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1 Introduction 

Non-recurrent trafc congestion caused by roadway construction work, planned events, and un-
planned trafc incidents can create massive trafc tie-ups and can have equally large economic and 
environmental regional impacts. With the availability of various trafc data (real-time and histor-
ically archived), how to minimize incident-induced disruption to commuting trafc and its impact 
to the environment presents a big challenge to global cities and communities. While unplanned 
incidents require careful evaluation of trafc management response plans, guidelines to develop 
efcient response plans for real-time operations are often lacking. Consequently, there is a real 
need to study unplanned trafc incidents to understand human behaviors under those incidents, 
and learn valuable lessons to prepare public agencies to deal more efectively with large routine 
highway maintenance, reconstruction, big sports events, catastrophic vehicle crash and emergency 
situations. 

In particular, this project develops a model that encapsulates travelers’ route choice behavior un-
der unplanned incidents. Travel behavior in terms of route choices under incidents is modeled 
based on a disutility function for individuals and the calibrated regional network model. This 
novel behavioral model can be further integrated into a process of Dynamic Origin-Destination 
Estimation (DODE) that calibrates dynamic network simulation under incidents. 

In an of-line manner, we intend to GPS-based traces data to learn the disutility function of indi-
viduals’ travel choice under incidents. When deployed in real-time, those initial disutility functions 
can be seen as the expected route choices of individual travelers under incidents, which can be 
further tuned and refned in real time provided with real-time data. Furthermore, the real-time 
simulation and DODE receive real-time trafc data feeds (INRIX or GPS traces) and calibrate the 
en-route route choices in the real time, corrects the forecast of incident-induced trafc congestion in 
the next hour, and computes the optimal trafc diversion ratios for pre-determined detour routes. 
Those research steps are left for future work. However, the frst step is develop models for route 
choices under unplanned incidents and algorithms to learn those choices from data. 

2 Problem Formulation 

This study targets to utilize GPS trace data to deduce drivers’ route choice behaviors under 
incidents. This section initially defnes the parametric route choice behavior model. Subsequently, 
it presents an algorithm framework to tune the parameters in the model from raw GPS traces. 

2.1 Route Choice Model 

The route-choice model in this study is built based on the hybrid route-choice model (Qian, 2012) 
and the logit probability model. Specifcally, the following assumptions are adopted: 

Assumption 1: Drivers can be categorized into two groups: habitual drivers, who strictly follow 
their predetermined route choices based on previous knowledge and experience, and adaptive 
drivers, who may adjust their en-route route choices depending on real-time trafc information 
(including incidents). 
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Assumption 2: Both habitual and adaptive drivers follow the logit probability model. For 
habitual drivers, given the utility function of diferent routes, the probability of choosing the route 
p between the OD pair r-s is: 

exp(−CH,p(t))
PH,p rs 
rs (t) = P (1) 

exp(−Crs 
H,π ′ (t))π ′∈Πrs 

where Crs 
H,p denotes to the habitual drivers utility function of the route p between the OD pair 

r-s, and Πrs denotes to possible route set between r-s. As for adaptive drivers, the probability of 
choosing the route p between a node pair r-s at time t is: 

PA,p exp(−Crs 
A,p(t, I(t)))

(t, I(t)) = (2)rs P 
exp(−Crs 

A,π ′ (t, I(t)))π ′ ∈Πrs 

where Crs 
A,p is the utility function estimated by adaptive drivers, and I(t) is the incident information. 

Including I(t) term in the adaptive driver’s utility function is because they can access to real-time 
trafc information. 

Besides the incident impact, the formulation of the utility function, CH,p and CA,p, in equations (1) rs rs 

and (2) also considers time, route-overlapping, and location efects. Specifcally, Crs 
H,p is formulated 

as: 

CH,p 
rs (t) = ατep (t) + e 

rs + e 
rs (3)e rs βηp θρp 

The frst term τers 
p (t) refers to the average historical travel time experienced by travellers. The 

second term refers to the C-logit factor, which reduces the overlapping path efects in the funda-
mental logit model (Cascetta et al., 1996). ρp refers to the fxed location efect simulating thatrs 

some drivers may prefer highways instead of minor roads, and αe, βe , θe are tun-able parameters. 
CA,p is similar to CH,p, which is formulated as:rs rs X 

CA,p δpa(t, I(t)) = ατ p (t) + βηp + θρp + γ(a, I(t)) (4)rs rs rs rs rs 
a∈A 

where τrs 
p (t) refers to the instantaneous travel time, and δrs 

pa is a indicator function, equals to 1 if 
link a is on the route p of r-s and 0 otherwise. The last term, γ(a, I(t)), is a learnable function 
that evaluates the driver’s intuition of how the link a is afected by the incident at time t, and α, 
β, θ are tun-able parameters. 

2.2 Optimization Object 

Given habitual driver traces and adaptive driver traces, this study applies maximum likelihood 
estimation (MLE) to tune the parameters in (3) and (4) separately. 

It is straightforward to write down the likelihood function of habitual drivers: 

H,p Q Q Q Q Q yrs (k)PH,p maximize (t) (5)t∈T s∈NS r∈NR k∈Vrs 
H (t) p∈Πrs rs 

α,e β,e θe 

S.T. (1) and (3) 
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where T denotes the analysis period, NR refers to the origin node set, NS refers to the destination 
node set, Vrs 

H (t) denotes habitual driver traces set (from r to s departing within the time period 
H,pt), and yrs (k) is an indicator function, equals to 1 if traces k is on route p and 0 otherwise. 

To maximize the (5) is to minimize its negative logarithm, thus the optimization objective can be 
further written as: P P P P P 

minimize − yH,p(k)log(PH,p(t)) (6)t∈T s∈NS r∈NR k∈V H (t) p∈Πrs rs rs rs
α,e β,e θe 

S.T. (1) and (3) 

The likelihood function employed to optimize parameters in the adaptive driver’s utility function 
difers. This distinction arises because adaptive drivers often make en-route route choices, implying 
that their traces are not directly related to their initial route choice. Therefore, the likelihood 
function uses link-choice probability instead, as adaptive drives’ traces still refect their link choice 
at the intersection point. The link-choice probability can be easily derived from the route choice 
probability: for a driver with a destination s on the intersection point n0, the probability of 

−−→ choosing the link n0n1 is: X−−→ −−→ n0n1 n0n1 PA,pδpP (t, I(t)) = (t, I(t)) (7)n0s n0s n0s 
p∈Πn0s 

−→ −→ 
AB ACFigure 1 gives several examples illustrate (7): P (t, I(t)) = PA,1 (t, I(t))+PA,3 (t, I(t)); P (t, I(t)) = AD AD AD AD 

Figure 1: Link Choice Probability 

PA,3 AB(t, I(t)) + PA,4 (t, I(t)); P 
−→ 
(t, I(t)) = PA,5 (t, I(t)).AD AD AD AD 

Thus, the likelihood function of adaptive drivers can be written as: 

−−−→ nanbQ Q Q Q Q Q Q −−→ ynas (k)nanbmaximize P (t ′ , I(t ′ )) (8)kt∈T s∈NS r∈NR k∈V A(t) na∈v (t) t ′ ∈T nb∈NE (na,s) nas rs rsα,β,θ,γ⃗ 

S.T. (2), (4) and (7) 

where vrs 
k (t) denotes the intersection point the trace k passed, t ′ is the time the trace k passed na, 

and NE (na, s) refers to the node set that are the downstream node of the frst edge on the route 
from na to s. Take the negative logarithm of (8), the objective function can be written as: P P P P P P P −−→ −−→ nanb nanbminimize − y (k)log(P (t ′ , I(t ′ )))(9)kt∈T s∈NS r∈NR k∈V A(t) na∈v (t) t ′ ∈T nb∈NE (na,s) nas nas rs rsα,β,θ,γ⃗ 

S.T. (2), (4) and (7) 
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2.3 Real-world Data Adaptation 

The above optimization problem would be easy to solve given perfect GPS traces (meaning the 
origin, destination, and entire traces are given). However, most real-world GPS traces are sparse 
without OD information. Thus, inferring origin, destination, and which route the driver actually 
selected would be difcult. Another potential problem is that due to the complexity of the large-
scale network, the number of routes generated by permutations for each OD pair is excessive, 
making (6) and (9) challenging to optimize. Therefore, this study proposes a novel algorithm 
designed not only to reconstruct the traces but also to infer the route set for each origin-destination 
(OD) pair, ensuring a calculable number of routes. 

Algorithm 1 Trace-route Reconstruction by GPS Data 
group GPS points by ANONID 
spatial-joint GPS points with the consolidated network 
for each trace do 
match to nearest origin and destination 
connect unconnected time-sequential matched links by the shortest distance 

end for 
for each OD pair do 
maximum cluster number = number of diferent traces 
put the same traces into one cluster 
for i from maximum cluster number down to 1 do 
compute the average Jacobian similarity between each cluster 
combine the clusters with the largest average Jacobian similarity 
for traces in the OD pair do 
compute the average trace-cluster Jacobian similarity 

end for 
compute overall trace-cluster Jacobian similarity, plot cluster number-similarity graph 

end for 
determine the cluster number by fnding the ’knee’ point on the cluster number-similarity 
graph 
with a reasonable cluster number, compute the ’mean route’ within each cluster 

end for 
return the reasonable route set between each OD-pair 

3 Preliminary Results 

This section initially presents the outcomes of numerical experiments to validate the efcacy of the 
proposed optimization algorithm. Additionally, a preliminary real-world GPS matching result is 
showcased to demonstrate the capability of our solution framework in processing real-world GPS 
trace data. 

3.1 Numerical Experiments 

The numerical experiments were conducted in SUMO on a 2 × 2 network with intersections con-
trolled by trafc lights (see Figure 2). Various sets of coefcients were pre-defned, from which 
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corresponding GPS traces were generated. The data extracted from generated GPS trace data 
was subsequently fed into (6) and (9), enabling us to tune coefcients for comparison with the pre-
defned ones. The optimization results are tabulated in Table 1, from which we can observe that 
the MLE is efcient to optimize the coefcients. This means that given reasonable route choice 
model assumption and good enough data, MLE is supposed to be able to solve both (6) and (9). 
Figure 3 further demonstrates the convexity of the optimization objective using two 2-parametric 
examples. 

Figure 2: Mini-Network 

Table 1: Ground-Truth Optimized Results Comparison 

Coefcients α β θ γ eα eβ eθ 

ground-truth 0.7 0.5 - - 0.7 0.3 -
optimized results 0.684 0.523 - - 0.701 0.291 -
ground-truth 0.9 - 0.5 - 0.9 - 0.3 
optimized results 0.890 - 0.513 - 0.907 - 0.294 
ground-truth 0.9 - - 0.3 0.7 - -
optimized results 0.882 - - 0.310 0.693 - -
ground-truth 0.7 0.3 - 0.5 0.7 0.3 -
optimized results 0.688 0.289 - 0.517 0.705 0.303 -

3.2 Real-World Traces Matching 

The real-world GPS traces were collected in the DMV (DC-Maryland-Virginia) area from Jan 1st, 
2020-Feb 28th, 2020. After cleaning, around 130,000 traces are kept for analysis. Figure 4 presents 
the results of the trace-route reconstruction algorithm for two OD pairs, where black dots are raw 
GPS points, red points are the origin and destination, and blue lines are reconstructed routes. It 
can be found that most GPS points matched with the reconstructed routes, while some distinct 
noises are also ignored. The fgure 5 illustrates adjusting the incident cost to 5 minutes on the 
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Figure 3: Convexity of the Objective Function 

Figure 4: Demonstration of Route Clustering Results 

link where the incident happened and keeping it at 0 on the other links. Though these results 
are initial fndings from the grid-search method, the route with the highest probability based on 
these preliminary outcomes aligns with the real traces, which do not align with the time-dependent 
shortest path based on recurrent travel data (yellow line). 

4 Conclusion and Future Works 

This study introduces a hybrid model designed to capture a driver’s route choice behavior during 
incidents. We’ve developed two distinct solution algorithms, both grounded in MLE, to fne-tune 
the coefcients for adaptive drivers and habitual drivers. Additionally, the study details how 
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Figure 5: Trace Matching Results under Incidents 

to incorporate real-world sparse GPS trace data into this algorithm. The numerical tests and 
initial fndings underscore the potential of our solution framework. However, several areas require 
further exploration: (1) Currently, for real-world GPS trace data, this study assumed that the 
habitual drivers are those who always stick to the recurrent time-dependent shortest path. We 
need to investigate if there is a more reasonable way to distinguish real-world habitual driver traces 
and adaptive driver traces. (2) Our current model doesn’t account for the topological impact on 
incident costs. For instance, incidents on neighboring links might deter adaptive drivers from 
using a particular route. We aim to design a more intricate incident cost parameter to refect this. 
(3) To solve the MLE optimization problem, we currently apply the grid-search method, as it is 
difcult for gradient descent to converge. It’s essential to determine if the log-likelihood function 
for real-world GPS traces remains convex. (4) We intend to incorporate the refned coefcients 
into a dynamic trafc assignment. By using system-level speed, we hope to further validate or 
re-calibrate the coefcients. 
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