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Chapter 1: Overview 

With rapid urbanization and technological development, the number of privately owned 
vehicles has dramatically increased each year. The excessive numbers of private vehicles have led 
to severe traffic congestion and an alarming increase in road accidents, which gradually become a 
new set of challenges that every modern city must confront. According to the Global Status Report 
on Road Safety by the World Health Organization (WHO), over 50 million people are injured, and 
1.3 million individuals lose their lives each year due to car accidents, with approximately 75% of 
these incidents attributed to human errors such as drowsy driving, driving under the influence, and 
distracted driving [1-3]. Vulnerable road users (VRUs), including pedestrians and bicyclists, are 
particularly at risk, suffering disproportionately high fatality rates in collisions, which may need 
extra attention to improve their safety and reduce accident severity. Autonomous Driving Systems 
(ADS), benefit from powerful and robust autonomous driving algorithms and hence offer a 
promising solution for reducing human error and enhancing road safety. Extensive research has 
already been conducted in the autonomous driving field to help vehicles navigate safely and 
efficiently. At the same time, plenty of current research on vulnerable road user (VRU) safety are 
performed which largely concentrates on perception, localization, or trajectory prediction of VRUs 
[4-8]. However, existing research still exhibits several gaps, including the lack of a unified 
planning and collision avoidance system for autonomous vehicles, limited investigation into delay-
tolerant control strategies, and the absence of an efficient and standardized testing methodology. 
Ensuring VRU safety remains one of the most pressing challenges in autonomous driving, 
particularly in dynamic and unpredictable environments.  

In this two-year project, we focused on applying the Vehicle-in-Virtual-Environment (VVE) 
method to develop, evaluate, and demonstrate safety functions for Vulnerable Road Users (VRUs) 
using automated steering and braking of ADS. In the current second year project, our primary 
focus was on enhancing the previous year’s results while also considering bicyclist safety. We 
began by analyzing five key bicyclist crash scenarios identified by the Fatality Analysis Reporting 
System (FARS), an organization under the National Highway Traffic Safety Administration 
(NHTSA) that compiles vehicle crash data. The bicyclist crash scenarios we examined include: 
"Motorist Overtaking Bicyclist" (FARS 230), "Bicyclists Failed to Yield, Midblock" (FARS 310), 
"Bicyclist Failed to Yield Sign, Controlled Intersection" (FARS 145), "Bicyclist Left Turn / Merge" 
(FARS 220), and "Motorist Left Turn / Merge" (FARS 210). Figure 1.1 demonstrates these five 
bicyclist crash cases. These scenarios along with the pedestrian crash scenarios considered in our 
first-year project formed the basis of our research. We recreated these five traffic crash scenarios 
using the CARLA (Car Learning to Act) virtual environment to ensure realistic and accurate 
simulations for our analysis. The detailed traffic crash scenario simulation videos are provided in 
the following. Videos Link: 1. FARS230: https://youtu.be/Tk3ZEXVd7ow 2. FARS310: 
https://youtu.be/s7spUE1gCek 3. FARS145: https://youtu.be/vD5c2wH2PFU 4. FARS220:  
https://youtu.be/c5bRPeQJjD0 5. FARS210: https://youtu.be/yrBi7FteFfA. 

https://youtu.be/Tk3ZEXVd7ow
https://youtu.be/s7spUE1gCek
https://youtu.be/vD5c2wH2PFU
https://youtu.be/c5bRPeQJjD0
https://youtu.be/yrBi7FteFfA
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Figure 1.1. Bicyclist FARS Crash Scenarios (a). FARS 230: Motorist Overtaking Bicyclist (b). FARS 310: 
Bicyclists Failed to Yield, Midblock (c). FARS 145: Bicyclist Failed to Yield Sign, Controlled Intersection (d). FARS 220: 

Bicyclist Left Turn / Merge (e). FARS 210: Motorist Left Turn / Merge 

Building on these cases, our research fills critical gaps in the current literature by proposing 
practical solutions to the types of VRU-related crashes represented in the FARS dataset. We aimed 
to systematically develop and test autonomous driving technologies that can prevent such incidents 
from occurring. Specifically, this research makes the following three contributions:  

(1) Proposing a communication-disturbance-observer (CDOB) based delay-tolerant 
control strategy to enhance robustness of the control under computation latency, network latency 
and packet loss.  



(2) Developing a hierarchical control framework that integrates deep reinforcement 
learning (DRL) for high-level decision-making with a CLF-CBF-QP-based controller for safe and 
smooth low-level execution.  

(3) Introducing a novel VVE-based testing pipeline that enables efficient and rigorous 
evaluation of autonomous driving functions under various complex and high-risk traffic scenarios. 

In addition, this research also incorporates existing perception methods for VRU detection and 
trajectory prediction, which serve as a benchmark and provide a solid foundation for integrating 
these components into a unified, end-to-end autonomous driving strategy in future development. 

The study starts with a comprehensive literature review that addresses VRU detection and 
trajectory prediction which is presented in chapter 2. In chapter 3, a delay-tolerant control strategy 
based on a communication disturbance observer (CDOB) is introduced to ensure stable and 
accurate path-tracking performance under undesirable computation and communication delays. In 
chapter 4, we propose a novel hierarchical control framework that integrates traditional 
optimization-based control with deep reinforcement learning (DRL), aiming to achieve both high 
performance and robustness. This framework is implemented and validated on two distinct vehicle 
models to demonstrate its generalizability and effectiveness. In chapter 5, a novel testing approach 
called Vehicle-in-Virtual-Environment (VVE) is proposed to enable efficient, safe, and scalable 
validation of autonomous driving functions across different deployment stages. Finally, in Chapter 
6, we conclude our second-year research and outline future work. 

The resulting publications of this project are listed below. 

1. Chen, H., Cao, X., Guvenc, L., and Aksun Guvenc, B., 2025, "Developing a Vehicle-in-
Virtual-Environment (VVE) Based Autonomous Driving Function Development and 
Evaluation Pipeline for Vulnerable Road User Safety," SAE Technical Paper 2025-01-8061, 
2025, https://doi.org/10.4271/2025-01-8061. 

2. Chen, H., Zhang, F., Aksun-Guvenc, B., 2025, “Collision Avoidance in Autonomous 
Vehicles Using the Control Lyapunov Function–Control Barrier Function–Quadratic 
Programming Approach with Deep Reinforcement Learning Decision-Making, Electronics, 
14, 557, https://doi.org/10.3390/electronics14030557. 

3. Chen, H., Aksun-Guvenc, B, 2025, “Hierarchical Deep Reinforcement Learning-Based 
Path Planning with Underlying High-Order Control Lyapunov Function—Control Barrier 
Function—Quadratic Programming Collision Avoidance Path Tracking Control of Lane-
Changing Maneuvers for Autonomous Vehicles,” Electronics, 14, 2776. 
https://doi.org/10.3390/electronics14142776.   

https://doi.org/10.4271/2025-01-8061
https://doi.org/10.3390/electronics14030557
https://doi.org/10.3390/electronics14142776


Chapter 2: Vulnerable Road User (VRU) Detection 

2.1 Camera Based Vulnerable Road User (VRU) Detection 

Designing robust path planning and collision avoidance functions starts with the accurate 
perception of the surrounding traffic environment, particularly the detection of VRUs including 
pedestrians and bicyclists. In complex traffic scenarios, it is essential to reliably identify VRUs, 
accurately estimate their location and orientation, and predict their future trajectories based on raw 
sensor data. This perception stage serves as the foundation for effective decision-making in 
autonomous driving systems.  

Extensive research has demonstrated the effectiveness of using camera images for obstacle 
identification and categorization. High-resolution visual data from cameras enable the precise 
detection of VRUs, while advanced computer vision algorithms facilitate their classification. 
Currently, there are two approaches to perform obstacle detection using image processing. The 
first approach is to perform object detection using a two-stage process: proposal generation and 
object detection. The proposal generation step uses a selective search algorithm to generate 
multiple region proposals which indicate potential object locations. Then, a neural network 
(usually convolutional neural network) is applied to classify the object within the proposed region 
and refine its bounding box. Girshick et al. introduced R-CNN, a novel framework that leverages 
rich feature hierarchies from pre-trained convolutional neural networks to perform accurate object 
detection and semantic segmentation [9]. Building on the foundation of R-CNN, Girshick further 
refined the model with Fast R-CNN by integrating the region proposal and feature extraction steps. 
This integration was achieved by introducing a Region of Interest (RoI) pooling layer that extracts 
a fixed-length feature vector from the feature map for each object proposal, followed by fully 
connected layers that classify the features into object categories and regress the bounding box 
coordinates [10]. Ren et al. explored the concept further and proposed Faster R-CNN. This 
algorithm incorporated a Region Proposal Network (RPN) that shares full-image convolutional 
features with the detection network, thus enabling nearly cost-free region proposals [11]. Sun et 
al., introduced Sparse R-CNN which simplifies the previously complex pipeline and reduces the 
dependency on heuristic design, pushing the boundaries of object detection with a sparse set of 
highly effective proposals [12]. However, the major limitations of the R-CNN architecture are its 
deficiency in real-time performance caused by complicated procedure and its computational 
complexity.  The second approach is to merge the aforementioned two stages by applying a single 
neural network to the whole image, dividing the image into regions and predicting bounding boxes 
and probabilities for each region simultaneously. Redmon introduced a convolutional neural 
network (CNN)-based architecture known as "YOLO" (You Only Look Once) for multi-object 
detection. This architecture segments an image into multiple small grids, assigning each grid the 
task of detecting objects whose center points fall within its boundaries. For each grid cell, the 
model predicts multiple bounding boxes and assigns labels to these boxes, each with associated 



class probabilities. To enhance the accuracy and reduce redundancy, the model employs Non-
Maximum Suppression (NMS) to eliminate overlapping bounding boxes that detect the same 
object [13]. Currently, since its debut, the YOLO architecture has undergone numerous iterations 
and enhancements, evolving to its twelfth generation—YOLOv12. These iterations have not only 
improved the model's accuracy and speed but also enabled YOLO to effortlessly recognize a wide 
variety of objects [14]. 

2.2 Lidar Data Processing and Vulnerable Road User (VRU) Trajectory 
Prediction 

Lidar technology offers significant advantages over traditional front-facing vehicle 
cameras, particularly in the field of autonomous vehicles [15]. Early work on automotive 
applications used two-dimensional (2D) LiDAR for object detection with Kalman filtering for 
prediction [16]. Unlike cameras, which are limited to capturing visual data from the front of the 
vehicle, three dimensional (3D) Lidar provides a 360-degree view, allowing it to detect obstacles 
all around the vehicle. This comprehensive coverage is important for the complex decision making 
required in autonomous driving. Lidar sensors work by emitting laser beams and measuring the 
time it takes for the reflection to return, thereby creating detailed and accurate 3D maps of the 
environment. This capability makes Lidar exceptionally good at detecting and tracking pedestrians, 
even in challenging conditions such as low light or obstructed views. Consequently, there has been 
substantial research and development in the field, focusing on leveraging Lidar for pedestrian 
detection, which is important for improving safety and operational efficiency in autonomous 
vehicle technologies. It is also possible to use Vehicle-to-VRU communication to determine the 
pose of nearby VRUs and predict their future trajectories [17]. 

The integration of additional sensors, such as LiDAR, can complement visual data by 
providing accurate three-dimensional spatial information, thereby providing accurate estimation 
of VRUs’ location and orientation [18-19]. Unlike cameras, which are limited to capturing visual 
data from the front of the vehicle, LiDAR provides a 360-degree view, allowing it to detect 
obstacles all around the vehicle. LiDAR sensors work by emitting laser beams and measuring the 
time it takes for the reflection to return, thereby creating detailed and accurate 3D maps of the 
environment. This capability makes LiDAR exceptionally good at detecting and tracking 
pedestrians and bicyclists, even in challenging conditions such as low light or obstructed views. 
Plenty of recent research has focused on combining LiDAR point cloud data with camera visual 
data to leverage the complementary strengths of both sensor types. It is also possible to combine 
these perception sensors with Vehicle to VRU communication for better handling of no line-of-
sight cases [20]. Future Vehicle to VRU communication may also include communication with 
unmanned aerial vehicles (UAV) [21]. Muhammad et al focused on enhancing object detection in 
autonomous driving through a neural network approach that integrates visual data with LiDAR 
point clouds. They proposed a framework aiming to address the inaccuracies common in LiDAR 
detections by using separate processing streams for visual and LiDAR data, which allows for a 



lightweight LiDAR-only setup during runtime if needed. The approach is designed to work in real-
time on embedded platforms, suggesting significant potential for practical applications in dynamic 
environments [22]. Sahba et al. introduced an effective method for 3D object detection using 
LiDAR data through the PointPillars network. Their study utilizes the nuScenes dataset to train the 
model for detecting cars, pedestrians, and buses, demonstrating that increasing the number of 
LiDAR sweeps substantially improves detection performance. Their research emphasizes the 
potential of integrating different types of sensor data to further enhance the encoder's effectiveness 
in autonomous vehicle applications [23]. Liu et al. developed a LiDAR-camera fusion algorithm 
for 3D object detection, focusing on autonomous driving applications. The proposed FuDNN 
network used a 2D backbone for image feature extraction and an attention-based fusion sub-
network for integrating features from camera and LiDAR data. Their model was tested on the 
KITTI dataset and has shown high accuracy in detecting cars, reflecting significant improvements 
over existing LiDAR-camera fusion techniques [24]. Naich et al. introduced a LiDAR-based 
intensity-aware 3D object detection approach for outdoor environments. They proposed a voxel 
encoder that generates intensity histograms to enhance the feature set for robust detection, 
integrated within a single-stage detector. The method was evaluated using the KITTI dataset which 
not only matches but in some cases surpasses state-of-the-art performance, especially in detecting 
pedestrians and bicyclists while maintaining high frame rates during inference [25].  

After estimating VRU location and orientation, the data will be used to predict their future 
movement pattern and trajectory. Typically, the spatial information of the surrounding traffic 
environment is vectorized and fed into a neural network to predict the trajectory. Zhu et al. 
introduced the Spatio-Temporal Graph Transformer Network (STGFNet) for predicting multi-
pedestrian trajectories, leveraging both spatial and temporal data. The proposed model integrates 
a novel decoder structure and a memory mechanism to enhance trajectory continuity and uses 
HuberLoss for the first time as a loss function, showing notable improvements in prediction 
accuracy across multiple datasets. This research exemplifies the utility of combining transformer 
architectures with graph neural networks to address the dynamic complexities of pedestrian 
movement in crowded spaces [26]. 

2.3 Proposed Approach 

From the literature review, we identified key limitations in existing perception and 
prediction pipelines. In response, we proposed a theoretically feasible approach that connects VRU 
perception to trajectory prediction in a unified manner, forming a perception and prediction 
component for future decision-making and control development. As described earlier, camera-
based detection of VRUs involves two primary stages: proposal generation and object detection. 
To streamline this process, end-to-end neural networks like YOLO are employed to process RGB 
visual data and perform VRU detection due to its effectiveness and simplicity. The YOLO 
architecture implemented for VRU detection is YOLO v11, which demonstrates robust 
performance in identifying pedestrians and bicyclists [27]. However, the original model 



occasionally struggles to accurately recognize VRUs and other vehicles within the Unreal Engine 
4 virtual environments. Given that the VVE evaluation method assesses the system's performance 
in such settings, it's imperative that the model effectively identify VRUs in these contexts. To 
address this challenge, we propose applying transfer learning to the pre-trained YOLOv11 model 
using the CARLA Object Detection Dataset [28]. This dataset, generated within the CARLA 
simulator (built on Unreal Engine 4), offers a large collection of labeled images that serve as 
valuable training data for improving object detection models. By fine-tuning YOLOv11 with this 
data, we aim to improve its capability to detect VRUs accurately in virtual environments. Post-
transfer learning, the model is expected to proficiently utilize camera-derived visual data to 
identify VRUs, thereby ensuring reliable performance during VVE evaluations. 

 
Figure 2.1. Camera and LiDAR based VRU detection [22] 

After using visual data to perform object detection, point cloud data from LiDAR will be 
used as spatial information to further estimate the location and orientation of the VRUs. Figure 2.1 
illustrates a multi-sensor fusion pipeline that combines camera and LiDAR data to detect and 
estimate the location and orientation of objects [22]. LiDAR Pre-Processing filters the point cloud 
to focus on the field of view (FOV) and removes ground points to improve object detection 
accuracy. The ROI Estimator then projects the detected objects onto the LiDAR point cloud to 
refine their spatial representation. The Clustering module further processes the filtered point cloud 
by applying class-based dimension filtering and 3D box fitting, which helps in estimating object 
poses. By integrating visually detected objects with LiDAR point cloud data, this approach enables 
precise localization and orientation estimation of objects in complex environments, enhancing 
perception for autonomous systems.  

After estimation of the location and orientation of the VRUs, the position data will be used 
to further predict VRU trajectory and movement pattern. Spatio-Temporal Graph Transformer 
Network (STGFNet) framework is applied for pedestrian trajectory prediction [26]. The process 
starts with multi-pedestrian trajectory data input, containing absolute coordinates (temporal 
information) and relative coordinates (spatial interactions). The multi-modal preprocessing 
module separately processes the temporal sequence, which captures motion patterns over time, and 



the spatial sequence, which encodes pedestrian interactions. The encoder then extracts spatial-
temporal features using a spatial encoder for pedestrian interactions at each timestep and a 
temporal encoder for motion pattern encoding across time. A memory mechanism is included to 
maintain consistency in long-term predictions by storing historical temporal features. Finally, the 
decoder utilizes STDecoder with masked attention layers to predict future trajectories based on the 
extracted high-dimensional spatial-temporal features. This model enhances trajectory prediction 
for vulnerable road users (VRUs) by effectively modeling their movement patterns and interactions 
in dynamic environments. This is crucial for autonomous driving and pedestrian/bicyclist safety 
applications 

2.4 Conclusion 

In this chapter, we explored various advanced methodologies for detecting VRUs using 
camera-based and LiDAR based technologies for autonomous driving. Additionally, we have 
found that LiDAR technology, in comparison to cameras, provides superior accuracy in locating 
the positions of road users due to its ability to generate precise 3D maps of the surrounding 
environment. Therefore, we conducted an extensive review of the latest studies in LiDAR 
technology and VRU trajectory prediction, which will undoubtedly enhance our foundation for 
future research in enhancing the safety and efficiency of autonomous driving systems. 

 

 

  



Chapter 3: Delay-Tolerant Path Tracking Control 

3.1 Introduction 

Our year 1 project report presented an effective path-tracking control design using the 
disturbance-observer (DOB). Information about the DOB method can be found in the reference 
[29-30]. One shortcoming of this method, however, is the significant deterioration of path-tracking 
performance when the system is subjected to unknown time delays. Hence, this chapter introduces 
a delay-tolerant communication disturbance observer (CDOB) design to handle path-tracking 
maneuvers even with undesirable time delays. 

3.2 Path Generation 

The collision avoidance maneuver in this case is assumed to be a single lane-change. The 
overall procedure of obtaining such a reference path remains identical to the approach used in the 
Year 1 report and can be condensed to the following: (a) generate limited number of sample 
waypoints to ascertain the general shape of the path; (b) generate dense waypoints based on the 
sample waypoints to complete the path waypoint design; (c) Apply segmentation to the dense 
waypoints to cut the path into several segments, ideally with each segment containing a minimum 
amount of features (i.e. corners); (d) Perform polynomial fit optimization to obtain the desired path 
expression that guarantees smooth curvature within each segment as well as smooth transition 
between the segments. The detailed step of this procedure is outlined in [31]. In Figure 3.1, an 
example of the optimized reference path and its path curvature is displayed, demonstrating the 
smoothness of such a path generated using this approach. 

 

Figure 3.1. Reference path optimization: (a) optimized path; (b) path curvature of the optimized path 

  



3.3 Linear Path-tracking Model 

This section presents the linear path-tracking model that serves as the basis for the proposed 
control routine. The detailed derivation of this model can be found in [31]. It should also be noted 
that the same linear path-tracking model as also used in Year 1 project report’s path-tracking 
control design section. Similar models that have been derived using a similar approach have also 
been applied to articulated vehicle configurations in the literature [32]. 
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where: 𝑙𝑙𝑠𝑠 = 𝐾𝐾𝐾𝐾, K is a constant 

Table 3.1. Linear path-tracking model parameters. 

Model Explanation 
𝛽𝛽 Vehicle side slip angle 
r Vehicle yaw rate 

Δ𝜓𝜓𝑝𝑝 Heading error 
𝑒𝑒𝑦𝑦 Path-tracking error 
𝐶𝐶𝑓𝑓  Front tire cornering stiffness 
𝑙𝑙𝑓𝑓  Distance between CG and front axle 
𝐶𝐶𝑟𝑟  Rear tire cornering stiffness 
𝑙𝑙𝑟𝑟  Distance between CG and rear axle 
M Vehicle mass 
V Vehicle velocity 
𝑙𝑙𝑠𝑠 Preview distance 
𝐼𝐼𝑧𝑧 Vehicle yaw moment of inertia 
𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟 Reference path curvature 
𝑀𝑀𝑧𝑧𝑧𝑧 Yaw moment disturbance 
K Preview distance scheduling constant 

 

This linear path-tracking model contains two components: a (linear) lateral single-track 
model and a path-tracking model augmentation. The path-tracking scenario is illustrated in Figure 
3.2, and the resulting linear path-tracking model is described in Equation 3.1. The parameters of 
this model are specified in Table 3.1. It can be observed that, for generality, the model presented 
in Equation 3.1 has both front and rear wheel steering angles 𝛿𝛿𝑓𝑓 and 𝛿𝛿𝑟𝑟 as inputs. In our case, the 
vehicle is assumed to be front-wheel-steer only. It can also be noticed that path curvature 𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟 and 



yaw moment disturbance 𝑀𝑀𝑧𝑧𝑧𝑧 enter the model as external disturbances. Additionally, the preview 
distance 𝑙𝑙𝑠𝑠 is chosen to be a linear function of vehicle speed. It should also be remarked that vehicle 
speed can be scheduled according to the refence path curvature to make sure vehicle lateral 
acceleration stays within an acceptable limit. 

 

Figure 3.2. Path-tracking scenario [33] 

3. 4 Delay-Tolerant Path-Tracking Control Design 

3.4.1 Communication Disturbance Observer (CDOB) 

This sub-section presents a general overview of the communication disturbance observer 
(CDOB), which is an approach inspired by the disturbance observer (DOB). Please see references 
[29], [34], [35] for more details on the CDOB. 

Given a time-delayed input-output system as shown in Figure 3.3(a), an equivalent system 
can be constructed as displayed in Figure 3.3(b), where a term, 𝐷𝐷(𝑠𝑠), incorporates the time delay 
and is fed into the system as a disturbance. It must be remarked that the magnitude of the time 
delay is not necessarily known. 

 



 

Figure 3.3. Sample input-output system with time delay 

Once it has been established that the unknown time delay can be remodeled as a disturbance, 
the concept of DOB can be used to estimate and compensate for the time delay. Figure 3.4 shows 
the basic structure of the CDOB consisting of a time delay estimation loop and a time delay 
compensation loop. 𝑄𝑄(𝑠𝑠) in the time delay estimation loop is a unity-gain low-pass filter of the 
appropriate order introduced to ensure that 𝑄𝑄(𝑠𝑠)/𝐺𝐺𝑛𝑛(𝑠𝑠) is proper, hence ensuring that the scheme 
is implementable. Assuming that the analysis is carried out at low frequency where 𝑄𝑄(𝑠𝑠) = 1, it 
can be derived that the output of the time delay estimation loop yields 𝐷𝐷�(𝑠𝑠) which is an estimation 
of 𝐷𝐷(𝑠𝑠) as shown in Figure 3.3(b). The additional time delay compensation loop cancels out the 
term containing time delay and yields the desired output form 𝐺𝐺𝑛𝑛(𝑠𝑠)𝑈𝑈(𝑠𝑠) that is not affected by 
the unknown time delay. 

 

Figure 3.4. Standard CDOB block diagram 

3.4.2 Modification for Path Curvature Rejection 

As mentioned in Section 3.3, the vehicle model used for path-tracking is derived such that 
reference path curvature enters the model as an external disturbance. Denoting the path curvature 
disturbance as 𝑑𝑑, the desired output of the CDOB hence becomes 𝐺𝐺𝑛𝑛(𝑠𝑠)𝑈𝑈(𝑠𝑠) + 𝑑𝑑. Adding this 
disturbance 𝑑𝑑 into the CDOB block diagram as illustrated in Figure 3.5, however, does not yield 
the desired outcome, where the actual output remains in the form of 𝐺𝐺𝑛𝑛(𝑠𝑠)𝑈𝑈(𝑠𝑠) , lacking the 
disturbance term 𝑑𝑑. 



 

Figure 3.5. Standard CDOB block diagram with external disturbance 

To account for the above issue, modifications must be made to the standard CDOB 
structure to accommodate the path curvature rejection requirement. Figure 3.6 shows the modified 
CDOB block diagram, where the same path curvature disturbance is added to the output of the 
CDOB delay compensation loop. It should be remarked that this structure works because the 
curvature of the reference path is known. 

 

Figure 3.6. Modified CDOB block diagram with external disturbance 

3.4.3 Feedback Controller Design 

With the modified CDOB capable of outputting desired output form without the 
interference of time delay, closed-loop control system can be constructed for this non-time-delayed 
disturbance rejection problem. In Figure 3.7, a generic feedback controller 𝐶𝐶(𝑠𝑠)  is added to 
generate input 𝑈𝑈(𝑠𝑠) such that reference input 𝑅𝑅(𝑠𝑠) can be tracked. 



 

Figure 3.7. Control system with modified CDOB and feedback controller 

The feedback controller mentioned above can be of any design. We present an example 
design that features a speed-scheduled, parameter-space PID controller, the details of which can 
be found in [31]. The parameter-space method is discussed in detail in [33] and also in references 
[36-38] that focus on application to autonomous path following. The reference input (denoted as 
𝑅𝑅(𝑠𝑠) in Figure 3.7) should be zero in this case noting that the goal of the control system is to 
eliminate path-tracking error 𝑒𝑒𝑦𝑦 . The form of the controller is presented in Equation 3.2. The 
controller gains (𝑘𝑘𝑝𝑝, 𝑘𝑘𝑖𝑖 ,𝑘𝑘𝑑𝑑) are the parameters to be tuned. Since the controller is speed-scheduled 
in this case as well, the tunable parameter set has four elements: (𝑉𝑉,𝑘𝑘𝑝𝑝,𝑘𝑘𝑖𝑖 , 𝑘𝑘𝑑𝑑) . A D-stability 
region, as displayed in Figure 3.8, is established for pole placement. An example of the admissible 
controller gain region at a certain scheduled speed is shown in Figure 3.9. It should be remarked 
that during the process of controller gains value selection, a general rule of thumb is to choose the 
gains to be as small as possible within the admissible region so that the control efforts can be 
minimized while the energy efficiency maximized. 

𝐶𝐶(𝑠𝑠) = 𝑘𝑘𝑝𝑝 + 𝑘𝑘𝑖𝑖
𝑠𝑠

+ 𝑘𝑘𝑑𝑑𝑠𝑠  (3.2) 



 

Figure 3.8. D-stability region 

 

Figure 3.9. Admissible control region at a certain speed 

3.5 Experiments 

3.5.1 Simulation Study 

Simulation studies are first performed to demonstrate the efficacy of the proposed control 
design. A Simulink model is constructed to simulate the motions of the vehicle. The parameter 
values used in the simulations are listed in Table 3.2. The example path shown in Figure 3.1 is 
used as the desired path in this experiment. 

 



Table 3.2. Parameter value selections for simulation. 

Symbol Parameter Value 
M Mass 3000 kg 
𝐼𝐼𝑧𝑧 Yaw moment of inertia 5.113e3 kg*m^2 
𝐶𝐶𝑓𝑓 Front tire cornering stiffness 3e5 N/rad 
𝐶𝐶𝑟𝑟 Rear tire cornering stiffness 3e5 N/rad 
𝑙𝑙𝑓𝑓 Distance between CG and front axle 2 m 
𝑙𝑙𝑟𝑟 Distance between CG and rear axle 2 m 
𝑡𝑡𝑑𝑑  Time Delay 0.3 sec 

 

The forward motion simulation results for the combined modified CDOB and PID control 
system are displayed in Figure 3.10. It can be observed that the vehicle is able to track the reference 
path satisfactorily with reasonably small path-tracking errors by applying smooth steering inputs. 
To demonstrate the effectiveness of the CDOB component in the control system, a baseline result 
showing the trajectory of applying PID controller alone without the CDOB loop is included in 
Figure 3.10(a). It can be observed that with the same PID controller, the tracking operation will 
fail in very early stage without the CDOB feature. 

 

 



 

Figure 3.10. Forward motion modified CDOB + PID simulation results 

3.5.2 Hardware-in-the-Loop (HIL) Experiment 

In addition to the simulation study, hardware-in-the-loop (HIL) experiments are also 
performed to further demonstrate the suitability of this proposed control scheme for real-life 
implementations. The same parameter choices as shown in Table 3.2 as well as the same example 
path are used, and the results are shown in Figure 3.11. It can be observed that even for online 
operation in HIL simulator, the proposed control scheme is able to follow the desired path 
effectively with small path-tracking errors. 

 



 

Figure 3.11. Forward motion modified CDOB + PID HIL results 

 

  



Chapter 4: Hierarchical Collision Avoidance Framework 

4.1 Introduction 

Autonomous driving is currently a highly popular research topic in the mobility area with 
immense potential to enhance safety, reduce traffic congestion, and revolutionize urban 
transportation [33], [39], [40], [41]. However, one of the major challenges in the development of 
autonomous vehicles is ensuring collision-free navigation in dynamic and unpredictable 
environments [33],[42],[43], [44]. This challenge becomes particularly significant in environments 
ranging from multi-lane highways with fast-moving traffic [45] to crowded urban settings where 
vehicles must navigate amidst pedestrians [46]. To address these challenges, it is essential to 
develop more robust and intelligent path planning and collision avoidance methods that can 
operate reliably in complex and uncertain environments.  A well-designed planner can generate 
safe and feasible trajectories for autonomous vehicles in complex dynamic traffic environments. 

The development of path planning and collision avoidance functions for connected 
automated vehicles is an intricate and complex process. Based on the specific vehicle type and 
traffic scenario, various planning algorithms and strategies are employed to plan a collision-free 
trajectory. Extensive research has been conducted to develop high-performance and robust 
collision-free path planning strategies, which can generally be categorized into two major 
approaches: optimization-based methods and machine learning-based methods. 

The optimization-based approach formulates path planning and collision avoidance as a 
mathematical optimization problem with well-defined constraints, aiming to compute an optimal, 
collision-free trajectory by minimizing or maximizing specific objective functions. These 
constraints generally come from two primary sources: vehicle dynamic limitations (such as 
acceleration, steering angle, and braking capabilities) and traffic environment constraints (such as 
road boundaries and curvatures). Ensuring feasible and safe navigation requires optimizing 
trajectory planning within these constraints while maintaining computational efficiency for real-
time applications. 

Among various methods, the Control Lyapunov Function - Control Barrier Function - 
Quadratic Programming (CLF-CBF-QP) approach has gained significant attention due to its ability 
to balance safety and stability in an optimization framework. In this approach, CLFs enforce 
system stability, ensuring the vehicle follows a desired trajectory, while CBFs define safety 
boundaries, preventing collisions with traffic barriers and other road users. The optimal control 
input is then obtained by solving a QP problem, which ensures that both stability and safety 
constraints are satisfied [47-49]. This formulation allows for real-time control adaptation, making 
it particularly effective for dynamic traffic scenarios. The CLF-CBF-QP framework has been 
widely adopted in the fields of robotics [50-51] and autonomous driving [52-54], especially for 
vehicle control problems involving various system models, such as kinematic [55-56] and dynamic 



vehicle [57] representations. In addition to being used as a standalone controller, CBFs are also 
frequently integrated as safety filters alongside other control strategies, such as Deep 
Reinforcement Learning (DRL) and Model Predictive Control (MPC) [58-59], where they act as 
safety-check layers to ensure constraint satisfaction during control calculation. In addition, as 
system dynamics grow in complexity, High-Order CBF (HOCBF) formulations are introduced to 
allow CBF-based control to be applied to more general nonlinear systems [60-61]. 

Beyond CLF-CBF-based methods, various other optimization-based approaches have been 
explored to improve path planning and collision avoidance. These include the Elastic Band 
approach [62-63], the Potential Field approach [64], Support Vector Machines (SVM) based 
approach [65], geometry based optimization (quintic spline) [66], and hybrid A* search in 
spatiotemporal map [67]. 

The machine learning-based approach, on the other hand, frames autonomous driving and 
collision avoidance as a Markov Decision Process (MDP) problem and employs reinforcement 
learning (RL) methods to optimize the decision-making process. This approach has been widely 
applied in autonomous driving research [68-70]. Early work by Kendall et al. introduced an end-
to-end deep reinforcement learning (DRL) framework for ADS [71], while Yurtsever et al. 
proposed a hybrid DRL system combining rule-based control with DRL-based algorithms [72]. 
Researchers have further extended DRL with innovations [73-75], such as short-horizon safety 
mechanisms for highway driving [76], dueling architectures for efficient learning [77], and 
hierarchical reinforcement learning (H-REIL) to balance safety and efficiency in near-accident 
scenarios [78]. Additionally, many DRL-based models have been trained using simulation 
platforms like CARLA and The Open Racing Car Simulator (TORCS) [79-80], demonstrating their 
effectiveness in various driving conditions [81].  

While optimization-based methods offer robustness and reliability due to their 
mathematical rigor, they often lack real-time feasibility and struggle to scale in high-dimensional, 
dynamic environments due to computational complexity and limited adaptability. In contrast, 
learning-based approaches, especially DRL based methods, provide flexibility and data-driven 
decision-making, but they require extensive training data and extra hard-coded safety assurances 
to ensure reliability in real-world scenarios. 

To address these limitations, researchers are increasingly exploring data-driven hybrid 
approaches that integrate optimization-based planning with machine learning and reinforcement 
learning techniques. A particularly promising direction is the integration of CLF-CBF-QP with 
DRL, which combines rule-based safety constraints with adaptive learning-based decision-making 
[39-40]. This fusion allows autonomous systems to leverage the robustness and stability of 
optimization-based methods while incorporating the real-time adaptability of learning-based 
approaches, significantly enhancing safety, efficiency, and decision-making capabilities in 
complex and dynamic driving environments. 



In this section, we propose a novel approach that combines traditional optimization-based 
control design with DRL to develop a high-performance and robust control strategy for 
autonomous vehicles. We implement it on two distinct vehicle models to demonstrate its 
effectiveness. The contributions of these sections are as follows.  

• This section introduces a novel low-level controller based on the CLF-CBF-QP 
framework. For complex vehicle models, HOCLF and HOCBF are applied. This 
controller enables accurate path tracking under normal conditions and ensures effective 
collision avoidance in the presence of obstacles. 

• Building on this foundation, we integrate the low-level CLF-CBF-QP based control 
with a high-level DRL decision making algorithm for path planning. The DRL 
algorithm generates high-level decisions based on surrounding traffic information, 
which the proposed optimization-based control then refines and executes.  

• This hierarchical architecture takes advantage of both the learning-based approach and 
the optimization-based approach. The DRL-based high-level planner enables flexible 
decision-making in various traffic scenarios, while the optimization-based low-level 
controller adds hard safety constraints through CBFs, preventing unsafe behavior. 

4.2 Methodology 

4.2.1 Vehicle model 

To comprehensively evaluate the proposed hierarchical collision avoidance framework, we 
implement it on two distinct vehicle models. Initial feasibility is verified using a simplified 
unicycle model, followed by a deployment on a more realistic vehicle dynamics model, where its 
effectiveness is further tested in a complex multi-lane driving environment. 

4.2.1.1 Unicycle vehicle dynamics 

Indeed, the unicycle model is widely adopted in the field of mobile robotics due to its 
simplicity. To achieve more realistic vehicle dynamic simulations, incorporating more complex 
vehicle models would be necessary. However, the use of advanced vehicle models introduces 
significant implementation challenges for the CLF-CBF approach and increases computational 
complexity. To balance real-time performance with realistic simulation, the unicycle model is used 
first as proof-of-concept. As the simplest model, it provides a reasonable approximation of vehicle 
dynamics while maintaining computational efficiency. This choice aligns with many related 
studies, which also adopt the unicycle model to simplify the design and analysis of controllers 
while retaining sufficient representational fidelity for practical applications. 



Figure 4.1 illustrates the plane motion of this unicycle vehicle. The vehicle can move 
forward with various linear speed 𝑣𝑣 and rotate with various angular speed 𝜔𝜔 around its geometry 
center. Note that this is also the Dubins model of a vehicle if we fix the speed and limit the rotation 
angle. 

 

Figure 4.1. Unicycle vehicle dynamic model. 

The state-space equation for this vehicle model is  
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where [𝑥𝑥𝑐𝑐 𝑦𝑦𝑐𝑐]𝑇𝑇 are the geometric center coordinates of the vehicle and 𝜃𝜃 denates the orientation 
of the vehicle. Now, consider another point [𝑥𝑥 𝑦𝑦]𝑇𝑇  located at a different position along the 
longitudinal axis xv of the vehicle. This point is located at an offset distance 𝑑𝑑 along the vehicle's 
x-axis relative to the geometric center. The relationship between point [𝑥𝑥 𝑦𝑦]𝑇𝑇  and vehicle’s 
geometry center [𝑥𝑥𝑐𝑐 𝑦𝑦𝑐𝑐]𝑇𝑇 can be represented using equations below. 
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The state-space equation for the geometric center of the vehicle is given by 
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Both state-space equations (4.1) and (4.3) are driftless nonlinear systems which rely entirely on 
control inputs to define their motion. They are particularly useful for autonomous driving research, 
as they simplify the analysis and synthesis of control laws without the need to counteract drift 



dynamics. Moreover, the simplicity of the unicycle model largely simplifies the design of Control 
Lyapunov and Control Barrier Functions by streamlining the calculations.  

4.2.1.2 Single-track lateral vehicle dynamic model 

To comprehensively evaluate the effectiveness and robustness of the proposed control 
framework in practical driving scenarios, it is essential to integrate more advanced vehicle models. 
Figure 4.2 illustrates the plane lateral motion of this single-track vehicle, which serves as the 
foundation for the subsequent controller design. The vehicle is moving forward with a constant 
speed. For realistic simulation, the wheel side slip angle (the angle between the direction of the 
wheel's travel and the actual path) is considered in this model. The complete derivation of this 
vehicle model can be found in Chapter 2 of [33]. Equation (4.4) demonstrates the state space 
equation of this vehicle lateral dynamics where 𝛽𝛽  and 𝑟𝑟  represent vehicle side slip angle and 
vehicle yaw rate, respectively, and form the state of the model. 𝛿𝛿𝑓𝑓 and 𝛿𝛿𝑟𝑟 are vehicle front and rear 
steering angles and are the inputs of the model, 𝑀𝑀𝑧𝑧𝑧𝑧 is yaw moment disturbance which serves as 
the external disturbance. Equations (4.5) and (4.6) are used to calculate the vehicle’s position based 
on 𝛽𝛽 and 𝑟𝑟. 𝜓𝜓 is the vehicle yaw angle. Table 4.1 provides a detailed explanation of the parameters 
in the vehicle model. The vehicle model parameters used are taken from reference [41] which has 
applied deep reinforcement learning control to safety of vulnerable road users in their interaction 
with autonomous vehicles. 

 

Figure 4.2. Linear single-track lateral vehicle dynamic model. 
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Table 4.1. Lateral model parameters [84]. 

Symbol Parameter 
𝑋𝑋,𝑌𝑌 Earth-fixed frame coordinate 
𝑥𝑥,𝑦𝑦 Vehicle-fixed frame coordinate 
𝑉𝑉 Center-of-gravity (CG) velocity 
m Mass 
𝐼𝐼𝑧𝑧 Yaw moment of inertia 
𝛽𝛽 Side-slip angle 
𝜓𝜓 Yaw angle 
r Yaw rate 

𝑀𝑀𝑧𝑧𝑧𝑧 Yaw disturbance moment 
𝛿𝛿𝑓𝑓, 𝛿𝛿𝑟𝑟 Front & rear wheel steer angle 
𝛼𝛼𝑓𝑓,𝛼𝛼𝑟𝑟 Front & rear tire slip angle 
𝐶𝐶𝑓𝑓,𝐶𝐶𝑟𝑟 Front & rear tire cornering stiffness 
𝑙𝑙𝑓𝑓, 𝑙𝑙𝑟𝑟 Distance between CG and front & rear axle 
𝑉𝑉𝑓𝑓 ,𝑉𝑉𝑟𝑟 Front & rear axle velocity 
𝐹𝐹𝑓𝑓,𝐹𝐹𝑟𝑟 Front & rear lateral tire force 

 
By assuming a front-wheel-steering vehicle ( 𝛿𝛿𝑟𝑟 = 0 ) and neglecting yaw moment 

disturbances (𝑀𝑀𝑧𝑧𝑧𝑧 = 0), Equations (4.4) – (4.6) can be combined to construct a five-degree-of-
freedom (5-DOF) lateral vehicle dynamic model for simulation purposes. The state-space equation 
for the proposed 5-DOF vehicle lateral dynamic model is given by 
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𝑦̇𝑦
𝜓̇𝜓⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝐴𝐴11 ∗ 𝛽𝛽 + 𝐴𝐴12 ∗ 𝑟𝑟
𝐴𝐴21 ∗ 𝛽𝛽 + 𝐴𝐴22 ∗ 𝑟𝑟
𝑣𝑣 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝛽𝛽 + 𝜓𝜓)
𝑣𝑣 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠 (𝛽𝛽 + 𝜓𝜓)

𝑟𝑟 ⎦
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎡
𝐵𝐵1
𝐵𝐵2
0
0
0 ⎦
⎥
⎥
⎥
⎤
𝛿𝛿𝑓𝑓. (4.7) 

where 𝐴𝐴11 = −𝐶𝐶𝑓𝑓−𝐶𝐶𝑟𝑟
𝑚𝑚𝑚𝑚

 , 𝐴𝐴12 = −1 + �𝐶𝐶𝑟𝑟𝑙𝑙𝑟𝑟−𝐶𝐶𝑓𝑓𝑙𝑙𝑓𝑓
𝑚𝑚𝑣𝑣2

� , 𝐴𝐴21 = 𝐶𝐶𝑟𝑟𝑙𝑙𝑟𝑟−𝐶𝐶𝑓𝑓𝑙𝑙𝑓𝑓
𝐼𝐼𝑧𝑧

 , 𝐴𝐴22 =
−𝐶𝐶𝑓𝑓𝑙𝑙𝑓𝑓

2−𝐶𝐶𝑟𝑟𝑙𝑙𝑟𝑟2

𝐼𝐼𝑧𝑧𝑉𝑉
 , 𝐵𝐵1 = 𝐶𝐶𝑓𝑓

𝑚𝑚𝑚𝑚
  and 

𝐵𝐵2 = 𝐶𝐶𝑓𝑓𝑙𝑙𝑓𝑓
𝐼𝐼𝑧𝑧

. Compared to simplified lateral vehicle dynamic models like Equation (4.1) that only 

consider internal vehicle states such as sideslip angle and yaw rate, the proposed model further 
incorporates the vehicle’s position and orientation (𝑥𝑥, 𝑦𝑦,𝜓𝜓). This augmentation enables a clearer 
geometric interpretation of the vehicle state, which is particularly beneficial for the subsequent 
design of HOCLF-HOCBF-based controllers where reference tracking and obstacle avoidance can 
be formulated in the global coordinate frame.  



4.2.2 Low-level CLF-CBF-QP Based Controller Design 

4.2.2.1 CLF and CBF Definition 

The CLF is usually used as the constraint of an optimization problem to ensure the stability 
of dynamic systems by defining a scalar function that decreases over time as the system evolves. 
By encoding stability criteria into a function, the CLF allows the system to converge to the desired 
state with reasonable speed despite dynamic and environmental uncertainties. In autonomous 
driving, a CLF is employed to design a path-tracking controller that guides the vehicle towards the 
desired target position. This approach is robust in real-time applications where stability must be 
maintained even in the presence of disturbances, ensuring that the autonomous vehicle operates 
reliably and efficiently. Through CLF-based control strategies, vehicles can achieve precise 
trajectory tracking even in complex driving scenarios, which makes it a foundational element in 
advanced autonomous driving algorithms. 

Let us first introduce the basic principle of CLF. Consider the control affine system given 
by 

 

𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥)𝑢𝑢 (4.8) 

 
where 𝑥𝑥 is the state vector, 𝑢𝑢 is the control input vector, 𝑓𝑓 and 𝑔𝑔 are Lipschitz continuous in 𝑥𝑥. 𝑓𝑓 
is the uncontrolled part, which represents the system’s natural dynamics, while 𝑔𝑔 is the control 
distribution matrix which determines how the control inputs influence the system’s dynamics. Let 
𝑉𝑉(𝑥𝑥): 𝑅𝑅𝑛𝑛 → 𝑅𝑅 be a continuously differentiable function, a CLF 𝑉𝑉(𝑥𝑥) satisfies:  

(1) Positive definiteness:  

 
𝑉𝑉(𝑥𝑥) > 0 for all 𝑥𝑥 ≠ 𝑥𝑥𝑒𝑒, and 𝑉𝑉(𝑥𝑥𝑒𝑒) = 0 (4.9) 

 
where 𝑥𝑥𝑒𝑒 is the equilibrium point. 

(2) Sublevel set boundedness: For a given constant 𝑐𝑐 > 0 , the sublevel set, Ω𝑐𝑐 =
{𝑥𝑥 𝜖𝜖 𝑅𝑅𝑛𝑛: 𝑉𝑉(𝑥𝑥) ≤ 𝑐𝑐} is bounded. This ensures that 𝑉𝑉(𝑥𝑥) defines a meaningful region of attraction 
(ROA) around 𝑥𝑥𝑒𝑒. 

(3) Stability: There exists a control input 𝑢𝑢 𝜖𝜖 𝑅𝑅𝑛𝑛 such that the derivative of 𝑉𝑉(𝑥𝑥) along 
the trajectory of the system satisfies:  

 
min
𝑢𝑢𝑢𝑢𝑢𝑢

𝑉̇𝑉 (𝑥𝑥,𝑢𝑢) = min
𝑢𝑢𝑢𝑢𝑢𝑢

 [∇𝑉𝑉(𝑥𝑥) · (𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥)𝑢𝑢)] < 0,    ∀𝑥𝑥 𝜖𝜖 𝛺𝛺𝑐𝑐\{𝑥𝑥𝑒𝑒} (4.10) 



The Control Barrier Function (CBF) is usually used as a constraint of an optimization 
problem to ensure the safety of dynamic systems. A CBF defines a safe set which is a region in the 
state space where the system can operate without violating safety conditions. By incorporating 
CBF constraints into optimization-based controllers, the controller ensures that the system remains 
within the defined safe set while allowing flexibility for other objectives such as stability or 
performance. In the context of autonomous driving, CBFs are usually employed to guarantee 
collision avoidance, maintain lane adherence, and respect speed limits. In this section, we use CBF 
to enforce minimum distance constraints between the autonomous vehicle and obstacles, ensuring 
safe operation in dynamic environments. By integrating CBFs with other constraints such as CLF, 
optimization-based control strategy can be designed for autonomous vehicles. This approach 
enables simultaneous achievement of safety, efficient path tracking, and effective collision 
avoidance. 

For CBF, let ℎ(𝑥𝑥): 𝑅𝑅𝑛𝑛 → 𝑅𝑅 be a continuously differentiable function that defines the safe 
set 

 
𝐶𝐶 = {𝑥𝑥 𝜖𝜖 𝑅𝑅𝑛𝑛: ℎ(𝑥𝑥) ≥ 0} 

(4.11) 

 
where ℎ(𝑥𝑥) ≥ 0  represents the safe region, and ℎ(𝑥𝑥) < 0  represents the unsafe region. The 
function ℎ(𝑥𝑥) is considered a CBF if there exists a control input 𝑢𝑢 𝜖𝜖 𝑅𝑅𝑛𝑛 such that the following 
condition holds for all 𝑥𝑥 𝜖𝜖 𝐶𝐶. 

 

s𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢𝑢𝑢

[
𝜕𝜕ℎ(𝑥𝑥)
𝜕𝜕𝜕𝜕

· ((𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥)𝑢𝑢)] ≥ −𝛼𝛼(ℎ(𝑥𝑥)) 

 
(4.12) 

 
where 𝛼𝛼  is a class-𝜅𝜅  function, which specifies the rate at which the system can approach the 
boundary of the safe set. 

4.2.2.2 HOCLF and HOCBF Definition 

For complex systems where safety constraints depend on higher-order derivatives of the 
position states, standard CLFs and CBFs become insufficient. Therefore, we need to introduce 
HOCLF and HOCBF. The relative degree of HOCLF and HOCBF is the number of times we need 
to differentiate it along the dynamics of the system until the control input 𝑢𝑢 explicitly shows. 

The definition of the HOCLF is presented as follows. Consider a 𝑑𝑑th-order continuously 
differentiable function 𝑉𝑉(𝑥𝑥): 𝑅𝑅𝑛𝑛 → 𝑅𝑅 . We let 𝜙𝜙0(𝑥𝑥) = 𝑉𝑉(𝑥𝑥)  and a sequence of functions 
𝜙𝜙𝑖𝑖(𝑥𝑥): 𝑅𝑅𝑛𝑛 → 𝑅𝑅, 𝑖𝑖 ∈ {1, … ,𝑑𝑑} : 



𝜙𝜙𝑖𝑖(𝑥𝑥) = 𝜙̇𝜙𝑖𝑖−1(𝑥𝑥) + 𝛼𝛼𝑖𝑖(𝜙𝜙𝑖𝑖−1(𝑥𝑥)), 𝑖𝑖 ∈ {1, … ,𝑑𝑑}  (4.13) 

where 𝛼𝛼𝑖𝑖, 𝑖𝑖 ∈ {1, … ,𝑑𝑑} are class-𝜅𝜅 functions. If there exist 𝛼𝛼𝑑𝑑 such that for ∀𝑥𝑥 ≠ 0𝑛𝑛, 

𝑖𝑖𝑛𝑛𝑛𝑛
𝑢𝑢𝑢𝑢𝑢𝑢

[𝐿𝐿𝑓𝑓𝑑𝑑𝑉𝑉(𝑥𝑥) + 𝐿𝐿𝑔𝑔𝐿𝐿𝑓𝑓𝑑𝑑−1𝑉𝑉(𝑥𝑥)𝑢𝑢 + 𝑆𝑆�ℎ(𝑥𝑥)� + 𝛼𝛼𝑑𝑑(𝜙𝜙𝑑𝑑−1(𝑥𝑥))] ≤ 0 

 
(4.14) 

where 𝐿𝐿𝑓𝑓  and 𝐿𝐿𝑔𝑔  denote Lie derivatives along 𝑓𝑓(𝑥𝑥)  and 𝑔𝑔(𝑥𝑥) , then, 𝑉𝑉(𝑥𝑥)  is a HOCLF for the 
system which can guarantee global and exponential stabilization. 

Similarly, the definition of HOCBF is presented as follows. Consider an 𝑟𝑟 th-order 
continuously differentiable function ℎ(𝑥𝑥): 𝑅𝑅𝑛𝑛 → 𝑅𝑅 . We let Ψ0(𝑥𝑥) = ℎ(𝑥𝑥)  and a sequence of 
functions Ψ𝑖𝑖(𝑥𝑥): 𝑅𝑅𝑛𝑛 → 𝑅𝑅, 𝑖𝑖 ∈ {1, … , 𝑟𝑟} : 

Ψ𝑖𝑖(𝑥𝑥) = Ψ̇𝑖𝑖−1(𝑥𝑥) + 𝛽𝛽𝑖𝑖(Ψ𝑖𝑖−1(𝑥𝑥)), 𝑖𝑖 ∈ {1, … , 𝑟𝑟}  
(4.15) 

where 𝛽𝛽𝑖𝑖, 𝑖𝑖 ∈ {1, … , 𝑟𝑟} are class-𝜅𝜅 functions. We also define a sequence of sets 𝐶𝐶𝑖𝑖, 𝑖𝑖 ∈ {1, … , 𝑟𝑟}: 

C𝑖𝑖(𝑥𝑥) = {𝑥𝑥 ∈ ℝ𝑛𝑛:Ψ𝑖𝑖−1(𝑥𝑥) ≥ 0}, 𝑖𝑖 ∈ {1, … , 𝑟𝑟}  
(4.16) 

If there exists 𝛽𝛽𝑟𝑟 and a control input 𝑢𝑢 𝜖𝜖 𝑅𝑅𝑛𝑛 such that the following condition holds for ∀𝑥𝑥 𝜖𝜖 𝐶𝐶1 ∩
𝐶𝐶2 ∩ …∩ 𝐶𝐶𝑖𝑖 

s𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢𝑢𝑢

�𝐿𝐿𝑓𝑓𝑚𝑚ℎ(𝑥𝑥) + 𝐿𝐿𝑔𝑔𝐿𝐿𝑓𝑓𝑚𝑚−1ℎ(𝑥𝑥)𝑢𝑢 + 𝑆𝑆�ℎ(𝑥𝑥)� + 𝛼𝛼𝑖𝑖�Ψ𝑖𝑖−1(𝑥𝑥)�� ≥ 0 

 
(4.17)  

where 𝐿𝐿𝑓𝑓 and 𝐿𝐿𝑔𝑔 denote Lie derivatives along 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥), then the function ℎ(𝑥𝑥) is considered 
a HOCBF for the system which can guarantee safety. The detailed derivation and proof of HOCLF 
and HOCBF can be found in [60], [85]. 

4.2.2.3 CLF-CBF-QP Controller Design for Unicycle Model 

For the unicycle model, the CLF is applied to design the path-tracking controller, ensuring 
the vehicle accurately follows a predefined trajectory. Equations (4.18) and (4.19) demonstrate the 
design of a Lyapunov function and its derivative where 𝑒𝑒  is the path tracking error. The path 
tracking error can be calculated using the position of the vehicle and the position of the tracking 
point on the path, 𝑒𝑒 = 𝑝𝑝 − 𝑝𝑝𝑑𝑑(𝛾𝛾), where 𝑝𝑝𝑑𝑑(𝛾𝛾):ℝ → ℝ2 represents the planar parameterized path, 
generated by B-Spline fitting for example, and 𝛾𝛾 ∈ ℝ is a time dependent parameter for position 
along the path. Equation (4.20) demonstrates the dynamics of the path where desired path speed is 
𝛾𝛾𝑑𝑑 and 𝑔𝑔(𝑒𝑒) is used to slow down the tracking point when the path tracking error is too large. The 
CLF incorporates path-tracking error, quantifying the deviation of the vehicle from the desired 
path. By integrating the CLF as a constraint within the quadratic programming (QP) optimization 
problem, the controller ensures that the system minimizes the path-tracking error at every time 
step. This formulation guarantees stability by driving the CLF to decrease over time, ultimately 
forcing the vehicle to converge to the predefined path. The detailed design of CLF is illustrated in 



Equation (4.21) where 𝜖𝜖  is the relaxing term which indicates that the vehicle can temporarily 
deviate from the path when necessary. 

𝑉𝑉(𝑒𝑒)  =
1
2
‖𝑒𝑒‖2 (4.18) 

𝑉̇𝑉(𝑒𝑒)  = 𝑒𝑒𝑇𝑇(�cos(θ)  −𝑑𝑑 ∗ sin(θ)
sin(θ) 𝑑𝑑 ∗ cos(θ) � 𝑢𝑢 −

𝜕𝜕𝑝𝑝𝑑𝑑
𝜕𝜕𝜕𝜕

𝛾̇𝛾) (4.19) 

𝛾̇𝛾 = 𝛾𝛾𝑑𝑑 + 𝑔𝑔(𝑒𝑒)  (4.20) 

𝑒𝑒𝑇𝑇 ��cos(θ)  −𝑑𝑑 ∗ sin(θ)
sin(θ) 𝑑𝑑 ∗ cos(θ) � 𝑢𝑢 −

𝜕𝜕𝑝𝑝𝑑𝑑
𝜕𝜕𝜕𝜕

𝛾̇𝛾� +
𝛼𝛼
2
‖𝑒𝑒‖2 ≤ 𝜖𝜖 (4.21) 

 
For the unicycle model, the CBF is utilized to design the collision avoidance controller, 

ensuring the vehicle's safety in the presence of nearby obstacles. To simplify the problem and 
enable effective mathematical formulation, we assume that both vehicle and obstacles have 
elliptical geometries. This assumption allows the use of an ellipse-based barrier function which 
defines a safe region by ensuring that the vehicle maintains an appropriate distance from obstacles. 
By assuming that both the vehicle and the obstacles have elliptical geometries, we imply that they 
can be approximated or enclosed by one or more elliptical shapes, depending on the complexity of 
their structures. Once these elliptical boundaries are established, elliptical CBF constraints can be 
applied, with each boundary corresponding to a specific CBF constraint, to formulate the QP 
problem. This approach enables efficient calculation of optimal control. 

The primary purpose of utilizing CBFs is to ensure collision avoidance and maintain safety 
during path tracking. In our simulation studies, both the vehicle and obstacles are encircled with 
elliptical boundaries. CBFs are employed to guarantee that the vehicle's boundary does not overlap 
with the obstacle boundaries, effectively preventing collisions. If there is more than one obstacle, 
each obstacle/boundary corresponds to a specific CBF constraint. While it is possible to impose 
input constraints by introducing additional constraints into the QP formulation, this approach 
significantly increases the problem's complexity and computational time. To address this, our 
method solves the CLF-CBF-QP problem without input constraints and applies saturation directly 
during the execution of the calculated optimal input. This approach maintains computational 
efficiency while ensuring practical feasibility. 

Equation (4.22) is the barrier function of the elliptical region with 𝐻𝐻(𝜃𝜃) = 𝑅𝑅(𝜃𝜃)Λ𝑅𝑅(𝜃𝜃)𝑇𝑇 
and Λ = diag{1/a2, 1/b2 }. Where 𝑅𝑅(𝜃𝜃) is the 2D rotational matrix. Constant 𝑎𝑎 and 𝑏𝑏 are longest 
and shortest radiii of the ellipse. The center of this elliptical region is located at 𝑝𝑝𝑐𝑐,the orientation 
of the region is 𝜃𝜃, the position of a random point is 𝛿𝛿. This equation is used to determine whether 
a given point lies within the elliptical region. Equation (4.23) represents the boundary of the 
aforementioned elliptical region where 𝜌𝜌 is the rotation angle that is between 0 to 2𝜋𝜋. Equation 
(4.24) demonstrates the design of the barrier function between two arbitrary elliptical regions i and 



j where ℎ𝑖𝑖  represents the barrier function of elliptical region i, ℰ𝑗𝑗(𝜌𝜌)  represents the boundary 
function of the elliptical region j, and 𝜉𝜉𝑐𝑐𝑐𝑐 , 𝜉𝜉𝑐𝑐𝑐𝑐  represent the position and orientation of the two 
elliptical regions. By incorporating this barrier function into the control framework, the vehicle 
can dynamically adjust its trajectory to avoid collisions while preserving stability and operational 
efficiency. The detailed design of CBF is illustrated in Equation (4.25). 

ℎ(𝛿𝛿) =
1
2

(𝛿𝛿 − 𝑝𝑝𝑐𝑐)𝐻𝐻(𝛿𝛿 − 𝑝𝑝𝑐𝑐) −
1
2

 (4.22) 

ℰ(𝜌𝜌) = �𝑎𝑎 cos(𝜌𝜌) cos(𝜃𝜃) − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝜌𝜌) sin(𝜃𝜃) + 𝑥𝑥𝑐𝑐
𝑎𝑎 cos(𝜌𝜌) sin(𝜃𝜃) + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝜌𝜌) cos(𝜃𝜃) + 𝑦𝑦𝑐𝑐

� (4.23) 

ℎ𝑖𝑖𝑖𝑖�𝜉𝜉𝑐𝑐𝑐𝑐 , 𝜉𝜉𝑐𝑐𝑐𝑐� = min
𝜌𝜌𝜌𝜌ℝ

ℎ𝑖𝑖(ℰ𝑗𝑗(𝜌𝜌)) (4.24) 

𝜕𝜕ℎ𝑖𝑖𝑖𝑖
𝜕𝜕𝜉𝜉𝑐𝑐𝑐𝑐

𝑔𝑔𝑐𝑐(𝜉𝜉𝑐𝑐𝑐𝑐)𝑢𝑢𝑖𝑖 +
𝜕𝜕ℎ𝑖𝑖𝑖𝑖
𝜕𝜕𝜉𝜉𝑐𝑐𝑐𝑐

𝑔𝑔𝑐𝑐�𝜉𝜉𝑐𝑐𝑐𝑐�𝑢𝑢𝑗𝑗 + 𝛽𝛽ℎ𝑖𝑖𝑖𝑖�𝜉𝜉𝑐𝑐𝑐𝑐 , 𝜉𝜉𝑐𝑐𝑐𝑐� ≥  0 (4.25) 

After designing the appropriate CLF and CBF constraints for the optimization-based 
controller, the next step is to formulate the CLF-CBF-QP framework. The complete formulation 
of the CLF-CBF-QP is presented in Equation (4.26). 

𝑢𝑢∗ = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑢𝑢,𝜖𝜖 

‖𝑢𝑢‖2 + 𝑞𝑞𝜖𝜖2 (4.26) 

𝑠𝑠. 𝑡𝑡   𝑉̇𝑉(𝜉𝜉𝑖𝑖 ,𝑢𝑢𝑖𝑖) + 𝛼𝛼𝛼𝛼(𝜉𝜉𝑖𝑖) ≤ 𝜖𝜖 and  

ℎ̇𝑖𝑖𝑖𝑖�𝜉𝜉𝑐𝑐𝑐𝑐 , 𝜉𝜉𝑐𝑐𝑐𝑐 ,𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑗𝑗� + 𝛽𝛽ℎ𝑖𝑖𝑖𝑖�𝜉𝜉𝑐𝑐𝑐𝑐 , 𝜉𝜉𝑐𝑐𝑐𝑐� ≥  0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1. .𝑁𝑁  

 
where 𝜉𝜉𝑐𝑐𝑐𝑐 , 𝜉𝜉𝑐𝑐𝑐𝑐 represent the position and orientation of the elliptical regions corresponding to the 
vehicle and obstacles, respectively. The index 𝑖𝑖 refers to individual vehicles, while 𝑗𝑗 corresponds 
to individual obstacles. Constants 𝛼𝛼 and 𝛽𝛽 are designed to ensure that the system converges to the 
optimal control solution at an exponential rate. 𝜖𝜖  is the relaxing term which indicates that the 
vehicle can temporarily deviate from the path when necessary. Additionally, 𝑞𝑞  is a positive 
constant introduced to penalize the relaxation of the CLF constraint, encouraging adherence to the 
desired trajectory. By solving this optimization problem, the autonomous vehicle can effectively 
avoid potential collisions with obstacles, achieve accurate path tracking to the greatest extent 
possible, and minimize control effort while ensuring efficient and safe navigation. Next, we 
demonstrate how to design the CLF-CBF-QP for a complex vehicle dynamic model. 

4.2.2.4 HOCLF-HOCBF-QP Controller Design for Vehicle Dynamic Model 

In this section, the design of the proposed low-level controller is presented. The key 
objective of this controller is to compute safe and effective control inputs that allow the vehicle to 
follow a desired path from the start point to the destination while avoiding collisions with 



surrounding obstacles (VRUs here). In order to achieve this, we first design the path following part 
using HOCLF. 

𝑉𝑉(𝑥𝑥) = �𝑥𝑥 − 𝑥𝑥𝑔𝑔�
2 + �𝑦𝑦 − 𝑦𝑦𝑔𝑔�

2 (4.27) 

𝑉̇𝑉(𝑥𝑥,𝑢𝑢) = ℒ𝑓𝑓𝑉𝑉(𝑥𝑥) + ℒ𝑔𝑔𝑉𝑉(𝑥𝑥)𝑢𝑢
= 2𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 (𝛽𝛽 + 𝜓𝜓)�𝑥𝑥 − 𝑥𝑥𝑔𝑔� + 2𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝛽𝛽 + 𝜓𝜓)�𝑦𝑦 − 𝑦𝑦𝑔𝑔� 

(4.28) 

ℒ𝑓𝑓2𝑉𝑉(𝑥𝑥) = 𝛻𝛻 �ℒ𝑓𝑓𝑉𝑉(𝑥𝑥)�
𝑇𝑇
𝑓𝑓(𝑥𝑥)

= −2𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝛽𝛽 + 𝜓𝜓)�𝑥𝑥 − 𝑥𝑥𝑔𝑔�(𝐴𝐴11𝛽𝛽 + 𝐴𝐴12𝑟𝑟) + 

2𝑣𝑣 𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽 + 𝜓𝜓) �𝑦𝑦 − 𝑦𝑦𝑔𝑔�(𝐴𝐴11𝛽𝛽 + 𝐴𝐴12𝑟𝑟) + 

2𝑣𝑣2 − 2𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝛽𝛽 + 𝜓𝜓)�𝑥𝑥 − 𝑥𝑥𝑔𝑔�𝑟𝑟 + 2𝑣𝑣 𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽 + 𝜓𝜓) �𝑦𝑦 − 𝑦𝑦𝑔𝑔�𝑟𝑟 

(4.29) 

ℒ𝑔𝑔ℒ𝑓𝑓𝑉𝑉(𝑥𝑥)𝑢𝑢 = 𝛻𝛻 �ℒ𝑓𝑓𝑉𝑉(𝑥𝑥)�
𝑇𝑇
𝑔𝑔(𝑥𝑥)𝑢𝑢 = −2𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝛽𝛽 + 𝜓𝜓)�𝑥𝑥 − 𝑥𝑥𝑔𝑔�𝐵𝐵1𝛿𝛿𝑓𝑓 + 

                                                                     2𝑣𝑣 𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽 + 𝜓𝜓) �𝑦𝑦 − 𝑦𝑦𝑔𝑔�𝐵𝐵1𝛿𝛿𝑓𝑓 
(4.30) 

 
Equations (4.27)-(4.30) demonstrate the design of the HOCLF and its derivative where 

[𝑥𝑥,𝑦𝑦]  represent the current coordinates of the vehicle, and [𝑥𝑥𝑔𝑔, 𝑦𝑦𝑔𝑔]  are coordinates of the 
destination. The coefficients 𝐴𝐴11 , 𝐴𝐴12 , 𝐴𝐴21 , 𝐴𝐴22 , 𝐵𝐵1 , 𝐵𝐵2  were defined in the vehicle dynamics 
model described earlier. The purpose of introducing the HOCLF in this design is to ensure the 
stability of the system, thereby enabling the vehicle to converge toward the target destination or 
tracking point on the desired path. The design idea is straightforward. We want the vehicle’s 
position [𝑥𝑥,𝑦𝑦] to eventually coincide with the destination coordinates [𝑥𝑥𝑔𝑔,𝑦𝑦𝑔𝑔]. To achieve this, we 
construct a Lyapunov candidate function 𝑉𝑉(𝑥𝑥), which quantifies the squared distance between the 
current position and the goal. The inequality condition in equation (4.31) is the HOCLF constraint 

ℒ𝑓𝑓2𝑉𝑉(𝑥𝑥) + ℒ𝑔𝑔ℒ𝑓𝑓𝑉𝑉(𝑥𝑥)𝑢𝑢 + 𝛼𝛼1 �𝑉̇𝑉(𝑥𝑥,𝑢𝑢)� + 𝛼𝛼2�𝑉𝑉(𝑥𝑥)� ≤ 𝛿𝛿 (4.31) 

where 𝛼𝛼1 and 𝛼𝛼2 are class-𝜅𝜅 functions and 𝛿𝛿 is a slack variable. In practice, we implement these 
as positive constant gains. This constraint ensures that the control input 𝑢𝑢 consistently drives the 
system towards the goal in a stable and controlled manner.  

Similarly, we can then design the collision avoidance part using HOCBF as 

ℎ(𝑥𝑥) = (𝑥𝑥 − 𝑥𝑥𝑜𝑜)2 + (𝑦𝑦 − 𝑦𝑦𝑜𝑜)2 − 𝑟𝑟𝑜𝑜2 (4.32) 

ℎ̇(𝑥𝑥,𝑢𝑢) = ℒ𝑓𝑓ℎ(𝑥𝑥) + ℒ𝑔𝑔ℎ(𝑥𝑥)𝑢𝑢 = ℒ𝑓𝑓ℎ(𝑥𝑥)
= 2𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 (𝛽𝛽 + 𝜓𝜓)(𝑥𝑥 − 𝑥𝑥𝑜𝑜) + 2𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝛽𝛽 + 𝜓𝜓)(𝑦𝑦 − 𝑦𝑦𝑜𝑜) 

(4.33) 



ℒ𝑓𝑓2ℎ(𝑥𝑥) = 𝛻𝛻 �ℒ𝑓𝑓ℎ(𝑥𝑥)�
𝑇𝑇
𝑓𝑓(𝑥𝑥)

= −2𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝛽𝛽 + 𝜓𝜓)(𝑥𝑥 − 𝑥𝑥𝑜𝑜)(𝐴𝐴11𝛽𝛽 + 𝐴𝐴12𝑟𝑟) + 

2𝑣𝑣 𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽 + 𝜓𝜓) (𝑦𝑦 − 𝑦𝑦𝑜𝑜)(𝐴𝐴11𝛽𝛽 + 𝐴𝐴12𝑟𝑟) + 

2𝑣𝑣2 − 2𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝛽𝛽 + 𝜓𝜓)(𝑥𝑥 − 𝑥𝑥𝑜𝑜)𝑟𝑟 + 2𝑣𝑣 𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽 + 𝜓𝜓) (𝑦𝑦 − 𝑦𝑦𝑜𝑜)𝑟𝑟 

(4.34) 

ℒ𝑔𝑔ℒ𝑓𝑓ℎ(𝑥𝑥)𝑢𝑢 = 𝛻𝛻 �ℒ𝑓𝑓ℎ(𝑥𝑥)�
𝑇𝑇
𝑔𝑔(𝑥𝑥)𝑢𝑢 = −2𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝛽𝛽 + 𝜓𝜓)(𝑥𝑥 − 𝑥𝑥𝑜𝑜)𝐵𝐵1𝛿𝛿𝑓𝑓 + 

                                                                     2𝑣𝑣 𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽 + 𝜓𝜓) (𝑦𝑦 − 𝑦𝑦𝑜𝑜)𝐵𝐵1𝛿𝛿𝑓𝑓 
(4.35) 

Equations (4.32)-(4.35) demonstrate the design of the HOCBF and its derivative where [𝑥𝑥,𝑦𝑦] 
represent the current coordinates of the vehicle, and [𝑥𝑥𝑜𝑜,𝑦𝑦𝑜𝑜] are coordinates of the obstacles. The 
coefficients 𝐴𝐴11 , 𝐴𝐴12 , 𝐴𝐴21 , 𝐴𝐴22 , 𝐵𝐵1 , 𝐵𝐵2  were defined in the vehicle dynamics model described 
earlier. The purpose of introducing the HOCBF in this design is to enforce safety by ensuring that 
the vehicle avoids potential collisions with surrounding obstacles. The design idea is 
straightforward. We want to prevent the vehicle’s position [𝑥𝑥,𝑦𝑦] from entering a circular danger 
zone of radius 𝑟𝑟𝑜𝑜 centered at [𝑥𝑥𝑜𝑜 ,𝑦𝑦𝑜𝑜]. To achieve this, we construct a barrier candidate function 
ℎ(𝑥𝑥) which quantifies whether the center of the vehicle is entering the dangerous zone or not. The 
inequality condition in equation (4.36) is the HOCBF constraint. For each obstacle, we need a 
unique HOCBF constraint 

ℒ𝑓𝑓2ℎ(𝑥𝑥) + ℒ𝑔𝑔ℒ𝑓𝑓ℎ(𝑥𝑥)𝑢𝑢 + 𝛼𝛼3 �ℒ𝑓𝑓ℎ(𝑥𝑥)� + 𝛼𝛼4�ℎ(𝑥𝑥)� ≥ 0 (4.36) 

where 𝛼𝛼3 and 𝛼𝛼4 are class-𝜅𝜅 functions. In practice, we implement these as positive constant gains. 
This constraint ensures that the control input 𝑢𝑢 cannot drive the system towards the unsafe region 
with obstacles. 

To combine the previous design of HOCLF and HOCBF within a single control framework, 
we need to formulate a QP that incorporates both HOCLF and HOCBF as inequality constraints. 
This optimization-based approach enables the controller to compute control inputs that not only 
drive the system towards the desired destination but also maintain safety by avoiding the entering 
of unsafe regions with obstacles. 

The formulation of the QP is presented in equation (4.37). 

𝑢𝑢∗ = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑢𝑢,𝛿𝛿 

�𝑢𝑢 − 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟�
2 + 𝑞𝑞𝛿𝛿2 (4.37) 

𝑠𝑠. 𝑡𝑡   ℒ𝑓𝑓2𝑉𝑉(𝑥𝑥) + ℒ𝑔𝑔ℒ𝑓𝑓𝑉𝑉(𝑥𝑥)𝑢𝑢 + 𝛼𝛼1 �𝑉̇𝑉(𝑥𝑥,𝑢𝑢)� + 𝛼𝛼2�𝑉𝑉(𝑥𝑥)� ≤
𝛿𝛿  

and 
 

ℒ𝑓𝑓2ℎ(𝑥𝑥) + ℒ𝑔𝑔ℒ𝑓𝑓ℎ(𝑥𝑥)𝑢𝑢 + 𝛼𝛼3 �ℒ𝑓𝑓ℎ(𝑥𝑥)� + 𝛼𝛼4�ℎ(𝑥𝑥)�
≥ 0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑎𝑎𝑎𝑎ℎ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 

 

 



where 𝑢𝑢  is the control input, 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟  is a nominal reference input, which can be set to zero for 
minimizing control effort. 𝛿𝛿  is a slack variable of the HOCLF constraint, allowing temporary 
relaxation of the HOCLF constraint when it is in conflict with HOCBF. The penalty weight 𝑞𝑞 > 0 
balances the performance and constraint violation 

The parameters in the HOCLF-HOCBF-QP controller include the CLF constraint 
coefficients, CBF constraint coefficients, and CLF relaxing terms 𝛿𝛿 in QP formulations. The CLF 
constraint coefficients affect tracking aggressiveness. Higher values improve convergence speed 
but may lead to more abrupt control actions. Moreover, if the CLF constraint coefficients have an 
excessively large value, that will impose overly strict convergence requirements, which may lead 
to an infeasible optimization problem. Increasing the CBF constraint coefficients makes the safety 
constraint less strict, allowing the vehicle to follow more efficient trajectories but reducing the 
safety margin. Conversely, reducing the CBF constraint coefficients enforces stricter safety 
constraints, forcing the vehicle to maintain larger distances from obstacles. The CLF relaxing 
terms 𝛿𝛿 influences the trade-off between strict constraint satisfaction and feasible control effort. 
Compared to other parameters, the CLF constraint coefficients have a more direct and sensitive 
impact on the feasibility and effectiveness of the overall control performance. 

4.2.3 High-level DRL Based Collision Avoidance Controller Design 

Markov Decision Process (MDP) is a framework used in modeling sequential decision-
making problems. In an MDP, the system evolves over time by selecting actions based on the 
current state. The goal is to find an optimal policy that can maximize long-term cumulative reward. 
Autonomous driving naturally fits into this framework. At each moment, driving decisions such as 
whether to change lanes, accelerate, or slow down are made based on the current vehicle state and 
traffic environment. Therefore, in this section, we formulate the high-level autonomous driving 
task as an MDP and try to find the optimal driving strategy. 

Once the autonomous diving problem is formulated using MDP, reinforcement learning 
(RL) can then be employed to optimize the decision-making process and find an optimal policy. 
References [86-87] present different applications of reinforcement learning. Deep Reinforcement 
Learning (DRL), a subset of RL, is particularly effective for autonomous driving applications and 
can be broadly categorized into value-based and policy-based methods. Value-based DRL, inspired 
by Q-learning [88], estimates action values to determine the best possible decision. Techniques 
such as Deep Q-Networks (DQN), Double Deep Q-Networks (DDQN) and their successors [89-
92] improve learning efficiency in environments with large state spaces and discrete action spaces. 
Policy-based DRL [93], on the other hand, directly learns a mapping from states to actions without 
explicitly estimating value functions. Methods such as Policy Gradient (PG), Actor-Critic (A2C 
[94], A3C [95]), Proximal Policy Optimization (PPO) [96], and their successors [97-99] refine 
decision-making by adjusting policy parameters to maximize expected rewards. 



In this section, we propose using the DQN framework to design the high-level control for 
the unicycle model and propose using DDQN to design the high-level control for the vehicle 
dynamic model. Both DQN and DDQN, as value-based reinforcement learning algorithms, offer 
several advantages over policy-based algorithms. They are computationally efficient, particularly 
for discrete action spaces, and can achieve stable convergence with techniques like experience 
replay and target networks. These properties make them ideal choices for handling high-level 
decision-making in structured environments.  

4.2.3.1 DDQN High-Level Decision-Making Agent for Unicycle Model 

For the unicycle model, we convert the driving environment into a grid map, where the 
map is divided into discrete grids. Each grid represents a specific location, with grids containing 
the destination and obstacles being distinctly marked. At each time step, the DQN framework 
determines a high-level decision, guiding the vehicle to move to a nearby grid based on its learned 
policy. The CLF-CBF controller then executes these high-level decisions, refining the vehicle's 
trajectory and ensuring stability, safety, and efficiency throughout the process. This combination 
of DQN for decision-making and CLF-CBF for control execution ensures a robust and effective 
approach to autonomous driving in dynamic environments.  

 
Figure 4.3. Deep reinforcement learning traffic environment setting. 

Figure 4.3 illustrates an example of the traffic environment which can be used to train a 
DRL based high level decision-making agent. The yellow grid represents the vehicle's current 
position, while the red grid indicates the presence of a dynamic obstacle. The green grid marks the 
destination. The vehicle's objective is to navigate around the dynamic obstacle and reach the 
destination as quickly as possible. The DRL-based high-level decision-making agent is responsible 
for generating basic navigation commands, such as moving to the grid above or below the current 
position. These commands serve as guidance for the overall trajectory planning. The CLF-CBF-



QP-based low-level controller, in turn, interprets and executes these commands with precision, 
ensuring smooth and safe motion while adhering to vehicle dynamics and avoiding collisions. This 
hierarchical structure enables the seamless integration of high-level strategic decision-making with 
low-level control execution, providing both flexibility and robustness in navigation.  

  
(a) (b) 

  

  
(c) (d) 

Figure 4.4. Sample low level control steps: (a) move to forward grid; (b) move to back grid; (c) move to left grid; (d) 
move to right grid. 

 
Figure 4.4 demonstrates how to use the CLF-CBF controller to execute high-level steps 

generated by the DRL agent. Each high-level decision corresponds to a unique trajectory. After the 
DRL-based high-level controller decides, the CLF-CBF controller ensures that the vehicle moves 
from the center of the current grid to the center of the next grid. Notably, there are two possible 
ways to move to the grid behind the vehicle: either a left turn or a right turn, both of which are 
feasible. To handle such scenarios, an additional rule-based algorithm can be incorporated to select 
the optimal path based on specific conditions. Furthermore, the DRL controller may occasionally 
decide that the vehicle should remain stationary. If the DRL chooses not to move, the low-level 
controller will maintain the vehicle's position until the next step.  

 



Algorithm 4.1. DQN algorithm flowchart 

Algorithm 4.1: DQN algorithm flowchart 
1: Initialize replay memory 𝐷𝐷 
2: Initialize target network 𝑄𝑄�  and Online Network 𝑄𝑄 with random weights 𝜃𝜃 
3: for each episode do 
4:      Initialize traffic environment  
5:       for t = 1 to T do 
6:              With probability 𝜖𝜖 select a random action 𝑎𝑎𝑡𝑡 
7:              Otherwise select 𝑎𝑎𝑡𝑡 = maxa𝑄𝑄∗(𝑠𝑠𝑡𝑡 ,𝑎𝑎;𝜃𝜃)  
8:              Execute 𝑎𝑎𝑡𝑡 in CARLA and extract reward 𝑟𝑟𝑡𝑡 and next state 𝑠𝑠𝑡𝑡+1 
9:              Store transition (𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡, 𝑟𝑟𝑡𝑡, 𝑠𝑠𝑡𝑡+1) in 𝐷𝐷 
10:            if t mod training frequency == 0 then 
11:                  Sample random minibatch of transitions (𝑠𝑠𝑗𝑗, 𝑎𝑎𝑗𝑗, 𝑟𝑟𝑗𝑗, 𝑠𝑠𝑗𝑗+1)) from D 
12:                  Set 𝑦𝑦𝑗𝑗  =  𝑟𝑟𝑗𝑗  +  𝛾𝛾max𝑎𝑎′𝑄𝑄�(𝑠𝑠𝑗𝑗+1,𝑎𝑎′);𝜃𝜃)  
13:                  for non-terminal 𝑠𝑠𝑗𝑗+1 
14:                  or 𝑦𝑦𝑗𝑗  =  𝑟𝑟𝑗𝑗   for terminal 𝑠𝑠𝑗𝑗+1 
15:                  Perform a gradient descent step to update 𝜃𝜃 
16:                  Every N steps reset  𝑄𝑄�  =  𝑄𝑄 
17:            end if 
18:            Set 𝑠𝑠𝑡𝑡+1= 𝑠𝑠𝑡𝑡 
19:      end for 
20: end for 

 

 
Figure 4.5. DQN framework neural network structure 

Algorithm 4.1 demonstrates the DQN framework that is used to train the autonomous 
driving high-level decision-making agent. The Q-value, also known as action-value, represents the 
expected cumulative reward that an agent can obtain starting from a specific state 𝑠𝑠 and then taking 
a specific action 𝑎𝑎. In DQN, a neural network approximates the Q-value function. The network 
takes the current state 𝑠𝑠 as input and outputs a vector of Q-values, one for each possible action in 
the action space. Figure 4.5 demonstrates the structure of the neural network used in the DQN 



framework. The neural networks used in this paper are feedforward neural networks. The proposed 
DQN agent contains two fully connected hidden layers that each contain 32 neurons. The 
corresponding activation function for the hidden layer is ReLU. The learning rate for training is 
set to 0.001, using the Adam optimizer, and the model evaluates training performance using the 
mean absolute error (MAE) metric. The agent undergoes 1,000 warm-up steps before learning and 
updates the target network with a rate of 0.01. 

4.2.3.2 DDQN High-Level Decision-Making Agent for Vehicle Dynamic Model 

To design high-level decision-making agent for vehicle dynamic models, we use a different 
approach. Through observations of daily driving behavior, we find that most human drivers tend 
to perform lane-changing maneuvers to avoid obstacles, such as stationary vehicles or unexpected 
hazards. Inspired by this observation, we developed a DDQN high-level decision-making agent 
for autonomous vehicles which can automatically perform lane-changing maneuvers to avoid 
obstacles in multi-lane traffic environments. This approach is also applicable to suddenly 
appearing VRUs. 

Table 4.2. DDQN loss function parameters. 

Symbol Parameter 
𝑠𝑠 State 
𝑎𝑎 Action 
𝑟𝑟 Immediate reward 
𝜃𝜃𝑖𝑖− Target-network’s parameter 
𝜃𝜃𝑖𝑖 Online-network’s parameter 
𝛾𝛾 Discount for future reward 

 

 
Figure 4.6. DDQN framework neural network structure 

 
Since the high-level decision-making agent is required to generate discrete lane-level 

actions, a value-based reinforcement learning method is particularly well-suited. Compared with 
policy-based methods, value-based approaches like Q-learning and its variants tend to be more 



sample-efficient and easier to train in discrete action spaces. Given the relatively simple structure 
of our task and the need for stable and efficient learning, we adopt the DDQN algorithm to train 
the high-level agent. From the loss function of DDQN shown in equation (4.38), DDQN mitigates 
the overestimation bias found in standard DQN by decoupling action selection and action 

evaluation during Q-value updates (using max
𝑎𝑎𝑡𝑡+1

𝑄𝑄𝜃𝜃𝑖𝑖− �𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑎𝑎𝑎𝑎max
𝑎𝑎𝑡𝑡+1 

𝑄𝑄𝜃𝜃𝑖𝑖(𝑠𝑠𝑡𝑡+1, 𝑎𝑎𝑡𝑡+1)�  instead of 

max
𝑎𝑎𝑡𝑡+1 

𝑄𝑄𝜃𝜃𝑖𝑖−(𝑠𝑠𝑡𝑡+1, 𝑎𝑎𝑡𝑡+1) for update), leading to a more stable training process. Table 4.2 provides a 

detailed explanation of the parameters in loss functions. Moreover, while DDQN is used in this 
work due to its simplicity and effectiveness, the modular design of our hierarchical framework 
allows for flexibility. For complex driving tasks, more advanced algorithms such as SAC or DDPG 
can be applied for better performance. 

𝐿𝐿𝑖𝑖(𝜃𝜃)  = 𝔼𝔼(𝑠𝑠,𝑎𝑎,𝑟𝑟)[�𝑟𝑟 + 𝛾𝛾max
𝑎𝑎𝑡𝑡+1

𝑄𝑄𝜃𝜃𝑖𝑖− �𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑎𝑎𝑎𝑎max
𝑎𝑎𝑡𝑡+1 

𝑄𝑄𝜃𝜃𝑖𝑖(𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑡𝑡+1)�

− 𝑄𝑄𝜃𝜃𝑖𝑖(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)�
2

] 
(4.38) 

Algorithm 4.2. Hierarchical DDQN algorithm flowchart 

Algorithm 4.2 
1: Initialize high-level DDQN agent 
2: Initialize low-level HOCLF-HOCBF-QP controller 
3: for each episode do 
4:       Initialize and reset traffic environment  
5:       for t = 1 to T do 
6:              With probability 𝜖𝜖 select a random high-level action 𝑎𝑎𝑡𝑡 
7:              Otherwise select high-level action 𝑎𝑎𝑡𝑡 = maxa𝑄𝑄∗(𝑠𝑠𝑡𝑡 ,𝑎𝑎;𝜃𝜃)  
8:             for each low-level control steps do 
9:                    Reset target tracking point according to current states and 𝑎𝑎𝑡𝑡 
10:                   Reset obstacle list according to current states 
11:                   Calculate optimal control 𝑢𝑢∗ using HOCLF-HOCBF-QP 
12:                     Execute 𝑢𝑢∗ for a control step 
13:             end for 
14:             Calculate reward 𝑟𝑟𝑡𝑡 and record next state 𝑠𝑠𝑡𝑡+1 
15:             Store transition (𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡, 𝑟𝑟𝑡𝑡, 𝑠𝑠𝑡𝑡+1) in replay buffer 𝐷𝐷 
16:             if t mod training frequency == 0 then 
17:                    Sample random minibatch of transitions (𝑠𝑠𝑗𝑗, 𝑎𝑎𝑗𝑗, 𝑟𝑟𝑗𝑗, 𝑠𝑠𝑗𝑗+1)) from D 
18:                    Set 𝑦𝑦𝑗𝑗  =  𝑟𝑟𝑗𝑗  +  𝛾𝛾maxa𝑗𝑗+1𝑄𝑄�(𝑠𝑠𝑗𝑗+1, argmaxa𝑗𝑗+1𝑄𝑄(𝑠𝑠𝑗𝑗 ,𝑎𝑎𝑗𝑗+1;𝜃𝜃);𝜃𝜃)  
19:                    for non-terminal 𝑠𝑠𝑗𝑗+1 
20:                    or 𝑦𝑦𝑗𝑗  =  𝑟𝑟𝑗𝑗   for terminal 𝑠𝑠𝑗𝑗+1 
21:                    Perform a gradient descent step to update 𝜃𝜃 
22:                    Every N steps reset  𝑄𝑄�  =  𝑄𝑄 
23:             end if 
24:             Set 𝑠𝑠𝑡𝑡+1= 𝑠𝑠𝑡𝑡 
25:      end for 



26: end for 
 

Figure 4.6 illustrates the neural network structure used in the DDQN framework and 
Algorithm 4.2 demonstrates the pseudocode of hierarchical DDQN implementation. The DDQN 
employs a fully connected feedforward neural network consisting of two hidden layers, each with 
128 neurons using ReLU as activation functions. The input layer has 25 units (flattened from 5×5 
including ego vehicle’s information and traffic environment information), and the output layer has 
3 units corresponding to three lane-level actions. The training process uses a standard replay buffer 
with a size of 100,000 and a mini-batch size of 64. The Q-network is updated using the mean 
squared error (MSE) loss between the predicted Q-values and the target Q-values. The Adam 
optimizer is used with a learning rate of 0.001. To stabilize training and mitigate overestimation 
bias, a target network is maintained and synchronized with the main Q-network every 100 learning 
steps. An 𝜀𝜀-greedy exploration strategy is adopted, where 𝜀𝜀 linearly decays from 1.0 to 0.05 over 
200,000 steps. This linear decay strategy allows the agent to fully explore the environment instead 
of converging to a local optimal policy. 

4.3 Results 

4.3.1 Unicycle Model Testing Results 

In this section, we present the simulation results of the proposed controller for the unicycle 
model to evaluate its performance and robustness. First, the CLF-based path-tracking simulation 
results are shown, highlighting the controller's ability to achieve precise path tracking under 
normal conditions. Next, the simulation results of the CLF-CBF-based autonomous driving 
controller are shown for scenarios involving both static and dynamic obstacles. These results 
illustrate the vehicle's capability to maintain precise path tracking during normal traffic conditions 
and effectively execute collision avoidance maneuvers in emergency situations. Finally, we present 
the simulation results of the hybrid framework, where the DQN-based high-level decision-making 
agent is combined with the CLF-CBF-based low-level controller. These results demonstrate how 
integrating traditional optimization-based controllers with deep reinforcement learning can 
significantly enhance the autonomous driving capabilities of vehicles, enabling better decision-
making and improved driving safety in complex traffic environments. Moreover, all the test 
conditions are initially evaluated using simulations within a Python-based environment. These 
simulations are then followed by Simulink-based real-time model-in-the-loop (MIL) and 
hardware-in-the-loop (HIL) simulations, the latter validating the real-time capabilities of the 
proposed controller. This two-stage testing process ensures both the feasibility and practicality of 
the controller in dynamic and real-time scenarios. 

Figure 4.7 shows the real-time MIL simulation results of the CLF based path tracking 
controller. In the figure, x and y coordinates represent the bird's-eye view map of the testing traffic 
conditions, with the units for both the x- and y-axes being meters. The figure illustrates that the 



vehicle follows the desired path with high precision under most conditions, demonstrating the 
controller's effectiveness in path tracking tasks. However, a slight deviation from the original path 
is observed in regions with higher curvature, where tracking accuracy decreases marginally. This 
minor deviation could be attributed to the dynamic complexity introduced by the path's curvature, 
which challenges the controller's ability to maintain perfect alignment. Despite these small 
discrepancies, the overall performance, the CLF-based path-tracking controller is robust, showing 
its capability to handle real-time scenarios effectively while maintaining accurate path tracking. 
Further refinements or adjustments may help address the minor tracking offsets in curved sections 
to improve performance further. Figure 4.8 shows the steering angle response 𝜃𝜃 of the vehicle over 
time during the simulation. The plot indicates that the controller maintains stable steering behavior 
throughout the scenario. 

 
Figure 4.7. CLF Path Tracking Controller MIL results. x and y coordinates are in m. 

 
Figure 4.8. CLF Path Tracking Controller Theta Plots. 

Figure 4.9 presents the simulation results of the CLF-CBF-based autonomous driving 
controller in an environment with dynamic obstacles. In the figure, x and y coordinates represent 
the bird's-eye view map of the testing traffic conditions, with the units for both the x- and y-axes 
being meters. The original path waypoints are marked with blue dots, the fitted B-spline trajectory 
in orange, and the vehicle's actual trajectory in green. A dynamic obstacle, represented as a red 
circle, moves in a circular pattern. When the obstacle moves to the top and blocks a section of the 



pre-planned trajectory, the vehicle is required to deviate from the original path to avoid a collision. 
The simulation results demonstrate the controller's ability to adjust the vehicle's trajectory 
dynamically, ensuring safe navigation around the obstacle. The smooth transitions and minimal 
deviation from the intended path highlight the robustness of the CLF-CBF framework in handling 
dynamic obstacles effectively. Additionally, Figure 4.10 illustrates the vehicle's steering angle 
response 𝜃𝜃 over time during the simulation. The plot reveals stable steering behavior throughout 
the scenario, with minor oscillations in the middle phase as the vehicle adjusts to the desired 
trajectory while avoiding the obstacle. The demo video link of this scenario is attached at the end 
of the section. 

 
Figure 4.9. CLF-CBF based Autonomous Driving Controller for Dynamic Obstacle. x and y coordinates are in m. 

 

Figure 4.10. CLF-CBF based Controller Steering Plot for Dynamic Obstacle. 

Then, we present simulations results of the hybrid DRL and CLF-CBF-based autonomous 
driving controller. The vehicle starts at a designated initial position and needs to navigate to a 
specified destination, with a freely moving obstacle present in the environment. There is no pre-
calculated path between the initial position and the destination. Instead, the high-level DRL agent 
dynamically calculates a rough path based on the vehicle's status and the surrounding traffic 
conditions, while the low-level CLF-CBF-based controller executes the agent's decisions. The 



objective of the simulation is to evaluate whether the controller can effectively perform collision 
avoidance and ensure safe navigation in a dynamic environment. 

In this experiment, the state representation includes the distance between the vehicle and 
the obstacle, as well as the distance between the vehicle and the destination. The action space 
consists of four possible movements: forward, backward, left, and right. A positive reward of +25 
is assigned when the vehicle successfully reaches the destination grid. Conversely, a large negative 
reward of -300 is imposed if the vehicle collides with an obstacle by entering its grid. Additionally, 
a small negative reward of -1 is applied for every move to encourage the vehicle to reach the 
destination as quickly as possible, promoting efficient navigation. 

Figure 4.11 demonstrates the training process of the proposed DRL high-level decision-
making agent, which indicates significant improvements in the agent's performance over time. The 
reward plot shows a sharp increase during the early stages, starting from a highly negative value -
6.2 and stabilizing near 0.5 after 300,000 steps, indicating that the agent quickly learned a basic 
policy and continued to refine it. The loss decreases rapidly from an initial high value 106 to a 
more stable range after 100,000 steps, with minor fluctuations throughout until the end, which 
reflects that the agent can effectively minimize prediction error. Similarly, the mean Q-values show 
a notable increase, transitioning from early negative values to a stable value range around 20 after 
100,000 steps. This demonstrates improved confidence in action-value estimations. Together, these 
three plots indicate the agent's ability to effectively learn and optimize its policy, balancing 
exploration and exploitation to achieve improved performance as training progresses. The minor 
fluctuations in loss and reward suggest that further fine-tuning may still enhance stability and 
performance. 

 
Figure 4.11. Deep reinforcement learning training progress. 



Figure 4.12 demonstrates an example of the proposed DRL high-level decision-making 
agent. In the figure, x and y coordinates represent the bird's-eye view map of the testing traffic 
conditions, with the units for both the x- and y-axes being meters. The blue line indicates the 
trajectory of the proposed agent, and the red line indicates the motion of obstacles. It is shown that 
the agent can navigate through the grid while avoiding obstacles. The agent begins from the 
starting position on the left and successfully reaches the goal area on the right. The smooth 
progression of the blue line highlights the agent's ability to make efficient decisions to circumvent 
the moving obstacles while maintaining a clear path towards the target. In contrast, the red 
trajectory depicts the dynamic movement of obstacles, adding complexity to the environment. This 
example demonstrates the agent’s effective decision-making capabilities in handling high-level 
planning and real-time obstacle avoidance. The demo video link of other scenarios is attached at 
the end of the section.  

 

Figure 4.12. DRL High-Level Agent Demo. Coordinates units are in m. The trajectory of the obstacle is marked in red 
line. 

 

Figure 4.13. DRL High-Level Agent Trajectory for Vehicle. Coordinates units are in m. The trajectory of the obstacle is 
marked in red line. 



Figure 4.13 demonstrates the trajectory generated by the proposed DRL high-level 
decision-making agent. The blue line indicates the real trajectory which can be tracked by the 
vehicle. From Figure 4.13, the rough sketch generated by the DRL high-level agent is successfully 
converted into a control feasible path that can be tracked by the vehicle. Combined with CLF-
CBF-QP-based control, the autonomous vehicle can follow this path, navigating from the starting 
point to the endpoint without colliding with obstacles.  

Figure 4.14 shows the control flow chart of proposed DRL and CLF-CBF-QP Based hybrid 
autonomous driving control. In this framework, the environment provides the DRL high-level 
decision-making agent with key information, such as the relative distance between the vehicle, 
obstacles, and the destination, which serves as input for decision-making. Simultaneously, the 
environment sends path tracking data to the CLF-CBF-QP-based low-level controller, ensuring 
precise trajectory tracking. The unicycle model, on the other hand, supplies the vehicle’s position 
and orientation to both the environment and the low-level controller for updates and control 
command calculations. At each step, the DRL high-level decision-making agent determines the 
next grid to move to based on the vehicle's status and surrounding information. Once the next grid 
is selected, the CLF-CBF-QP-based low-level controller executes the decision by enabling the 
vehicle to track and follow a pre-designed trajectory. The unicycle model then carries out the 
control commands sent by the low-level controller and updates its status in real time, closing the 
feedback loop. This hierarchical structure ensures that the high-level agent focuses on strategic 
planning while the low-level controller handles precise execution, maintaining safety and 
efficiency. 

 

Figure 4.14. Proposed DRL and CLF-CBF-QP Based Hybrid Control Flow Chart 



Overall, the proposed DRL high-level controller demonstrates its capability to find 
collision-free and optimal paths which can be further improved by increasing training episodes 
and fine tuning the hyperparameter. 

The demo video for the simulation result using unicycle vehicle model is provided at: CLF-
CBF for static obstacle, CLF-CBF for dynamic obstacle, DRL high-level 

4.3.2 Vehicle Dynamic Model Testing Results 

In this section, we present simulation results of the proposed hierarchical control 
framework using the vehicle dynamic model to evaluate its effectiveness and robustness. The 
results are organized into two parts to demonstrate both the individual performance of the low-
level HOCLF-HOCBF-QP based controller and the overall system performance after combining 
with the high-level DDQN based decision making agent. Table 4.3 displays the values of the 
parameters used in the simulations. 

Table 4.3. Value of parameters used in simulation. 

Symbol Parameter Value 
𝑉𝑉 Center-of-gravity (CG) velocity 5 m/s 
m Mass 3000 kg 
𝐼𝐼𝑧𝑧 Yaw moment of inertia 5.113e3 kg*m^2 
𝐶𝐶𝑓𝑓 Front tire cornering stiffness 3e5 N/rad 
𝐶𝐶𝑟𝑟 Rear tire cornering stiffness 3e5 N/rad 
𝑙𝑙𝑓𝑓 Distance between CG and front axle 2 m 
𝑙𝑙𝑟𝑟 Distance between CG and rear axle 2 m 

𝛿𝛿𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎 Maximum allowed front wheel steer angle 0.7 rad 
𝛿𝛿𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 Minimum allowed front wheel steer angle -0.7 rad 

 

To prove the effectiveness of the proposed low-level controller, we conduct simulations to 
evaluate the performance of the HOCLF-HOCBF-QP controller in both path-tracking and collision 
avoidance. We first test the HOCLF-QP controller’s tracking performance using a reference path 
tracking test case. In this test case, the vehicle is required to travel from a starting point to a 
destination while following a predefined reference trajectory. The results show that the proposed 
HOCLF design allows the vehicle to smoothly and accurately follow the predefined path in 
obstacle-free environments. 

Then, we incorporate HOCBF constraints to the controller and evaluate the controller’s 
collision avoidance capability. An obstacle is deliberately placed near the reference path to test 
whether the controller can successfully avoid potential collisions by temporarily deviating from 
the planned trajectory. Simulation results indicate successful navigation around the obstacle and 
smooth return to the reference path once the obstacle is safely passed. In addition, we also evaluate 
the controller capability to perform reference point tracking. In this test case, the vehicle starts 
from an arbitrary starting point and is required to reach a target reference point while avoiding 

https://youtu.be/ENxxqRS7FhM
https://youtu.be/ENxxqRS7FhM
https://youtu.be/v8SkkTvIjtk
https://youtube.com/shorts/EJVAaHTkuRY?feature=share


surrounding obstacles. The simulation results demonstrate that the proposed HOCLF-HOCBF-QP 
controller can effectively perform path planning and ensure real-time safety in complex dynamic 
environments with multiple obstacles. 

Figure 4.15 shows the tracking performance of the HOCLF-QP controller on a predefined 
single lane change reference trajectory. The red dashed line represents the desired reference path 
of the single lane change maneuver, while the blue solid line illustrates the actual trajectory of the 
ego vehicle under the HOCLF-QP control. As observed in the figure, the tracking performance is 
highly accurate throughout the entire path. The controller successfully leads the vehicle to follow 
the reference path with minimal lateral deviation, indicating the effectiveness of the HOCLF 
formulation in ensuring stability of the system. This result validates the controller's ability to serve 
as a reliable low-level trajectory tracking controller for use in the proposed hierarchical control 
framework. 

 
Figure 4.15. CLF Path Tracking Controller Performance. 

Figure 4.16 shows the trajectory tracking result of the HOCLF-HOCBF-QP controller in 
the presence of a static obstacle. The red dashed line represents the original reference path of the 
single lane change maneuver while the orange circle represents the obstacle that is deliberately 
added near the predefined path. The blue line represents the actual trajectory of the ego vehicle 
under the HOCLF-HOCBF-QP control. Compared to the HOCLF-QP controller results, which 
focused only on trajectory tracking, demonstrated in the previous section, the HOCLF-HOCBF-
QP controller successfully leads the vehicle to change its trajectory to avoid potential collision 
with obstacles while still tracking the desired path after passing the obstacle. The safety constraint 
is enforced by HOCBF, which ensures that the system state remains within a safe set even when 
the original reference would result in a potential collision. The deviation from the reference path 
is observed near the obstacle, which is an intentional and necessary result of the CBF-based safety 



intervention. Once the vehicle passes the obstacle, it smoothly returns to its reference trajectory, 
demonstrating the controller’s ability to balance safety and stability.  

 
Figure 4.16. CLF-CBF based Autonomous Driving Controller for Static Obstacle, Path Tracking. 

 
Figure 4.17. CLF-CBF based Autonomous Driving Controller for Static Obstacle, Reference Point Tracking. 

Figure 4.17 illustrates the reference point tracking performance of the HOCLF-HOCBF-
QP controller in a complex environment with multiple static obstacles. The vehicle starts from the 
origin and aims to reach a predefined destination (represented by the green marker), while avoiding 
collisions with the circular obstacles (represented by the orange circles). The dashed line shows 
the actual trajectory of the ego vehicle under the HOCLF-HOCBF-QP control, which demonstrates 
the controller’s ability to balance target point tracking and obstacle avoidance. Notably, the 
trajectory deviates smoothly around all three obstacles, indicating that the HOCBF constraints are 



effectively preventing the system from entering unsafe sets. This test case proves the effectiveness 
of the HOCLF-HOCBF-QP controller in reference point tracking and collision avoidance tasks, 
particularly in complex environments with multiple obstacles. This result further validates the 
controller's ability to serve as a reliable low-level trajectory tracking module in the proposed 
hierarchical control framework. 

To further evaluate the low-level HOCLF-HOCBF-QP controller’s collision avoidance 
capability, we tested its performance in a traffic scenario involving a dynamic obstacle moving 
along a predefined singe lane changing trajectory. Figure 4.17 shows the trajectory tracking result 
of the HOCLF-HOCBF-QP controller in the presence of a dynamic obstacle. The ego vehicle 
successfully tracked the reference path before and after the interaction with obstacles, while 
performing a clear collision avoidance maneuver when approaching the obstacle. During the 
avoidance process, the vehicle deviated from the reference path to maintain safety but smoothly 
rejoined the original trajectory once the obstacle was passed.  

 
Figure 4.18. CLF-CBF based Autonomous Driving Controller for Dynamic Obstacle, Path Tracking. 

 
Figure 4.19. Real Time Distance Between Vehicle and Dynamic Obstacles 



Figure 4.18 illustrates the real time distance between the vehicle and the dynamic obstacle 
over time. The minimum distance occurs at around 2.0 seconds, where the vehicle and the obstacle 
are at their closest. The minimum distance remains above the predefined safety threshold of 2 
meters, which is generally considered a socially acceptable minimum safe distance between 
vehicles and surrounding objects (VRUs) in typical driving scenarios.  

To further evaluate the low-level HOCLF-HOCBF-QP controller’s collision avoidance 
capability, we use a low-level HOCLF-HOCBF-QP controller to replicate realistic FARS230 
bicyclist crash scenarios which describe the traffic scenario where the motorist is trying to merge 
and overtake a bicyclist. Bicyclists are highly vulnerable road users due to their small size, lower 
visibility, and their frequent presence in vehicle blind spots. When a vehicle attempts to merge or 
change lanes without properly accounting for bicyclists, the likelihood of severe collisions 
increases dramatically. 

 
Figure 4.20. Snapshot of FARS230 Demo without Collision Avoidance Controller. 

Figure 4.20 illustrates a representative scenario where the high-level planner makes an 
incorrect decision, causing the ego vehicle to merge into a lane occupied by a bicyclist. If the low-
level controller is restricted to pure path-following (without any safety constraints), it simply 
follows the pre-defined trajectory and fails to react to the bicyclist’s presence, leading to a collision. 
In this figure, the green dashed line and yellow solid line represent the bicyclist’s reference path 
and actual trajectory, respectively, while the blue dashed line represents the vehicle’s pre-
calculated trajectory. It is evident that when the high-level decision-making agent makes an 
incorrect choice, the vehicle attempts to merge at the wrong position, ultimately resulting in a crash 
represented by a red star. In this experiment, we use the HOCLF-based path-following controller, 
which demonstrates excellent tracking performance and can accurately follow the pre-defined 
trajectory. However, this example highlights a critical limitation: if the low-level controller focuses 
only on path-following and lacks collision avoidance mechanisms, it will blindly execute the 
unsafe commands from the high-level planner, even if they lead directly into dangerous situations 
such as colliding with a bicyclist. This underscores the necessity of integrating HOCBF constraints 
to enhance the low-level controller’s ability to handle dynamic obstacles. 



To further investigate this, in the following simulation experiments, we enable the full 
HOCLF-HOCBF-QP controller, which not only maintains accurate path tracking but also actively 
adjusts the trajectory when the safety constraints between the vehicle and bicyclist are violated. 
For example, when the ego vehicle approaches a bicyclist during a lane merge, the controller 
dynamically modifies the steering input to avoid the collision while minimizing deviation from 
the intended path. Such behavior demonstrates the controller’s capability to ensure safety even 
under erroneous high-level decisions. 

 
Figure 4.21. Snapshot of FARS230 Demo with HOCLF-HOCBF-QP Collision Avoidance Controller 

Figure 4.21 demonstrates the behavior of the ego vehicle when the HOCLF-HOCBF-QP 
low-level controller is enabled, which allows both path-following and collision avoidance. In this 
scenario, the high-level planner still attempts a lane merger that would lead to a potential collision 
with the bicyclist. However, unlike in Figure 4.20, the low-level controller now incorporates 
HOCBF safety constraints, allowing it to dynamically adjust the steering and lateral position to 
avoid the bicyclist while maintaining close adherence to the original reference path. 

In the figure, the blue dashed line and green dashed line represent the reference paths for 
the vehicle and the bicyclist, respectively. The red solid line shows the actual trajectory of the ego 
vehicle, which initially follows the reference path but then deviates laterally when approaching the 
bicyclist to ensure a safe passing distance. The yellow solid line corresponds to the bicyclist’s 
actual motion. The snapshots of the car show how it smoothly changes lanes around the bicyclist 
and then gradually returns to a safer trajectory without a collision. 

This example highlights the effectiveness of integrating HOCLF (for accurate path tracking) 
with HOCBF (for safety guarantees) in the QP framework. Even when the high-level planner 
generates suboptimal or unsafe commands, the low-level HOCLF-HOCBF-QP controller 
autonomously enforces safety while minimizing path deviation, demonstrating its capability to 
handle real-world scenarios of close proximity interactions with vulnerable road users (VRUs). 

Next, we present the overall performance of the proposed hierarchical control framework 
for vehicle dynamic models, which integrates a high-level DDQN based decision-making agent 
and a low-level HOCLF-HOCBF-QP based trajectory tracking controller. After validating the 
effectiveness of the low-level controller in the previous section, we integrate a high-level planner 



to handle more complex decision-making tasks. To evaluate the overall performance of the 
hierarchical control framework, we design a simple and complex test case within a multi-lane 
traffic environment. In both cases, the ego vehicle must travel from a starting point to a predefined 
destination, navigating through a roadway populated with multiple obstacles. The vehicle is 
required to dynamically avoid obstacles by performing appropriate lane changes. The test cases 
are constructed using a highway-environment simulator [100]. The environment settings, vehicle 
dynamics, and the low-level control strategy are modified to match our problem setup. Unlike 
traditional trajectory planning setups, no predefined global path is provided. Instead, the DDQN-
based high-level agent generates discrete lane-level decisions (e.g., idle meaning stay in lane, left 
lane change, right lane change) based on observation of the ego vehicle’s state and the traffic 
environment. At the same time, the HOCLF-HOCBF-QP low-level controller ensures that each 
decision is executed safely and accurately in real time.  

In this experiment, the environment state is represented as a 5×5 array that encodes 
information about the ego vehicle and its surrounding obstacles. Each row corresponds to an entity 
(either the ego vehicle or an obstacle) and includes the following attributes: [presence, 𝑥𝑥, 𝑦𝑦, 𝑣𝑣𝑥𝑥, 
𝑣𝑣𝑦𝑦], where presence is a binary indicator of whether the object exists in the current frame. The 
action space is discrete and consists of three possible maneuvers: idle (no lane change), left lane 
change, and right lane change. The reward function is designed to encourage goal-reaching 
behavior while penalizing unsafe or inefficient actions. A positive reward of +50 is assigned when 
the vehicle successfully reaches its destination. A large negative reward of −100 is applied in the 
event of a collision with any obstacle. Additionally, at each timestep, the agent receives a dense 
reward proportional to its forward progress (∆𝑥𝑥), calculated as 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑐𝑐 ∗ (𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), 
where 𝑐𝑐 is a positive coefficient, which encourages faster navigation. A small penalty of −0.5 is 
applied when the agent executes a lane change (either left or right), to discourage unnecessary 
lateral movement and to promote trajectory stability. 

Simulation results from both test cases show that the proposed framework can make the 
vehicle successfully navigate going from the start point to its destination while effectively avoiding 
all obstacles using the appropriate lane changing maneuver(s). 

We first present the training progress of the high-level DDQN based decision-making agent 
in the proposed hierarchical control framework. Table 4.4 summarizes the key hyperparameters 
used in the DDQN training process and Figure 4.22 illustrates the training progress of the DDQN 
high-level decision-making agent in the three-lane complex autonomous driving environment. A 
low-pass filter is applied to smooth both the episode reward and step count curves for better 
interpretability. Initially, the agent exhibits poor performance due to high probability of random 
explorations, with total reward remaining negative and step count relatively low, indicating 
frequent collisions and early episode terminations. After approximately 2500 episodes, a 
significant improvement is observed: the total reward begins to rise rapidly, and the average 
number of steps per episode increases concurrently. This trend suggests that the agent gradually 



learns an effective lane-changing strategy to avoid obstacles and to extend its episode longevity. 
After about 3500 episodes, both rewards and steps per episode are maintained at a relatively high 
level, indicating convergence to a stable policy. Some fluctuations are still present in the reward 
curve, likely due to exploration behavior or occasional difficult scenarios. 

 
Figure 4.22. Deep reinforcement learning training progress. 

Table 4.4. Hyperparameters and training settings. 

Hyperparameter Value 
Replay buffer size 100,000 

Mini-batch size 64 
Learning rate 0.001 

Target network update frequency Every 100 steps 

Exploration strategy (ε decay) 
1.0 → 0.05 over 

200,000 steps 
Discount factor (γ) 0.99 

Optimizer Adam 

Loss function Mean Squared Error 
(MSE) 

 
Figure 4.23. Hierarchical controller overall performance in simple test case 



Figure 4.23 illustrates the ego vehicle's trajectory in a two-lane highway test case using the 
proposed hierarchical controller. The road is divided into two lanes with clearly marked boundaries 
and centerline. The ego vehicle (represented by yellow rectangle) starts in the upper lane and 
initially follows a straight path before encountering an obstacle (represented by red rectangle) 
positioned ahead in the same lane. The vehicle performs a lane-change maneuver in front of the 
obstacle by smoothly transitioning into the lower lane. After passing the obstacle, the vehicle 
performs another lane-change maneuver and returns to the upper lane, to avoid collision with the 
second obstacle. 

 
Figure 4.24. Hierarchical controller overall performance in complex test case 

Figure 4.24 illustrates the ego vehicle's trajectory in a complex three-lane highway test case 
using the proposed hierarchical controller. From the plot, we notice that this environment is much 
more complex compared to the simple two-lane test case demonstrated before. The ego vehicle 
(represented by the yellow rectangle) starts in the upper lane and initially follows a straight path 
before encountering an obstacle (represented by the red rectangle) positioned ahead in the same 
lane. The vehicle performs two consecutive lane-change maneuvers to transition smoothly into the 
lower lane in response to a series of obstacles. After passing the obstacles, the vehicle performs 
another two consecutive lane-change maneuvers and returns to the upper lane, to avoid collision 
with other obstacles.  

The two trajectory plots in Figures 4.23 and 4.24 demonstrate the effectiveness of the 
proposed hierarchical control system. The high-level DDQN agent can correctly generate lane-
change decisions based on obstacle positions, while the low-level HOCLF-HOCBF-QP controller 
ensures smooth and safe high-level decision execution. The trajectory remains continuous and 
collision-free throughout the simulation, indicating successful integration of decision-making and 
control components. Moreover, the vehicle consistently follows a straight path in obstacle-free 
regions, without performing unnecessary lane-change behaviors. This suggests that the penalty 
design for lane changes successfully discourages unnecessary lane-changing actions, which makes 
the decision-making process more efficient. 



To evaluate the computational efficiency of the proposed hierarchical control framework, 
we conducted computational cost tests based on the aforementioned simulation test case. In 
complex test case settings, the low-level control simulation frequency is 100 Hz and high-level 
policy simulation frequency is 5 Hz. The low-level HOCLF-HOCBF-QP controller requires an 
average solve time of approximately 0.66 ms per step using the Gurobi optimizer while the high-
level DDQN decision-making agent requires an average computational time of approximately 0.60 
ms per step. These tests were performed in a Google Colab CPU environment which is using a 
single-threaded Intel Xeon processor without GPU acceleration. Even under this relatively limited 
computational setting, the solve times accounts for only 6.6% of the low-level control cycle (10 
ms) and 0.3% of the high-level decision-making cycle (200 ms), respectively. These results 
demonstrate that the proposed framework has good real-time capability. While it is expected that 
the computational time, particularly for the HOCLF-HOCBF-QP controller, will increase in more 
complex traffic scenarios with higher numbers of obstacles and constraints, our current results 
suggest that the proposed framework still provides sufficient real-time capability for typical 
autonomous driving tasks. In future work, we plan to further evaluate its effectiveness and real 
time capability by conducting tests using the Hardware-in-the-Loop (HIL) approach and Vehicle-
in-Virtual-Environment (VVE) approach, to ensure its real-world feasibility and practical 
applicability in different driving scenarios. 

The demo video for the simulation result using the vehicle dynamics model is provided at: 
Two Lane Test Case Demo, Three Lane Test Case Demo, FARS230 Demo with HOCLF-HOCBF-QP 
Controller  

4.4 Conclusion 

Path planning and collision avoidance are critical challenges in the development of reliable 
autonomous driving systems, particularly in dynamic traffic environments with obstacles. 
Traditional rule-based planners often struggle to handle such complexities. To address these 
limitations, we proposed a hierarchical decision-making and control framework that enables 
autonomous vehicles to automatically avoid obstacles through lane-changing maneuvers. The 
proposed system integrates a high-level DDQN based decision-making agent with a low-level 
CLF-CBF-QP-based controller. The high-level DRL agent generates discrete high-level decisions 
based on ego vehicle’s information and traffic environment information, while the low-level CLF-
CBF-QP controller ensures safe and efficient high-level decision refinement and execution. To 
comprehensively evaluate the proposed hierarchical collision avoidance framework, we 
implemented it on two distinct vehicle models. Initial feasibility was verified using a simplified 
unicycle model, followed by a deployment on a more realistic vehicle dynamics model. Simulation 
results validated the effectiveness of the proposed hierarchical control framework in autonomous 
driving tasks.  

https://youtu.be/a1442r2Rg-E
https://youtu.be/t3RXrZ1A7XU
https://youtu.be/sIS-i-ThOqg
https://youtu.be/sIS-i-ThOqg


Furthermore, the implementation of our framework is highly modular and flexible, 
allowing it to adapt to different vehicle models and driving environments. Both the high-level 
agent and the low-level controller can be customized to incorporate task-specific constraints, 
system dynamics, and safety requirements. This adaptability endows the framework with strong 
generalizability and makes it suitable for a wide range of autonomous driving applications. 

Compared to traditional optimization-based methods such as model predictive control 
(MPC), the proposed framework significantly simplifies the online optimization process. 
Traditional approaches typically solve large-scale optimal control problems at each step, which 
introduces high computational complexity and often requires accurate environmental modeling. 
Also, these approaches sometimes may struggle to find optimal paths in complex traffic conditions. 
In contrast, our approach takes advantage of the high-level DRL based decision-making agent and 
further enhances the system's capability to navigate various complex traffic environments. In 
addition, compared to traditional reinforcement learning methods, including end-to-end 
approaches, the key advantage of our proposed framework lies in the explicit integration of low-
level controller which ensures hard-coded safety rules. Traditional RL methods rely entirely on 
reward design and learned policies to avoid collisions, which can still lead to unsafe behaviors 
during training or in unforeseen situations, as they lack hard safety guarantees. In contrast, our 
approach separates decision-making and low-level control. The high-level DDQN agent focuses 
on discrete lane-level maneuver selection, leveraging the adaptability and learning capability of 
RL to handle diverse traffic conditions. Meanwhile, the low-level HOCLF-HOCBF-QP controller 
ensures safety by introducing the CBF constraint, providing a hard-coded safety layer. 

There are still some limitations in this study. First, the two vehicle models used in this work, 
despite representing different levels of modeling fidelity, are still relatively simple. The unicycle 
model provides a basic abstraction for preliminary validation, while the vehicle dynamics model 
introduces more realism but remains a simplified representation compared to full-scale commercial 
vehicle systems, which limits the realism of driving behavior. Future work will consider integrating 
a longitudinal dynamic model to capture the vehicle’s longitudinal motions, hence letting the 
model become a full vehicle dynamic model. Second, although DQN and DDQN perform well in 
the current setup, more advanced DRL algorithms such as SAC or DDPG could potentially 
improve learning efficiency and policy robustness in more complex or uncertain environments and 
their use will also be investigated in future work. Finally, we plan to conduct more detailed 
sensitivity analyses and ablation studies to further understand the impact of key parameters and 
the contribution of each module, especially in more complex dynamic environments with multiple 
road users. 

  

  



Chapter 5: Vehicle-in-Virtual-Environment (VVE) Based 
Testing Pipeline 

5.1 Introduction 

Traditional testing pipelines, such as Model-in-the-Loop (MIL) [101] and Hardware-in-
the-Loop (HIL) [102-103] simulations followed by deployment on public roads have significant 
limitations in terms of safety, cost, and efficiency. These methods often require exposing other 
road users to autonomous vehicles equipped with unverified or experimental driving functions, 
raising substantial safety and ethical concerns. Moreover, the dependence on physical road testing 
is both expensive and time-consuming, which can slow down the iterative development and 
refinement of autonomous driving technologies. 

To address these challenges, a novel approach called Vehicle-in-Virtual-Environment 
(VVE) was proposed [46], [104]. The VVE method integrates real vehicles into highly realistic 
virtual environments, enabling comprehensive and resource-efficient testing without the need for 
public road exposure. This approach not only enhances safety by eliminating risks to other road 
users but also significantly reduces testing costs and accelerates the development process. 
Additionally, VVE is particularly well-suited for training and evaluating Deep Reinforcement 
Learning (DRL) based autonomous driving agents. By providing a controlled yet dynamic 
simulation environment, VVE allows DRL agents to interact with diverse traffic scenarios and 
adapt to complex, real-world-like conditions safely and efficiently. This integration facilitates the 
thorough validation of autonomous driving systems, ensuring robust performance and safety 
before any public road deployment. Consequently, the VVE method offers a safer, more efficient, 
and cost-effective solution for advancing autonomous driving technology. 

By integrating traditional methods with the novel VVE method, this section proposes a 
novel testing pipeline for evaluating autonomous driving decision-making and control algorithms. 
This comprehensive testing pipeline integrates Model-in-the-Loop (MIL), Hardware-in-the-Loop 
(HIL), Vehicle-in-Virtual-Environment (VVE) testing, and public road testing to thoroughly 
validate the algorithms. Initially, the algorithm is developed and tested using the MIL approach. A 
comprehensive and detailed vehicle dynamics model is created using Simulink, incorporating 
traditional longitudinal and lateral dynamics, tire rotation, and tire force models. By adjusting 
parameters, this model can simulate the vehicle's dynamics with high accuracy, allowing for 
effective preliminary development and testing. Moreover, deep learning or reinforcement learning 
based autonomous driving algorithms can also be trained and validated using this MIL testing 
method. Subsequently, the developed algorithm is evaluated under HIL settings. HIL testing 
integrates real hardware components with the simulation environment, enabling us to simulate 
signal transmission delays and eliminate unrealistic extreme inputs, such as abrupt steering 
changes from left to right. This step brings the algorithm closer to real-world conditions by 



accounting for hardware-related factors that can affect performance. The VVE testing method is 
then employed to further evaluate the algorithm. The VVE method synchronizes the real-world 
motions of an actual vehicle with its virtual counterpart in a simulated environment, allowing for 
the creation of various virtual traffic scenarios for safe and resource-efficient testing. Because real 
vehicles and pedestrians participate in the simulation process, the dynamics captured are more 
authentic, enhancing the credibility of the simulation results. VVE significantly reduces testing 
costs and time, improving testing efficiency by enabling extensive scenario testing without the 
risks associated with public road exposure. In addition, the VVE method possesses multi-actor 
capabilities, enabling it to be applied to various scenarios such as Vehicle-to-Pedestrian (V2P) tests 
[105]. After successfully passing through MIL, HIL, and VVE testing phases, the autonomous 
driving algorithm attains the capability to operate in the real world with a higher degree of 
confidence. This rigorous testing pipeline ensures that the algorithm is robust and ready for the 
final phase of validation through public road testing.  

5.2 Methodology 

5.2.1 Model-in-Loop and Vehicle Dynamic Model 

  

Figure 5.1. Extended lateral dynamic model [106]  
The first stage of the proposed testing process is Model-in-the-Loop (MIL) study, where a 

simulation environment is used to develop a suitable ADAS system for the proposed use case. This 
would require a vehicle model that can represent real vehicle behaviors in a reasonably accurate 
manner. In this section, an extended single-track vehicle model that captures both the longitudinal 
and lateral dynamic behaviors is introduced. In general, the proposed vehicle model contains three 
major components: an extended single-track lateral model to capture the longitudinal and lateral 
dynamics of the vehicle, a Modified Dugoff coupled tire model to provide the tire forces that feed 
into the single-track model and a wheel rotation model to aid the calculation of tire forces. 

The overall model configuration for the extended lateral model is illustrated in Figure 5.1, 
which is adapted from [33]. Table 5.1 lists the parameters used in this model. It can be observed 
that this model is an extension of the simple single-track lateral model that only makes use of 



lateral tire forces. Instead, this extended model includes both longitudinal and lateral tire models 
as well as longitudinal road loads to account for the vehicle dynamic behaviors in both longitudinal 
and lateral directions. 

Table 5.1. Extended lateral dynamic model parameters. 

Parameters Descriptions 
𝑚𝑚 Vehicle mass [kg] 
𝑙𝑙𝑓𝑓 Distance between front axle & CG [m] 
𝑙𝑙𝑟𝑟 Distance between rear axle & CG [m] 
𝐼𝐼𝑧𝑧 Vehicle yaw moment of inertia 

𝑉𝑉,𝑉𝑉𝑓𝑓 ,𝑉𝑉𝑟𝑟 Vehicle CG, front & rear axle velocity 
[m/sec] 

𝛽𝛽,𝛽𝛽𝑓𝑓,𝛽𝛽𝑟𝑟 Vehicle CG, front & rear axle side slip 
angle [rad] 

𝛿𝛿𝑓𝑓 ,𝛿𝛿𝑟𝑟 Front & rear steer angle [rad] 
𝛼𝛼𝑓𝑓 ,𝛼𝛼𝑟𝑟 Front & rear tire side slip angle [rad] 
𝐹𝐹𝑥𝑥𝑥𝑥,𝐹𝐹𝑥𝑥𝑥𝑥 Front & rear tire longitudinal force [N] 
𝐹𝐹𝑦𝑦𝑦𝑦,𝐹𝐹𝑦𝑦𝑦𝑦 Front & rear tire lateral force [N] 
𝜓𝜓 Vehicle yaw angle [rad] 
𝑟𝑟 Vehicle yaw rate [rad/sec] 
𝑀𝑀𝑧𝑧𝑧𝑧 Vehicle yaw moment disturbance [Nm] 
𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 Longitudinal road load [N] 

 

From Figure 5.1, it is possible to write down the dynamic equations of vehicle side slip 
angle (𝛽𝛽), vehicle speed (𝑉𝑉) and vehicle yaw rate (𝑟𝑟) as described in Equation (5.1). 
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Accounting for the resultant forces and moments in the vehicle-fixed frame based on the slightly 
simplified Figure 5.2, one can write Equation (5.2). 
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Figure 5.2. Extended lateral dynamic model represented in vehicle-fixed frame 

Combining Equation (5.1) and Equation (5.2), one can arrive at the extended model 
equations of motion (EOM) as illustrated in Equation (5.3). It should be remarked that this model 
is essentially a nonlinear longitudinal and lateral single-track dynamic model. Also note that in this 
model, (𝛽𝛽,𝑉𝑉, 𝑟𝑟) are regarded as system states, (𝛿𝛿𝑓𝑓, 𝛿𝛿𝑟𝑟 ,𝑀𝑀𝑧𝑧𝑧𝑧) are treated as system inputs, and tire 
forces (𝐹𝐹𝑥𝑥𝑥𝑥,𝐹𝐹𝑥𝑥𝑥𝑥 ,𝐹𝐹𝑦𝑦𝑦𝑦,𝐹𝐹𝑦𝑦𝑦𝑦) are to be calculated from the tire model before being fed into this model. 
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where: 
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In order to provide the above-mentioned single-track model with tire forces, an appropriate 
tire model is needed. In this section, the Modified Dugoff model is used due to its dependency on 
only a small number of parameters as well as its capability to capture longitudinal and lateral tire 
force coupling effects. Equation (5.4) describes the equations for longitudinal and lateral tire forces. 
Both equations are adapted from [107]. Table 2 details the parameters used in the tire model. 
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Table 5.2. Modified Dugoff tire model parameters 

Parameters Descriptions 
𝐶𝐶𝑥𝑥 Longitudinal tire stiffness [N] 
𝐶𝐶𝑦𝑦 Lateral tire stiffness [N/rad] 
𝑠𝑠 Tire longitudinal slip, 𝑠𝑠𝑠𝑠[−1,1] 
𝛼𝛼 Tire side slip angle [rad] 
𝐹𝐹𝑥𝑥 Longitudinal tire force 
𝐹𝐹𝑦𝑦 Lateral tire force 
𝜇𝜇 Road friction coefficient 
𝐹𝐹𝑧𝑧 Tire vertical load [N] 

 

It should be remarked that the inputs to the tire model are tire longitudinal slip (𝑠𝑠) and 
lateral side slip angle (𝛼𝛼 ). While the tire side slip angle can be obtained by applying post-
processing on the outputs of the extended lateral model mentioned above, the calculation of tire 
longitudinal slip requires an additional model describing the wheel rotational dynamics. This 
wheel rotational model is illustrated in Figure 5.3 and its dynamic equations are listed in Equation 
(5.5) and Equation (5.6). Table 5.3 lists the necessary parameters for this model. Note that the 
deviated angular velocities of the front and rear tire (Δ𝜔𝜔𝑓𝑓,Δ𝜔𝜔𝑟𝑟) are introduced to achieve wheel-
vehicle speed synchronization and to avoid small amplitude oscillations in the longitudinal tire 
forces for undriven wheels, which can cause numeric issues during simulation, especially at low 
speed. 
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where: Δ𝜔𝜔𝑓𝑓0 = Δ𝜔𝜔𝑟𝑟0 = 0 
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Figure 5.3. Wheel rotation model 

Table 5.3. Wheel rotation model parameters 

Parameters Descriptions 
𝜔𝜔𝑓𝑓,𝜔𝜔𝑟𝑟 Front & rear tire angular velocity [rad/sec] 
Δ𝜔𝜔𝑓𝑓,Δ𝜔𝜔𝑟𝑟 Front & rear tire deviated angular velocity [rad/sec] 
𝑅𝑅𝑓𝑓 ,𝑅𝑅𝑟𝑟 Front & rear tire radius [m] 
𝐼𝐼𝑓𝑓 , 𝐼𝐼𝑟𝑟 Front & rear tire moment of inertia 
𝑀𝑀𝑓𝑓,𝑀𝑀𝑟𝑟 Front & rear tire driving torque [Nm] 
𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓 Front axle longitudinal velocity in front wheel frame 

[m/sec] 
𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 Rear axle longitudinal velocity in rear wheel frame 

[m/sec] 
 

Combining all the above-mentioned components, one can construct the overall vehicle 
model as illustrated in Figure 5.4. It can be observed that vehicle position ( 𝑋𝑋,𝑌𝑌 ) and 
orientation/yaw angle (𝜓𝜓) can be obtained through model output post-processing. 

 

Figure 5.4. Overall vehicle model structure 

5.2.2 Hardware-in-Loop Test 

Hardware-in-the-Loop (HIL) testing is an exceptionally effective simulation and validation 
technique widely employed in the development and testing of autonomous driving functions. The 
core principle of HIL testing involves integrating actual hardware components in vehicles, such as 
autonomous driving controllers (MicroAutobox or MABX for low level control), GPS, and 



dedicated short-range communications (DSRC), etc., into the simulation environment. This is very 
close to real vehicle testing except the real vehicle is replaced by a vehicle model that can 
accurately simulate vehicle dynamics. This setup allows for the evaluation of hardware 
performance of autonomous driving functions under pre-set operating conditions in a laboratory. 
Additionally, HIL testing enables the evaluation of autonomous driving functions in real-time 
scenarios and under signal transmission delays, while also facilitating the detection of unrealistic 
extreme inputs that could affect system reliability. By conducting all experiments in the laboratory, 
HIL testing significantly reduces overall testing costs and avoids the risks associated with on-road 
trials. Furthermore, HIL testing serves as an indispensable precursor to public road testing, 
ensuring that autonomous driving systems are thoroughly evaluated for safety and performance 
before being deployed in real-world environments. 

 

Figure 5.5. Hardware-in-the-Loop (HIL) test setup 

 

Figure 5.6. Hardware layout in the lab 

Figure 5.5 demonstrates the Hardware-in-the-Loop (HIL) test setup employed in this 
section. Figure 5.6 illustrates our laboratory’s hardware configuration, which includes a HIL 
simulation workstation, and a computer dedicated to managing the virtual environment. In our 
configuration, the aforementioned vehicle dynamic Simulink model operates on a Scalexio 
simulation computer in real time, continuously calculating the vehicle's position and state based 
on inputs such as throttle, brake, and steering. These vehicle states are transmitted via the CAN 



bus to the MicroAutobox (MABX) electronic control unit, which functions both as the vehicle's 
controller and as a communication hub between the vehicle model and the virtual environment. 

Then, the MABX sends the current vehicle information back to the computer managing the 
virtual environment and receives environmental data in return. It processes this data to generate 
appropriate vehicle control commands. Communication between the MABX and the virtual 
environment computer is developed through Ethernet UDP. The virtual environment computer 
then uses data from the MABX to update the vehicle's status within the simulated environment, 
providing a visual representation of the experiment. Additionally, the Host Computer controls the 
operations of both the Scalexio and MABX systems, coordinating the overall simulation process. 

This HIL setup establishes an integrated, real-time feedback loop where the vehicle 
dynamic model and corresponding virtual environment interact dynamically. This enables 
comprehensive testing of the vehicle control system under various simulated conditions without 
the need for physical road tests. As a result, HIL testing not only enhances safety by minimizing 
risks associated with on-road trials but also significantly reduces the time and costs involved in 
prototype development and verification. 

Moreover, the HIL test setup is designed for seamless transition to a real vehicle including 
VVE testing. In real-world scenarios, the Scalexio simulation computer can be replaced with an 
actual vehicle, and the computer managing the virtual environment can be substituted with an in-
vehicle PC capable of reading sensor data and analyzing the traffic environment. Additionally, the 
existing HIL architecture can be enhanced by integrating various other hardware components to 
increase the realism and reliability of the simulation. For example, DSRC or other communication 
modules can be added to simulate Vehicle-to-Vehicle (V2V) or Vehicle-to-VRU (V2VRU) 
communications, roadside units (RSU) can be incorporated to transmit real infrastructure data to 
the HIL system, electronic horizon modules can be included to obtain accurate map information 
and traffic control computers can be added to generate signal phase and timing (SPaT) and MAP 
messages. These enhancements allow for a more comprehensive and realistic testing environment, 
further bridging the gap between simulated and real-world autonomous driving scenarios. By 
incorporating these additional hardware elements, the HIL setup becomes a versatile and robust 
platform for both development and extensive validation of autonomous driving systems before 
their deployment on public roads. 

5.2.3 Vehicle-In-Virtual-Environment (VVE) Test 

Given that Hardware-in-the-Loop (HIL) employs all the real equipment necessary for 
ADAS testing except for the real vehicle, the natural next step would be to commence testing that 
involves the real vehicle, currently the most common approach of which is to perform public road 
testing. Carrying out the test on public roads, however, comes with several critical drawbacks. 
Firstly, other road users are involuntarily involved in the testing of the ADAS systems, which poses 



safety concerns, especially during extreme and edge cases. Secondly, the previously mentioned 
extreme and edge cases are typically rare occurrences, and would require significant mileage to 
encounter and test, limiting the overall efficiency of the approach. In that regard, the Vehicle-in-
Virtual-Environment (VVE) was proposed as a novel approach to perform real-vehicle testing in 
a safe and efficient manner. 

The overall architecture of the VVE approach is displayed in Figure 5.7. The real vehicle 
is operated in a safe and open testing space, where its motions are synchronized, via frame 
transformation, with those of a virtual vehicle operating in a highly realistic virtual environment 
[104]. Depending on the desired traffic scenario to be tested, the virtual environment can be edited 
with relative ease. Virtual onboard sensors of our choice can be fitted to the virtual vehicle and its 
data collected from the virtual environment can be fed into the onboard equipment of the real 
vehicle so that the real vehicle control unit can react to a virtual traffic scenario. 

 

Figure 5.7. VVE Architecture 

With the synchronization in place, difficult, rare and safety critical tests can be conducted 
by simply editing the virtual environment to create the respective traffic scenarios, reducing the 
cost of testing. This method is also significantly safer, as the vehicle operates in a separate open 
space and does not run the risk of a real traffic accident should the ADAS system being tested fail 
the safety critical experiment. The utilization of real vehicle dynamics is another benefit of the 
VVE approach, as this simulation-like approach combines the benefits of real vehicle testing 
without invoking any safety and cost drawbacks. This approach also provides the possibility of 
multi-actor experiments. Figure 5.8 provides an example for this type of test in the form of a 
Vehicle-to-Pedestrian (V2P) communication-based collision avoidance experiment. The real 
pedestrian and the real vehicle operate in separate spaces that are safe and open. The real pedestrian 
is equipped with a mobile phone that has IMU and GPS sensors installed as well as a mobile 
application that calculates the heading and position of the pedestrian, and this motion information 
is broadcast via Bluetooth low-energy (BLE) connection. This pedestrian motion data, together 
with the vehicle motion data, are synchronized through frame transformation into a virtual 



pedestrian and a virtual vehicle operating within the same virtual environment where virtual 
vehicle-to-pedestrian collision is possible. V2P-based collision avoidance experiment can hence 
be carried out under this setup, where the virtual vehicle feeds the virtual pedestrian motion data 
into the real vehicle so that the real vehicle can react to avoid collisions in the virtual world. 

 

 

Figure 5.8. V2P test using VVE approach 

 

Figure 5.9. Implementation structure of VVE approach  

 

Figure 5.10. Test vehicle used for VVE approach 



Figure 5.9 illustrates the current implementation structure of the corresponding VVE setup, 
and Figure 5.10 displays the equipment onboard our test vehicle. The real vehicle has an RTK GPS 
unit with differential antennas that provides us with both vehicle position and heading information, 
and this data is fed into the dSpace microautobox (MABX) unit, which is our onboard control unit, 
before being sent via Ethernet UDP protocol to an in-vehicle PC that runs an Unreal Engine-based 
CARLA virtual environment. The virtual environment applies the frame transformation routine to 
the received data to achieve the desired real-virtual synchronization. On the other hand, the virtual 
sensor data collected in the virtual environment is fed back into the MABX unit using Ethernet 
UDP protocol again. 

5.3 Results 

To demonstrate the effectiveness of the proposed VVE based testing pipeline, we designed 
a simple Double Deep Q-Network (DDQN) based emergency brake algorithm for vulnerable road 
users and evaluatde its performance using the proposed pipeline. The design details of this 
algorithm can be found in our published paper [106]. We conducted a step-by-step evaluation of 
each component within the pipeline to clearly demonstrate how each contributes to identifying 
potential weaknesses and for validating the robustness of the algorithm. 

 

Figure 5.11. Traffic scenario used for testing. 

Figure 5.11 demonstrates the traffic scenario within the virtual environment used to 
evaluate the overall performance of the DDQN-based autonomous driving agent. In this scenario, 
the vehicle navigates along a street while two pedestrians cross the crosswalk and walk back and 
forth. The vehicle is tasked with maintaining a comfortable speed and coming to a safe stop before 
the crosswalk when pedestrians are present. This test scenario is specifically designed to evaluate 
the agent’s ability to perform emergency braking maneuvers effectively when encountering 
unexpected pedestrian movements. By simulating such dynamic and potentially hazardous 
conditions, this scenario ensures that the DDQN agent can reliably respond to emergencies, 
demonstrating its capability to maintain safety and control in various traffic situations. 



5.3.1 Model-in-Loop Test Results 

We begin by evaluating the effectiveness of the proposed emergency braking algorithm 
using a MIL setup. This initial stage allows us to validate the algorithm's core decision-making 
logic in a simulated environment before introducing hardware dependencies. The results of the 
MIL tests are presented below. 

 

Figure 5.12. DDQN autonomous driving agent speed tracking plot with initial speed 15m/s 

 

Figure 5.13. DDQN autonomous driving agent MIL test TTZ plots with initial speed 15m/s 

Figure 5.12 presents the speed tracking performance of the DDQN-based autonomous 
driving agent, starting with an initial speed of 15 m/s. Initially, the vehicle maintains the set speed 
of 15 m/s and gradually decelerates to follow the desired braking profile which is decreasing its 
speed smoothly from 15 m/s to 0 m/s. However, at lower speeds, the vehicle exhibits some abrupt 
braking behavior, resulting in less precise tracking of the desired braking speed. This occurs 



because the vehicle’s position is very close to the pedestrians, prompting the agent to brake more 
aggressively to avoid potential collisions. Such behavior demonstrates the agent's prioritization of 
safety by ensuring timely and sufficient deceleration when immediate threats are detected. 

Figure 5.13 illustrates the Time-To-Collision (TTZ) performance for the DDQN 
autonomous driving agent, starting with an initial speed of 15 m/s. In the TTZ plots, red circles 
indicate both pedestrian and vehicle’s TTZ times less than 2 seconds (indicating very urgent 
situations), orange circles represent both pedestrian and vehicle’s TTZ times less than 4 seconds, 
and blue circles represent both pedestrian and vehicle’s TTZ times less than 6 seconds. Throughout 
the entire duration of the simulation, the TTZ correspondence between the vehicle and the two 
pedestrians consistently remains above 4 seconds and often exceeds 6 seconds. This consistent 
maintenance of safe TTZ values highlights the effectiveness of the DDQN agent in ensuring 
pedestrian safety, even in emergency scenarios. By keeping socially acceptable distance [42] and 
reacting promptly to dynamic obstacles, the DDQN agent successfully minimizes the risk of 
collisions, demonstrating its capability to handle critical situations reliably. 

5.3.2 Hardware-in-the-Loop Test Results 

Next, we evaluate the effectiveness of the proposed emergency braking algorithm using a 
HIL setup. This stage enables us to assess the algorithm’s real-time performance and hardware 
compatibility under a more realistic traffic simulation environment. The HIL test results are 
presented below. 

 

Figure 5.14. DDQN autonomous driving agent HIL simulation speed tracking plot with initial speed 15m/s 

Figure 5.14 demonstrates the speed tracking performance of the DDQN-based autonomous 
driving agent during HIL simulation tests, starting with an initial speed of 15 m/s. Overall, the 
trained model successfully tracks the desired speed profile and comes to a complete stop before 
the crosswalk under real-time HIL simulation conditions. Consistent with the MIL tests, the agent 



exhibits a sudden increase in braking intensity at lower speeds, enabling the vehicle to decelerate 
rapidly and halt to ensure pedestrian safety. 

Figure 5.15 illustrates the HIL test Time-To-Collision (TTZ) performance for the DDQN 
autonomous driving agent, starting with an initial speed of 15 m/s. Throughout the entire duration 
of the simulation, it can be observed that the TTZ difference between the pedestrian and the vehicle 
is also larger than 4 seconds most of time, indicating the low likelihood of collision, proving the 
effectiveness of our emergency brake agent. 

 

Figure 5.15. DDQN autonomous driving agent HIL test TTZ plots with initial speed 15m/s 

During the HIL tests, we evaluated the model's performance with the integration of actual 
hardware, and the results were highly satisfactory. The agent maintained accurate speed tracking 
and demonstrated reliable emergency braking behavior, even when interacting with physical 
components of the system. This positive performance in the HIL environment indirectly confirms 
the viability of our proposed development and testing pipeline. The successful integration and real-
time responsiveness of the DDQN agent in the HIL setup indicates that our approach is both 
feasible and effective for advancing autonomous driving systems. 

5.3.3 Vehicle-In-Virtual-Environment (VVE) Test Results 

Due to limitations in testing ground size and the fact that our DDQN-based method serves 
as proof of concept without hard-coded safety rules, it is not yet suitable for deployment on real 
vehicles. As a result, we did not conduct VVE testing for the DDQN emergency brake algorithm. 
Instead, we first performed VVE testing using manual driving, with the results documented in a 
previous paper [104]. Subsequently, we tested the vehicle's autonomous path-tracking and obstacle 
avoidance capabilities using the VVE framework. Specifically, a collision-free trajectory was 
generated using a collision avoidance algorithm, and a path-tracking controller was employed to 



follow the planned route. We deployed this path planning and tracking controller onto the 
experimental vehicle for VVE testing. Using the VVE setup, we then tested the performance of 
this path planning and tracking system. This process demonstrates that the VVE framework can 
accurately evaluate not only the functional feasibility of the deployed algorithms but also their 
real-time performance and interaction with physical components in the real world. The VVE test 
results are presented below. 

 

Figure 5.16. VVE Autonomous Collision Avoidance Path Tracking Test: (a) Motion trajectory in the real world; (b) 
Motion trajectory in the virtual world 

Figure 5.16 demonstrates autonomous collision avoidance path tracking test result using 
the proposed VVE framework in both real world and virtual world. In this experiment, we use 
VVE method to evaluate the capabilities of a pure pursuit-based path-tracking controller. As shown 
in Figure 5.16 (a), the real-world trajectory of the vehicle is compared with the planned reference 



path. In this test scenario, a bicyclist is positioned in the current lane ahead of the ego vehicle, 
requiring the collision avoidance algorithm to generate a single-lane-change trajectory. The pure 
pursuit controller is then required to follow this trajectory to safely avoid the bicyclist. From Figure 
5.16 (a), we can observe that the vehicle closely follows the reference path, though small tracking 
errors are present. These deviations are likely caused by factors such as GPS inaccuracies and the 
absence of RTK usage, leading to slight position offsets. Figure 5.16(b) shows the simulation 
trajectory in the virtual world. From Figure 5.16(b), we replicated the aforementioned traffic 
scenario and confirmed that the pure pursuit controller can successfully execute the single-lane 
change maneuver to avoid the bicyclist obstacle. 

 

Figure 5.17. VVE Autonomous Collision Avoidance Path Tracking Test Yaw Angle History 

Figure 5.17 demonstrates yaw angle change of the vehicle in autonomous collision 
avoidance path tracking test. It can be observed that the vehicle heading remains relatively stable 
for most of the time, except for a significant change between approximately 17 s and 21 s. This 
sharp variation indicates that the vehicle is actively executing the single-lane change maneuver to 
avoid the bicyclist obstacle on its original path. After the lane change is completed, the heading 
angle stabilizes again, demonstrating the controller’s ability to quickly adjust vehicle orientation 
and return to a steady-state heading. 

This experiment demonstrates our capability to test autonomous driving functions using 
proposed VVE framework. One of the key advantages of VVE is that it allows us to create complex 
and potentially dangerous real-world scenarios (e.g., collisions with VRUs) in a safe, fully virtual 
environment, significantly reducing testing risks. Furthermore, the VVE framework enables real-
world vehicle dynamics and VRUs dynamics in experiments which large enhance the realism of 



the test, making it a powerful tool for rapid development, demonstration and evaluation of collision 
avoidance algorithms. 

5.4 Conclusion 

In this section, we proposed a new testing pipeline that sequentially integrates MIL, HIL, 
and VVE methods to comprehensively develop and evaluate autonomous driving functions. To 
demonstrate the effectiveness of this testing pipeline, we designed a deep reinforcement learning 
based emergency braking algorithm for vulnerable road users and evaluated its performance using 
the proposed pipeline. We conducted a step-by-step evaluation of each component within the 
pipeline to clearly demonstrate how each contributes to identifying potential weaknesses and 
validating the robustness of the algorithm. All of these tests confirmed the feasibility and 
effectiveness of our proposed experimental methods. By employing this comprehensive testing 
pipeline, we can efficiently develop advanced and robust autonomous driving systems using 
artificial intelligence and other cutting-edge algorithms. This approach allows us to thoroughly test 
the effectiveness of autonomous driving systems under various traffic conditions. Due to time and 
testing space constraints, a full test of the deep reinforcement learning (DRL)-based collision 
avoidance algorithm is still in progress and will be included in the future. 

Despite the advancements presented in this section, the proposed testing pipeline still has 
several limitations that need to be addressed in future work. One significant issue is the presence 
of singular points in the vehicle dynamic model used during Model-in-the-Loop (MIL) and 
Hardware-in-the-Loop (HIL) testing. Specifically, when the vehicle speed is exactly zero or when 
input values are extremely large, the simulated data may become inaccurate. This limitation 
restricts the effectiveness of MIL testing. To overcome this challenge, future efforts will focus on 
refining the vehicle dynamics model to eliminate these singularities and improve simulation 
accuracy. 

Moreover, transitioning directly from MIL to HIL sometimes leads to overlooking potential 
software-specific issues that could arise during the interaction between the code and the system. 
This can result in increased debugging efforts and delays during HIL testing, as these issues are 
more challenging to diagnose in a hardware-dependent environment. Therefore, we plan to 
incorporate Software-in-loop (SIL) into our proposed testing pipeline. By incorporating SIL testing 
after MIL, we can thoroughly validate the software in a simulated yet realistic setting, ensuring 
that it functions correctly and interacts smoothly with the system. This additional step enhances 
the overall reliability and efficiency of the testing pipeline, paving the way for a smoother 
transition to HIL and ultimately contributing to a more robust and well-tested system. 

In addition to these improvements, future research will conduct a thorough analysis of the 
effects of communication latency and computation delays on the Vehicle-in-Virtual-Environment 
(VVE) method. Understanding these impacts is crucial for optimizing system performance and 



ensuring real-time responsiveness. Moreover, future work will explore the inclusion of other types 
of road users, such as vehicular traffic, to expand the range of testing scenarios. Furthermore, 
integrating extended reality (XR) goggles into the testing system is another aspect we intend to 
explore and our preliminary analysis and exploration in this area was very promising. By 
immersing real pedestrians or drivers into the virtual environment, XR technology can further 
enhance the realism of testing scenarios, providing more authentic interactions and valuable data 
for refining autonomous driving algorithms.  

  



Chapter 6: Future Work 

In conclusion, the rapid urbanization and increase in privately owned vehicles have 
worsened traffic congestion and car accidents, posing significant challenges for modern cities. 
Autonomous driving systems offer a promising solution to mitigate these issues by reducing the 
human errors responsible for a substantial number of accidents. 

In this two-year project, we focused on applying the Vehicle-in-Virtual-Environment (VVE) 
method to develop, evaluate, and demonstrate safety functions for Vulnerable Road Users (VRUs). 
In the current second year project, our primary focus was on bicyclist safety. We began by 
analyzing five key bicyclist crash scenarios identified by the Fatality Analysis Reporting System 
(FARS), an organization under the National Highway Traffic Safety Administration (NHTSA) that 
compiles vehicle crash data.  

Building on these cases, our research fills critical gaps in the current literature by proposing 
practical solutions to the types of VRU-related crashes represented in the FARS dataset. 
Specifically, this research makes the following three contributions:  

(1) Proposing a communication-disturbance-observer (CDOB) based delay-tolerant 
control strategy to enhance robustness of the control under computation latency, network latency 
and packet loss.  

(2) Developing a hierarchical control framework that integrates deep reinforcement 
learning (DRL) for high-level decision-making with a CLF-CBF-QP-based controller for safe and 
smooth low-level execution.  

(3) Introducing a novel VVE-based testing pipeline that enables efficient and rigorous 
evaluation of autonomous driving functions under various complex and high-risk traffic scenarios 
for improving the safety of vulnerable road users. 

Looking ahead to the third year, UTC project will continue to focus on utilizing the Vehicle-
in-Virtual-Environment (VVE) method to develop, evaluate, and demonstrate safety functions for 
all road users. Our primary objectives include the implementation, evaluation, and comparison of 
various collision avoidance algorithms, such as CLF-CLF-QP, Supervised Learning, Deep 
Reinforcement Learning, and other state-of-the-art (SOTA) methods. We aim to comprehensively 
understand their performance, characteristics, applicability, and limitations, eventually building a 
benchmarking framework for future research. Additionally, we plan to integrate mixed-reality 
technologies into our VVE method. By incorporating XR goggles, participants can fully immerse 
themselves in the virtual environment, enhancing the realism and overall quality of the 
experiments. 
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