnical risks and support the development of a more
inclusive and responsive asset register in Maryland's highway infrastructure.



Independent Geotechnical
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Figure 2.3: Geotechnical Asset Taxonomy (Adapted from Alberta’s (Canada) GAM
Framework [16].

2.5 Review of existing GAM frameworks in the U.S.
Tables 2.1 and 2.2 below summarize the state of practice in GAM for ten U.S. states,
covering both formal DOT programs and pilot/research initiatives. Key dimensions
include asset covered, system/GIS integration, strengths, gaps, implementation
status, and sources of information.

Table 2.1: Overview of Geotechnical Asset Management Program in the United States

State Type of Asset Covered | System / GIS Integration | Ref.
e Rock Slopes e ArcGIS-based system | [15]
¢ Unstable Soil Slopes for inventory and
e Embankments visualization. Data is
e Retaining Walls stored in a GIS
e Material Sites geodatabase;

Alaska (borrow e ArcGIS Online “Story

pits/quarries) Map”  provides an
interactive GAM
overview. Asset
Inventory Interface and
Event Tracker are




accessible via GIS web

maps.
e Data is integrated into | [17]
MoDOT’s  enterprise
systems.
Slopes (Rock & Soil), | ° ’é‘he freld S a’? .(Vla
Engineered urveylgg) eeds into
MoDOT’s TMS and GIS
. . Embankments
Missouri N databases.
Retaining Walls .
e Asset locations are
Subgrades &
. GPS-tagged and
Subsidence .
viewable on maps
(KMZ layers were
produced for
inventoried assets).
e Rock slopes (rock| e Geotechnical data | [18]
cuts) integrated in enterprise
¢ Landslide-prone soil GIS (TIMS —
slopes along Transportation
highways. Information Mapping
Ohio Retaining Walls System, Figure 2.4).
Abandoned e GISis used for planning
Underground and to communicate
Sinkholes & hazard locations to
Culverts in separate district offices and
programs maintenance.
Cut Slopes and
Embankments - e No public geotechnical
. . particularly those
California . asset GIS map | [12]
prone to landslides .
. statewide.
or erosion along
e Retaining Structures
e ODOT’s Unstable
e Rockfall sites (rock Slopes data is stored in
cut slopes prone to a database with a GIS
rockfall interface. Internal users
e Landslides / can view slope
Unstable Soil locations, ratings, and
Oregon Slopes, details via a map-based | [19]
e Debris flow prone application.
sites e Oregon has not
e Retaining walls and published the map due
material sources are to data infancy as noted,
handled separately but internally GIS is
integral.
Washingto | e Unstable Slopes | ¢ WSDOT Geospatial [12][20]
n (soils and rocks) Open Data Portal,




e retaining wall e Online Map Center,
e Foundations GeoPortal
o Embankments
o OTIS: Online | [21][22]
: glrﬂgzrrfli,m ents transportation
e Geo-hazards information system
Colorado e Slopes * C-Plan: Interactive
e Retaining wall O{lh?e mapping
e Subgrades pat orm.
o Tunnels . GeoHub. In’gernal
ArcGis for portal site
e Planned — The Vermont | [23]
Asset Management
Information System
Retaining walls .(VAMIS.) .
Vermont Unstable slopes e Integration 1S .not
complete — essentially
no geotechnical layer
exists in their public
asset maps yet.
e In development — The | [24]
e Retaining walls envisioned G-GAMS will
Georgia « Slopes be an information system
e Embankments to manage these assets,
presumably with a GIS
interface.
e Embankments e ArcGIS database and a | [25]
e Retaining walls, mobile ArcGIS Field Maps
Louisiana e Slopes, app for use with the GAM
e Soil borings, guide. (La DOTD ArcGIS
e Tunnels Online)

Table 2.2: Implementation Status of Geotechnical Asset Management Program in the

United States

State

Implementation
Status

Strengths & Weaknesses
Summary

Ref.

Alaska

Transitioning to practice

Nation-leading GAM effort
using NCHRP 903 guidance
and GIS; incomplete
inventory, not yet
institutionalized

[15]

Missouri

Pilot completed (2023)

Strong GIS integration and
user-friendly tools; only 2
districts piloted, lacks risk
history data

[17]

Ohio

Operational (partial)

Long-standing inventories;

[26][18]
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fragmented systems hinder
integration; reactive for
lower-priority assets

Extensive disaster response

proactive  slope fixes
(shifting from reactive).

funding, excludes walls

. . i experience; lacks formal
California | Ad-hoc GAM program or statewide
inventory
based. ranking. to. guide | RODUSt BCR-based
Oregon 8 & prioritization; limited | [19][12]

Washingto
n

Fully
(slopes)

implemented

Pioneer GAM model for
slopes with dedicated funds;
other geotech assets excluded

[12]

Colorado

Mature & evolving

Integrated into TAMP with
strong risk modeling; scale of
risk challenges full coverage

[21]

Vermont

Conceptual stage

Acknowledges need for GAM;
lacks data and funding to
move  beyond  reactive
posture

[23]

Georgia

Initiation phase (2024)

with
no

Structured plan
academic backing;
existing inventory yet

[24]

Louisiana

Early implementation

Focus on MSE walls with GIS
support; broader geohazards
not yet covered

[25]

Rock Slope Dashboard ©

This dashboard provides a high level view of Rock Slope Inventory data.
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The bar chart in Figure 2.5 illustrates the frequency of geotechnical asset types
managed across various U.S. state DOTs based on documented frameworks. Slopes
(10 states), retaining walls (10), and embankments (77) are the most commonly

Soil borings  —
Tunnels
Ground Improvement I
Material Site T ——T——
Culvert m—————
Foundation m—
Subgrade
Retaining V|| |1
Embankment
fololcp @

H No of states...

Figure 2.5: Summary of geotechnical assets covered across ten US states.

included assets, reflecting their critical role in highway stability. Less frequently
managed assets include material sites, tunnels, foundations, subgrades, etc.,
suggesting gaps in comprehensive inventory practices across states. This underscores
the need for standardized inclusion of all key geotechnical assets in asset management
systems.

2.5.1 Alaska DOT&PF (Geotechnical Asset Management Program)
Alaska was a pioneer state in geotechnical asset management, developing one of the
nation’s first comprehensive programs. The Alaska DOT&PF’s program focuses on
four asset classes critical to highway performance. They are rock slopes, unstable soil
slopes and embankments, material sites (borrow pits), and retaining walls. Statewide
inventory and condition surveys have been conducted on these assets (e.g., all
rock/soil slopes along National Highway System routes), and a standardized condition
state evaluation was established as part of the program. The department also
developed tools to track geotechnical incidents (e.g. landslides, rockfalls); over a
decade’s worth of maintenance records (77,000+ geotechnical events) were mapped to
identify risk “hot spots”. Alaska’s research-driven plan quantified the overall
condition and value of geotech assets finding an estimated $19 billion in replacement
costs for slopes and walls (roughly three times the value of Alaska’s bridges). Although
formal performance targets (e.g., % of slopes in good condition) were not yet in place,
Alaska usedrisk and financial impact as key performance considerations. The
program employs risk-based deterioration modeling and scenario analysis at a
network level. Fiscal modeling showed clear benefits to proactive maintenance:
extending the service life of slopes and walls yields cost savings over time; “every dollar
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invested in preservation pays for itself and saves an additional $1.06 in long-term
costs” by averting expensive failures. In essence, Alaska’s models predict that early
interventions on geotechnical assets have a positive lifecycle ROI. The Alaska
DOT&PF integrates geotechnical assets into its Transportation Asset Management
approach, using a corridor-level risk analysis to prioritize investments. High-risk sites
(those whose failure would significantly impact mobility or safety) are addressed first,
and the program’s cost-benefit findings support allocating funds to preservation of
slopes and walls as a statewide strategy. This risk-informed, performance-based
approach helps Alaska justify geotechnical mitigation projects alongside traditional
assets like bridges and pavements [15].

2.5.2 Washington State DOT

Washington State DOT (WSDOT) manages geotechnical assets, particularly slopes,
through its Unstable Slope Management System (USMS). The USMS covers all known
unstable slopes, including chronic rockfall areas in the Cascades, coastal bluffs, and
landslide-prone slopes statewide. WSDOT uses a quantitative rating system to
evaluate slope condition and hazard, assigning numerical scores based on factors like
slope geometry, observed instability, traffic exposure, and potential consequences.
This system allows for consistent comparison of hundreds of slopes. WSDOT’s
Geotechnical Office maintains a GIS-enabled database for these assets, with district
maintenance personnel able to input observations via a web interface. Performance
measures focus on risk reduction, with a key metric being the number of high-risk
slopes mitigated over time. Washington allocates about $30 million per biennium for
slope stabilization, aiming to keep highways open and safe from slope failures. The
decline in overall network risk is tracked as slopes are stabilized. The USMS rating
system provides a predictive outlook by identifying slopes likely to fail. WSDOT refines
predictions with site-specific monitoring, using instruments and surveys for high-risk
slopes. With data from the 1990s, WSDOT can calibrate predictions based on
historical scores preceding failures. In 2017, WSDOT reviewed slope mitigation
structures to ensure their condition feeds into future needs predictions. WSDOT’s
investment strategy prioritizes projects based on risk and benefit-cost, focusing on the
most at-risk slopes on critical corridors. The $30M biennial funding addresses top-
ranked sites, integrating geotechnical fixes into the capital program. Although broader
Geotechnical Asset Management Program expansion was shelved due to funding
constraints, the core unstable slopes program remains effective, guided by data and
asset management principles [12, 27].

2.5.3 Colorado DOT (Retaining Wall and Geohazard Management)
Colorado DOT (CDOT) has integrated geotechnical assets into their asset
management plans, focusing on retaining walls and geohazards. As of 2021, CDOT
monitored approximately 2,928 retaining walls, totaling about 14 million square feet
of wall face area. These include Mechanically Stabilized Earth (MSE) walls, gabion
walls, and crib walls along highways. CDOT’s Geohazards Program addresses natural
slope hazards such as rockfalls, landslides, embankment settlements, and sinkholes
[21]. CDOT established a Retaining Wall Inspection and Asset Management Manual
to standardize wall inspections, assigning condition ratings based on signs of distress.
The Geohazards Program uses field assessments and a scoring system to evaluate
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slope conditions and risks. This system is maintained at the state level to log hazard
locations and their status [21]. In Colorado’s risk-based Transportation Asset
Management Plan (TAMP), geotechnical assets are included as “Tier II” assets with
performance projections over a 10-year period. CDOT sets goals for its wall program,
such as maintaining a certain percentage of wall area in fair or better condition. For
geohazards, performance is measured by the reduction in roadway closures or
incidents due to natural hazards [21]. CDOT’s predictive models for retaining walls
consider factors like age and known failure modes to estimate remaining life. For
geohazards, the program monitors precipitation and freeze-thaw cycles in known
trouble spots to anticipate slides or rockfalls. This data informs when and where the
next geotechnical failure might occur [21]. Colorado has institutionalized investment
in geotechnical assets by creating specific programs and budget lines. The Geohazards
Program directs funds to high-priority slope hazard mitigations and handles
emergency responses for landslides and rockfalls. The retaining wall asset program
justifies funding for repairs or replacements as part of asset preservation. By including
walls and geohazards in the TAMP, CDOT competes for funds alongside bridges and
pavements, emphasizing cost-effectiveness and proactive management [21].

2.5.4 Alberta, Canada
Alberta’s GAM framework, developed chiefly through collaboration between Alberta
Transportation and Tetra Tech Canada, transforms its long-standing Geohazard Risk
Management Program (GRMP) into a proactive, risk-based asset management
system. A key innovation is the GAM Planner, an enhanced Excel-based decision-
support tool adapted from NCHRP Report 903 that integrates site-specific inputs such
as inspection data, traffic volume, detour lengths, monetized risk, lifecycle costs, and
inventory condition to prioritize intervention timing and funding based on economic
and risk criteria [28].
The framework follows a logical sequence:
1. Asset taxonomy and inventory data collection for slopes, embankments,
retaining walls, and subgrades approximately 500 geohazard sites identified.
2. Risk-based rating, calculating probability and consequence factors to yield
monetized risk scores, then classifying sites for action.
3. Site-specific deterioration modeling, which underpins targeted treatment
categories (e.g., maintain, rehabilitate, reconstruct).
4. Lifecycle investment planning, using agency and user cost analyses to
determine NPV and BCR for treatments.
5. Annual update cycle, aligning with capital planning and budgeting, enabling
consistent, data-driven decisions [16].
Through this structured Excel-driven system, Alberta effectively combines inspection,
risk assessment, predictive modeling, and economic analysis into a comprehensive
GAM process delivering strategically prioritized, cost-effective interventions that
substantially strengthen provincial highway resilience. Tetra Tech’s overall approach
for the GAM framework development and pilot-scale implementation is summarized
in the process flow chart in Figure 2.6. The flow chart shows the sequence and
interdependency of components in the framework.
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Figure 2.6: GAM Framework Development Process Flowchart [28].

2.6 Predictive Modeling in GAM

Predictive modeling is increasingly vital in GAM to anticipate geotechnical asset
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deterioration or failure, enabling proactive management and optimized investment
planning. The suite of methods ranges from traditional statistical models to advanced
machine learning (ML) and probabilistic approaches.

2.6.1 Statistical & Probabilistic Techniques

Markov and semi-Markov models: An essential component of effective GAM is
the integration of deterioration models that forecast asset performance over time,
enabling strategic budgeting and lifecycle planning. Unlike pavements or bridges,
where gradual decline is common, geotechnical assets often display stepwise
deterioration and sudden drops in condition due to rare but severe events. Despite
this, the aggregated behavior of asset networks remains predictable by using
probabilistic models. One such model is the Markov chain which depicts the likelihood
of an asset transitioning between condition states annually, based on the current
condition. These transitions are quantified through same-state and next-state
probabilities derived from median transition times between states [12, 15]. Alaska
DOT’s GAM Plan provides a practical example: expert-elicited Markov models outline
deterioration for soil slopes, rock slopes, retaining walls, and material sites. For
instance, soil slopes exhibit a 0.9875 probability of remaining in their current state
each year and a 0.0125 probability of transitioning to the next-worse state
corresponding to a 55-year median time between State 1 and State 2 [15]

The general probability formula used is

Pjj= (0.5)t (2.1)

where j = condition state (before and after 1 year) and
t = transition time in years.

Such models enable GAM systems to simulate future conditions by applying these
transition probabilities year after year, guiding interventions linked to risk thresholds
and cost-benefit outcomes. As GAM systems mature like Alberta’s GAM Planner, these
models can be further refined with real condition monitoring, strengthening
predictive capabilities and investment prioritization [16].

2.6.2 ML & Predictive Modeling in GAM

Recent research highlights the transformative power of machine learning (ML) in
enhancing Geotechnical Asset Management, especially for slope stability forecasting.
A pivotal study by Li et al. [29] reported >90% accuracy in predicting shallow slope
failures through an ensemble random forest framework that couples physical models
with unsaturated soil moisture dynamics under rainfall conditions. The study
demonstrated similar predictive performance to traditional methods like Scoops3D
while greatly reducing computational time [30]. Complementing these findings,
Aminpour et al. [30] developed ML-based surrogate models (using Random Forest,
SVM, and Bagging ensembles) to approximate Monte Carlo reliability analyses for
heterogeneous slopes, achieving >85% accuracy in classifying slope failure and
reducing computational time from several months to just hours.

These advances suggest a practical roadmap for integrating ML within GAM
frameworks: ensemble models to predict near-term factor-of-safety (FoS), surrogate

-16 -



ML tools for fast probabilistic failure assessments, and Bayesian-inspired models to
support time-dependent life-cycle planning. Importantly, states like Alberta, Alaska,
and Oregon already maintain rich geotechnical conditions and risk datasets, ideal
foundations for training and refining ML models as part of predictive GAM systems
[29, 30]. Embracing these tools can substantially accelerate asset risk estimation and
economic evaluation, paving the way for more targeted and timely interventions.

2.6.3 Implications for Maryland
Maryland SHA’s pilot slope inventory with condition and risk scores provides
foundational data essential for predictive modeling. The next phase could involve:
e Implementing ML classification or regression models for categorical condition
and FoS prediction.
e Developing surrogate models to enable fast, parameterized risk analysis across
wide geotechnical asset portfolios.
e Building time-dependent deterioration emulators to inform life-cycle cost
analysis and schedule interventions.

Introducing one or multiple modeling methods ML-based -classification,
Bayesian degradation emulation, or surrogate probabilistic analysis would
significantly enhance the adaptive and data-driven capacity of Maryland's GAM
framework.
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Figure 2.7: Implementation of Predictive modeling in GAM.

2.7 Investment Analysis in GAM
Investment analysis in Geotechnical Asset Management focuses on systematically
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determining the optimal allocation of limited funds to geotechnical assets such as
slopes, walls, embankments by comparing costs, risks, and benefits over their entire
lifecycle [12]

2.7.1 Theoretical Foundations & Business Case

GAM is underpinned by the integration of economic evaluation tools that support
data-driven decision-making. One of the core theoretical models in GAM is presented
in NCHRP Report 903 [32], which offers a spreadsheet-based Net Present Value
(NPV) GAM Planner and lifecycle cost templates. These tools facilitate informed
treatment selection and investment timing by calculating the long-term economic
consequences of failure and repair. Globally, GAM systems have shown impressive
financial benefits, with reported cost savings ranging from 3% to 38% through
proactive and risk-based investment strategies. Notably, the United States Army
Corps of Engineers (USACE) estimates a typical return on investment (ROI) of 15—
40% for projects managed under GAM principles. The efficacy of these systems lies in
their ability to support risk-based business cases, where agencies can quantify asset
consequences and maintenance costs, thus enabling proactive rather than reactive
infrastructure investment [12].

2.7.2 Lifecycle Cost-Benefit Approaches

Lifecycle cost-benefit analysis (LCCA) is an essential methodology within GAM,
allowing transportation agencies to compare the long-term financial impact of
preventative interventions against the potential cost of post-failure repairs. This
analysis extends beyond initial construction costs to include future maintenance, user
delays, and safety consequences. [31]. For example, the Alaska Department of
Transportation and Public Facilities (DOT&PF) documented notable economic
returns, achieving a 38% ROI for rock slope preservation, 148% for retaining wall
stabilization, and an extraordinary 882% haul-cost reduction through proactive
material site management [15]. Similarly, the Oregon DOT incorporates cost-benefit
ranking into its Unstable Slope Management Program to ensure that projects
delivering the highest risk reduction per dollar spent are prioritized. These practices
demonstrate that early geotechnical intervention offers substantial financial and
operational advantages compared to reactive maintenance [31].

2.7.3 Cross-Asset Integrative Investment Planning

Modern GAM frameworks are expanding to support cross-asset investment planning,
allowing agencies to evaluate trade-offs between geotechnical assets and other
infrastructure categories such as pavements and bridges. This integrative approach
leverages multi-objective decision frameworks to ensure limited resources are
allocated for maximum benefit across asset types [31].

Tools like AssetManager NT (for network-level decisions) and AssetManager PT (for
program-level prioritization), developed under previous NCHRP projects, exemplify
this shift toward system-wide investment coordination. These tools enable
transportation agencies to develop comprehensive and optimized investment
portfolios, balancing geotechnical needs with broader transportation system
objectives [33].
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2.7.4 Challenges & Data Needs

Despite these advances, the full implementation of GAM remains constrained by
several challenges. A critical limitation is data scarcity; many Departments of
Transportation (DOTs) do not possess sufficient long-term cost, delay, and
performance data, hindering the reliability of lifecycle cost analyses. Another major
hurdle is the difficulty of estimating indirect costs such as user delays, safety impacts,
and environmental consequences. These estimates often rely on modeling and
assumptions that introduce uncertainty and potential bias. Furthermore, the lack of
integration between GAM-specific tools and broader Transportation Asset
Management (TAM) systems presents logistical issues. Currently, GAM tools often
operate in silos, making it cumbersome for agencies to perform cross-asset trade-offs
and consolidate programmatic decision-making [31].

2.7.5 Implications for Maryland
To implement effective investment analysis, Maryland could:
e Adapt the NCHRP 903 GAM Planner and cost templates for local
geotechnical contexts [32]
e Collate data on incident frequency, repair and delay costs, and potential
consequences (detours, safety risks)
o Integrate with MDOT SHA'’s existing asset management and budgeting tools
(e.g., VAMIS, TMS)
e Develop a cross-asset tradeoff platform (inspired by AssetManager NT) to
evaluate geotech investment against other transportation needs
This approach would enable Maryland to go beyond reactive maintenance investing
strategically, reducing long-term costs, and enhancing resilience.

2.8 Summary and Future Work

This report presents a critical review of GAM frameworks with a focus on their
applicability to highway systems in Maryland. It begins by examining Maryland’s
increasing vulnerability to geohazards such as landslides, sinkholes, and slope
failures, while emphasizing the shortcomings of traditional reactive maintenance
approaches. The study evaluates well-established GAM programs from states
including Alaska, Washington, and Colorado, highlighting key tools such as GIS-based
inventories, risk-scoring mechanisms, and lifecycle cost models. Notably, Alberta’s
Excel-based GAM Planner and the use of predictive models ranging from Markov
chains to machine learning algorithms demonstrate how deterioration forecasting can
guide investment planning. A cross-state comparative analysis involving ten U.S.
DOTs outlines varying levels of program maturity, implementation challenges, and
strategic innovations. Techniques such as Net Present Value (NPV) analysis and cross-
asset trade-off frameworks are explored to support cost-effective decision-making.
The review recommends that Maryland adopt best practices from these models,
improve data integration capabilities, and develop customized predictive tools to
embed geotechnical asset management within its broader transportation asset
management system.

An important future direction is the development of a Maryland-specific GAM
Planner; a decision-support tool that integrates geotechnical asset inventory,
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condition ratings, risk profiles, and lifecycle cost calculations. Inspired by the Alberta
GAM Planner and tools documented in NCHRP Report 903, this planner would enable
engineers and asset managers in Maryland to simulate treatment scenarios, compare
investment strategies, and optimize maintenance schedules using Net Present Value
(NPV) and Benefit-Cost Ratio (BCR) frameworks.
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Chapter 3

3 Laboratory Investigation of Soil
Properties for Landslide Risk
Assessment in Montgomery
County

Shakirat Aliyu, Alpha Bah, Jalah Pryor, Joshua Narh, Seok Jun Kang, Yi Liu,
Zhuping Sheng, Oludare Owolabi

3.1 Introduction
Landslides represent a hazardous phenomenon that can lead to injuries, fatalities,
environmental damage, and the destruction of infrastructure. The major trigger for
landslides is human actions, such as deforestation, slope excavation for construction
purposes, and development in precarious hillside regions driven by population
expansion and urban growth. Natural slopes may suddenly collapse or become
unstable due to various factors, including rugged terrain, hydrological conditions,
significant elevation changes, and the properties of the underlying rocks [34].
According to [35], landslides are defined as the downward movement of rocks and
earth triggered by either translational or rotational rupture inside the earth's crust.
Particularly vulnerable to landslides during and after periods of intense precipitation
are mountainous areas, which can cause fatalities and disruptions to the built
environment. Human-caused processes such as weathering, deforestation, and slope
collapses make mountain slopes more vulnerable and increase the likelihood of
landslides in lowland regions. Slope geometry, relative relief, groundwater conditions,
lithology and structures, and shifts in land cover and use are some of the major
contributors to slope instability. Building and growing transportation networks in
hilly areas may inadvertently result in natural slope shift circumstances, which would
compromise the stability of excavated slopes [36]. Understanding and mitigating the
risk of landslides in susceptible areas requires a thorough understanding of
geotechnical assessments and slope stability evaluations. Slope stability analysis in
landslide hazard zones requires the characterization of the rock and soil. This may
entail determining the underlying soil characteristics, geological formations, and
environmental elements that contribute to slope instability. Shear resistance (which
depends on density, cohesion, plasticity, and internal friction angle), porosity,
permeability, grain size, moisture content, and organic matter content are among the
geotechnical soil factors that affect slope stability. Slope stability may be impacted by
a number of discontinuity properties, including joint orientation, opening, continuity,
filling material, and degree of weathering. The moisture content and the properties of
the materials used to fill the fractures have a significant impact on the stability of
fractured rocks [34]. Essential geotechnical characteristics, including permeability,

-921 -



moisture content, consolidation, and shear strength, are frequently neglected. This
lack of data obstructs accurate landslide forecasting and diminishes emergency
response effectiveness. In the absence of thorough soil assessments, efforts for
mitigation and adaptation will continue to be inadequate. Consequently, soil testing is
crucial for comprehending slope dynamics and aiding in hazard mapping. The
objective of this project is to produce critical geotechnical information that promotes
long-term risk mitigation and enhances infrastructure resilience planning. The
objectives of this study are to conduct a thorough soil assessment in areas of Maryland
that are vulnerable to landslides and floods, evaluate geotechnical hazards, develop
hazard prediction, and assist in the development of resilient infrastructure planning
and efficient mitigation techniques. The following specific goals will help achieve this.

a. Identify Flood- and Landslide-Prone Areas / Sample Collection.

b. Perform soil classification and consistency evaluation using sieve analysis
techniques, including Grain size distribution, moisture content determination,
and Atterberg Limits testing.

c. Conduct UC Triaxial Tests to evaluate key soil strength parameters, including
shear strength, consolidation behaviour, and saturation levels.

3.2 Materials and Methodology

3.2.1 Materials
Labelled sample bags; trowels, augers, and scoops for collection; drying trays;
moisture cans; a precision weighing balance (+0.01 g); an oven maintained at 105—
110°C; a Standard Proctor mold (1/30 ft3 volume, 4-inch diameter) with a 5.5 Ib
rammer and 12-inch drop; a straightedge and extruder; a large mixing bowl and scoop;
and a Consolidated Undrained (CU) triaxial testing system, including a test cell,
sample holder, manual load frame, pressure gauge and back-pressure system, dial
gauges, rubber membranes, O-rings, filter papers, and de-aired water

3.2.2 Field Survey and Data Collection
A couple of days were dedicated to a preliminary field survey to collect general
information about the various sites. For this survey, sites were visually examined to
collect information about slope stability and landslip threats. To identify and locate
critical slope portions, a thorough field survey was carried out. The fieldwork included
a variety of measurements, including joint spacing, discontinuity orientation
assessment, and geometric variables (height and distance) measurement

The sites examined include the Montgomery US 29 SWM Retrofit site, as
shown in Figure 3.1 (latitude 39.05301, longitude -76.97719), where disturbed soil
samples labelled as Site 1A and Site 1B were collected and tested to assess their
properties influencing landslide susceptibility. Soil samples for Site 1A, representing
topsoil, were taken at depths of 1—2 ft, while samples for Site 1B were taken at depths
of 1—3 ft with an auger (Figure 3.2).
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3.2: Sample Collection.

Figure
3.2.3 Laboratory Procedure
The soil samples were analyzed in a lab after completing the field investigation. The
soil's geotechnical characteristics, including its natural moisture content, specific
gravity, unit weight, shear strength, Atterberg limits, and grain size distribution using
both sieve and hydrometer methods, were evaluated following ASTM guidelines.
Figures 3.3, and 3.4 below illustrate the steps involved in analyzing the steps used in
the laboratory testing. Therefore, the procedure involves. Sampling and preparation
for sieve size analysis, as shown in Figure 2, where disturbed soil samples were
collected from Sites 1A, 1B, and 15 using trowels, augers, and scoops. The samples were
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placed in labelled sample bags for proper field identification and transported to the
laboratory. Moisture content was determined by using moisture cans to measure wet
and dry weights, a precision balance (+0.01 g), and an oven maintained at 105-110°C
to dry the samples to a constant weight. Grain size distribution was assessed through
sieve analysis with a mechanical sieve shaker, complete sets of ASTM standard sieves
(including No. 4 [4.75 mm] and No. 200 [0.075 mm]), along with a brush and pan for
cleaning and collecting fines.

Data
Recorded

~« RS

Collected Disturb Sax‘nple ’ Weighing Sﬂﬁﬁ;lc ‘Wash Sample

Figure 3.3: Sampling and preparation for sieve size analysis.

Figure 3.4 shows the Sampling and preparation for CU triaxial Test. Disturbed
soil samples were collected from Sites 1A, 1B, and 15 using trowels, augers, and scoops.
Each sample was placed in a labeled bag for proper field identification and transported
to the laboratory. Moisture content determination was conducted using moisture cans
for wet and dry weight measurements, a precision weighing balance (+0.01 g), and an
oven maintained at 105—110°C to dry the samples to a constant weight. Compaction
characteristics were determined with the Standard Proctor Test, using a Proctor mold
(1/30 ft3 volume, 4-inch diameter), a rammer with a 12-inch drop, a straightedge, and
an extruder. Soil samples were thoroughly mixed in a large mixing bowl and layered
into the mold for compaction testing. Shear strength and consolidation properties
were assessed through Consolidated Undrained (CU) triaxial testing on the disturbed
soil samples. The CU triaxial setup included a test cell, sample holder, and manual
loading frame for axial loading. A pressure gauge and back-pressure system were used
for saturation, while dial gauges measured deformation during loading. Rubber
membranes, O-rings, and filter papers sealed the specimens, and de-aired water was
used for saturation and back-pressure to ensure accurate strength and deformation
measurements.

-

Collected Disturb Sample
P Molding of Sample Weighing of Molding Sample

Figure 3.4: Sampling and preparation for CU triaxial Test.
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3.2.4 Mohr-Coulomb Failure Criteria
This study examines soil’s shear strength based on the Mohr-Coulomb Failure
Criteria, which is a geotechnical model describing the conditions under which soil or
rock undergoes shear failure. It states that shear strength depends on cohesion c,
normal stress o, and the angle of internal friction ¢. The Mohr-Coulomb failure
envelope is expressed as:

7y =C+otantan ¢ (3.1)

where 1 = shear strength

C= cohesion,

o = normal stress,

¢ = angle of internal friction

3.3 Test Results and Analysis

3.3.1 Sieve Size Analysis
Analysis of particle size is a crucial method for describing the mechanical properties
of materials. A widely used method for separating particles by size is sieve analysis,
which uses a stack of sieves with varying mesh sizes. Tables 3.1, 3.2, and 3.3 present
the comprehensive sieve analysis of the cumulative retained and passing percentages,
respectively. Figures 3.5, 3.6, and 3.7. illustrate a semi-logarithmic graph depicting
the grain size distribution derived from the sieve study. A logarithmic scale is
employed to represent grain size, while the natural scale is used to plot the percentage
of finer grains. The coefficient of uniformity and the coefficient of curvature were
determined from Figures 3.5, 3.6, and 3.7, respectively.

Tables 3.1, 3.2, and 3.3 present the grain size distribution data for Site 1A, Site
1B, and Site 15(M). These tables include sieve sizes, individual weights retained,
cumulative weights, percentages of mass retained, and percentages passing. The total
sample masses for Site 1A, Site 1B, and Site 15(M) are 403.6 g, 358.5 g, and 575.2 g,
respectively, after washing and oven drying. The percentages of coarse-grained soils
retained on the No. 4 sieve (4.75 mm) for Site 1A, Site 1B, and Site 15(M) are 20.12%,
17.71%, and 7.88%, respectively. The sample from Site 1A shows a broad distribution
across fine and coarse particles, with approximately 32.66% passing the 0.2489 mm
sieve, while the sample from Site 1B shows about 43.65% passing, and the sample from
Site 15(M) shows 34.79% passing.

The mass retained and percentage passing are calculated using the following
equation
Cumm Weight
*
Total Mass of Soil Sample
% Mass Passing = 100 — Mass Retained

% Mass Retained = 100
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Table 3.1: Particle Size Distribution (Site 1A)

Sieve
Opening Individual Cum % Mass Percent
(mm) Weight (g) | Weight (g) Retained Passing
4.75 81.2 81.22 20.119 79.881
2 21.7 102.9 25.496 74.504
0.841 26.8 129.7 32.136 67.864
04191 54.7 184.4 45.689 54.311
0.2489 87.4 271.8 67.344 32.656
0-1499 71.5 343.3 85.059 14.940
0.1041 30.1 373.4 92.517 7.482
0.0737 22.3 395.7 98.043 1.957
PAN 7.9 403.6
Total 403.6
Table 3.2: Particle Size Distribution (Site 1B)
Sieve Opening | Individual Cum Weight | % Mass Percent
(mm) Weight (g) (g) Retained Passing
4.75 63.5 63.5 17.713 82.287
2 20 83.5 23.201 76.708
0.841 25.9 109.4 30.516 69.484
0.4191 38.1 147.5 41.144 58.856
0.2489 54.5 202 56.346 43.654
0.1499 60.9 262.9 73.333 26.667
0.1041 40.5 303.4 84.630 15.369
0.0737 37.7 341.1 95.146 4.854
PAN 17.4 358.5
Total 358.5
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Table 3.3: Particle Size Distribution (Site 15M)

Sieve
Opening Individual Cum Weight | % Mass Percent
(mm) Weight (g) (g) Retained Passing
4.75 45.3 45.-3 7.8756 92.124
2 14.9 60.2 10.466 89.534
0.841 15.9 76.1 13.230 86.770
0.4191 121.3 197.4 34.318 65.682
0.2489 177.7 375.1 65.212 34.788
0.1499 95.4 470.5 81.798 18.202
0.1041 42.6 513.1 89.204 10.710
0.0737 35.8 548.9 95.428 4.572
PAN 26.3 575.2
Total 575.2
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Figure 3.5: Particle Size Distribution Curve (Site 1A).
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Figure 3.6: Particle Size Distribution Curve (Site 1B).
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3.3.2 Classification
The classification for sites 1A and 1B is done by using the Unified Soil Classification
Chart (After ASTM 2011).
Site 1A
- The percentage of mass retained in No 200 sieve is 98.04%, hence it is coarse—
grained soil.
- The percentage of fines passing in No 4 sieve is 79 .88%, hence it is considered
as sand.
- The percentage of fines passing No. 4 sieve is 1.9% which is less than 5%, hence,
it is classified as clean. Since Cu = 3.71 less than 6, and C. = 0.73, it is poorly
graded sand (SP)
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Site 1B
- The percentage of mass retained in the No. 200 sieve is 95.146%, hence it is

coarse—grained soil.

- The percentage of fines passing in No. 4 sieve is 82.28%, hence, it is considered
as sand.

- The percentage of fines passing No. 4 sieve is 4.854% which is less than 5%,
hence, it is classified as clean sands and. Since Cu = 5.0, greater than 6, and Cc
= 0.8, it is well-graded sand (SW).

Site 15M

- The percentage of mass retained in No. 200 sieve is 95.43%, hence it is coarse—
grained soil.

- The percentage of fines passing in No. 4 sieve is 92.12%; hence, it is considered
as sand.

- The percentage of fines passing No. 200 sieve is 4.6% which is less than 5%;
hence, it is classified as clean sands. Since Cu = 3.8 and C. = 1.27, it is well-
graded sand (SW).

_29_



3.3.3 Moisture content

Moisture content is an important geotechnical characteristic that indicates the volume
of water in a sample of rock or soil. Engineering behavior, such as strength,
compressibility, and permeability, is significantly impacted. Valid geotechnical data
requires precise measurements of moisture content [34]. The study examined soil
samples taken from the top (disturbed and undisturbed) and bottom of landslides at
site 21 and site 27 (10-inch and 10- to 17-inch landslides. In contrast, the landslide
soil at site 21 (top) had moisture contents of 31.32% and 32.50%, and site 21 (bottom)
had moisture contents of 37.20% and 24.68%, respectively, according to the data. The
soil at site 27 had a moisture content of 26.10% and 20.39%. Since excessive moisture
content can increase soil weight and decrease shear strength, increasing the risk of
landslides, these comparatively low moisture levels indicate that the soils are generally
stable. The sample was weighed again, and the results are presented in Table 3.4.

Table 3.4: Moisture content for the various landslide soil samples.

S/No. Site 27 Site 27 Site 21 Site 21 Site 21 Site 21
(10inch) | (10-17 | (Sample | (Sample (Sample (Sample
inch) #2 Top, #2 Top, #3, Btm, #3, Btm,
D) UD Disturbed) UD)
Weight of 22.7 22.6 22.7 20.6 22.6 22.8
can/tare, g
Weight of 112.7 166.1 125.0 184.1 103.0 191.0
can +
Sample
(wet), g
Weight of 94.1 141.8 100.6 144.0 81.2 157.7
can +
sample
(dry), g
Moisture 26.10 20.39 31.32 32.50 37.20 24.68
content
(%)

3.3.4 CU Triaxial Test
This is a fundamental geotechnical technique used to determine the shear strength
parameters of a soil sample. Critical properties, including shear strength, cohesion,
and the angle of internal friction, are measured by shearing a specimen positioned
between two plates along a predetermined plane. These parameters are essential for
engineering designs involving slopes, retaining walls, and foundations. Results from
CU as shown in Figure 3.8 through 3.13 indicate that Site 1A has an effective stress
friction angle of 33.5° and cohesion of 0.606 psi, Site 1B has an effective stress friction
angle of 29.2° and cohesion of 1.12 psi, and Site 15 has an effective stress friction angle
of 29.6° and cohesion of 2.62 psi. Under total stress conditions, Site 1A exhibited a
friction angle of 20.6° and cohesion of 1.74 psi, Site 1B showed a friction angle of 17.9°
and cohesion of 2.74 psi, and Site 15 showed a friction angle of 17.2° and cohesion of
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1.33 psi. All values were determined under confining pressures of 5, 10, and 20 psi.
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Figure 3.13: Mohr: Coulomb Failure Envelope for Effective Stress (Site 15M).

Three series of consolidated undrained (CU) triaxial tests were conducted on soil
specimens from Sites 1A, 1B, and 15M, each representing slightly different depths and
compaction characteristics. In Site 1A, samples molded with 5.875 in height, 2.8 in
diameter, underwent a stage CU triaxial test, and a dry density of 101.7 pcf was tested
at vertical effective consolidation stresses of 5.049 psi, 9.999 psi, and 19.98 psi. With
a moisture content of 12.2% and full saturation confirmed by a B-value of 0.95, shear
strength increased from 5.237 psi to 13.38 psi with increasing consolidation. Deviator
stress and effective major principal stress followed this trend, confirming that higher
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effective stress enhances shear resistance in saturated conditions.

In Site 1B, samples of similar dimensions, 5.79 in height and 2.8 in diameter,
underwent a stage CU triaxial test but with higher moisture content (25.6%) and lower
dry density (97.2 pcf) were tested. Void ratios ranged from 0.706 to 0.734, and full
saturation was again achieved (B = 0.95). The applied vertical effective consolidation
stresses were 4.982 psi, 9.998 psi, and 19.98 psi. Correspondingly, shear strength
increased from 5.933 psi to 12.2 psi, and the deviator stress peaked at 26.4 psi, with
the major principal stress at 35.28 psi. These results reaffirm the direct relationship
between increased effective consolidation and improved shear strength under
saturated conditions.

For Site 15M, it underwent three series of consolidated undrained (CU) triaxial tests
and had a uniform moisture content of 25.7%. The heights are 5.909, 5.912, and 5.88
in with the diameters of 2.796, 2.784, and 2.783, respectively. The dry density ranged
from 100.8 to 102.3 pcf, but B-values varied from 0.67 to 0.94, indicating differing
saturation efficiency. The vertical effective consolidation stresses applied were 4.982
psi, 9.977 psi, and 19.95 psi. Shear strength correspondingly increased from 5.332 psi
to 10.18 psi, with the highest deviator and major principal stresses observed in the
most saturated sample. Notably, the variation in saturation levels (B-value) influenced
the minor principal stress, highlighting the importance of full saturation in strength
development.

3.3.5 Summary of the Results
CU test results are summarized in Table 3.5.

Table 3.5: Results of CU Triaxial Tests.

Site Soil Type Total Total Effective | Effective
Stress Stress stress stress
Frictional | Cohesion | Frictional | Cohesion
angle (9) (psi) angle C’” (psi)
)
Site 1A Poorly 20.6 1.74 33.5 0.606
graded
sand (SP)
Site 1B Well- 17.9 2.74 20.2 1.12
graded
sand (SW)
Site 15 Poorly 17.2 1.33 20.6 2.62
(Middle) graded
sand (SP)
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3.4 Conclusions and Future Research

This study demonstrates that rigorous geotechnical investigation is essential for
accurately assessing and mitigating landslide risks in Maryland and surrounding
regions, where climate-driven environmental pressures continue to intensify. By
analyzing soil samples from the Montgomery US 29 SWM Retrofit site (latitude
39.05301, longitude -76.97719) and additional sites, this research establishes how
fundamental soil properties moisture content, shear strength, and particle size
distribution, govern slope stability and failure potential.

The laboratory findings reveal distinct behaviors across sites, underscoring the
variability in soil response under stress. Site 1A, classified as poorly graded sand (SP)
from 1- 2 ft depths, displayed a high friction angle (33.5°) but low cohesion (0.606 psi)
under effective stress, characteristics that make it more prone to movement when
saturated or destabilized. Site 1B, a well-graded sand (SW) from 1 - 3 ft, exhibited
higher cohesion (1.12 psi) but a lower friction angle (29.2°), while Site 15, also poorly
graded sand (SP), demonstrated the highest cohesion (2.62 psi) with a moderate
friction angle (29.6°), suggesting greater stability under loading or saturated
conditions. Total stress analyses under confining pressures of 5, 10, and 20 psi further
confirmed the variability in soil strength, with cohesion reaching up to 2.74 psi in Site
1B despite reduced friction angles.

These results not only clarify the engineering behavior of soils in a landslide-prone
corridor but also provide critical design parameters for slope stability analyses,
physical modelling, and predictive risk assessments. By integrating standardized
laboratory testing with field observations, this study enhances the reliability of hazard
mapping and informs the development of proactive, science-driven strategies for
infrastructure planning and climate resilience in Maryland.

Future research should broaden the geographic scope of sample collection to
encompass a wider variety of geological conditions and soil types throughout
Maryland and other study areas. Additionally, monitoring ground movement, pore
water pressure, and moisture variation over an extended period of time might improve
landslip risk prediction modelling. Finally, incorporating forecasts of climate data
would enable evaluations of the potential effects of shifting weather patterns on soil
behavior and slope stability in the future.
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Chapter 4

4 Detection and Mapping of
Landslides with Remote Sensing
LiDAR data in Prince George’s
County, Maryland

Micheal Oketunde Okegbola, Caleb Mincey, Oludare Owolabi, Zhuping Sheng. Yi Liu

4.1 Introduction

Landslides can be defined as the downslope movement of a mass of soil and/or bedrock
materials [37]. Landslides are among the most destructive and widespread natural hazards,
often triggered by intense or prolonged rainfall, seismic activity, or anthropogenic
disturbances. Globally, landslides result in considerable socio-economic losses, environmental
degradation, and human casualties. According to the World Health Organization (WHO) [38],
landslides affected approximately 4.8 million people and caused more than 18,000 deaths
worldwide between 1998 and 2017. These impacts are expected to increase in frequency and
severity because of ongoing climate change and the intensification of extreme weather events
[39].

Landslides vary in type, magnitude, and spatial extent, and their occurrence is closely
related to terrain morphology, geological structure, soil type, and land cover. Accurate and
timely detection and mapping of landslides are essential for hazard assessment, risk reduction,
and sustainable land-use planning among other mitigating strategies. Conventional field-based
mapping techniques, although effective, are time-consuming, labor-intensive, and often
limited in spatial coverage [40]. To address these limitations, recent advancements in remote
sensing technologies, particularly the use of Light Detection and Ranging (LiDAR), have
significantly improved landslide detection, mapping, and susceptibility modelling by enabling
the capture of high-resolution elevation data over large areas [41, 42].

LiDAR-derived Digital Elevation Models (DEMs) provide sub-meter resolution
elevation data that can reveal subtle topographic changes associated with landslide processes,
including surface displacement, scarps, and accumulation zones (Pradhan, 2010). When
acquired for multiple time periods, LIDAR DEMs allow for the computation of DEM of
Difference (DoD) layers, facilitating the identification of terrain elevation changes indicative
of slope instability [43]. These DEMs can also be used to extract geomorphometric parameters
such as slope, aspect, curvature, Stream Power Index, and Topographic Wetness Index (TWI),
which are fundamental in understanding the factors influencing landslide initiation and
movement [44].

Several studies have integrated remote sensing with spatial modeling techniques to
generate landslide susceptibility maps. Approaches such as logistic regression [45, 46],
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frequency ratio, and multi-criteria decision analysis [47] have demonstrated robust results in
various terrains. These models, when combined with historical landslide inventories and field
validation, enhance the reliability and predictive power of susceptibility assessments [48].

In Maryland, particularly in Prince George’s County, the combination of diverse
terrain, weather variability, and land-use changes creates a predisposition to landslides. Despite
this, comprehensive, high-resolution landslide mapping and susceptibility modeling are
limited. This study addresses this gap by leveraging high-resolution LiDAR data from multiple
years (2014, 2018, 2020) and G1S-based analytical methods to detect and map landslide-prone
areas in Prince George’s County. Through the extraction of geomorphometric parameters and
the comparison of DEMs over time, the study aims to identify zones of significant elevation
change that may correspond to landslide activity. The results will support proactive hazard
mitigation, spatial planning, and contribute to the growing body of knowledge on remote
sensing-based geohazard analysis.

4.1.1. Problem Statement

Prince George’s County, Maryland, faces increasing susceptibility to landslides due to its
varied topography, intense precipitation patterns, and urban expansion. This is evident in the
fact that the county has the highest records of landslide occurrences (39 landslide inventories)
in Maryland, yet it lacks high-resolution, spatially detailed landslide detection and
susceptibility mapping based on advanced remote sensing techniques such as LIiDAR.

4.1.2. Research Aim and Objectives

The research ais is to detect and map landslide-prone areas in Prince George’s County using
multi-temporal LiDAR data and GIS-based remote sensing techniques. Following are research
objectives:

a. To preprocess high-resolution LIDAR DEMs for selected years covering Prince
George’s County.

b. To derive geomorphometric parameters such as slope, aspect, curvature, TWI, and
DoD.

c. To detect and map potential landslide zones based on terrain deformation and
susceptibility indicators.

d. To validate identified landslide zones using historical inventories and spatial analysis.

4.2 Study Area

The study focuses on Prince George’s County (Fig. 4.1a), located in the central region of the
state of Maryland, United States, within the Mid-Atlantic coastal plain and Piedmont Plateau
physiographic provinces. The county lies approximately from 38.5°N and 39.1°N
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(b)
Figure 4.1: (a) Study Area (Prince George’s County) and (b) Area of Interest within PG

County
latitude, and 76.6°W and 77.1°W longitude, encompassing diverse topographic conditions,
urban development, and critical transportation corridors (Fig. 4.1b focused more on selected
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highways as the area of interest within the PG County). Its complex terrain and proximity to
the Potomac River make it a suitable region for assessing landslide susceptibility using high-
resolution LiDAR elevation data.

4.3. Literature Review

Landslide susceptibility mapping and detection have evolved significantly over the past two
decades, largely driven by advances in remote sensing, geospatial analysis, and modeling
techniques. As a geohazard, landslides are complex events influenced by multiple
environmental and anthropogenic factors, including slope angle, geological structure, land use,
soil moisture, and rainfall intensity [4]. Understanding these factors and their spatial interaction
is critical for hazard assessment and risk management.

4.3.1. Remote Sensing and LiDAR for Landslide Mapping

The spatial accuracy of landslide mapping has greatly increased with the introduction of high-
resolution remote sensing data. LIDAR has gained recognition for producing high-resolution
Digital Elevation Models (DEMs) that can uncover micro-topographic features hidden beneath
vegetation cover. For recognizing and categorizing landslide events, these characteristics, such
as accumulation zones, displaced debris, and scarps, are essential indicators [41, 42]. DoD, a
technique for identifying elevation changes over time, can be computed using multi-temporal
LiDAR datasets. This makes it easier to identify terrain deformation that is consistent with
landslide movement [43].

Landslide-prone areas have made extensive use of LIDAR's ability to penetrate canopy
and provide precise terrain data. The usefulness of LIDAR in probabilistic landslide hazard
assessments at the basin size was shown by [41]. Similarly, Scudero and De Guidi [42] created
comprehensive landslide susceptibility maps in northeastern Sicily, Italy, using LiDAR-
derived topographic parameters.

4.3.2. Geomorphometric and Hydrologic Factors

When modeling terrain instability, geomorphometric factors like slope, aspect, curvature, and
drainage patterns that are obtained from DEMs are crucial. Since steeper slopes are frequently
associated with greater vulnerability, slope gradient is a key element. While curvature aids in
identifying concave (depositional) or convex (erosional) terrain features that may suggest
movement zones, aspect affects moisture retention and vegetation growth [12]. Furthermore,
DEM-derived hydrological indices like the Stream Power Index (SPI) and Topographic
Wetness Index (TWI) are crucial for comprehending surface runoff and possible erosion zones
[43].

4.3.3. Landslide Susceptibility Modeling

There are several methods for mapping landslide vulnerability. These consist of expert-based
approaches like the Analytical Hierarchy Process (AHP), statistical models (such as logistic
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regression and frequency ratio), and hybrid approaches. Akgun [45] conducted a comparison
of multi-criteria decision analysis (MCDA), logistic regression, and likelihood ratio
approaches for susceptibility mapping in Izmir, Turkey, and concluded that hybrid approaches
perform better. Similarly, Pourghasemi, Pradhan, and Gokceoglu [47] combined Analytical
Hierarchy Process (AHP) with fuzzy logic to map landslides in Iran's Haraz watershed,
producing accurate findings in settings with little data.

In Malaysia, Lee and Pradhan [46] created hazard maps with high predictive
performance by combining logistic regression and frequency ratio models. The usefulness of
combining statistical modeling with parameters generated from remote sensing was
highlighted by Pradhan [49], who also investigated multivariate techniques for landslide
mapping. Using topographic and lithologic data, Ayalew and Yamagishi [44] performed a GIS-
based logistic regression study for landslide susceptibility in the Kakuda-Yahiko Mountains,
Japan. Their findings demonstrate how reliable logistic regression is when paired with high-
quality spatial datasets.

4.3.4. Risk Zonation and Validation Challenges

Despite methodological advancements, landslide hazard and risk zonation remain challenging.
According to Van Western et al., [40], discrepancies often arise from variations in data quality,
spatial resolution, and subjective expert judgements in factor weighting. Moreover, the absence
of reliable or sufficient landslide inventories complicates model calibration and validation
while using Machine Learning (ML) in Landslide modeling. Petrucci [50] emphasized the
importance of systematic reviews and structured inventories to improve fatality risk
assessments and support global monitoring frameworks.

Zezere et al. [48] advocated for the integration of spatial and temporal data in hazard
modeling, allowing for the definition of different risk scenarios over time. Their work in the
Lisbon region of Portugal underscored the importance of combining terrain factors with
historical landslide events for a more comprehensive susceptibility analysis.

4.4. Materials and Methodology
This study employed a remote sensing and Geographic Information System (GIS-based)
analytical approach using multi-temporal high-resolution LiDAR-derived DEM datasets
(2014, 2018, and 2020) covering Prince George’s County, Maryland. LIDAR DEM processing
and analysis were conducted using ArcGIS Pro 3.1.0, with the Spatial Analyst and 3D Analyst
among other extensions enabled. Historical landslide inventories were also used for the study.

The Methodology involved a structured workflow (Fig. 4.2) beginning with
preprocessing of the LIDAR DEM, including projection, sink filling, and clipping to the Area
of Interest (AOI). Geomorphometric parameters such as slope, aspect, curvature, Topographic
Wetness Index (TWI), Contour, and DoD were derived to highlight terrain dynamics
associated with landslides. To identify spatial correlation with infrastructure, buffering and
overlay operations were performed along highways within the AOI.

Detected landslide zones, derived through raster classifications, were converted to
polygons for spatial filtering and zonal analysis. These results were validated using available
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historical landslide inventories and expert interpretation. The final outputs were landslide
susceptibility maps delineating Downward displacement, Stable, and Upward
Displacement Zones including a point map of detected landslides.

Derive
Geomorphometric
Parameters

Buffering and Overlay
Operations on (Area of
Interest Highways)

Detect Potential Landslide
Zones

Convert Highly Susceptible
Landslide Raster Zones to
Vector

Load LiDAR
DEM into
ArcGIS Pro

DEM of Difference
Slope

Aspect

Curvature
Topographic Wetness Index
Reclassify all factors by
Weighting Zones from Very
Low to Very High
Susceptibility

Map Landslide Prone

Preprocess DEM Areas

Figure 4.2: Methodology Flowchart for Landslide Detection and Susceptibility Mapping

4.4.1. LIDAR DEM Acquisition and Preprocessing

The LIDAR DEM data were readily available through the Maryland Department of
Transportation (MDOT) data services website
(https://doitdataservices.maryland.gov/s/IN9XGBYPKq4QSZNq). Figure 4.3 shows the
downloaded DEMs of Prince George’s County for the years 2014, 2018, and 2020. All other
processed DEM for the three (3) years is included in the appendices section. The DEMs were
projected to the same coordinate reference system (WGS 84 UTM Zone 18S), fill all sinks for
any holes, clipped to the Area of Interest (AOI), and resampled to the same pixel dimension
for proper and further spatial comparison and analysis (see Fig. 4.4 for DEM’s preprocessing
workflow).

Through the raster calculator tool in ArcGIS Pro, the DoD) between 2014 and 2018, 2018 and
2020, and 2014 and 2020 were determined to obtain the terrain variations within these epochs.
Other terrain factors (such as slope, aspect, curvature, contour etc.) were also generated
through the ArcGIS Pro spatial analysis tool; these factors were then classified based on an
expert model and weighting classifications (previous relevant studies) to detect areas that
highly suggest susceptibility to landslides. Results of the analysis and maps are attached to the
appendices.
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Figure 4.3: LIDAR DEMs of Prince George’s County

Figure 4.4: Preprocessing workflow for the LIDAR DEM.

4.4.2 Resolutions of the Digital Elevation Models
The study utilized high-resolution LiDAR-derived Digital Elevation Models (DEMSs) acquired
for Prince George’s County, Maryland, across three time periods: 2014, 2018, and 2020, (Table
4.1). The spatial resolution of the DEMs progressively improved over the years, with the 2014
DEM captured at a 0.9 meters (3 feet) resolution, the 2018 DEM at 0.6 meters (2 feet), and the
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2020 DEM at 0.3 meters (1 foot). These increasingly finer resolutions enabled the detection of
subtle topographic variations critical for accurate landslide identification, especially when
performing DoD analysis and extracting terrain attributes such as slope, curvature, and surface

deformation.

Table 4.1: LIDAR DEMs (Raw Data Metadata)

S/No. | County | Year | DEM Hz. | Required | RMSE | DEM Vz. | Horizontal
Resolution Vz. 2 Accuracy | Coordinate
Accuracy RMSE(z) x | Reference
by ASPRS 1.9600 System
1 Prince |[2014 [0.9m / 3| 0.643ft 0.059m | 0.11564m/ | NAD 83
George feet 0.37940ft HARN State
Plane
2 Prince [2018 |0.6m / 2|0.643ft 0.298ft | 0.58408ft/ | NAD 83
George feet 0.17803m | HARN State
Plane
2 Prince |[2020 (1 foot /| 0.643ft 0.051m | 0.10000m/ | NAD 83
George 0.3m 0.32808ft HARN State
Plane

4.4.3 Geomorphometric factor generation, classification, landslide
detection and mapping

High-resolution LiDAR-derived DEMs were utilized to extract key geomorphometric
parameters including slope, aspect, curvature, contour (Fig. 4.5), and Topographic Wetness
Index (Fig. 4.6) which are critical in understanding terrain instability and hydrological
response. Fig. 4.7 shows a DoD which was generated by subtracting elevation surfaces across
temporal datasets (2014, 2018, and 2020), to detect areas of significant vertical displacement,
indicative of slope failures. These derived factors were reclassified into susceptibility classes
using classification schemes with thresholds calibrated based on previous studies and terrain
analysis (Fig. 4.5).

Landslide-prone areas were identified and mapped by integrating these
geomorphometric layers with spatial overlays, including proximity to highways and historical
landslide data. The resulting outputs delineated three distinct zones: Downward displacement,
Stable, and Upward displacement zones, providing a geospatial basis for targeted risk
mitigation and future monitoring. (See results in appendices).
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Figure 4.5: Sample generated factor maps.
Topographic Wetness Index (TWI) was derived through the raster calculator in ArcGIS Pro

using:

TWI = In ( ¢ )
tHIl{ﬁ) (41)
where:

a = specific catchment area (from Flow Accumulation)
B = slope in radians.
The Flow Direction and Flow Accumulation parameters were also obtained through the spatial
analyst tools in ArcGIS Pro.
Flow Direction: Spatial Analyst Tools — Hydrology — Flow Direction
Input Surface Raster = FillSink_DEM.tif; Output Flow Direction Raster = FlowDir.tif
Flow Accumulation: Spatial Analyst Tools — Hydrology — Flow Accumulation
Input Flow Direction Raster = FlowDir.tif; Output Accumulation Raster = FlowAcc.tif
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N
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Figure 4.6: Topographic Wetness Index (TWI).
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Figure 4.7: Sample Reclassified DEM of Difference (DEM 2018 minus DEM 2014).
More factor maps generated are included in the appendices.

4.4.4 Buffering and Overlay Operations (Area of Interest)

Due to the large size of the LIDAR datasets, a specific Area of Interest (AOI) was carved out
within Prince George’s County, focusing on selected corridors with notable topographic
variation and infrastructure relevance. Buffering and overlay operations were then performed
on major highways within this AOI to analyze the spatial interaction between landslide-prone
zones and transportation infrastructure. Buffer zones (100 meters from the centerline at both
sides) were generated around these highways to establish impact corridors, which were
overlaid with classified susceptibility maps and DoD results (see Fig. 4.8). This approach
enabled the identification of critical segments (Fig. 4.9) where terrain deformation closely
intersects roadways, informing risk prioritization and supporting resilient infrastructure
planning.
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(a) (b)
Figure 4.8: (a) Buffering (100 meters) and Overlay (b) Detected Probable Landslide Zones
(Polygons).

Figure 4.9: Detected (new) probable landslide risk points.

4.5 Results
The integration of LiDAR-derived DEMs for the years 2014, 2018, and 2020 enabled the
extraction of key geomorphometric parameters essential for landslide analysis, including slope,
aspect, curvature (profile and plan), contour, TWI, and DoD (Fig. 4.10). The derived slope and
curvature maps revealed localized steep gradients and concave terrain segments, which
corresponded closely with observed mass movement areas. Aspect analysis showed a

predominance of instability on south-facing slopes, potentially linked to microclimatic
influences on soil moisture dynamics.
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Figure 4.10: Reclassed Factor Maps from different years.

The DoD analysis provided clear spatial differentiation of elevation changes over the selected
years and focused areas, allowing for the detection of terrain displacement patterns consistent
with landslide events. Notably, positive and negative DoD values indicated upward and
downward displacements, respectively, while the near-zero values are stable zones. These
results were overlaid through other factor maps such as slope, aspect, and others, which
highlighted and corroborated areas that coincide with active or historical landslide sites (see
Fig. 4.11 for sample result).
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Figure 4.11: Showing correlations between factor maps overlaid with historical landslide
sites.

Landslide susceptibility classification was performed using a weighted overlay of all
geomorphometric factors, based on methodologies previously adopted in relevant studies and
documented literature. The resulting susceptibility map was categorized into five zones: very
low, low, moderate, high, and very high. High susceptibility areas were predominantly located
near sharp slope transitions and concave curvature profiles.

Overlay analysis with buffered highway corridors revealed that segments of transportation
infrastructure within the AOI intersected stable to downward displacement (landslide-prone)
zones. These intersections represent potential risk hotspots for future slope failure, warranting
geotechnical interventions and continuous monitoring. The buffering and overlay process
further validated the relevance of spatial proximity between anthropogenic activities and
geomorphic processes.

4.6 Summary and Future Work

This study effectively demonstrated the utilization of LiDAR-derived geomorphometric
parameters for identifying landslide-prone zones within Prince George’s County. These
parameters included slope, aspect, curvature, contour, Topographic Wetness Index (TWI), and
DoD. The analysis was conducted across the years 2014, 2018, and 2020. Temporal DEM
analysis enabled the detection of terrain instability, while buffer and overlay operations
confirmed the vulnerability of key transportation corridors to geomorphic hazards, reinforcing
earlier findings by Galli et al. [51] on the importance of geospatial integration for landslide
detection and infrastructure risk assessment.

In alignment with the previous studies [49, 50, 52], future work will focus on expanding

the landslide inventory through field-based validation using ground truthing and the collection
of soil samples from newly detected probable landslide sites. These will be compared with
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existing inventory points for verification and soil classification with terrain behavior. In
addition, INSAR time-series deformation data will be integrated with LiDAR-based outputs to
enhance temporal sensitivity [54]. Quantitative modeling using statistical and machine
learning techniques such as logistic regression and random forest by Corominas et al., [55],
Yilmaz, [56]; Chen et al., [57] will be pursued to improve landslide susceptibility mapping and
prediction accuracy. These efforts aim to strengthen disaster preparedness and inform resilient
transportation planning.
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Chapter 5

5Surface soil moisture mapping
for slope instability analysis in
Maryland using machine learning
model

Atieh Hosseinizadeh*, Kayla Collymore, Zhuping Sheng, Yi Liu, Oludare Owolabi

(*Part of material in this chapter will be submitted to a journal for consideration of
publication)

5.1 Introduction

Soil moisture is a critical component of the land surface system, influencing water and energy
exchanges that affect hydrological processes and slope stability. It plays a vital role not only
in agriculture and drought monitoring but also in geohazard modeling, especially for landslide
prediction. Accurate soil moisture data are essential for developing prediction models used in
early warning systems and risk mitigation in landslide-prone areas [58]. However, soil
moisture varies significantly across time and space due to complex climate-soil interactions,
making precise measurement and modeling challenging [59]. Recent research has
demonstrated that including realistic soil moisture conditions substantially improves landslide
forecasting accuracy, emphasizing that rainfall alone is insufficient for reliable predictions
[67].

Advances in remote sensing and machine learning have enhanced soil moisture
estimation for landslide forecasting. Satellite missions such as Sentinel-1, Sentinel-2, and
SMAP, combined with in-situ and model data, provide soil moisture information at various
depths and resolutions [60, 61]. Deep learning models like attention-based LSTM, CNN-
LSTM, and GAN LSTM have shown strong performance in capturing temporal moisture
dynamics relevant to slope failure [62, 63, 64]. These models integrate meteorological
variables, vegetation indices, and terrain features to better represent environmental factors
affecting subsurface water movement and slope stability [65, 66]. Interpretability methods such
as SHAP further help clarify the role of input variables, facilitating operational use in landslide
monitoring [63].

Despite these advances, significant research gaps remain. Many models are developed
for specific regions or land uses, limiting their transferability. For example, some focus only
on unirrigated wheat systems or single locations without remote sensing inputs [64, 65]. Others
face challenges related to limited explainability or uncertain performance across different
climates [60]. Most studies also emphasize long-term seasonal dynamics without thoroughly
addressing spatial resolution or terrain complexity [58, 59]. Traditional remote sensing
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methods, including microwave retrievals and GPS bistatic radar, report limitations in
sensitivity and spatial detail, particularly in rough or vegetated terrain [68-70].

One of the major obstacles in closing the existing gap is the significant computational
burden involved in processing full-resolution raster datasets over hundreds of time steps and
multiple input layers. Conventional machine learning pipelines, which often require loading
entire rasters into memory, are not well-suited for managing datasets of this scale. To address
this, the present research proposes an innovative deep learning architecture for spatiotemporal
soil moisture estimation.

Meanwhile, traditional soil moisture monitoring techniques and most supervised
machine learning approaches often depend on in-situ measurements or gravimetric sampling
to serve as observational inputs or training labels. While these methods offer precise data at
specific points, they lack broad spatial coverage and are often too costly to deploy at large
scales. This spatial limitation may result in overfitting to specific locations, reducing the ability
of models to generalize across diverse terrain. Satellite-based remote sensing provides a more
extensive spatial reach through missions like SMAP, SMOS, and ASCAT. However, their
coarse resolution typically ranges from 10 to 36 km, which makes them unsuitable for
applications like landslide hazard assessments that require fine-scale soil moisture data.

To tackle these issues and close the current gaps in soil moisture mapping, this study
introduces a deep learning framework designed to generate high-resolution spatiotemporal
surface soil moisture (SSM) maps. The model employs a convolutional long short-term
memory (ConvLSTM) network capable of learning from a blend of static features (such as
DEM, slope, and soil properties), time-varying meteorological variables (including
precipitation, temperature, humidity, wind, and evapotranspiration), and seasonal vegetation
dynamics. By utilizing dense, high-resolution SSM labels derived from Sentinel-1 imagery
through a self-calibrated change detection method, the approach eliminates reliance on sparse
field observations while preserving physical consistency. This enables the continuous
prediction of soil moisture at fine spatial and temporal scales, offering a critical tool for
modeling infiltration, forecasting hydrological responses, and evaluating landslide
susceptibility in regions with limited data and complex terrain.

5.2 Related Works

5.2.1 Reviewed Papers on Remote Sensing Models

Li et al. [62] developed an attention-aware LSTM model (ILSTM_Soil) for predicting soil
moisture and temperature 1 to 7 days ahead using data from ten FLUXNET sites. The model
integrates predictor and temporal attention mechanisms, allowing it to identify key input
features and relevant time steps. ILSTM_Soil outperformed baseline models including
Random Forest, SVR, Elastic-Net, standard LSTM, and A-LSTM in terms of RMSE and R2.
While the attention layers improved model interpretability, the study was limited by its
geographic scope and did not address deeper soil layers or long-term seasonal forecasting.

Jiang et al. [65] enhanced an LSTM-based model for soil moisture prediction by
incorporating autocorrelation between soil depths and meteorological variables. Trained on
data from six unirrigated wheat-field monitoring sites in the Yellow and Huaihai regions, the
model outperformed the standard LSTM in predictive accuracy and error reduction. The results
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showed better alignment with observed soil conditions. However, the study is limited to
seasonal wheat systems and has not been validated under irrigated conditions or with other
crop types.

Wang et al. [63] conducted a comprehensive evaluation of ten deep learning models
for soil moisture prediction, including standard LSTM, feature-attentive LSTM (FA LSTM),
and generative adversarial network-based LSTM (GAN LSTM). These models were tested
across multiple soil types and depths to assess their robustness and adaptability. Results
showed that FA LSTM and GAN LSTM consistently outperformed the baseline LSTM model
in terms of predictive accuracy and stability across time. The inclusion of attention
mechanisms allowed the models to focus more effectively on relevant temporal and feature-
level information, enhancing both performance and interpretability. SHAP analysis further
contributed to transparency by identifying the relative importance of different input variables
in the prediction process. Despite these strengths, the study highlights key limitations: the
models demand large volumes of high-quality input data and were only validated in a few
specific climate regions. This raises questions about their scalability and reliability in more
diverse or data-sparse environments.

Kone et al. [64] developed hybrid models combining convolutional neural networks
(CNN) with LSTM (CNN LSTM) and bidirectional LSTM (Bi LSTM) to predict next-day soil
moisture using climate and soil data. These models were benchmarked against a standard
LSTM, with CNN LSTM achieving the best performance, exhibiting an R2 of approximately
0.98 and RMSE near 0.37, slightly outperforming both LSTM (R2 ~ 0.97) and Bi LSTM. The
study highlights the strength of CNN LSTM in capturing spatial-temporal features relevant to
soil moisture dynamics. However, the approach was limited by its testing on specific soil types
at a single location, without incorporating remote sensing data or evaluating the models across
diverse terrains and moisture regimes, thus constraining its broader applicability.

5.2.2 Reviewed Papers on Machine Learning for Soil Moisture
Estimation

Batchu et al. [60] proposed a machine learning regression network that fuses multi-source data
including Sentinel-1 SAR, Sentinel-2 optical imagery, SMAP satellite data, SoilGrids,
GLDAS, and ground-based measurements to estimate 5 cm soil moisture globally at a spatial
resolution of 320 meters. Evaluated across approximately 1,300 monitoring stations, the model
achieved an average correlation coefficient of 0.727 and an RMSE of 0.054, demonstrating
promising accuracy in soil moisture retrieval. Despite these encouraging results, the study
identified significant limitations related to the model’s low explainability and inconsistent
performance across different climatic zones and sensor data inputs. These challenges restrict
its immediate application in hybrid physical Al systems where interpretability and robustness
across diverse conditions are critical.

Ahmad et al. [66] applied support vector machines with kernel regression to estimate
soil moisture in the top 0 to 10 cm layer using TRMM precipitation data and NDVI from
AVHRR at ten sites within the Colorado River Basin. Their results demonstrated that SVM
outperformed artificial neural networks and showed strong agreement with VIC model
benchmarks. However, the study focused solely on surface soil moisture and was limited by
sparse sampling, restricting its ability to capture moisture dynamics at greater depths and over
seasonal timescales.
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Liu et al. [61] compared six machine learning algorithms including artificial neural
networks (ANN), Bayesian methods, classification and regression trees (CART), k-nearest
neighbors (KNN), Random Forest, and support vector machines (SVM) to improve the spatial
resolution of satellite-derived soil moisture data using inputs such as digital elevation model
(DEM), land surface temperature (LST), normalized difference vegetation index (NDVI), and
albedo across multiple climate zones. The study found that Random Forest consistently
delivered the highest accuracy, achieving the strongest correlation and lowest error metrics in
four different regions. Despite these strengths, some models, notably ANN, CART, and SVM,
showed inconsistent performance across varying surface types and faced challenges in
generalizing to diverse environmental conditions. This highlights the need for further research
to enhance model robustness and adaptability.

Orth and Sungmin [59] used LSTM neural networks trained on soil moisture data from
over 1,000 stations to estimate daily soil moisture at multiple depths (0 to 10, 10 to 30, and 30
to 50 centimeters) spanning from 2000 to 2019. Their results demonstrated strong temporal
performance and improvements compared to satellite retrievals and traditional model outputs.
However, the study noted that the spatial resolution remains relatively coarse, originally at
0.25 degrees and improved only to 0.1 degrees, and that there has been limited evaluation of
error characteristics specific to each soil depth. These limitations suggest the need for further
refinement in resolution and depth-specific accuracy assessment.

Senyurek et al. [71] applied machine learning techniques to estimate soil moisture from
CYGNSS satellite data, incorporating ground measurements across the United States. The
study demonstrated that this approach outperforms previous CYGNSS-based methods by
providing more accurate soil moisture estimates that closely match in situ observations while
offering broader spatial and temporal coverage. Despite these improvements, challenges
remain in obtaining reliable estimates in areas with dense vegetation and complex terrain.
Additionally, the model’s performance outside the tested regions has not yet been validated,
highlighting the need for further evaluation to ensure generalizability.

Persson and Haridy [72] estimated soil water content using electrical conductivity
measurements obtained from short time-domain reflectometry (TDR) probes. Their results
showed that this method provides accurate and reliable soil moisture estimates that closely
match actual water content. However, the study noted that soil texture and salinity levels can
influence conductivity readings, potentially introducing errors in the estimation process. This
limitation points to the need for further investigation into how varying soil properties affect
measurement accuracy.

Vereecken et al. [58] reviewed the role of soil moisture measurements in vadose zone
hydrology, emphasizing their importance for understanding water flow and transport
processes. Their findings indicate that accurate soil moisture data contribute to improved
calibration of hydrological models, reduce uncertainties, and enhance the reliability of model
predictions. Despite these benefits, the review identified significant limitations in current
measurement techniques, particularly their insufficient spatial and temporal resolution. The
authors highlighted the need for improved methods to integrate soil moisture observations with
models across varying scales to advance hydrological understanding.

5.2.3 Reviewed Papers on ML Models for Soil Moisture in Geoscience
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Jackson et al. [68] used an airborne microwave radiometer to measure soil moisture and
validate AMSR-E satellite sensor data during the Soil Moisture Experiment 2002 (SMEX02).
Their results showed that airborne measurements closely matched ground-based soil moisture
observations, confirming the accuracy of AMSR-E soil moisture products. However, the study
noted that airborne measurements are limited to relatively small areas, and additional
validation is required across diverse soil types and vegetation conditions to fully assess the
satellite sensor’s performance.

Masters et al. [69] investigated the use of airborne GPS bistatic radar measurements to
estimate soil moisture during the Soil Moisture Experiment 2002 (SMEX02). Their results
demonstrated that this radar-based approach provides reliable soil moisture estimates that
correspond closely with ground observations. Despite these positive findings, the study
highlighted the need to improve spatial resolution and to evaluate the method across diverse
terrain types and vegetation covers to better understand its broader applicability.

Paloscia et al. [70] developed a multifrequency algorithm to estimate soil moisture on
a large-scale using microwave data from the SMMR and SSM/I satellites. Their results showed
that this algorithm provides more accurate soil moisture estimates across different regions
compared to single-frequency approaches. However, the study noted challenges in accounting
for surface roughness and vegetation effects, which can reduce estimation accuracy under
certain conditions. These limitations indicate a need for further improvements to address these
factors.

5.3Materials and Methods
5.3.1 Study Area

The study area is Prince George’s County, located in central Maryland. This region was
selected for its geographic diversity, varied topography, and history of extreme weather events,
including heavy rainfall and landslides. Covering approximately 500 square miles, the county
includes a representative mix of urban, suburban, and rural land uses, reflecting the broader
environmental variability found across the Mid-Atlantic region. Due to its combination of
physical and climatic characteristics, Prince George’s County provides a practical setting for
developing and testing the machine learning model at a localized scale, with plans to later
expand the framework to the wider Maryland area and other regions.

Prince George’s County lies within the transitional zone between the Atlantic Coastal
Plain and the Piedmont Plateau, creating a geologically complex landscape. This setting results
in varied terrain, diverse soil types, and a range of slope gradients that directly influence both
hydrological processes and slope stability. The county experiences a humid subtropical climate
with consistent precipitation throughout the year, offering favorable conditions for studying
rainfall-driven processes such as soil moisture fluctuations and slope failures. According to the
most recent landslide inventories compiled by the State Highway Administration (SHA), the
United States Geological Survey (USGS), and NASA, Maryland recorded 129 landslides
between 2008 and 2019, with most classified as shallow failures (Fig. 5.1).
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Figure 5.1: Historical landslide location in Maryland and the selected case study area, Prince
George’s County.

Figure 5.2(a) shows that Prince George’s County has recorded the highest number of
landslide events in Maryland, accounting for approximately 30 percent of the state’s total
occurrences. Since the county is also one of the most densely populated in the state, assessing,
forecasting, and reducing landslide risk is especially important for protecting communities and
infrastructure. Figure 5.2(b) shows a clear temporal pattern between rainfall and landslide
frequency, with peak activity in 2011, 2014, and 2018. These years also saw the highest annual
rainfall totals, emphasizing the strong role of precipitation and subsequent infiltration as key
triggering factors for landslides in the region.

Figures 5.2(c) and 5.2(d) depict how the frequency of 132 landslide events relates to
both rainfall intensity and soil moisture levels. The analysis shows that many landslides
occurred during periods of relatively low rainfall, indicating that some vulnerable slopes in
Maryland can fail even with light precipitation. In contrast, a stronger correlation is observed
between landslide occurrences and elevated soil moisture, emphasizing the critical role of
subsurface moisture in slope instability. This underscores the importance of incorporating soil
moisture monitoring into predictive models rather than relying solely on rainfall data.

To explore these patterns more thoroughly, this study focuses on Prince George’s
County—a well-documented and representative area. Its susceptibility to climate-driven
hazards, rapid urbanization, and stormwater challenges makes it an ideal case for advancing
landslide prediction models.
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Figure 5.2: Landslide analysis in Maryland: (a) Number of landslides by county; (b)
Annual precipitation vs. number of landslides; (c) Three-day cumulative rainfall vs.
number of landslides; (d) Surface soil moisture (from Open-Meteo) vs. number of
landslides.

5.3.2 Data Preparation

Figure 5.3 shows the workflow used in this study to develop a machine learning based surface
soil moisture model (ML SSM) using soil moisture maps derived from Sentinel 1 satellite data.
The diagram outlines the key datasets required to train the model, including the target variable
(surface soil moisture), weather conditions, and geological characteristics. These inputs
include both spatial and temporal data such as soil moisture maps, weather variable maps, and
land use or land cover maps, as well as static spatial data such as soil type, topography, and
slope.

5.3.2.1 Sentinel-1 Data to Generate SSM Maps

The evaluation of the ML-SSM model utilizes surface soil moisture (SSM) maps derived from
Sentinel-1 radar imagery, captured at six-day intervals. Sentinel-1 is part of the European
Space Agency's Copernicus initiative and has offered high-resolution radar data since 2014.
Its C-band Synthetic Aperture Radar (SAR) system ensures consistent data collection in all
weather and lighting conditions [73], making it well-suited for soil moisture applications.
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Sentinel-1A and Sentinel-1B, operating on alternating 12-day cycles, collectively provide
imagery with a six-day revisit frequency [74]. This frequent temporal resolution supports
ongoing SSM monitoring for large-scale hydrological analysis and landslide hazard
evaluation. The imagery used in this research comes from the Interferometric Wide (IW) swath
mode, which spans 250 km with a ground resolution of approximately 20 m by 22 m [75].
SSM values were retrieved using vertical-vertical (VV) polarization, and the final maps were
resampled to a 15-meter spatial resolution.
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Figure 5.3: Workflow chart of the research.

5.3.2.2 Weather Data

To develop the ML SSM model, a time series of daily climate variables was compiled,
including precipitation, maximum and minimum temperature, relative humidity, wind speed,
and evapotranspiration. These datasets were sourced from the Open Meteo database at a spatial
resolution of 9 kilometers. Since this resolution is too coarse for detailed spatial modeling, the
data were interpolated and resampled to create weather variable maps at a finer 15-meter
resolution. In this study, the Inverse Distance Weighting (IDW) method was used to interpolate
all climate variables. IDW is a widely accepted technique for estimating meteorological
conditions such as precipitation and temperature, especially when measurement stations are
limited and spatial variability is relatively smooth [76]. The locations of the original weather
stations used in the interpolation process are shown in Figure 5.4.

5.3.2.3 Geological Data

A detailed soil map was acquired from the Maryland Soil Survey Geographic Database
(SSURGO) for the creation of static maps. Soil polygons along highways that lacked attribute
information on soil properties and materials were identified, and the percentages of clay, silt,
and sand for these polygons were estimated by averaging values from neighboring polygons.
At the same time, topographic features were extracted using 1/3 arc-second LiDAR-based
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Digital Elevation Models (DEMs) specific to Maryland. The slope map was then derived from
the DEM using ArcGIS tools. Vegetation changes over time were tracked by creating
Normalized Difference Vegetation Index (NDVI) maps from Sentinel-2 satellite imagery
within the Google Earth Engine (GEE) platform.
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Figure 5.4: Spatial distribution of weather observation points from the Open-Meteo
database used for interpolation.

Sentinel-2, part of the Copernicus program by the European Space Agency (ESA), delivers
high-resolution optical imagery with a spatial resolution of up to 10 meters and a revisit time
of 5 days, making it particularly suitable for vegetation analysis [77]. NDVI was calculated
using the standard formula:

NIR—-RED

NDVI = (5.1)
NIR+RED

where NIR and RED represent reflectance values from the near-infrared (Band 8) and red
(Band 4) wavelengths, respectively. In Google Earth Engine (GEE), Sentinel-2 surface
reflectance data were pre-processed to mask clouds using the QA60 band and a cloud
probability threshold. NDVI was then calculated for each image and temporally aggregated to
create consistent NDVI maps aligned with the acquisition dates of the SSM maps. These NDVI
maps offer valuable information on vegetation cover, an important factor affecting surface soil
moisture and rainfall infiltration [78]. Figure 5.5 shows the spatial distribution of all input
parameters used in building the ML-SSM model for the study area, including meteorological
variables, topographic features, land use, and soil properties.
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5.3.3 Methodology

5.3.3.1 Producing SSM Maps using Sentinel-1

This study uses the SSM retrieval algorithm based on the TU Wien Change Detection Model
[79] to produce SSM maps from Sentinel-1 data as target maps for the ML model. This
physically based model estimates soil moisture directly from radar backscatter coefficients (¢°),
which indicate surface reflectivity. It assumes that changes over time in backscatter mainly
reflect variations in soil moisture, while factors like surface geometry, roughness, and
vegetation structure remain constant over time.

The model operates through a self-calibrated, pixel-based approach that uses long-term
backscatter time series to determine site-specific dry and wet reference values, denoted as 6°dry
and c°wet. For each acquisition at time t and local incidence angle 0, the observed backscatter
is normalized to a reference angle ® and scaled between the dry and wet reference values to
derive the relative surface soil moisture (SSM) as a percentage, calculated by:

a°(0,t) — a3,,(6,1)
Oper (0,) — O-(g'ry(@! t) (5.2)

SSM(t) =

This normalization mitigates the impact of vegetation and surface roughness by focusing on
temporal changes at each pixel location, enabling consistent and reliable surface soil moisture
(SSM) estimates across broad regions. The SSM retrieval algorithm is implemented using the
Google Earth Engine (GEE) platform to generate SSM maps at six-day intervals over the study
period from 2016 to 2024. The analysis specifically uses Sentinel-1 data in vertical-vertical
(VV) polarization mode. In VV mode, radar signals are both transmitted and received with
vertical polarization, making the backscatter more sensitive to dielectric properties such as soil
moisture and less affected by vegetation compared to vertical-horizontal (VH) polarization.
VH polarization, influenced more by volume scattering from vegetation, yields weaker
backscatter signals and is less suitable for detecting soil moisture. Therefore, this study uses
VV polarization to ensure more accurate and robust SSM retrieval, emphasizing sensitivity to
surface wetness while minimizing interference from vegetation.

In Sentinel-1 data, the orbitProperties-pass field indicates the satellite’s orbit direction relative
to the Earth’s surface, with values of ASCENDING and DESCENDING. During an ascending
orbit, the satellite travels from south to north, usually capturing data during nighttime or early
morning hours. These cooler, less evaporative conditions typically correspond to higher
surface soil moisture levels. In contrast, the descending orbit moves from north to south and
collects images during the daytime when increased solar radiation leads to higher
evapotranspiration rates, often resulting in lower apparent moisture levels.

Both ascending and descending passes provide valuable information for mapping surface soil
moisture using Sentinel-1 SAR data. The ascending orbit is especially useful for estimating
peak moisture conditions, while descending orbit data help analyze moisture variability during
drier periods. By combining data from both orbits, the temporal resolution is improved, and
the accuracy and reliability of soil moisture retrieval are enhanced by capturing different
hydrological states of the surface.
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5.3.3.2. Develop ML-SSM Model
The ML-SSM framework consists of five key steps designed to predict surface soil moisture
maps based on spatial and temporal environmental inputs.

Step 1: Data Preparation and Patch Extraction

Temporal raster maps of weather variables, including rainfall, maximum temperature,
minimum temperature, relative humidity, wind speed, and evapotranspiration, were collected
along with NDVI and static environmental parameters such as elevation, slope, silt, sand, and
clay contents. All datasets were spatially aligned. For each available SSM date, a two-step time
window of input data was created and stacked with static layers, resulting in a twelve-band
spatiotemporal tensor. These tensors and corresponding SSM maps were divided into smaller
patches of sixteen by sixteen pixels using a sliding window with a defined stride. Each patch
represented a local spatial area with temporal context and was saved to disk because of memory
limitations. Global min-max normalization was applied across each variable to reduce scale
sensitivity during training.

Step 2: Patch Dataset Management

The extracted patches were indexed and split into three non-overlapping subsets: training with
eighty percent, validation with ten percent, and testing with ten percent. A custom data
generator was created to load these patches in batches during model training to avoid memory
overload and to enable efficient and scalable model development.

Step 3: Patch Data Generators

Custom TensorFlow Sequence generators were implemented to load the input (X) and target
(y) patches from disk in batches. This ensured smooth feeding of spatiotemporal data into the
model along with random shuffling of training samples between epochs to enhance
generalization and prevent overfitting.

Step 4: Model Architecture and Training

A Convolutional Long Short-Term Memory neural network was designed to learn both spatial
and temporal patterns from the sequence of input raster patches. This model extends the
standard LSTM architecture introduced by Shi et al. [80] by replacing matrix multiplications
with convolutional operations in both input-to-state and state-to-state transitions. This allows
the model to preserve spatial structure while capturing temporal dynamics, making it effective
for spatially distributed variables evolving over time. This approach has been successful in
precipitation nowcasting [80], flood mapping [81], and soil moisture prediction [82]. The final
model architecture, selected after extensive testing, takes input tensors shaped (2, 16, 16, 12)
representing two consecutive time steps of sixteen by sixteen patches with twelve
environmental features. It begins with a ConvLSTM2D layer with 32 filters and a 3 by 3 kernel,
configured to return the full temporal sequence and capture spatial and temporal dependencies.
Batch normalization and dropout layers follow to improve stability and prevent overfitting. A
second ConvLSTM2D layer compresses the sequence into a single spatial output, again
followed by batch normalization and dropout. The output passes through a Conv2D layer with
16 filters and ReLU activation for spatial feature refinement. Finally, a Conv2D output layer
with a single filter and sigmoid activation generates the predicted surface soil moisture map
normalized between zero and one. The model was trained using the Adam optimizer and means
absolute error loss function with early stopping based on validation loss. This architecture
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allows simultaneous learning of how terrain, soil type, and temporal weather dynamics
influence soil moisture levels.

Step 5: Model Evaluation

After training, the model’s performance was evaluated on unseen validation and test patches
using mean absolute error, root mean squared error, and the coefficient of determination (R2).
Predictions were flattened and compared with actual surface soil moisture values to assess
accuracy and generalization across different locations and conditions.

5.3.3.3. Estimating Infiltration from SSM Maps

Once the ML-SSM model is developed, it can predict SSM maps under various weather
conditions, supporting real-time applications and future scenario analyses. However, for future
landslide susceptibility assessments, it is important to estimate infiltration depth rather than
soil moisture alone. Therefore, the next step involves converting the predicted SSM maps into
infiltration maps, which represent the depth of water penetration into the soil and are more
directly related to slope stability and landslide triggering. According to Wagner et al. [79],
SSM can be interpreted as the degree of saturation, which allows estimation of volumetric soil
moisture by multiplying SSM by soil porosity. With volumetric moisture determined, the
Green-Ampt equation [83] will be applied, as previous studies have demonstrated its
effectiveness for estimating infiltration from soil moisture. The equation is:

-k YAO
f= K+ T) (5.3)

where f is the potential infiltration rate, Ks is the effective saturated hydraulic
conductivity (permeability coefficient), W is average suction across the wetting front,

A0 = Os — 6i is the moisture deficit, s is the saturated water content, 6i is the initial

water content, and F is the cumulative infiltration. The actual depth of the wetting

.. _F
front is given by H =5
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Figure 5.6: ConvLSTM model architecture used in the ML-SSM framework.

Table 5.1 shows the amount of saturated hydraulic conductivity, suction across the wetting
front, and saturated water content for different soil types [84, 85].

Table 5.1: Green-Ampt parameter estimates based on soil texture.

Saturated Hydraulic

Saturated Suction at Wetting

Soil No. USDA Texture Conductivity (Ks) Front (¥) (cm)
Water (cm/h)
1 Sand 0.417 23.56 9.62
2 Loamy sand 0.401 5.98 11.96
3 Sandy loam 0.412 2.18 21.53
4 Loam 0.434 1.32 17.5
5 Silt loam 0.486 0.68 32.96
6 Sandy clay 0.330 0.30 42.43
loam
7 Clay loam 0.390 0.20 40.89
8 Silty clay 0.432 0.20 53.83
loam
9 Sandy clay 0.321 0.12 46.65
10 Silty clay 0.423 0.10 57.77
11 Clay 0.385 0.06 62.25
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5.4 Preliminary Results

In this study, various model configurations were tested to determine the optimal architecture

for accurate SSM prediction. Initially, a 2-layer ConvLSTM model was implemented, but due

to its limited performance, the model depth was increased to four layers. Figure 5.7 presents

the training and validation loss graphs for the 1-day configuration, in which weather data for

the same date as the SSM observations were used as input features. In this configuration, the

model was trained for 40 epochs with 16 filters to assess how filter size affects performance.
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Figure 5.7: Predicted SSM values using ML-SSM model (1Day, 40 epochs, 16 filters) versus
observed SSM.

Figure 5.8 illustrates the results for a 2-day configuration, where rainfall and ET were
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accumulated over two days, and other variables were averaged. This model used 32 filters and
was trained for 20 epochs. As shown, increasing the number of filters significantly improved
the model's performance, even with fewer training epochs.
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Figure 5.8: Predicted SSM values using ML-SSM model (2Day, 20 epochs, 32 filters) versus
observed SSM.

Figure 5.9 shows the best model performance achieved so far using the 2-day configuration
with 32 filters and 40 epochs. The improvement in model accuracy can also be attributed to
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proper preprocessing, as in earlier configurations, negative and missing SSM values were not
masked correctly, leading to errors in loss computation.
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Figure 5.9: Predicted SSM values using ML-SSM model (2Day, 40 epochs, 32 filters) versus
observed SSM.

Despite the improvements, the model consistently underestimates SSM values above 0.6. To
understand the cause of this, a histogram analysis of the training data was conducted (Figure
5.10). The results show that more than 97% of SSM values are below 0.6, indicating a strong
class imbalance. As a result, the model primarily learns from the majority of data in the lower
SSM range and fails to accurately predict higher values.

To address this issue, a rebalancing strategy was introduced in the patch generation process.
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By ensuring that more samples with higher SSM values are included in the training data, the
model is expected to better learn the full distribution and improve prediction accuracy for
underrepresented high SSM values.

M Value Distribution (excluding masked values):
0—-0.2 :2,161,907 pixels (56.89%)
0.2—0.4: 1,354,086 pixels (35.63%)
0.4—0.6: 251,954 pixels ( 6.63%)
0.6—0.8: 28,446 pixels ( 0.75%)
0.8-1.0: 3,779 pixels ( 0.10%)
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Figure 5.10: SSM data histogram and distribution

5.5. Conclusion and Future Works
This study presents a novel deep learning framework for high-resolution, spatiotemporal SSM
mapping using a ConvLSTM architecture. By integrating static terrain and soil parameters with
multi-temporal meteorological and vegetation data, the model successfully captures both
spatial and temporal dependencies influencing soil moisture dynamics. The use of Sentinel-1-
derived SSM maps as training targets, produced through a self-calibrated change detection
approach, eliminates the dependence on sparse in-situ measurements and ensures consistent,
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fine-scale labeling. The results demonstrate the potential of this model to generate accurate
and continuous SSM predictions across diverse landscapes. Performance evaluations indicate
strong generalization capabilities, although prediction accuracy for high soil moisture values
remains a challenge due to class imbalance in the training data. Addressing this issue through
targeted rebalancing strategies has shown promising improvements. Importantly, the
framework supports downstream applications such as infiltration estimation and landslide
susceptibility assessment by enabling the conversion of SSM predictions into infiltration maps
using the Green-Ampt model. This capability is particularly valuable in topographically
complex and data-scarce regions where traditional physically based models are
computationally intensive and hard to generalize.

Overall, the proposed ML-SSM approach offers a scalable, adaptable, and physically
meaningful solution for modeling soil moisture at the landscape scale. It lays the groundwork
for more accurate hydrological forecasting and geohazard risk assessment, particularly for
rainfall-induced landslides.

Future work will focus on enhancing model performance through systematic use of
rebalanced patches to improve the prediction of both low and high SSM values. Following the
SSM prediction, the next step involves converting the SSM maps into infiltration estimates
using the Green-Ampt equation to support physically meaningful hydrological modeling. In
the final phase of this research, a hybrid physical-machine learning approach will be developed
to produce landslide susceptibility maps, bridging the gap between data-driven predictions and
physically based slope stability assessments.
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Chapter 6

6 Numerical model development
for quantitative landslide risk
assessment

Seok Jun Kang, Samuel Fadipe, Sunil Lamsal, Yi Liu, Zhuping Sheng, Oludare
Owolabi

6.1 Introduction

Landslides are among the most destructive natural hazards, resulting in significant
human casualties and substantial economic losses worldwide. Regions characterized
by mountainous topography and steep slopes are particularly susceptible due to the
complex interplay of geological, geomorphological, and climatic factors. In such
regions, precise risk assessment and the establishment of proactive prevention and
mitigation strategies are regarded as essential components of disaster management.

Existing methodologies for landslide risk assessment can be broadly classified
into four categories considering their approaches for data processing and
interpretation: (1) GIS-Based Qualitative Approaches for Large-Scale Assessment, (2)
Physically Based, Site-Specific Quantitative Analysis, (3) Simplified Models for
Quantitative Slope Stability Assessment, and (4) Integrating Physics and Data:
Physics-Guided Machine Learning.

(1) GIS-Based Qualitative Approaches for Large-Scale Assessment

Many large-scale studies rely heavily on Geographic Information Systems (GIS) to
collect, manage, and analyze spatial data for identifying areas susceptible to
landslides. These approaches involve quantifying various terrain-conditioning
factors—including topography, soil types, land use, rainfall patterns, and vegetation—
and analyzing their correlation with known landslide occurrences to generate
Landslide Susceptibility Maps (LSMs) [86, 87].

While early models employed statistical methods such as frequency ratio and
logistic regression [88], recent advancements have introduced machine learning (ML)
and deep learning (DL) techniques to enhance predictive accuracy [89, 90].
Algorithms such as Random Forest, Support Vector Machines (SVMs), Artificial
Neural Networks (ANNs), and Gradient Boosting Machines have shown high
performance in susceptibility classification tasks. In addition, Convolutional Neural
Networks (CNNs) are increasingly used for learning complex spatial patterns from
geospatial data [91].

These models offer scalability and automation, enabling the rapid generation
of susceptibility maps across large areas. However, they are fundamentally limited by
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their dependence on statistical associations rather than physical mechanisms. In
particular, the accuracy of these models tends to deteriorate in regions with limited
landslide inventories or uncommon terrain configurations [88, 90]. Moreover, most
GIS-based approaches focus primarily on spatial features, often neglecting temporal
dynamics such as seasonal rainfall, antecedent moisture conditions, and climate
variability—factors that critically influence landslide triggering [87].

(2) Physically Based, Site-Specific Quantitative Analysis

For areas with historical landslide activity or identified geotechnical vulnerability,
detailed site-specific quantitative analyses are commonly employed. These analyses
use field investigations and in-situ measurements to build numerical or theoretical
models that simulate the underlying physical processes driving slope instability. Such
models provide quantitative estimates of slope stability, failure probability, and
potential run-out distances [92-94].

For instance, the TRIGRS (Transient Rainfall Infiltration and Grid-based
Regional Slope-Stability) model simulates the time-dependent increase in pore-water
pressure due to rainfall infiltration, enabling real-time assessment of rainfall-induced
landslide risk [95]. Additionally, finite element and finite difference software such as
GeoStudio and PLAXIS allow for advanced stress-strain analysis and failure scenario
modeling under realistic ground conditions [94].

Physically based models have the advantage of explicitly representing key
triggering mechanisms, such as pore pressure buildup, hydraulic conductivity
contrasts, and soil mass mobilization [94]. However, they require extensive site-
specific data, high-resolution parameterization, and substantial computational effort,
limiting their scalability and generalizability to broader contexts [96].

(3) Simplified Models for Quantitative Slope Stability Assessment

To bridge the gap between complex numerical simulations and purely statistical
models, simplified analytical models such as the Infinite Slope Model and Limit
Equilibrium Methods (LEM) have been widely adopted [96]. These models assume
simplified geometries—typically planar or circular slip surfaces—and calculate the
Factor of Safety (FoS) as the ratio of resisting to driving forces, based on parameters
such as slope angle, shear strength, unit weight, and groundwater position.

The Infinite Slope Model is particularly suited for analyzing shallow slope
failures, while LEM includes methods such as Bishop’s, Janbu’s, and Morgenstern—
Price formulations, which can handle more complex geometries and loading
conditions [97]. These methods are grounded in classical geotechnical theory and are
widely used in engineering practice due to their simplicity and computational
efficiency.

However, simplified models may oversimplify nonlinear soil behavior,
heterogeneous layering, and soil-water interactions, potentially leading to
discrepancies between modeled and actual failure behavior [98]. Additionally, their
ability to incorporate temporal factors such as rainfall infiltration is limited and often
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requires additional assumptions or external coupling [99].

(4) Integrating Physics and Data: Physics-Guided Machine Learning

To address the limitations of purely data-driven and purely physics-based models,
hybrid approaches, particularly Physics-Guided Machine Learning (PGML), have
gained increasing attention. This emerging methodology combines the flexibility of
ML algorithms with the interpretability of physics-based models by incorporating
physically meaningful variables—such as FoS, slope geometry, and shear strength—as
constraints or features in ML models [86].

For example, temporal changes in slope stability simulated through numerical
models can be used to train ML models, enabling the latter to learn from physical
insights while improving generalizability across diverse terrain conditions. This
approach allows for the enhancement of sparse observational datasets and supports
the development of robust, scalable models for landslide risk assessment [100].

In summary, GIS-based qualitative models are effective for rapid, large-scale
assessments but are limited in representing the actual physical mechanisms behind
landslides. In contrast, site-specific quantitative models provide high-fidelity physical
interpretations but lack general applicability and require significant resources.
Simplified analytical models offer a practical middle ground but struggle with complex
or dynamic conditions.

To overcome these challenges, there is a growing need for the development and
application of quantitative, physics-informed methodologies that integrate numerical
modeling and data-driven techniques. Such approaches are essential for enabling
accurate, scalable, and dynamic landslide risk assessments in both data-rich and data-
scarce environments.

6.2 Objectives

6.2.1 Overall Research Objectives
The overarching goal of this study is to establish a robust, interpretable, and
quantitatively grounded framework for Landslide Risk Assessment (LRA) by
integrating physics-based numerical modeling with machine learning. The research
aims to overcome the limitations of conventional qualitative or empirical methods by
introducing a novel approach that ensures both physical validity and spatial
generalizability.

Conventional LRA methodologies often suffer from structural limitations,
including poor interpretability, limited applicability across varying terrain conditions,
and inadequate treatment of temporal factors. To address these issues, this study
seeks to develop a dynamic, generalizable, and mechanistically interpretable LRA
system. The research includes the following objectives:

(1) Evaluation of physics-based, quantitative assessment methods that reflect the
underlying mechanisms of slope failure;

(2) Development of a simplified, generalizable numerical model capable of simulating
typical slope instability scenarios;
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(3) Construction of a numerical simulation-based dataset capturing the relationship
between key input variables (geometry, material properties, water head) and slope
stability metrics (e.g., Factor of Safety);

(4) Training and evaluation of ML models using the constructed dataset to identify
optimal predictive frameworks;

(5) Extension to a GIS-integrated risk mapping system and eventual incorporation of
real-time rainfall data for spatio-temporal LRA.

6.2.2 Objectives of the Current Stage (Stage 2)
In this second stage of the research project, efforts were focused primarily on the
following key objectives from the long-term plan:

(1) Establishment of a physics-based slope stability analysis framework: A simplified
numerical model was developed to represent typical slope failure mechanisms,
enabling the computation of the FoS under various conditions. Three numerical
approaches—Infinite Slope, PLAXIS 2D LE, and FLAC3D—were examined to
evaluate their relative accuracy, applicability, and computational characteristics.

(2) Development and validation of a generalized slope model: The numerical model
was designed to reflect representative slope conditions rather than site-specific
cases, with the aim of building a generalizable analysis framework. Model
assumptions, boundary conditions, and saturation behavior were carefully
structured to support extensibility.

(3) Preliminary construction of an input—output mapping dataset: A parametric
analysis was partially conducted using combinations of slope geometry, soil
properties, and water head. Although not fully completed at this stage, the initial
simulations enabled the identification of key trends in FoS responses and laid the
groundwork for a more comprehensive dataset in future stages.

This stage of the project primarily focused on building the core numerical
infrastructure and verifying the feasibility of a generalized, physics-informed LRA
model. These foundational efforts will support subsequent development of a full-scale
simulation-based dataset and the integration of ML-based predictive modeling in later
phases.

6.3 Methodology

6.3.1 Overview of Methodology
This study aims to evaluate and compare three representative quantitative
approaches for assessing slope stability in the context of Landslide Risk Assessment.
The selected methods reflect increasing levels of analytical complexity and modeling
fidelity:

(1) Infinite Slope Model — A classical analytical model based on limit equilibrium
theory, assuming infinite slope geometry.
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(2) PLAXIS 2D LE — A commercial geotechnical software implementing two-
dimensional Limit Equilibrium Methods, offering various slip surface algorithms
(e.g., Bishop Simplified).

(3) FLAC3D — A three-dimensional numerical tool based on the Finite Difference
Method (FDM), capable of simulating nonlinear and stress-path-dependent
behavior.

All three methods were used to compute the FoS under consistent input conditions.
In this stage, five key parameters affecting slope stability were varied across
simulations: Slope angle (°), Soil friction angle (°), Soil Cohesion (kPa), Soil unit
weight (kN/m3), and Groundwater level (m). In all simulations, the slope geometry
was kept consistent across cases, with the exception of the slope angle. The height of
the slope varied depending on the angle, while the slope width was uniformly
maintained at 10 meters.

6.3.2 Modeling details for each methodology
(1) Infinite Slope Model

The Infinite Slope model assumes a shallow failure surface that runs parallel to the
ground surface. This method is suited for simplified, planar slopes under drained
conditions and is commonly used for preliminary or GIS-based risk screening.

The FoS is calculated using the following equation [97]:

c+yrzcos?(B)tan(®)
yzcosfsinf

FoS = (6.1)

where c: cohesion, ¢: friction angle, y: unit weight of soil, y’= y- ywater: effective unit
weight of soil, z: depth to failure surface, and p: slope angle. The water table is
assumed to coincide with the failure surface, and the ground under the water table is
assumed to be fully saturated.

(2) Limit Equilibrium Model (PLAXIS 2D LE)

PLAXIS 2D LE employs the Limit Equilibrium Method, offering several analytical
techniques. In this study, the Bishop, Swedish Circle, Janbu, and Lowe models were
applied for assuming the slip surface under plane strain conditions [101]. The
boundary conditions were defined such that the bottom boundary was fixed in the
vertical direction, while the side boundaries were allowed to deform vertically but were
laterally constrained using roller supports. To mitigate boundary effects, continuous
ground regions were modeled beneath and alongside the slope, each with the same
length as the slope itself. Soil behavior was modeled using the Mohr—Coulomb failure
criterion under effective stress conditions. Once the slope geometry, geotechnical
properties, and groundwater level were specified, the software automatically
identified the critical slip surface and calculated the Factor of Safety using the selected
Limit Equilibrium formulation [101].
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(3) Finite Difference Model (FLAC3D)

FLAC3D offers advanced 3D continuum modeling capabilities based on explicit FDM.
It can account for nonlinear behavior, post-failure deformation, and pore pressure-
stress interactions. In this study, the slope was modeled with a very narrow width to
ensure a two-dimensional geometry, thereby facilitating a consistent comparison
between the two 2D-based analytical approaches.
The simplified slope geometry consists of the slope itself along with continuous
ground extensions at the bottom and lateral boundaries, designed to eliminate
boundary effects in the numerical analysis.

In the numerical simulations, boundary conditions were defined to realistically
represent slope behavior. The bottom boundary was fully fixed in the vertical
direction, while the side boundaries were constrained only in the horizontal direction,
allowing for vertical displacement. The top surface was modeled as a free surface to
account for potential infiltration and changes in matric suction. The Mohr—Coulomb
failure criterion was adopted as the constitutive model, and the FoS was computed
using the Strength Reduction Method (SRM) under effective stress conditions. For
meshing, 8-node hexahedral elements were employed, with local mesh refinement
applied near anticipated slip surfaces to enhance accuracy. A mesh sensitivity analysis
was also performed to determine the minimum mesh resolution required for stable
FoS estimates, while coarser meshes were applied to peripheral zones to reduce
computational demands [102] as shown in Fig. 6.1. The results of the sensitivity
analysis based on the fixed slope geometry scale are presented in Figure 6.2. As the
mesh becomes finer and the number of elements increases, the FoS shows a gradual
decrease and eventually converges to a stable value. This indicates that a mesh size
yielding more than 2,000 elements is required to obtain reliable FoS estimates for this
model. To ensure both accuracy and computational efficiency, the optimal mesh size
was determined to produce approximately 2,200 elements.

FLAC3D 5.00

©2012 Itasca Consulting Group, Inc.

Figure 6.1: Finite difference model with the optimal mesh configuration.
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Figure 6.2: Sensitivity analysis for the FoS according to the mesh number.

6.3.3 Groundwater Modeling and Pore Pressure Simulation
Proper modeling of groundwater conditions is critical in landslide risk assessment, as
pore water pressure significantly influences slope stability by reducing effective stress
and shear strength. Each numerical method employed in this study incorporates
groundwater modeling differently, based on its dimensionality, governing equations,
and degree of physical realism.

(1) Infinite Slope Model

In the Infinite Slope model, groundwater influence is simplified through the water
table height (h), where the water table aligns parallel to the slip surface. The factor of
safety is calculated using the classical formula:

_ cr+z(B) [A-m)ysou—my'Itan(¢r)
Fo$ = zcospsinB[(1-m)ysoi—my' ] (6.2)

where c’: effective cohesion, ¢’: effective friction angle, y: unit weight of soil or water,
z: depth to failure surface, h: water level, m=h/z (slope is not fully saturated), and 0:
slope angle.

This approach assumes hydrostatic pore pressure and uniform infiltration, and does
not account for lateral flow or transient effects.

(2) Numerical Methods

Numerical modeling approaches allow for the water table (phreatic surface) to be
defined independently of the slope geometry. To reflect a more realistic groundwater
profile, the Dupuit-Forchheimer model [103] was applied. Under the assumptions of
homogeneous and isotropic soil, steady-state conditions, and horizontal flow only, the
water table follows a parabolic distribution (Figure 6.3), which can be expressed by
the following equation:
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h(x) = JH% +HZ-HDE 63
14

where Hi: higher water head at one end of the slope, H.: lower water head at the
opposite end, x: horizontal distance from the left boundary of the slope, and Lp:
horizontal length of the phreatic surface.

According to the Dupuit-Forchheimer model, the shape of the phreatic surface
is governed by the hydraulic head difference between the upper and lower ends of the
slope and the length of the slope. The head difference, in turn, is affected by the soil's
permeability and the steady-state flow rate, which follows Darcy’s Law:

where q: Darcy’s velocity (flow rate in unit area) and K: permeability.

To define the phreatic surface in the numerical model, three parameters were
determined: the higher head value, hydraulic conductivity, and unit discharge. In
some cases, this formulation can lead to an unrealistic situation where the phreatic
surface is computed to be higher than the actual slope surface. To prevent this, the
initial phreatic surface was checked, and if any portion exceeded the slope surface, the
water table was adjusted to follow the slope surface instead (Figure 6.4).

- —— Water Table

Homogeneous ground

v

<
< >

L

Figure 6.3: Phreatic surface assumption on the simplified slope geometry.
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Figure 6.4: Phreatic surface adjustment considering outlet through slope surface.

Once the phreatic surface was defined, it was assumed that the soil below it was
fully saturated. Based on this assumption, the pore water pressure and effective stress
at different depths were computed, using the following effective strength equation:

T=c"+ (o, — wWtan(¢) (6.5)
where 7is the shear strength, o, is the total vertical stress, u is the pore water pressure,

¢’ is the effective cohesion, and ¢ is the effective friction angle.

This approach enables the slope stability analysis to reflect the reduced strength of
saturated soil, thereby enhancing the accuracy of the FoS calculation.

6.3.4 Parametric Case Design
To systematically investigate the influence of individual geotechnical parameters on
slope stability, a parametric study was conducted using a defined control case, with
each key parameter varied independently while keeping the others constant.

The control slope geometry and soil properties were set as:
. Slope angle (3): 30°

. Friction angle (¢): 30°

. Cohesion (c): 3 kPa

. Unit weight (y): 19.6 kN/m3

. Phreatic surface: Bottom boundary (no water)

This baseline scenario was considered representative of a typical shallow failure-prone
slope under moderate soil strength and hydrological conditions. Each parameter was
independently varied across representative values to evaluate its influence on the
computed Factor of Safety. The variations were designed to cover realistic field
conditions while maintaining numerical stability, as summarized in Table 6.1.
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Table 6.1: Input parameters variation

Parameter Range of Values Simulated
Slope angle (3) 10-50°

Friction angle (¢) 2—45°

Cohesion (c) 0 — 180 kPa

Unit weight (y) 17.6 — 21.4 kN/m3

Water level Bottom — Toe of Slope

Variations in groundwater level were simulated by first assuming the lower
water head (Hz2) to be located at the slope toe, and then systematically varying the unit
discharge (q) to derive corresponding higher water head (H1) values. This approach
allowed for the generation of 11 representative phreatic surface scenarios that
commonly occur in natural slopes.

In each simulation, only one parameter was changed at a time, and the others
were fixed at the control case values. This allowed for isolated sensitivity analysis and
consistent dataset generation for ML model training.

6.4 Preliminary Results and Discussion

6.4.1 Slope Failure Surface
The Infinite Slope Method, which assumes a planar failure surface parallel to the slope, has
limitations in realistically simulating actual slope failures. In contrast, the two numerical
methods employed in this study allow for relatively reliable predictions of failure surface
geometry.

In the control case—characterized by a slope angle equal to the friction angle and a low
cohesion value, representing a highly failure-prone condition—both the Limit Equilibrium
Method and the Finite Difference Method produced similar results. The calculated FoS was
1.4 for LEM and 1.5 for FDM, and the predicted failure surfaces appeared as circular slip
surfaces of comparable shape (Fig. 6.5).

However, when cohesion was reduced to near-zero under the same slope condition,
notable discrepancies between the two methods emerged. The FoS values dropped to 1.0 in
LEM and 1.2 in FDM, and the predicted failure surfaces diverged significantly in shape and
location (Fig. 6.6), indicating increased sensitivity of the models to changes in shear strength
parameters.

_78_



FLAC3D
o2 C

35 a7
3.0000E-07
2.5000E-07
2.0000E-07
1 5000E-07

a7

s 08
0.0000E+00
-1.2085E-10

(@) ®)
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Figure 6.6 Slope failure shape derived from (a) Limit Equilibrium and (b) Finite
Difference models in the cohesionless condition (c=0.001kPa, y=19.6kN/ma3, friction
angle=30°, and slope angle=30°)

The failure surface predicted by the LE method under cohesionless conditions
appeared highly unrealistic. This is likely due to the inherent nature of LE methods,
which search through numerous potential circular or elliptical slip surfaces and select
the one that yields the lowest FoS. In cases where the slope angle is equal to the friction
angle and the soil exhibits very low cohesion, any considered failure surface would
tend to produce similar FoS values. As a result, under near-critical conditions (i.e.,
FoS = 1), there is a high likelihood of selecting an implausible failure geometry. As
shown in Fig. 6.6(a), the LE method predicted an extremely small circular failure
surface, which is physically unrealistic.

In contrast, the failure surface derived from the FDM indicated local failure
occurring near the upper part of the slope, where the vertical stress is lower and thus
the frictional shear strength is reduced due to the absence of cohesion. This result is
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mechanically reasonable and aligns with expected failure mechanisms in weak,
cohesionless soils.

This comparison highlights fundamental differences in performance between
LE and FDM approaches. Importantly, incorrect assumptions regarding the failure
surface in LE can also lead to erroneous FoS calculations. Therefore, when conducting
large-scale parametric analyses using LE methods across a range of slope conditions,
it is essential to carefully inspect the predicted failure geometries. If the results show
unrealistic failure surfaces, those specific cases should be re-evaluated or excluded
from interpretation.

6.4.2 Parametric analysis for FoS Calculation

The results of the parametric analysis using soil unit weight, cohesion, friction angle,
and slope angle as variables are summarized in Figure 6.7. The influence of each
parameter on the FoS showed consistent trends across all three methods employed in
this study. Despite the wide range of input values considered, unit weight exhibited
minimal impact on the FoS. This observation aligns with theoretical expectations, as
unit weight contributes to both the driving and resisting forces in slope stability
analysis, effectively offsetting its net influence.

Cohesion, a key factor in determining shear strength, showed varying degrees
of influence on FoS depending on the method used. The Infinite Slope model exhibited
a linear relationship between cohesion and FoS due to its simplified assumptions and
decoupled input variables. In contrast, both numerical methods displayed nonlinear
behavior, as changes in cohesion affected the failure surface geometry, leading to more
complex interactions within the model.

For slope angle and friction angle, all three methods exhibited similar trends.
This consistency is attributed to the control case settings, where either the slope angle
or the friction angle was held constant while the other was varied, leading to a
proportional change in their relative magnitudes. However, it is expected that the
influence of these angles on FoS would vary significantly if cohesion values were
altered, given their interplay with the overall shear strength.

To further investigate key input variables prior to conducting a more extensive
parametric study, a focused preliminary analysis was conducted using both the
theoretical Infinite Slope model and the FDM, specifically examining the influence of
slope angle and cohesion. The results revealed that while the Infinite Slope model
exhibited predictable, directly proportional behavior in response to parameter
changes—consistent with its analytical formulation—FDM results showed abrupt
trend shifts under certain conditions. These shifts occurred when slope angles became
excessively gentle or when cohesion values became overly large.
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Figure 6.7: Parametric analysis on the FoS with varying (a) Soil unit weight, (b)
Cohesion, (c) Slope angle, and (d) Friction angle.

Upon inspecting the failure surfaces in such cases, it was observed that very
shallow slopes or high-cohesion conditions prevented the simulation of slope failure
under the strength reduction method. Instead, local instability within the model—
unrelated to typical slope failure mechanisms—was reflected in the calculated FoS.
These cases produced FoS values exceeding 1.8, which fall well outside the range of
concern for landslide risk assessments, even when considering safety margins and
model uncertainty.

Therefore, for the purposes of reliable dataset generation, scenarios with overly
stable slopes—specifically those with very low slope angles or extremely high cohesion
leading to FoS values above 1.8—should be excluded. This consideration can be
practically addressed during the definition of parameter ranges, by avoiding input
values that represent unrealistically stable slope conditions.
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Figure 6.8: Parametric analysis with varying (a) Slope angle and (b) Cohesion,
including unrealistic ranges

6.4.3 Effect of Groundwater Table Distribution

Using two numerical methods, a variety of realistic water table distributions were
modeled by assuming a water outlet at the slope toe and varying the flow rate (refer to
Section 6.3.4). Increasing the flow rate (Darcy’s velocity) resulted in higher hydraulic
heads, which indirectly simulate rising groundwater levels due to rainfall. Figure 6.9
presents the resulting changes in the Factor of Safety (FoS) in response to elevated
groundwater conditions. As the water level rises, pore water pressure increases in
accordance with hydrostatic pressure, leading to a reduction in effective stress and,
consequently, shear strength.

This shift affects both the location and size of the slip surfaces predicted by LE
methods, while in the FDM, the distribution of failure zones—captured via strain
localization—changes more significantly. As a result, the relationship between FoS and
increasing groundwater level appeared nonlinear, exhibiting two local extrema. When
applying different LE models, significant variations in FoS were observed due to
differing failure surface assumptions and calculation schemes. To reduce model-
specific bias, the arithmetic mean of FoS values calculated by four different LE models
was used as a representative value for comparison with FDM results.

At lower Darcy velocities—i.e., when water levels were low—LE and FDM
produced similar FoS estimates. However, as groundwater levels rose, FDM began to
yield lower FoS values. This discrepancy indicates that the LE method, which assumes
circular slip surfaces, fails to adequately capture the spatial variation in shear strength
resulting from pore pressure increases, particularly in the lateral direction.
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To more clearly evaluate the evolving failure surface under rising water levels,
six numerical models were selected at equal intervals along the range of increasing
Darcy velocities. These numerical models follow the conditions of the control case
(slope length = 10 m, slope angle = 30°, soil density = 18 kN/m3, soil cohesion =
3kPa, soil friction angle = 30°), but the variations in the water table were applied
differently to each model depending on the flow rate. These were used to conduct a
sequential analysis simulating prolonged rainfall leading to eventual slope failure.
This six-stage simulation began with an initial condition (Stage 0) where the water
table reached only the slope toe, and progressed toward a scenario in which the entire
slope became saturated due to continuous infiltration (Figure 6.10).

In the early stages (Stages 0—2), with FoS greater than 1.0, no visible shear
strain or failure was observed. Initial failure was captured at Stage 3, where FoS
dropped below 1.0. As the simulation progressed through Stages 4 and 5, both the
magnitude of shear strain and the extent of the failure surface increased. Since the
simulation was conducted sequentially, rather than as independent static cases, it
effectively captured the accumulation of shear deformation under prolonged rainfall.
The failure initiated at the slope toe and gradually extended toward the upper part of
the slope. While this analysis does not simulate material detachment or debris flow
(due to the continuum assumption in FDM), it nonetheless offers valuable insight for
landslide risk assessment by indicating how failure zones may evolve in response to
groundwater rise.

Compared to LE, which produced less realistic changes in FoS and failure
surface geometry under varying water tables, the FDM approach provided more
reliable and plausible results.
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Figure 6.11: Slope failure according to increased water tables.
6.5 Conclusions and Future Works

This study investigated slope stability under varying geotechnical and hydrological
conditions using three methods: the infinite slope model, LEM, and FDM. A series of
numerical simulations and parametric analyses were conducted to evaluate each
method's capacity to estimate the Factor of Safety (FoS) and predict failure surface
geometry under realistic slope conditions.

Numerical modeling has been proven to be an effective approach for visualizing
failure mechanisms and quantifying slope stability. The use of the Dupuit model
enabled the simulation of phreatic surface changes induced by infiltration and allowed
for realistic water table distributions across a range of scenarios. Sequential
simulations further captured the progression of failure surfaces due to rising water
tables, providing insight into rainfall-induced landslide behavior.

Among the three methods, the infinite slope model consistently produced
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conservative and overly simplified results, while LEM, despite its widespread use,
showed clear limitations under cohesionless or near-critical conditions—often
predicting unrealistic slip surfaces due to its reliance on circular failure assumptions
and minimum FoS search algorithms. These shortcomings highlight the importance
of validating LEM results, especially for marginally stable slopes.

In contrast, FDM demonstrated the highest level of reliability and physical
realism. It effectively captured nonlinear responses in FoS due to variations in
cohesion, slope angle, and groundwater level, while also representing internal failure
mechanisms and strain localization. Importantly, FDM was the only method that
consistently responded to changing hydrological conditions with credible shifts in
both FoS values and failure geometries.

Based on these findings, FDM was identified as the most robust and
trustworthy method for slope stability analysis among those evaluated. It aligns
closely with the objectives of this research, particularly the need to simulate realistic
failure behavior for a broad range of input conditions. As such, FDM will be used as
the foundation for future synthetic dataset generation and the training of machine
learning models for landslide prediction and risk assessment. This approach holds
strong potential for extending slope stability research into data-driven domains,
enabling more reliable and scalable hazard evaluations in geotechnical practice.

6.5.2 Future Works

Building upon the validated performance of the FDM for slope stability analysis,
future research will focus on leveraging this method for large-scale data-driven
modeling and landslide risk prediction. The proposed workflow (Fig. 6.12) is
structured to systematically integrate numerical modeling with deep learning-based
predictive systems and culminate in a real-time early warning application. The
following key tasks are planned:

(1) Synthetic Dataset Generation via FDM

Using FDM, a wide range of slope stability scenarios will be simulated by
systematically varying soil properties, slope geometry, and groundwater
conditions. This process will generate a robust synthetic dataset that reflects both
realistic and extreme conditions under which slope failure may occur.

(2) Training and Evaluation of Deep Learning Models

The generated dataset will be used to train various deep learning models. The
performance of these models will be evaluated not only based on predictive
accuracy but also on computational efficiency, to ensure scalability for real-time
applications. Through this comparative analysis, the most suitable DL model will
be identified.

(3) Application of the Optimal Model to Real-World Data

The selected DL model will be applied to perform a large-scale Landslide Risk
Assessment across the Maryland region, using spatially distributed geotechnical
and geomorphological data. The model’s robustness will be further evaluated
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through regional sensitivity analysis and parameter contribution techniques (e.g.,
SHAP).

(4) Development of a Real-Time Early Warning System

The optimal DL model will be integrated with real-time rainfall data to establish
an automated landslide Early Warning System (EWS). This system aims to provide
timely alerts based on forecasted slope stability conditions under changing
hydrological scenarios.

(5) Model Feedback Loop and Enhancement

As part of a long-term vision, insights from real-world performance and domain
expert feedback will be used to continually refine both the numerical and ML
models. This includes improving the FEM-based simulation framework used in
dataset generation, resulting in an enhanced end-to-end modeling loop.

This structured future direction enables the transition from reliable numerical
analysis to scalable, intelligent prediction systems capable of supporting proactive
landslide hazard management.
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Using FDM Validation
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Figure 6.12: Workflow for future works.
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Chapter 7

7 Integrating GIS-Based
Susceptibility Mapping and
Machine Learning for Landslide
Prediction and Early Warning in
in Baltimore County, Maryland

Oyinkansola Aladeokin, Ollie Hare, Zhuping Sheng, Yi Liu, Oludare Owolabi

~.1 Introduction

Landslides remain one of the most devastating natural hazards, causing extensive
economic damage, disruption, loss of life, and economic degradation in highly
susceptible areas worldwide. Its occurrence is closely associated with complex
interactions among geological, hydrological, morphological, and anthropogenic
elements, frequently intensified by extreme weather events and unpredictable
changes to the climate [104-106]. As the rapid expansion of urban communities
gradually changes into hazard-prone areas, it is crucial to mitigate this occurrence
with the generation of a comprehensive landslide susceptibility mapping (LSM). LSM
offers geographical assessments of landslide occurrence probability, functioning as an
essential instrument for risk mitigation, urban planning, and infrastructure resilience
[107, 108].

Various conventional landslide susceptibility mapping approaches have been used by
researchers, some of which include heuristic, statistical, and physically based models.
These approaches have limitations in accurately capturing the complex nonlinear
relationships between landslide occurrence and the causative factors [109, 110].
However, the recent advancements in artificial intelligence (AI) and machine learning
(ML) techniques have provided significant improvements in LSM. Machine learning
algorithms, such as Support Vector Machines (SVM), Random Forest (RF), Logistic
Regression (LR), and Gradient Boosting Machines (GBM), have demonstrated
superior performance due to their ability to handle large datasets, model complex
relationships, and produce highly accurate predictive results [111, 112].

Despite the breakthrough in technological advancement, there still remain challenges
such as model interpretability, generalization across diverse geographic locations, and
the effective management of data imbalances that is characterized in landslide
datasets [113]. Addressing these challenges is crucial for developing robust and
reliable susceptibility maps that can be effectively integrated into various decision-
making processes. This study focuses on the application and assessment of various
modern machine learning methods (SVM, RF, LR, GBM) to develop an effective and
reliable landslide susceptibility map for Baltimore County, Maryland. The study seeks
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to enhance the precision and applicability of susceptibility maps by utilizing diverse
geographic and environmental parameters, thereby improving landslide risk
management and facilitating informed planning and development initiatives.

7.1.1 Research goals and objectives

The primary goals of this project are to (1) develop and validate a machine learning
framework for predicting landslide susceptibility in Baltimore County, Maryland, and
(2) integrate the predictive model into an early warning system to support proactive
geohazard mitigation and transportation infrastructure safety.

The objectives include:

- Identify and map high-risk areas by analyzing contributing and triggering
factors such as slope, aspect, soil content, curvatures, and vegetation cover etc.
using historical data.

« Develop and test an early warning system that leverages susceptibility
outputs and real-time monitoring protocols for hazard detection and risk
communication.

7.2 Related Works

While physical models provide an extensive understanding of slope dynamics, they
are resource-demanding and necessitate considerable data, hence limiting their
application in regions with limited data availability [114, 115] conducted a
comprehensive analysis of conventional landslide hazard assessment methods,
analyzing statistical, heuristic, and deterministic models. Their research highlighted
the imperative for probabilistic and data-driven approaches capable of addressing
intricate geological, topographical, and climatic factors. While their assessment
established a solid basis for further research, it was lacking in extensive real-world
applications of machine learning implementations. Statistical methods, like the
Frequency Ratio Method (FRM), have been widely employed due to their simplicity
and effectiveness in quantifying the relationship between landslide events and the
various causative factors [110]. These models often inadequately capture the nonlinear
relationships and spatial variability characteristic of landslide processes [116]. The
frequency ratio method (FRM) and logistic regression were utilized to conduct
landslide susceptibility mapping in Malaysia [110]. Their research includes
categorizing many environmental variables affecting landslides and assessing the
probability of landslide events using historical data. The findings indicated that
logistic regression offered a solid framework for anticipating landslide vulnerability;
however, it presented limitations related to the assumptions of linearity and
independence of variables.

With the emergence of machine learning (ML), LSM evolved into a more data-
driven, scalable, and adaptive framework capable of processing high-dimensional,
nonlinear datasets. Machine learning models have been successfully employed in
LSM, exhibiting superior classification performance relative to traditional approaches
[117-119]. Numerous studies have assessed machine learning performance in various
geographic applications; for example, Support Vector Machines (SVM) was employed
for identifying landslide vulnerability in northern Italy [118]. Their methodology
entailed the application of kernel functions to limited datasets, resulting in elevated
accuracy and generalization proficiency. However, they observed challenges with the
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model's interpretability due to its dense character. A comparative investigation of
various machine-learning approaches, including Random Forest (RF), Support Vector
Machines (SVM), and Decision Trees (DT), was performed for susceptibility mapping
in Vietnam [112]. Their findings demonstrated that RF offered enhanced accuracy and
stability owing to its ensemble learning features; however, the interpretability of
results continued to pose challenges, requiring subsequent explanatory methods.
Additionally, Support vector machines were successfully employed with radial basis
function kernels for susceptibility mapping in Hong Kong, efficiently navigating
complex terrain conditions [120]. Nevertheless, the authors highlighted challenges
with model calibration and susceptibility to outliers. While LSTM networks were
implemented for predicting rainfall-induced landslides in southwestern China [121],
demonstrating enhanced prediction accuracy relative to ANN and linear regression
models, it was attributed to the temporal memory characteristic of LSTM. Studies by
Goetz et al. [122] integrated physical and empirical modeling techniques, discovering
that ensemble-based methods, especially Gradient Boost Machine and Random
Forests, outperformed simpler statistical models in effectively representing
complexities’ spatial dependencies in landslide susceptibility mapping due to their
resilience to overfitting and ability to capture complex interactions. Similar
comparison by utilizing Frequency Ratio, Support Vector Machine, Logistic
Regression, and Random Forest, also confirmed that the ensemble-based models
exhibited enhanced predictive accuracy and resilience [123].

In summary, the integration of machine learning with the Frequency Ratio
Method presents a promising hybrid framework that merges the interpretability of
statistical techniques with the predictive capabilities of machine learning [124]. This
research employs a dual approach for landslide susceptibility mapping (LSM) in
Baltimore County, Maryland, utilizing frequency ratio modeling (FRM) to create an
initial landslide susceptibility index (LSI) and applying four machine learning
classifiers—logistic regression (LR), support vector machine (SVM), random forest
(RF), and gradient boosting machine (GBM)—to enhance spatial and
temporal predictions. A dataset consisting of 12 parameters contributing to landslides
(e.g., elevation, slope, NDVI, SPI, TWI, soil texture, and aspect) along with balanced
landslide and non-landslide points was utilized. The models were assessed using
performance metrics  such as using Accuracy, Precision, Recall, F1 Score, and Area
Under the Curve (AUC), with SVM and RF attaining the maximum classification
accuracy. These results offer significant insights for incorporating predictive modeling
into early warning systems, disaster management, and sustainable land-use planning.

~.3 Materials and Methods

7.3.1 Study Area
This study focuses on Baltimore County, Maryland, as the selected area for landslide
susceptibility mapping. Located in the north-central part of the state, Baltimore
County was chosen because of its varied landscape, diverse environmental conditions,
and past occurrences of landslides linked to heavy rainfall. The county spans about
682 square miles and includes a mix of urban, suburban, agricultural, and forested
areas. This variety makes it a suitable location for developing a machine learning
model that can account for different physical and land use conditions. Although there
have been no recorded landslides in the county since 2014, the natural terrain and
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weather patterns suggest that certain areas remain at risk. As a result, Baltimore
County offers a valuable opportunity to test and improve prediction tools that can later
be applied in other parts of Maryland and similar regions with transportation systems
exposed to slope instability. Geologically, the county lies at the boundary between the
Piedmont Plateau and the Atlantic Coastal Plain, creating a mix of hills, slopes, and
flatlands. This setting results in a wide range of soil types, rock formations, and slope
angles, all of which affect how water moves through the ground and how stable the
slopes are. The county has a humid subtropical climate, with steady rainfall
throughout the year and occasional storms. While recent landslide activity has been
limited, the combination of rainfall and complex terrain still creates conditions where
slope failures could occur, especially during extreme weather. This makes Baltimore
County an important area for improving early-warning systems and supporting safer
transportation planning,.

7.3.2 Data sources
This research employed landslide data from three principal sources in Maryland: the
Maryland State Highway Administration (SHA), the U.S. Geological Survey (USGS),
and the National Aeronautics and Space Administration (NASA). These datasets
collectively recorded 129 landslides in Maryland from 2008 to 2019 (Fig. 7.1). The
datasets offer spatial and spatiotemporal information used for spatial and temporal
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Figure 7 1 Recorded landslide location across Maryland and the selected case study
area, Baltimore County.

According to the dataset, Baltimore County has the second highest number of
landslide events in Maryland, with 23 out of 129, accounting for approximately 18.37
percent of all occurrences shown in Fig. 7.2. Due to the county’s large population and
extensive built environment, careful evaluation and proactive management of
landslide hazards are critical to minimize potential impacts on public safety and
critical infrastructure.
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Figure 7.2: Distribution of Landslides by County in Maryland.

7.3.3 Methodology
The conceptual architecture of the intelligent landslide detection and early warning
system is shown in Figure 7.3. This framework outlines the essential components and
processes that drive this research. The steps in this framework consist of the following:
(1) gathering the landslide inventory for the study area, (2) selecting landslide
causative environmental factors, and reclassifying the generated input; (3) Frequency
Ratio Analysis: analyzing each factor using the frequency ratio (FR) method to
determine its FR values, which are then used to calculate the Landslide Susceptibility
Index (LSI). An initial susceptibility map is created based on this index, designating
non-landslide areas as 0 and potential landslide areas as 1; (4) creation of the output
dataset, which is used to develop prediction models using four machine learning
algorithms: Support Vector Machine (SVM), Random Forest (RF), Logistic Regression
(LR), and Gradient Boosting Machine (GBM); and (5) integration of the best-
performing predictive model into an early warning signal system.
7.3.3.1 Data Preparation

Spatial factors provided in a polygon shapefile format were extracted from geospatial
databases, with the Digital Elevation Model (DEM) serving as the foundational
dataset. The DEM captures the Earth's bare terrain. Causative factors, such as slope,
aspect, plan curvature, etc., were derived from calculations from the elevation data.
All DEM-based variables used in this study maintain a spatial resolution of 10 meters.
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Figure 7.3: Design Architecture of an Intelligent Landslide Detection and Alert
System.

Twelve causative factors were chosen for Landslide Susceptibility Mapping, shown in
Table 1. These selected causative factors are related to geology, hydrology, and land
cover [108, 125]. Additionally, a comprehensive soil map was obtained from the
Maryland Soil Survey Geographic Database (SSURGO) for the extraction of soil
content variables. The highway polygon was devoid of soil data; thus, an estimate was
derived using the average values from adjacent soil polygons.

Table 7.1: Landslide Causative Factors

Type of factors Causative factors
Slope, aspect, elevation, plan curvature,
Topography soil content (sand, clay, and silt), and

field capacity

Stream power index (SP1), topographic
wetness index (TWI)

Normalized Difference Vegetation
Index (NDVI)

Hydrology

Land use/cover

7.3.3.2 Landslide Susceptibility Computation

Landslide susceptibility indicates the likelihood of landslides occurring under certain
environmental and geological factors. It is an essential tool for identifying high-risk
locations and mitigating landslide hazards. In previous investigations, various
assessment methodologies such as physics-based, knowledge-based, and data-driven
techniques were examined. Based on the several benefits of data- driven approach
from previous literature, a hybrid approach is adopted in this study. The Frequency
Ratio (FR) approach, known for its simplicity and demonstrated efficacy in prior
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research, is integrated with machine learning (ML) methods to enhance accuracy
forecasting and identify nonlinear correlations. The model included twelve causal
factors, comprising topographic (e.g., slope, elevation), hydrological (e.g., stream
power index), and land cover (e.g., NDVI) variables. The landslide susceptibility map,
created with ArcGIS Pro, is a high-resolution resource for hazard evaluation and
infrastructure design in Baltimore County. Figure 7.4 illustrates the spatial and
temporal raster layers of all input parameters. These parameters were extracted and
included in the FR modeling framework to facilitate accurate landslide prediction.

7.3.3.3 Frequency Ratio Method

The Frequency Ratio Method (FRM) is a widely used bivariate statistical technique in
landslide susceptibility modeling, valued for its simplicity, interpretability, and
efficiency in determining the influence of causative environmental factors. It evaluates
the spatial correlation between landslide occurrences and the attribute classes
associated with various geo-environmental factors by analyzing their spatial frequency
distributions.

Landslide occurrences are generally affected by nonlinear and intricate
interactions with topography and environmental variables; thus, the FRM provides a
quantitative method to quantify the contribution of each factor class to landslide
susceptibility. To use the approach, each causal factor is initially segmented into
classes to effectively capture internal data variance. These intervals serve as the
foundation for developing grid-based factor layers, whereupon spatial overlays with
landslide inventory data facilitate pixel-level frequency analysis. The frequency ratio
(FR) for each class i of a factor is calculated using the following equation:

FRi=Xi/ X

YilY (7.2)

where:
Xi is the number of landslide pixels within the i-th class of the factor,
X is the total number of landslide pixels in the study area,
Yi is the number of pixels in the i-th class of the factor,
Y is the total number of pixels in the study area.
Equation 7.1 defines the ratio of the percentage of landslide occurrences within a
particular class to the percentage of area that the class occupies in the overall study
area. When the value of FRi exceeds 1, this signifies that a landslide is likely in that
class, indicating a positive correlation. An FRi value below 1 indicates that the factor
class is unfavorable for landslide occurrence and adversely affects susceptibility.
Upon computing the frequency ratios for all classes across all causative factors, the
Landslide Susceptibility Index (L.SI) can be determined for each pixel by aggregating
the corresponding FR values using equation 7.2.

oy g ()
LSI =) FR
i=1 (7.2)

FRO represents the frequency ratio for the j-th factor at a given pixel, while m signifies
the total number of causative factors. Higher LSI value indicates an increased
likelihood of landslide occurrence, and a lower value indicates a reduced likelihood of
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Figure 7.4: Causative factors of Landslides (a) Elevation; (b) Slope; (c) Aspect;
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_94_



landslide occurrence. A landslide susceptibility map is then generated by classifying
the LSI values into susceptibility zones ranging from very low to very high.

Table 7.2: Frequency ratios of causative factors.

Factor Class Class pixels Clas(s(yi) )lx els La;;;l{:}isde ;‘32:11:1(1%3 FR
Elevation | -0.77 ~ 58.15 3168245 19.73 13 56.52 2.87
58.15 ~ 117.07 2842506 17.70 4 17.39 0.98

117.07 ~ 175.99 5780526 35.99 6 26.09 0.72

175.99 ~ 234.91 3758498 23.40 0 0.00 0.00

234.91 ~ 294.79 510624 3.18 0 0.00 0.00

16060399 23 4.57

Slope 0 ~5° 9763489 60.89 14 60.87 1.00
5~15° 5629879 35.11 9 39.13 1.11

15 ~ 25° 584349 3.64 0 0.00 0.00

25 ~ 35° 52459 0.33 (o} 0.00 0.00

35 ~ 90.0° 3629 0.02 0 0.00 0.00

16033805 2.11

Aspect 135 ~ 225° 4526207 29.05 7 30.43 1.05
112.5 ~ 135° 1121622 7.20 1 4.35 0.60

225 ~ 292.5° 4643679 29.80 5 21.74 0.73

22.5 ~ 67.5° 3500251 22.47 8 34.78 1.55

337.5 ~ 22.5° 1788668 11.48 2 8.70 0.76

15580427 4.69

Plan 30 ~-72.35 21 0.0 0 0.00 0.0
10 ~ -30 430 0.00 0.00 0.0

-10 ~ -10 16059021 99.994 23 100.00 1.0

-30 ~ -10 554 0.0034 0 0.00 0.0

-49.14 ~ -30 9 0.00006 0 0.00 0.0

16060035 1.0
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Table 7.2:

Frequency ratios of causative factors (cont.).

Factor Class Class pixels Clas(s(yi) )lx els La;;g:}isde II)‘:‘;(IISS](I%'; FR
Sand 0 ~18.51% 118810 1.84 0 0.00 0.00
content
18.51 ~ 37.02% 022153 14.31 0 0.00 0.00
37.02 ~ 55.53% 6443451 99.99 3 75.00 0.75
55.53 ~ 74.04% 6953264 107.90 16 400.00 3.71
74.05 ~ 83.33% 1622334 25.18 4 100.00 3.97
16060012 8.43
S(E?l}tlent 0~ 6.89% 1603496 9.98 2 8.70 0.87
6.89 ~ 13.78% 1426899 8.88 5 21.74 2.45
13.78 ~ 20.67% 10408680 64.81 16 69.57 1.07
20.67 ~ 24.11% 550014 3.42 0 0.00 0.00
24.11 ~ 31% 2070923 12.89 0 0.00 0.00
16060012 4.39
Silt 0~17% 1475080 9.18 2 8.70 0.95
content
17 ~ 34% 710334 4.42 0 0.00 0.00
34 ~51% 8643837 53.82 3 13.04 0.24
51 ~ 68% 5042793 31.40 16 69.57 2.22
68 ~ 76.5% 187968 1.17 2 8.70 7.43
16060012 10.83
NDVI 0.6 ~ 1.0 4298448 26.76 0 0.00 0.00
0.4 ~0.6 7233883 45.04 13.04 0.29
0.2~0.4 2933074 18.26 7 30.43 1.67
0.0 ~-0.2 1059594 6.60 13 56.52 8.57
-1.0 ~ -0.0 536208 3.34 0 0.00 0.00
16061207 10.52
Texture 1 760808 4.74 0.00 0.00
2 10214131 63.60 26.09 0.41
3 4509018 28.08 17 73.91 2.63
4 24378 0.15 0 0.00 0.00
5 551677 3.44 (o} 0.00 0.00
16060012 3.04
FC 0.26 ~ 0.33% 1356270 8.45 2 8.70 1.03
0.34 ~ 0.41% 829108 5.16 0 0.00 0.00
0.42 ~ 0.48% 6443920 40.12 3 13.04 0.33
0.49 ~ 0.55% 5970541 37.18 13 56.52 1.52
0.56 ~ 0.63% 1460173 9.09 5 21.74 2.39
16060012 0.00 5.27

_96_




Table 7.2:

Frequency ratios of causative factors (cont.).

Factor Class Class pixels Clas(s(yi) )l xels La;;(;:}isde II)‘:‘;(}SS](I%'; FR
SPI 0 ~ 4.0€5 16033786 100.00 23 100.00 1.00
4.0 ~ 8.0e5 324 0.00 o] 0.00 0.00
8.0 ~ 1.2e6 39 0.00 0 0.00 0.00
1.2 ~ 1.6e6 4 0.00 0 0.00 0.00
1.6 ~ 2.0e6 5 0.00 0 0.00 0.00
16034158 1
TWI -0.47 ~ 17.06 13365903 99.89 23 100.00 1.00
17.06 ~ 35.17 14901 0.11 o] 0.00 0.00
35.17 ~ 53.29 28 0.00 0 0.00 0.00
53.29 ~ 71.41 1 0.00 o] 0.00 0.00
71.41 ~ 87.88 3 0.00 0 0.00 0.00
13380836 1.00

Table 7.2 presents the frequency ratio (FR) values that quantify the correlation
between various causative factors and landslide occurrences in Baltimore County. An
FR value greater than 1 indicates a strong positive correlation between a specific class
of a factor and the likelihood of landslides, while an FR below 1 implies a weak or
negligible association. For instance, certain aspect classes—particularly between 22.5°
and 67.5°—showed a notably high FR of 1.55, indicating a strong susceptibility to
landslides in that directional range. Similarly, for soil-related parameters, sand
content ranging from 55.53% to 74.04% had an FR of 1.61, and silt content between
51% and 68% had an FR of 2.22, both suggesting a significant contribution to landslide
potential.

Upon calculation of the Frequency Ratio (FR) values for each causative factors
classes, the Landslide Susceptibility Index (LSI) was computed by using the
expression in Equation (7.2). The resulting LSI values were classified into five
susceptibility levels ranging from very low, low, moderate, high, and very high, using
equal interval classification in ArcGIS. The final Landslide Susceptibility Map (LSM),
presented in Figure 7.5, highlights areas with varying degrees of landslide risk across
Baltimore County. To strengthen the robustness of the training dataset,
potential landslide points were generated from regions classified within the high and
very high susceptibility zones of the LSM, while non-landslide points were generated
within the very low and low susceptibility zones. These synthesized samples
enhance the initial landslide inventory, facilitating a more proportionate dataset for
model training. This practice is comparable with emerging trends in literature [126,
127].
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Figure 7.5: LSM generated by Frequency Ratio Method.
Table 7.3 highlights the relationship of susceptibility zones with their associated
landslide probabilities, serving as an essential input for further machine learning-
based landslide prediction.

Table 7.3. Relationship between susceptibility classes and landslide probability.

Susceptibility Class Probability of Landslide
Very Low 0-20%
Low 20-40%
Medium 40-60%
High 60-80%
Very High 80-100%
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7.3.4.4 Machine Learning Method

Recent years have seen a significant increase in the adaptation of machine learning
(ML) algorithms in landslide susceptibility modeling, largely due to its superiority in
accurately analyzing vast amounts of temporal and spatial data, accuracy over
conventional techniques in intricate modeling, and nonlinear relationships.
Additionally, its ability to automatically identify patterns in high-dimensional datasets
and enhance prediction accuracy in contrast to deterministic or knowledge-driven
systems. Machine learning models such as Random Forest, Support Vector Machine,
and Gradient Boosting Machine, which identify subtle interdependence between
landslide occurrence and causative causes, have been used to make informed data-
driven decision-making for hazard risk mitigation. In this research, a high-resolution
Landslide Susceptibility Map for Baltimore County was created by integrating
machine learning models with FR-based LSI values.

This landslide prediction research is approached as a binary classification
model. The study area was categorized as either a potential landslide zone or a non-
landslide-prone zone based on the correlation between landslide susceptibility and the
selected causative factors. To provide accurate predictions, four different machine
learning (ML) methods were used: logistic regression (LR), support vector machine
(SVM), random forest (RF), and gradient boosting machine (GBM). Logistic
Regression is a linear model that uses a logistic function to predict the likelihood of
class membership, making it appropriate for datasets with linear input-output
relationships. In scenarios with well-separated classes, the Support Vector Machine
creates a hyperplane that maximizes the margin between classes in a high-
dimensional feature space, resulting in excellent performance. Random Forest, an
ensemble of decision trees trained on random subsets of data and characteristics,
enhances classification accuracy and robustness by aggregating predictions from
numerous trees. Gradient Boosting Machine, another ensemble method, constructs
models progressively, with each iteration attempting to rectify the flaws of the
preceding one, resulting in excellent predicted accuracy, particularly on complex
datasets. These models were chosen due to their demonstrated reliability and ease of
interpretation in extensive prior geohazard research.

Step 1 Data preparation

A total of 292 landslides were used in the database created as input for ML models.
The model for LSM considers twelve landslides causative factors shown in Table 7.1.
To train a ML model to recognize the pattern of features for various classes in a binary
classification task, positive and negative sample features are required. As a result, the
study area is sampled with 146 non-landslides labeled as 0 and 146 existing and
potential landslides labeled as 1 respectively. A section of the input database used is
as shown in Figure 7.6.
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POINT_X POINT_Y dem_balt Slope Aspect  plan_curve twi spi NDVI Sand_content clay_content Silt_content soil_texture Field_Capa Labels
1407738.34989 | 679023.300003 | 127.3236 | 13.54292 | 345.7658 0.763743 | 2.618896 | 1.134684  0.355897 26.5 20 53.5 12 0.55 1
1453438.22568 | 623769.317673 | 68.09829 | 14.53599 | 166.381 0.443817 | 3.765716 | 1.635022 | 0.564156 26.5 20 53.5 12 0.55 1
358008.416979 | 14390154.2193 | 158.1958  6.026412  161.235 0.23201 | 4775163 | 1.210761 | 0.19962 421 20 37.9 1 0.48 1
345568.416979 | 14389334.2198 | 215.9347 | 7.467983 | 353.5851 | -0.376236 2.664991 | 0.276622 | 0455204 421 20 37.9 1 0.48
345988.416979  14387924.2198 | 207.5311 | 4.072436 264.2286 0.044556 | 4.247251 | 0.35698 0.438549 421 20 37.9 1 0.43
356938.416979 | 14389554.2198 | 138.8548 5.044343 5011919 0.00441 | 4819543 | 0973974 0.467089 50 15 35 4 0.45
357748416979 | 14389274.2198 | 128.5694 | 9.175700 290.2042  -0.259674 | 5.988427 7.537953 0438746 45 19 36 1 0.47
357458416979 143382542198 158.872 1432095 1411263 | 0.294037 4447319 4157518 0456456 45 19 36 1 0.47
357528.416979 | 14388174.2193 | 170.9222 9.621971 13.47543 | -0.247345 3.945232  1.911062 0.633297 45 19 36 1 0.47
359178.416979 | 14395154.2193 | 230.5737 | 2.316536 | 168.2081 | -0.057922 4.58638 0.162945 0.161685 31.79 24.79 434 4 .52 1
359088.416979 | 14394854.2193 | 234.3861 | 4.710535  5.037613 -0.1834 | 3.902236 | 0.322447 | 0.053391 31.79 24.79 434 4 .52 1
358418416979 | 14391924.2198 | 193.1942 | 3.975666 | 112.8478 0.343552 | 4.660241 | 0.463068 | 0.19716 421 20 37.9 1 .48 1

Figure 7.6: Machine Learning Input database.

Step 2: Data Preprocessing

The first step to training a machine learning (ML) model is training of a predetermined
dataset. After this first training phase, data not used during training is used to evaluate
the model's predictive capabilities. To thoroughly assess the ML model's
generalizability, common practice is to separate the original dataset into separate
training and testing subsets. A 70%/30% split was used in this study, with 70% of the
data used for training the model and the remaining 30% used for testing and
evaluating the predicted accuracy of the model.

Step 3: Model Evaluation

Evaluating the performance of machine learning (ML) models is essential for
determining how well a model adapts to new data and makes predictions. These
assessment matrices help to determine overall accuracy and how well the model
recognizes positive cases and reduces false alarms.

Five evaluation metrics: Accuracy, Precision, Recall, F1 Score, and AUC Score, were
used to evaluate the effectiveness of machine learning models for landslide
susceptibility classification. The metrics obtained from the confusion matrix offer a
thorough insight into how successful the model accurately predicts potential landslide
areas and non-landslide areas [128]. Accuracy provides a comprehensive performance
assessment, whereas Precision and Recall emphasize the correctness and
completeness of positive predictions. The F1 Score establishes a balance between these
two, particularly when decisions are required. The AUC Score assesses model efficacy
across all potential categorization levels utilizing the ROC curve. Table 7.4 summarizes
the evaluation metrics, and their corresponding formulas used for this study.
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Table 7.4: Performance Metrics for Binary Classification Models.

Metric Definition Formula

TP+TN

Accuracy Overall correct predictions TPIIN{FPIEN

P

Precision Correct positive predictions TPLFP
. . e T
Recall Correctly identified actual positives TP+FN
F1 Score Balance between precision and recall m
AUC Score Area under ROC curve Area under TPR vs. FPR curve
Where:
e TP (True Positive): Model correctly predicts the potential landslide (positive)
class.
e TN (True Negative): Model correctly predicts the non-landslide (negative)
class.
o FP (False Positive): Model incorrectly predicts the potential landslide (positive)
class.
e FN (False Negative): Model incorrectly predicts the non-landslide (negative)
class.

TPR: True Positive Rate
FPR: False Positive Rate

7.4 Preliminary Results

To evaluate the prediction performance of the machine learning models, each method
was trained and tested on a standardized dataset with a five-fold cross-validation
strategy. The preliminary findings show how well each model distinguishes between
potential landslide and non-landslide areas using the given environmental factors.
Key performance measures including accuracy, precision, recall, F1 score, and AUC
were calculated to provide a thorough evaluation. The results of these measures
provide insights into each model's strengths and limitations, as well as a basis for
comparison when determining the best technique for predicting landslide
vulnerability.

Table 7.5 compares the model performance of the four algorithms and finds
that SVM outperforms the other three algorithms in terms of classification
performance. The SVM technique has the highest AUC value of the four models, at
0.99, indicating excellent accuracy in categorizing landslides and non-landslides at
various probability thresholds. As a result, the trained SVM model will be used to
forecast the likelihood of landslides occurring across the entire study area.
Specifically, twelve landslide causative factors are assigned to each pixel in the study
area, and the trained model is used to estimate the likelihood of a landslide for each
one.
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Table 7.5: Model classification across ML models

Model Accuracy  Precision Recall F1 AUC
LR 0.94 0.95 0.94 0.94 0.99
SVM 0.98 0.98 0.98 0.98 0.99
RF 0.98 0.98 0.98 0.98 0.98
GBM 0.95 0.95 0.95 0.95 0.98
Avg. 0.95 0.96 0.95 0.96 0.98

Figure 7.6 displays confusion matrices for all four models, illustrating the distribution
of true positives, true negatives, false positives, and false negatives. As observed, SVM
and RF produced higher true positive rates with fewer incorrect classifications.

Confusion Matrix - (a) Support Vector Machine Confusion Matrix - (b) Random Forest

Actual

=20 =20

-10 -10

0 1 ) 0 1 0
Predicted Predicted
Confusion Matrix - (c) Logistic Regression Confusion Matrix - (d) Gradient Boosting Machine

40

40

30 30

Actual

=20 =20

-10 -10

-0 -0

1
Predicted Predicted

Figure 7.6: Confusion matrices for (a) Support Vector Machine, (b) Random Forest,
(c) Logistic Regression, and (d) Gradient Boosting Machine showing model
predictions versus actual class labels.

The Receiver Operating Characteristic (ROC) curves for the four models are illustrated
in Figure 7.7. These plots clearly show that all models perform well above the diagonal
baseline, with SVM and LR exhibiting near-perfect classification behavior, as
indicated by their AUC scores (0.99).
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Figure 7.7: ROC curves of the four ML models with AUC scores. SVM and LR show
the best performance (AUC = 0.99).

Figure 7.8 shows feature importance plots to help understand how each causative
element affects model outcomes. These plots show that, across all four machine
learning models, sand content and NDVI were consistently the most influential
parameters influencing landslide susceptibility. Both characteristics had high
significance scores in Gradient Boosting and Random Forest models, demonstrating
significant predictive value in ensemble-based learning. Similarly, the SVM and
Logistic Regression models awarded significant coefficients (positive or negative) to
these variables, emphasizing their importance. While sand content was positively
related to landslide risk across models, implying that places with high sand content
are more prone to landslides, NDVI was generally negative, showing that vegetated
areas are less susceptible. Other features such as Field Capacity, Silt content, and Clay
content were moderately important in tree-based models (RF, GBM), while their
influence was less obvious in linear models (SVM, LR). Topographic variables such as
slope, aspect, and TWI exhibited relatively low relevance across all models, indicating
a restricted role in this dataset and location.

~.5 Conclusions

This study demonstrates the feasibility of employing machine learning models for
landslide susceptibility mapping by providing an effective framework for binary
classification based on environmental variables. Among the four models examined,
SVM demonstrated exceptionally excellent prediction capability. The comparison of
important performance indicators such as accuracy, precision, recall, F1 score, and
AUC reveals each model's strengths and limitations. The study adds to the increasing
body of geospatial predictive analytics and establishes the framework for
incorporating advanced machine learning algorithms into operational early warning
systems. With additional improvements such as ground-truth validation and an alert
system, the suggested methodology has the potential to improve disaster
preparedness and reduce landslide risks.
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Figure 7.8. Feature importance across ML models.

~.6 Future Work
Future work will focus on creating a thorough Landslide Susceptibility Map (LSM)
with the Support Vector Machine (SVM) model, which was found as one of the best-
performing classifiers in this study. The LSM will be integrated into a real-time
landslide early warning system that uses spatial and temporal analytics to anticipate
the chance of landslides occurring at specific locations and times. This technology will
help with proactive risk mitigation by sending timely notifications to individuals.
Furthermore, the model's predictive capabilities will be evaluated by ground-truthing
activities, which will involve checking predicted landslide-prone locations with field
observations and existing records in order to increase reliability and operational
readiness. These improvements are intended to bridge the gap between susceptibility
modeling and actionable geohazard management systems.
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Chapter 8

8 Summaries

8.1 Conclusions
This report summarizes work completed for the phase 2 of the project. They include:

e Review of geotechnical asset management (GAM) framework. current status
and recommendations for implementing in Maryland.

e Updates on field and lab investigation with geotechnical test results.

e Applications of LiDAR data in detection and characterization of landslides in
Prince George’s County.

e Test soil moisture mapping procedures using Sentinel I data with ML
approaches with a case study in Prince George’s County Maryland.

e Numerical model development for quantitative landslide risk assessment,
aiming at establishing a robust, interpretable, and quantitatively grounded
framework for Landslide Risk Assessment (LRA) by integrating physics-
based numerical modeling with machine learning approaches

e Integrating GIS-Based Susceptibility Mapping and Machine Learning
framework for Landslide Prediction and Early Warning with a case study in
in in Baltimore County, Maryland.

They are parts of the multi-phase project, aiming development of landslides risk
assessment and early warning smart system. The Phases 1and 2 work provides a
strong foundation for next phase.

8.2 Future Work
The phase 3 will expand site investigation with additional survey and soil sampling
as well as inventory of landslides along railroad. Additional laboratory tests will be
carried out. LIDAR and InSAR images processing and interpretation will be further
enhanced by integrating with other photo imaging approaches and site image
acquisition. Integrated soil moisture mapping and physics based slope instability
risk assessment will be further developed. Multiple scenarios will be simulated to
gain a better understanding controlling and triggering factors, which will be feed into
the machine learning model to assess risk assessment of slope failure. Protocols for
real time monitoring network will be developed and tested at selected sites in
consultation with agencies and organizations (such as DOT SHA, Federal Railroad
Administration) and in cooperation with MSU AI/ML program, CMU and other
partners within UTC Safety 21 program and beyond.
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Chapter 9

9. Appendices

Appendix A

A: Research Products for this
Project

A.1 Conference Publications
1. Hosseinizadeh, A., Z. Sheng, Y. Liu. The Impact of Climate Change on Soil Water
Content with Considering Machine-Learning Methods as a Downscaling Tool, EWRI
World Environmental and Water Congress, Anchorage Alaska, May 18-21, 2025
[Abstract, Presentation].
2. Hosseinizadeh, A., A. Olude, K. Nieto, S. Qian, B. Gui, Y. Liu, J. Li, Z. Sheng, O.
Owolabi, Samuel Fedipe. Enhancing Rainfall-Induced Landslide Risk Mapping &
determining the landslide location using LiDAR data for improving transportation
safety. The USDOT National Safety Summit of University Transportation Centers.
March 27, 2025 [Poster presentation].
3. Sheng Z. Improve Highway Safety by Reducing the Risks of Landslides with Smart
Alert & Warning Systems. NSF CyberTraining in Disaster Management Webinar,
March 19, 2025.
4. Sheng, Z., Liu, Y., Owolabi, O. Research Highlights: Integrated hydrological model
and GIS-based model to map rainfall-induced landslide risk, UTC Safety 21, CMU,
Faculty Seminar, February 27, 2025.
5. Hosseinizadeh, A., Isola, F., Sheng, Z. Liu, Y., Owolabi, O., Lamsal, S., Olude. A.,
Walrath, B.J., Nur, N.N. Integrated Hydrological Model and GIS-based Model to Map
Landslides Risks within the Anacostia Watershed of Maryland, the 104th
Transportation Research Board annual meeting, Washington DC, January 5-9, 2025
[Paper, oral presentation].
6. Hosseinizadeh, A., Z. Sheng, 2024. Machine Learning-Based Downscaling of GCM
Precipitation Data: A Case Study of the Anacostia Watershed, Maryland, AGU Fall
Meeting 2024, Washington DC, December 9-13 [Poster Presentation].
7. Atieh Hosseinizadeh, Adebayo Olude, Sean Qian, Bin Gui, Yi Liu, Jiang Li, Zhuping
Sheng, Oludare Owolabi, Samuel Fadipe. Integrated Hydrological Model and GIS
based Model to Map Landslides Risks within the Anacostia Watershed of Maryland
for improvement of transportation safety, National University Transportation Center
—Safety 21 Deployment Partners Consortium Symposium, November 14, 2024,
Pittsburgh, PA [Poster presentation].
8. Samuel Fadipe, Adebayo Olude, Sunil Lamsal, Atieh Hosseinizadeh, Yi Liu, Zhuping
Sheng, Oludare Owolabi, Sean Qian, Benjamin Walrath. Prediction of Landslides
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Risks to Improve Highway Safety Using TRIGRS Approach, National University
Transportation Center —Safety 21 Deployment Partners Consortium Symposium,
November 14, 2024, Pittsburgh, PA [Poster presentation].

9. Adebayo Olude, Katherine Nieto, Ahmir Muley, Oludare Owolabi, Atieh
Hosseinizadeh, Yi Liu, Zhuping Sheng, Sunil Lamsal, Samuel Fadipe. Identifying and
Comparing Potential Slope Failures Using Remote Sensing Techniques: LiDAR and
InSAR, National University Transportation Center —Safety 21 Deployment Partners
Consortium Symposium, November 14, 2024, Pittsburgh, PA [Poster presentation].
10. Hosseinizadeh, A., A. Olude, K. Nieto, S. Qian, B. Gui, Y. Liu, J. Li, Z. Sheng, O.
Owolabi, S. Fadipe. Precipitation threshold for triggering landslides & detecting
landslides using LiDAR and InSAR data for enhancement of transportation system
safety, The Inaugural USDOT Future of Transportation Summit, Washington, DC,
August 13-15, 2024 [Poster Presentation].

A.2 Datasets

A.2.1 Appendices for Chapter 4

Appendix 4A: Data and Data Source

S/No | Item Data Source/Download Link

1. DEM Data Download | https://doitdataservices.maryland.gov/s/IN9XGBYPKg4QSZNg

Appendix 4B: Prince George’s LiIDAR Maps

4B1: Prince George’s DEM

Downloaded DEMs \
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A.2.2 GIS coverages for Historical Landslides

Table C2.2: Merged landslides (updated)

File Name Detail Format Link
Including
landslide merged data
inventories from SHA
Merge_landslides | collected from .Shp ST
SHA. USGS information
? USGS, and NASA
website, and
NASA website

A.3 Research Symposium
1. 2025 Summer Research Symposium: Improve Highway Safety by Reducing
the Risks of Landslides with Smart Warning Systems, July 23, 2025.
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