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Chapter 1 

Theoretical Foundation 

1.1 Introduction 

Autonomous systems (e.g., robots and self-driving vehicles) must make safe 
control decisions in real-time and in the presence of various uncertainties. 
The control of such safety- and delay-critical systems relies extensively on 
barrier function-based approaches. Barrier function-based approaches can 
provide provable safety with low computation cost within deterministic sys-
tems that possess small and bounded noise due to the two features stated 
below [1,2,3]: computation efciency arising from a myopic controller (feature 
1) and from the use of analytical/afne safety conditions (feature 2). How-
ever, these two features did not necessarily translate to stochastic systems 
whose uncertainty is captured by random variables with unbounded sup-
port, as we will discuss below. In this chapter, we overcome this difculty by 
characterizing a sufcient condition for ‘invariance’ in the probability space. 
This condition is then used to guarantee the unsafe probability to below the 
tolerable levels without the loss of these two features. 

Feature 1: Computation efciency arising from a myopic controller. In a 
deterministic system, safety can be guaranteed if the state never moves out-
side the safe set within an infnitesimal outlook time interval. This property 
allows a myopic controller, which only evaluates the infnitesimal outlook 
time interval (immediate future time), to keep the system safe at all times. 
A myopic evaluation requires much less computation than methods that eval-
uate a long time horizon since the computational load to evaluate possible 
future trajectories signifcantly increases with the outlook time horizon. 
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In a stochastic whose uncertainty has unbounded support, however, the 
probability of staying within the safe set in the infnitesimal outlook time 
interval is strictly less than one. In other words, there will always be a non-
zero tail probability to move outside of the safe set. This tail probability can 
accumulate over time and result in a small long-term safe probability. This 
suggests the need for a more refned temporal characterization of long-term 
safe/unsafe probabilities. 

Feature 2: Computation efciency arising from the use of analytical/afne 
safety conditions. In a deterministic system, the condition for the state to 
stay within the safe set in an infnitesimal time can be translated as requir-
ing the vector feld of the state stays within the tangent cone of the safe 
set [4]. A sufcient condition of this requirement is expressed using analytic 
inequalities that are afne in the control action and thereby can be can be 
integrated into quadratic programs (see [5] and references therein). 
In a stochastic system, however, constraining the mean trajectory to sat-

isfy this condition, without bounding the higher moments, does not give us 
control over the tail probability of the state moving outside of the safe region. 
This suggests the need for a more refned spatial characterization of unsafe 
behaviors and state distribution. 
Therefore, ensuring safety in a stochastic system needs more refned tem-

poral and spatial characterization of safe/unsafe behaviors during a long 
outlook time interval. However, the former requires tracing the long-term 
evolution of complex dynamics, environmental changes, control actions, as 
well as their couplings. While the latter requires characterization of the state 
distribution, tails, and conditional value at risk. Both compromise the above 
two features and can impose a signifcant computational burden. Such heavy 
computation can compromises safety due to slower response, despite the use 
of more optimized actions. 
Prior work has yielded diverse approaches for fner time/space characteri-

zation in stochastic systems, but all wrestle with this important safety/reaction 
time tradeof. We approximately classify these approaches into three main 
types based on their choice of tradeofs: long-term safety with heavy com-
putation (approach A); myopic safety with low computation (approach B) ; 
and long-term conservative safety with low computation (approach C). 
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1.1.1 Related Work 

Approach A: long-term safety with heavy computation. There ex-
ists extensive literature that considers a long time horizon and/or the state 
distribution (or higher moments of the state distribution) at the expense 
of high computation costs. For example, various model predictive control 
(MPC) and chance-constrained optimization include safety constraints in a 
long time horizon (see [6,7] and references therein). Reachability-based tech-
niques use the characterization of reachable states over a fnite/infnite time 
horizon to constrain the control action so that the state reaches or avoids 
certain regions [8]. Within barrier function-based approaches, the safety 
condition can be formulated as constraints on the control action that involve 
the conditional value-at-risk (CVaR) of the barrier function values [9]. While 
these techniques can fnd more optimal control actions that are safe in the 
long term, they often come with signifcant computation costs. The cause is 
twofold: frst, possible trajectories often scale exponentially with the length 
of the outlook time horizon; and second, tails or CVaR involve the proba-
bility and mean of rare events, which are more challenging to estimate than 
nominal events. Such stringent tradeofs between estimating longer-term safe 
probability vs. computation burden limit the utility of these techniques in 
delay-critical systems for more expansive (longer time scale or precise char-
acterization of the state distribution) control action evaluation. 

Approach B: myopic safety with low computation. Motivated by 
the latency requirement in real-time safety-critical control, a few approaches 
use myopic controllers that constrain the probability of unsafe events in an 
infnitesimal time interval. For example, the stochastic control barrier func-
tion use a sufcient condition for ensuring that the state, on average, moves 
within the tangent cone of the safe set [10]. The probabilistic barrier certif-
cate ensures certain conditions of the barrier functions to be satisfed with 
high probability [11,12]. The myopic nature of these methods achieves a sig-
nifcant reduction in computational cost but can result in unsafe behaviors in 
a longer time horizon due to the accumulation of tail probabilities of unsafe 
events. 

Approach C: long-term conservative safety with low computation. 
To have a faster response but still achieve longer-term safety, other ap-
proaches use probability and/or martingale inequalities to derive sufcient 
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conditions for constraining the evolution of barrier function values in a given 
time interval [3,13,14]. These sufcient conditions are given analytically and 
are elegantly integrated into the convex optimization problems to synthe-
size controllers ofine or verify control actions online. The controllers based 
on these techniques often require less online computation to fnd the action 
that guarantees longer-term safety. However, due to the approximate nature 
of the probabilistic inequalities, the control actions can be conservative and 
unnecessarily compromise nominal performance. 

1.1.2 Contributions of This Chapter 

In this chapter, we propose an efcient algorithm that ensures safety during 
a fxed or receding time horizon. The algorithm is based on a new safety 
condition that is sufcient to control the unsafe probability in a given time 
interval to stay above the tolerable risk levels.1 This safety condition is 
constructed by translating probabilistic safety specifcations into a forward 
invariance condition on the level sets of the safe probability. The use of for-
ward invariance allows safety at all time points to be guaranteed by a myopic 
controller that only evaluates the state evolution in an infnitesimal future 
time interval. Moreover, the sufcient condition is afne to the control action 
and can be used in convex/quadratic programs. The parameters of the suf-
fcient condition are determined from the safe probability, its gradient, and 
its hessian. These values satisfy certain deterministic convection-difusion 
equations (CDEs), which characterize the boundary conditions and the rela-
tionship between the safe probabilities of neighboring initial conditions and 
time horizons. These CDEs can be combined with the Monte Carlo (MC) 
method to improve the accuracy and efciency in computing these values. 
Below, we summarize the advantages of the proposed algorithms. 

Advantage 1 Computation efciency. The proposed method only myopi-
cally evaluates the immediate future using closed-form safety constraints. 
Thus, it can have reduced computational burdens than approach A. 

1Here, we consider two types of unsafe probability: the probability of exiting the safe 
set in a time interval when originated inside and the probability of recovering to the safe 
set when originated outside. 
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Advantage 2 Provable guarantee in long-term safe probability. The closed-
form safety constraints are derived from the safe probability during a reced-
ing or fxed time horizon. Thus, the proposed method can have more direct 
control over the probability of accumulating tail events than approach B. 

Advantage 3 Intuitive parameter tuning using exact safety vs. perfor-
mance tradeofs. The proposed method uses exact characterizations of safe 
probability. Thus, it allows the aggressiveness towards safety to be directly 
tuned based on the exact probability, as opposed to probabilistic bounds or 
martingale approximations used in approach C. Moreover, our framework 
may be useful in characterizing the speed and probability of forward conver-
gence in fnite-time Lyapunov analysis of stochastic systems. 

1.2 Preliminary 

Let R, R+, Rn , and Rm×n be the set of real numbers, the set of non-negative 
real numbers, the set of n-dimensional real vectors, and the set of m × n 
real matrices, respectively. Let x[k] be the k-th element of vector x. Let 
f : X → Y represent that f is a mapping from space X to space Y . Let 
1{E} be an indicator function, which takes 1 when condition E holds and 0 

[m]
otherwise. Let 0m×n be an m × n matrix with all entries 0. Let 1n be a 
length n column vector with the m-th entry 1 and other entries 0. Let Im be 
the m × m identity matrix. Let ∇xf be the gradient of a real valued function 
f with respect to x. Let Hxf be the hessian of a real valued function f with 
respect to x. Given events E and Ec, let P(E) be the probability of E and 
P(E|Ec) be the conditional probability of E given the occurrence of Ec. Given 
random variables X and Y , let E[X] be the expectation of X and E[X|Y = y] 
be the conditional expectation of X given Y = y. We use upper-case letters 
(e.g., Y ) to denote random variables and lower-case letters (e.g., y) to denote 
their specifc realizations. 

Defnition 1 (Infnitesimal Generator). The infnitesimal generator A of a 
stochastic process {Yt ∈ Rn}t∈R+ is 

E[F (Yh)|Y0 = y] − F (y)
AF (y) = lim (1.1) 

h→0 h 

whose domain is the set of all functions F : Rn → R such that the limit of 
(4.11) exists for all y ∈ Rn . 
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1.3 Problem Statement 

Here, we introduce the control system in subsection 1.3.1, defne the measures 
to characterize two types of safety in subsection 1.3.2, and state the controller 
design goals in subsection 1.3.3. 

1.3.1 System Model 

We consider a time-invariant stochastic control and dynamical system. The 
system dynamics is given by the stochastic diferential equation (SDE) 

dXt = (f(Xt) + g(Xt)Ut) dt + σ(Xt)dWt, (1.2) 

where Xt ∈ Rn is the system state, Ut ∈ Rm is the control input, and Wt ∈ Rω 

captures the system uncertainties. Here, Xt can include both the controllable 
states of the system and the uncontrollable environmental variables such as 
moving obstacles. We assume that Wt is the standard Wiener process with 
0 initial value, i.e., W0 = 0. The value of σ(Xt) is determined based on the 
size of uncertainty in unmodeled dynamics and environmental variables. 
The control action Ut is determined at each time by the control policy. 

We assume that accurate information of the system state can be used for 
control. The control policy is composed of a nominal controller and addi-
tional modifcation scheme to ensure the safety specifcations illustrated in 
subsections 1.3.2 and 1.3.3. The nominal controller is represented by 

Ut = N(Xt), (1.3) 

which does not necessarily account for the safety specifcations defned below. 
To adhere to the safety specifcations, the output of the nominal controller 
is then modifed by another scheme. The overall control policy involving the 
nominal controller and the modifcation scheme is represented by 

Ut = KN (Xt, Lt, Tt), (1.4) 

where KN : Rn × R × R → Rm is a deterministic function of the current state 
Xt, safety margin Lt, and time horizon Tt to the current control action Ut. 
The policy of the form (1.4) assumes that the decision rule is time-invariant,2 

and that the control action can be uniquely determined for each (Xt, Lt, Tt). 

2 The functions N , KN do not change over time 
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This policy is also assumed to be memory-less in the sense that it does not 
use the past history of the state {Xτ }τ<t to produce the control action Ut. 
The assumption for memory-less controller is reasonable because the state 
evolution dXt of system (2.2) only depends on the current system state Xt. 3 

We restrict ourselves to the settings when f , g, σ, N , and KN have sufcient 
regularity conditions such that both the closed loop system of (2.2) and (1.4) 
have unique strong solutions.4 

The safe region of the state is specifed by the zero super level set of a 
continuously diferentiable barrier function ϕ(x) : Rn → R, i.e., 

C(0) = {x ∈ Rn : ϕ(x) ≥ 0} . (1.5) 

We use 

C(L) := {x ∈ Rn : ϕ(x) ≥ L} (1.6) 

to denote the set with safety margin L. Accordingly, we use int C(0) = {x ∈ 
Rn : ϕ(x) > 0} to denote the interior of the safe set, C(0)c = {x ∈ Rn : 
ϕ(x) < 0} to denote the unsafe set, ∂C(L) = {x ∈ Rn : ϕ(x) = L} to denote 
the boundary of L super level set. 

1.3.2 Probabilistic Characterization of Safe Behaviors 

The system must satisfy the following two types of probabilistic safety spec-
ifcations: forward invariance and forward convergence. 

Forward Invariance 

The forward invariance property refers to the system’s ability to keep its 
state within a set when the state originated from the set. The probabilistic 
forward invariance to a set C(L) can be quantifed using 

P ( Xτ ∈ C(L), ∀τ ∈ [t, t + T ] | Xt = x ) (1.7) 

for some time interval [0, T ] conditioned on an initial condition x ∈ C(L). 
Probability (1.7) can be computed from the distribution of the following two 

3 Note that f(Xt), g(Xt), and σ(Xt) are time-invariant functions of the system state. 
4Conditions required to have a unique strong solution can be found in [15, Chap-

ter 5], [16, Chapter 1], [17, Chapter II.7] and references therein. 
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random variables:5 

Φx(T ) := inf{ϕ(Xt) ∈ R : t ∈ [0, T ], X0 = x}, (1.8) 

Γx(L) := inf{t ∈ R+ : ϕ(Xt) < L,X0 = x}. (1.9) 

Here, Φx(T ) is the worst-case safety margin from the boundary of the safe 
set ∂C(0) during [0, T ], and Γx(L) is the time when the system exit from 
C(L) for the frst time. We can rewrite (1.7) using the two random variables 
(1.8) and (1.9) as 

P ( Xτ ∈ C(L), ∀τ ∈ [t, t + T ] | Xt = x ) (1.10) 

= P (Xτ ∈ C(L), ∀τ ∈ [0, T ] | X0 = x) (1.11) 

= P(Φx(T ) ≥ L) (1.12) 

= P(Γx(L) > T ) = 1 − P(Γx(L) ≤ T ). (1.13) 

Here, equality (1.11) holds due to the time-invariant nature of the system3 

and control policies2 . 

Forward Convergence 

The forward convergence property indicates the system’s capability for its 
state to enter a set when the state originated from outside the set. This 
probabilistic forward convergence can be quantifed using 

P ( ∃τ ∈ [t, t + T ] s.t. Xτ ∈ C(L) | Xt = x ) (1.14) 

for some time interval [0, T ] conditioned on an initial condition x ∈ C(L)c . 
Similar to the case of forward invariance, probability (1.14) can also be com-
puted from the distribution of the following two random variables:5 

Θx(T ) := sup{ϕ(Xt) ∈ R : t ∈ [0, T ], X0 = x}, (1.15) 

Ψx(L) := inf{t ∈ R+ : ϕ(Xt) ≥ L, X0 = x}. (1.16) 

Here, Θx(T ) indicates the distance to the boundary of the safe set ∂C(0), and 
Ψx(L) is the duration for the state to enter the set C(L) for the frst time. 

5 These random variables are previously introduced and analyzed in [18]. 
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We can also rewrite (1.14) using the two random variables (1.15) and (1.16) 
as 

P ( ∃τ ∈ [t, t + T ] s.t. Xτ ∈ C(L) | Xt = x ) (1.17) 

= P ( ∃τ ∈ [0, T ] s.t. Xτ ∈ C(L) | X0 = x ) (1.18) 

= P(Θx(T ) ≥ L) (1.19) 

= P(Ψx(L) ≤ T ). (1.20) 

1.3.3 Design Goals 

In this chapter, we design the control policy with the long-term safety guar-
antees given in the forms alike (1.7) or (1.14). 
When the goal is to guarantee probabilistic forward invariance, we aim 

to ensure the following condition: for each time t ∈ R+, � � 
P Xτ ∈ C(Lt), ∀τ ∈ [t, t + Tt] ≥ 1 − ϵ, (1.21) 

conditioned on the initial condition X0 = x, for some ϵ ∈ (0, 1). From now 
on, all probabilities are conditioned on the initial condition X0 = x unless 
otherwise noted. Here, Lt is the desired safety margin, and Tt is the outlook 
time horizon. For each time t, condition (1.21) constrains the probability of 
staying within the safe set with margin Lt during the time interval [t, t + Tt] 
to be above 1 − ϵ. 
When the goal is to guarantee probabilistic forward convergence, we aim 

to ensure the following condition: for each time t ∈ R+, � � 
P ∃τ ∈ [t, t + Tt] s.t. Xτ ∈ C(Lt) ≥ 1 − ϵ, (1.22) 

conditioned on the initial condition X0 = x, for some ϵ ∈ (0, 1). 
In both cases, the value of ϵ ∈ (0, 1) is chosen based on risk tolerance. In 

(1.21) and (1.22), the probabilities are taken over the distribution of Xt and 
its future trajectories {Xτ }τ ∈(t,t+Tt] conditioned on X0 = x. The distribution 
of Xt is generated based on the closed-loop system of (2.2) and (1.4), whereas 
the distribution of {Xt}t∈(t,t+Tt] are allowed to be defned in two diferent ways 
based on the design choice: the closed-loop system of (2.2) and (1.3) or the 
closed-loop system of (2.2) and (1.4). 
We consider either fxed time horizon or receding time horizon. In the 

fxed time horizon, safety is evaluated at each time t for a time interval 
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[t, t + H] of fxed length. In the receding time horizon, we evaluate, at each 
time t, safety only for the remaining time [t, H] given a fxed horizon. The 
outlook time horizon for each case is given by ( 

H, for fxed time horizon,
Tt = (1.23)

H − t, for receding time horizon. 

The safety margin is assumed to be either fxed or time varying. Fixed 
margin refers to when the margin remains constant at all time, i.e., Lt = ℓ. 
For time-varying margin, we consider the margin Lt that evolves according 
to 

dLt = fℓ(Lt), L0 = ℓ, (1.24) 

for some continuously diferentiable function fℓ. 6 The values of Tt and 
{Lt}t∈[0,∞) are determined based on the design choice. 

1.4 Proposed Method 

Here, we present a sufcient condition to achieve the safety requirements 
in subsection 1.4.1. Based on this condition, we propose two safe control 
algorithms in subsection 1.4.2 and outline a method to boost algorithm per-
formance in subsection 1.4.3. 
Before presenting these results, we frst defne a few notations. To capture 

the time-varying nature of Tt and Lt, we augment the state space as  

Zt := 
 

Tt 
Lt 

ϕ(Xt) 
Xt 

 ∈ Rn+3 . (1.25) 

The dynamics of Zt satisfes the following SDE: 

dZt = (f̃(Zt) + g̃(Zt)Ut)dt + σ̃(Zt)dWt. (1.26) 

6This representation also captures fxed margin by setting fℓ(Lt) ≡ 0. 
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


Here, f̃ , g̃, and σ̃ are defned to be   
fT 

fℓ(Lt)  ∈ R(n+3)f̃(Zt) :=   
, (1.27)fϕ(Xt) 

f(Xt)  
02×n  ∈ R(n+3)×m g̃(Zt) := Lgϕ(Xt) , (1.28) 
g(Xt)  
02×n   ∈ R(n+3)×ωσ̃(Zt) := Lσϕ(Xt) . (1.29) 
σ(Xt) 

In (1.27), the scalar fT is given by ( 
0, in fxed time horizon,

fT := (1.30)
−1, in receding time horizon, 

the function fℓ is given by (1.24), and the function fϕ is given by 

1 � ⊺ � 
fϕ(Xt) := Lf ϕ(Xt) + tr [σ(Xt)] [σ(Xt)] Hess ϕ(Xt) . (1.31)

2 

Remark 1. The Lie derivative of a function ϕ(x) along the vector feld f(x) 
is denoted as Lf ϕ(x) = f(x) · ∇ϕ(x). The Lie derivative (Lgϕ(x)) along 
a matrix feld g(x) is interpreted as a row vector such that (Lgϕ(x)) u = 
(g(x)u) · ∇ϕ(x). 

1.4.1 Conditions to Assure Safety 

We consider one of the following four types of probabilistic quantities:7  
P (ΦXt (Tt) ≥ Lt) for type I,P (ΓXt (Lt) > Tt) for type II,

F(Zt) := (1.32)
P (ΘXt (Tt) ≥ Lt) for type III, 
P (ΨXt (Lt) ≤ Tt) for type IV, 

7Recall from Section 1.3.3 that whenever we take the probabilities (and expectations) 
over paths, we assume that the probabilities are conditioned on the initial condition X0 = 
x. 
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where the probability is taken over the same distributions of {Xτ }τ ∈[t,Tt] that 
are used in the safety requirement (1.21) and (1.22). The values of Tt and 
Lt (known and deterministic) are defned in (1.23) and (1.24) depending on 
the design choice of receding/fxed time-horizon and fxed/varying margin. 
Additionally, we defne the mapping DF : Rn+3 × Rm → R as8 

DF(Zt, Ut) := Lf̃F(Zt) + (Lg̃F(Zt)) Ut 

1 (1.33) 
+ tr ([σ̃(Zt)] [σ̃(Zt)]

⊺ Hess F(Zt)) . 
2 

From Itô’s Lemma,9 the mapping (1.33) essentially evaluates the value of 
the infnitesimal generator of the stochastic process Zt acting on F: i.e., 
AF(Zt) = DF(z, u) when the control action Ut = u is used when Zt = z. 
We propose to constrain the control action Ut to satisfy the following 

condition at all time t: 

DF(Zt, Ut) ≥ −α (F(Zt) − (1 − ϵ)) . (1.34) 

Here, α : R → R is assumed to be a monotonically-increasing, concave or 
linear function that satisfes α(0) ≤ 0. From (1.33), condition (2.10) is 
afne in Ut. This property allows us to integrate condition (2.10) into a 
convex/quadratic program. 

Theorem 1. Consider the closed-loop system of (2.2) and (1.4). 10 Assume 
that F(z) in (1.32) is a continuously diferentiable function of z ∈ Rn+3 and 
E[F(Zt)] is diferentiable in t. If system (2.2) originates at X0 = x with 
F(z) > 1 − ϵ, and the control action satisfes (2.10) at all time, then the 
following condition holds:11 

E [F(Zt)] ≥ 1 − ϵ (1.35) 

for all time t ∈ R+. 
8See Remark 1 for the notation for Lie derivative. 
9Itô’s Lemma is stated as below: Given a n-dimensional real valued difusion process 

dX = µdt + σdW and any twice diferentiable scalar function f : Rn → R, one has 
1df = 

� 
Lµf + tr (σσ⊺ Hess f) 

� 
dt + LµσdW. 2 

10Recall from subsection 1.3.1 that f , g, σ, N , and KN are assumed to have sufcient 
regularity conditions. 

11Here, the expectation is taken over Xt conditioned on X0 = x, and F in (1.32) gives 
the probability of forward invariance/convergence of the future trajectories {Xτ }(t,t+Tt] 

starting at Xt. 

15 



Proof (theorem 1). First, we show that 

E[F(Zτ )] ≤ 1 − ϵ (1.36) 

implies 

E [α (F(Zτ ) − (1 − ϵ))] ≤ 0. (1.37) 

Let τ is the time when (1.36) holds. We frst defne the events Di and a few 
variables vi, qi, and δi, i ∈ {0, 1}, as follows: 

D0 = {F(Zτ ) < 1 − ϵ} , (1.38) 

D1 = {F(Zτ ) ≥ 1 − ϵ} , (1.39) 

v0 = E [F(Zτ ) | D0] = 1 − ϵ − δ0, (1.40) 

v1 = E [F(Zτ ) | D1] = 1 − ϵ + δ1, (1.41) 

q0 = P(D0), (1.42) 

q1 = P(D1). (1.43) 

The left hand side of (1.36) can then be written as 

E[F(Zτ )] = E [F(Zτ ) | D0] P(D0) + E [F(Zτ ) | D1] P(D1) 
= v0q0 + v1q1. (1.44) 

From 

E [F(Zτ ) | D0] < 1 − ϵ, 
(1.45)

E [F(Zτ ) | D1] ≥ 1 − ϵ, 

we obtain 

δ0 ≥ 0 and δ1 ≥ 0. (1.46) 

Moreover, {qi}i∈{0,1} satisfes 

P(D0) + P(D1) = q0 + q1 = 1. (1.47) 

Combining (1.36) and section 3.3.3 gives 

v0q0 + v1q1 ≤ 1 − ϵ. (1.48) 
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Applying (3.56) and (3.57) to (3.65) gives 

(1 − ϵ − δ0) q0 + (1 − ϵ + δ1) q1 ≤ 1 − ϵ, (1.49) 

which, combined with (3.64), yields 

δ1q1 − δ0q0 ≤ 0. (1.50) 

On the other hand, we have 

E [α (F(Zτ ) − (1 − ϵ))] 

= P(D0) (E [α (F(Zτ ) − (1 − ϵ)) | D0]) 
+ P(D1) (E [α (F(Zτ ) − (1 − ϵ)) | D1]) (1.51) 

= q0 (E [α (F(Zτ ) − (1 − ϵ)) | D0]) 
+ q1 (E [α (F(Zτ ) − (1 − ϵ)) | D1]) (1.52) 

≤ q0 (α (E [F(Zτ ) − (1 − ϵ) | D0])) 
+ q1 (α (E [F(Zτ ) − (1 − ϵ) | D1])) (1.53) 

= q0 (α (−δ0)) + q1 (α (δ1)) (1.54) 

≤ α (−q0δ0 + q1δ1) (1.55) 

≤ 0. (1.56) 

Here, section 3.3.3 is due to (3.58) and (3.59); section 3.3.3 is obtained from 
Jensen’s inequality [19] for concave function α; section 3.3.3 is based on (3.56) 
and (3.57); section 3.3.3 is given by assumption A2; and section 3.3.3 is due 
to (3.67). Thus, we showed that (1.36) implies (1.37). 
Using Dynkin’s formula, given a time-invariant control policy, the se-

quence E[F(Zt)] takes deterministic value over time where the dynamics is 
given by 

d 
E[F(Zτ )] = E[AF(Zτ )]. (1.57)

dτ 

Condition (2.10) implies 

E[AF(Zτ )] ≥ −E [α (F(Zτ ) − (1 − ϵ))] . (1.58) 

Therefore, we have 

d 
E[F(Zτ )] ≥ 0 whenever E[F(Zτ )] ≤ 1 − ϵ. (1.59)

dτ 
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This condition implies 

E[F(Zt)] ≥ 1 − ϵ for all t ∈ R+. (1.60) 

due to lemma 1, which is given below. ■ 

Lemma 1. Let y : R+ → R be a real-valued diferentiable function that sat-
isfes 

d 
yt ≥ 0 

dt
whenever yt ≤ L. (1.61) 

Additionally, we assume y0 > L. Then 

yt ≥ L for all t ∈ R+. (1.62) 

Proof. Suppose there exists b ∈ R+ such that yb < L. By the intermediate 
value theorem, there exists a ∈ (0, b) such that ya = L, and yt < L for all 
t ∈ (a, b]. Next, by the mean value theorem, there exists τ ∈ (a, b) such that 
(dyt/dt)|t=τ = (yb − ya)/(b − a) < 0. This contradicts condition (1.61). ■ 

Corollary 1. Consider the closed-loop system of (2.2) and (1.4) with the 
assumptions stated in theorem 1. Let F be defned as type I or II in (1.32). 
If the system state originates at X0 = x with F(z) > 1 − ϵ, and the control 
action satisfes (2.10) at all time t ∈ R+, then condition (1.21) holds. 

Proof (corollary 1). From (1.11), (1.32), and theorem 1, we have 

P (Xτ ∈ C(Lt), ∀τ ∈ [t, t + Tt]) 

= E [F(Zτ )] 

≥ 1 − ϵ, 

which yields (1.21). ■ 

Corollary 2. Consider the closed-loop system of (2.2) and (1.4) with the 
assumptions stated in theorem 1. Let F be defned as type III or IV in (1.32). 
If the system state originates at X0 = x with F(z) > 1 − ϵ, and the control 
action satisfes (2.10) at all time t ∈ R+, then condition (1.22) holds. 

Proof (corollary 2). From (1.17) and (1.32), we have 

P (∃τ ∈ [t, t + Tt] s.t. Xτ ∈ C(Lt)) 

= E [F(Zτ )] 

≥ 1 − ϵ, 

which yields (1.22). ■ 
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1.4.2 Safe Control Algorithms 

Here, we propose two safe control algorithms based on the safety conditions 
introduced in subsection 1.4.1. In both algorithms, the value of F is defned 
as type I or II in (1.32) when the safety specifcation is given as forward 
invariance condition, and as type III or IV when the safety specifcation is 
given as forward convergence condition. 

Additive modifcation 

We propose a control policy of the form 

KN (Xt, Lt, Tt) = N(Xt) + κ(Zt)(Lg̃F(Zt))
⊺ . (1.63) 

Here, N is the nominal control policy defned in (1.3). 
The mapping κ : Rn+3 → R+ is chosen to be a non-negative function 

that are designed to satisfy the assumptions of theorem 1 and makes Ut = 
KN (Xt, Lt, Tt) to satisfy (2.10) at all time. Then, the control action Ut = 
KN (Xt, Lt, Tt) yields 

E[dF(Zt)] = AF(Zt) (1.64) 
1 

= Lf̃F + (Lg̃F)N + κLg̃F (Lg̃F)
⊺ + tr (σ̃σ̃⊺ Hess F) . 

2 

As κ is non-negative, the term κLg̃F (Lg̃F)
⊺ in (1.64) takes non-negative 

values. This implies that the second term additively modify the nominal 
controller output N(Xt) in the ascending direction of the forward invariance 
probability (1.21) or forward convergence probability (1.22). 

Constrained optimization 

We propose a control policy of the form 

KN (Xt, Lt, Tt) = arg min J(N(Xt), u) 
u (1.65) 
s.t. (2.10), 

Here, J : Rm × Rm → R is an objective function that penalizes the deviation 
from the desired performance, the nominal control action, and/or the costs. 
It is also designed to satisfy the assumptions of theorem 1 to comply with 
the safety specifcation (1.21) or (1.22). The constraint of (1.65) imposes 
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that (2.10) holds at all time t, and can additionally capture other design 
restrictions.12 When (Lg̃F(z)) ̸= 0 for any z, there always exists u that 
satisfy the constraint (2.10). 
Both additive modifcation and conditioning structures are commonly 

used in the safe control of deterministic systems (see [20, subsection II-B] 
and references therein). These existing methods are designed to fnd control 
actions so that the vector feld of the state does not point outside of the safe 
set around its boundary. In other words, the value of the barrier function will 
be non-decreasing in the infnitesimal future outlook time horizon whenever 
the state is close to the boundary of the safe set. However, such myopic 
decision-making may not account for the fact that diferent directions of the 
tangent cone of the safe set may lead to vastly diferent long-term safety. In 
contrast, the proposed control policies (1.63) and (1.65) account for the long-
term safe probability in F, and are guaranteed to steer the state toward the 
direction with non-decreasing long-term safe probability when the tolerable 
long-term unsafe probability is about to be violated. When F is defned 
based on the closed-loop system involving (2.2) and (1.3), its value can be 
computed ofine. In such cases, the controller only needs to myopically 
evaluate the addition (1.63) or closed-form inequality conditions (1.65) in 
real time execution. In both cases, the computation efciency is comparable 
to common myopic barrier function-based methods in a deterministic system. 

1.4.3 Improving the Accuracy of Gradient Estimation 

The safety condition (2.10) requires us to evaluate F, ∂F/∂z, and Hess F. 
These values can be estimated by applying Monte-Carlo methods on fnite 
diference approximation formulas. However, for some systems and param-
eter ranges, naive sampling can produce noisy estimate of the probabilities 
and their gradients [18]. At a high spatial frequency, the randomness due to 
sampling can have a relatively larger impacts than the infnitesimal changes 
in the initial state. 
Such drawback in naive sampling can be complemented using additional 

information about the conditions that must be satisfed by the probabili-
ties and their gradients. Here, we derive the safe/recovery probabilities as 
the solution to certain convection difusion equations. The solution of the 

12For example, KN is Lipschitz continuous when J(N(x), u) = u⊺H(x)u with H(x) 
being a positive defnite matrix (pointwise in x). 
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convection difusion equations are guaranteed to be smooth and satisfy the 
neighbor relations of probabilities (see [21, Section 7.1] and reference therein 
for the regularity of convection difusion). Such characterization allows the 
well-established numerical analysis techniques to be used to improve the ac-
curacy of these estimates [22]. 
Below, we present the convection difusion equations. To emphasize the 

qualitatively diferent roles of Tt and (Lt, ϕ(Xt), Xt), we introduce another 
state variable   

Lt 

Yt := ϕ(Xt) ∈ Rn+2 . (1.66) 
Xt 

Theorem 2. Let S = σ˜ . Let ρ = f̃ + ˜˜σ⊺ gN if F in (1.32) is defned for the 
f̃ + ˜closed-loop system of (2.2) and (1.3), and ρ = gKN if F is defned for 

the closed-loop system of (2.2) and (1.4). The variable F̃(Yt, Tt) := F(Zt) 
for types I-IV satisfes the following convection difusion equation [18, The-
orems 1–4]: 

∂F̃ 1 
= ∇·(S∇F̃) + Lρ− 1 ∇·S F̃, y[2] ≥ y[1], T > 0. (1.67)

2∂T 2 

For types I and II, the boundary condition satisfes (
F̃(y, T ) = 0, y[2] < y[1], T > 0, 

(1.68)
F̃(y, 0) = 1{y[2] ≥ y[1]}(y), y ∈ Rn+2 . 

For types III and IV, the boundary condition satisfes (
F̃(y, T ) = 1, y[2] < y[1], T > 0, 

(1.69)
F̃(y, 0) = 1{y[2] ≥ y[1]}(y), y ∈ Rn+2 . 

The methods to compute the values of F, ∂F/∂z, and Hess F are thorough 
and diverse. The characterization from Theorem 2 can be exploited for im-
prove the computation accuracy and efciency. Examples of such techniques 
(non-mutually exclusive) are: 

• Directly run Monte Carlo for neighboring states and approximate the gra-
dient using fnite diference methods. 
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• Evaluate the values of a boundary, and difusing the boundary values to the 
interior/remaining areas. The boundary can be defned by the boundary 
condition given in (1.68) or (1.69). It can also be certain areas in (1.67), 
whose values can be evaluated using the MC method. 

• Use the relation in (1.67) to derive the subspace that must be satisfed by 
F(z) and its neighbors F(z + ∆z). This relation can be used to smooth 
out the results from the MC method: e.g., the obtained probability can 
be projected onto the lower-dimensional subspace defned by (1.67). 

• Use condition (1.67) to further derive the conditions that must be satisfed 
by ∂F/∂z and Hess F. 

A review on the available methods and their tradeofs is beyond the scope 
of this chapter. The proposed approach do not constrain the computation of 
F, ∂F/∂z, and Hess F to be limited to any specifc methods. 

1.5 Deployment and Experiment 

In this section, we show the efcacy of our proposed method in an example 
use case. 

1.5.1 Algorithms for Comparison 

We compare our proposed controller with three existing safe controllers de-
signed for stochastic systems. Below, we present their simplifed versions. 

• Proposed controller: The safety condition is given by 

DF(Zt, Ut) ≥ −α(F(Zt) − (1 − ϵ)), (1.70) 

where α > 0 is a constant. We choose type I in (1.32) with fxed time 
horizon and time-invariant zero margin, i.e., P (ΦXt (H) ≥ 0). 

• Stochastic control barrier functions (StoCBF) [10]: The safety condition 
is given by 

Dϕ(Xt, Ut) ≥ −ηϕ(Xt), (1.71) 
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where η > 0 is a constant. Here, the mapping Dϕ : Rn × Rm → R is defned 
as the infnitesimal generator of the stochastic process Xt acting on the 
barrier function ϕ, i.e., 

Dϕ(Xt, Ut) :=Aϕ(Xt) 

=Lf ϕ(Xt) + Lgϕ(Xt)Ut (1.72) 
1 

+ tr ([σ(Xt)] [σ(Xt)]
⊺ Hess ϕ(Xt)) . 

2 

This condition constrains the average system state to move within the 
tangent cone of the safe set. 

• Probabilistic safety barrier certifcates (PrSBC) [11]: The safety condition 
is given by 

P (Dϕ(Xt, Ut) + ηϕ(Xt) ≥ 0) ≥ 1 − ϵ, (1.73) 

where η > 0 is a constant. This condition constrains the state to stay 
within the safe set in the infnitesimal future interval with high probability. 

• Conditional-value-at-risk barrier functions (CVaR) [9]: The safety condi-
tion is given by � � 

CVaRβ ) ≥ γϕ(Xtk ) (1.74)ϕ(Xtk+1 

where γ ∈ (0, 1) is a constant, {t0 = 0, t1, t2, · · · } is a discrete sampled 
time of equal sampling intervals. This is a sufcient condition to ensure 
the value of CVaRk

β (ϕ(Xtk )) conditioned on X0 = x to be non-negative 
at all sampled time tk∈Z+ . The value of CVaR

k
β (ϕ(Xtk )) quantifes the 

evaluation made at time t0 = 0 about the safety at time tk. 

1.5.2 Settings 

We consider the control afne system (2.2) with f(Xt) ≡ A = 2, g(Xt) ≡ 1, 
σ(Xt) ≡ 2. The safe set is defned as 

C(0) = {x ∈ Rn : ϕ(x) ≥ 0} , (1.75) 

with the barrier function ϕ(x) := x − 1. The safety specifcation is given as 
the forward invariance condition. The nominal controller is a proportional 
controller N(Xt) = −KXt with K = 2.5. The closed-loop system with this 
controller has an equilibrium at x = 0 and tends to move into the unsafe set 
in the state space. We consider the following two settings: 
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Table 1.1: parameters used in simulation 

Controller Parameters 

Proposed controller α = 1, ϵ = 0.1, H = 10 
StoCBF η = 1 
PrSBC η = 1, ϵ = 0.1 
CVaR γ = 0.65, β = 0.1 

• Worst-case safe control: We use the controller that satisfes the safety 
condition with equality at all time to test the safety enforcement power 
of these safety constraint. Such control actions are the riskiest actions 
that are allowed by the safety condition. The use of such control actions 
allows us to evaluate the safety conditions separated from the impact of the 
nominal controllers. Here we want to see whether our proposed controller 
can achieve non-decreasing expected safety as intended. 

• Switching control: We impose safe controller only when the nominal 
controller does not satisfy the safety constraint. Here we want to see how 
the proposed controller performs in practical use, where typically there is 
a control goal that is conficting with safety requirements. 

We run simulations with dt = 0.1 for all controllers. The initial state 
is set to x0 = 3. For our controller, each Monte Carlo approximation uses 
10000 sampled trajectories. The parameters used are listed in Table 1.1. 
Since the parameter α in the proposed controller has a similar efect as η in 
StoCBF and PrSBC, we use the same values for these parameters in those 
controllers. The parameter ϵ is the tolerable probability of unsafe events 
both in the proposed controller and PrSBC, so we use the same values of ϵ 
for both algorithms for a fair comparison. 

1.5.3 Results 

Fig. 1.1 shows the results in the worst-case setting. The proposed controller 
can keep the expected safe probability E[F(Xt)] close to 0.9 all the time, while 
others fail to keep it at a high level with used parameters. A major cause of 
failure is due to the accumulation of rare event probability, leading to unsafe 
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behaviors. This shows the power of having a provable performance for non-
decreasing long-term safe probability over time. For comparable parameters, 
the safety improves from StoCBF to PrSBC to CVaR. This is also expected 
as constraining the expectation has little control of higher moments, and 
constraining the tail is not as strong as constraining the tail and the mean 
values of the tail. 

(a) average state (b) expected safe probability 

Figure 1.1: Results in the worst-case setting where (a) shows the average 
system state over 50 trajectories and (b) shows the expected safe probability 
(1.21). 

Fig. 1.2 shows the results in the switching control setting. We obtained 
the empirical safe probability by calculating the number of safe trajectories 
over the total trials. In this setting, the proposed controller can keep the 
state within the safe region with the highest probability compared to other 
methods, even when there is a nominal control that acts against safety cri-
teria. This is because the proposed controller directly manipulates dynami-
cally evolving state distributions to guarantee non-decreasing safe probability 
when the tolerable unsafe probability is about to be violated, as opposed to 
when the state is close to an unsafe region. Our novel use of forward invari-
ance condition on the safe probability allows a myopic controller to achieve 
long-term safe probability, which cannot be guaranteed by any myopic con-
troller that directly imposes forward invariance on the safe set. 
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(a) average state (b) empirical safe probability 

Figure 1.2: Results in the switching control setting where (a) shows the 
averaged system state of 50 trajectories with its standard deviation and (b) 
shows the empirical safe probability. 

1.6 Summary 

In this chapter, we considered the problem of ensuring long-term safety with 
high probability in stochastic systems. We proposed a sufcient condition to 
control the long-term safe probability of forward invariance (staying within 
the safe region) and forward convergence (recovering to the safe region). We 
then integrated the proposed sufcient condition into a myopic controller 
which is computationally efcient. We additionally outline possible tech-
niques to improve the computation accuracy and efciency in evaluating the 
sufcient condition. Finally, we evaluated the performance of our proposed 
controller in a numerical example. Although beyond the scope of this chap-
ter, the proposed framework can also be used to characterize the speed and 
probability of system convergence and may be useful in fnite-time Lyapunov 
analysis in stochastic systems. 
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Chapter 2 

Dealing with Extreme Driving 
Conditions 

2.1 Background 

Driving in adverse conditions (e.g. icy roads with low traction) is challenging 
for both human drivers and autonomous vehicles. The vehicle parameters 
can vary by operating conditions, and the control strategy must adapt to 
changes quickly. These parameters may have signifcant uncertainties be-
fore their changes can be accurately estimated. The uncertainties due to 
unmodeled dynamics and noise in sensing, localization, and estimation can 
be substantial. Moreover, the vehicles’ states can have unsafe regions of 
attractions, in which controllability and stability are signifcantly reduced. 
The likelihood of entering such regions depends on the future road condi-
tion (traction, curvature, etc.), planned maneuvers and actions, predictions 
of the environments, and their levels of uncertainty. Therefore, it is critical 
for an autonomous vehicle to adapt to changes, mediate behaviors based on 
uncertainties, exploit predictions, and do them in an integrated manner. 

2.1.1 Related Work 

Various techniques have been developed for advanced driving assistance sys-
tems (ADASs) and autonomous vehicles (AVs). Many of these techniques are 
developed in deterministic worst-case frameworks: H-infnity controllers [23], 
robust sliding mode controllers [24,25], fuzzy logic controllers [26,27,28], and 
control barrier functions [29, 30]. These techniques can often be efciently 
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computed but require full system models and small bounded uncertainties 
(errors). In large uncertainties, these techniques may not perform well. En-
suring safety for all possible errors may be infeasible. The performance may 
not degrade gracefully for increasing uncertainties due to overly conservative 
actions. 
When there are unknown parameters or changes in the internal and ex-

ternal parameters, techniques have been developed for parameter estimation 
and fast adaptation. Some combine parameter estimates (e.g., Kalman fl-
ter, Bayesian flter) and additional modifcations in control to account for 
uncertainties [31, 32, 33]. The modifcation in control techniques is often 
built on worst-case frameworks and similarly assumes the availability of ac-
curate estimates. Others direct estimate the control parameters using PID 
tuning [34,35], interactive learning methods [36,37,38], adaptive control [39]. 
These methods’ performance guarantees (convergence) often require the sys-
tem dynamics to take some specifc structures, and they often do not exploit 
future predictions. 
Various model predictive control (MPC) techniques have been developed 

to better exploit future predictions and balance diferent performance objec-
tives [40, 41, 42, 43, 44]. These methods look into future time horizons and 
use predictions to achieve better performance. As the number of possible 
trajectories grows exponentially to the outlook time horizon, there are often 
stringent tradeofs between outlook time horizon and computation burdens. 
To better account for uncertainties, many methods use stochastic frame-

works. Examples of these techniques are stochastic MPC [45] and chance-
constrained MPC [46]. Control of distributions and constraints of probability 
can be efciently computed under certain assumptions such as linear dynam-
ics and Gaussian disturbances. However, for general (nonlinear) systems, 
there do not exist lightweight algorithms suitable for online or onboard com-
putation. The tradeof between outlook time horizon and computation load 
can be even more stringent because constraining long-term probability re-
quires characterizing the evolution of complex state distributions over time. 

2.1.2 Contributions of This Chapter 

Motivated by these challenges, we propose a stochastic adaptive safe control 
technique that accounts for internal parameter changes, planned vehicle con-
trol, and the prediction of environmental factors. The technique efciently 
(myopically) fnds a control action with ensured long-term safe probability. 
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The method can both fexibly adapt to changes and remain robust in a steady 
state by mediating behaviors based on the levels of parameter uncertainties. 
The long-term safe probability can represent a variety of performance/safety 
specifcations, and its probability measure can be continuously learned based 
on driving data. 
Specifcally, we derive a sufcient condition for controlling the safe proba-

bility within a desirable range. The safety condition is then used to construct 
a safe control algorithm that can be efciently computed in real-time and 
modularly embedded into existing decision-making processes. The algorithm 
accounts for the distribution of uncertainties and fnds appropriate control 
actions even in the presence of large uncertainties. Such features allow safer 
and faster responses to changes before sufcient samples become available 
or before the parameter estimates converge. Moreover, it can be modularly 
added into an existing decision-making process: for example, it can be incor-
porated into the MPCs to balance multiple objectives while ensuring chance-
constrained safety conditions for nonlinear afne control systems without the 
assumption of Gaussian distributions. The resulting algorithms can properly 
control the long-term safe probabilities, which are defned based on future 
trajectories and intended control action, allowing that information to be used 
for producing more stable and safer action. Furthermore, the long-term safe 
probability can be learned continuously using past driving data, which allows 
the control policy to be individually fne-tuned based on its common driving 
conditions. By extending the outlook time horizon, preventive control ac-
tions can be executed before the system reaches a state where maintaining 
safety is no longer possible. Finally, the framework requires few assumptions 
in the choice of models: it can be adapted to diferent vehicle dynamics or 
tire models, ranging from white-box to gray-box to black-box models. The 
model also does not need to be diferentiable—a common requirement when 
deterministic safe control algorithms that involve the computation of (Lie) 
derivatives to be applied. 
The rest of this chapter is organized as follow. We frst present the ve-

hicle dynamics, controller structures, and design objectives in Section 4.2. 
Then, we present the proposed safe control framework and prove its perfor-
mance guarantees in Section 2.3. Finally, we present a few case studies of 
autonomous driving in Section 2.4 and discuss the advantages of the proposed 
approaches. 
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2.2 Problem Statement 

In this section, we introduce the generic vehicle dynamics in section 2.2.1, 
controller in section 2.2.2, and the safety specifcations in section 2.2.3. 

2.2.1 System Model 

We use x ∈ Rm to represent the state of the vehicle and u ∈ Rn to represent 
the control action. The dynamics of x depends on the physics and mechanics 
of the vehicle and the control action. We use 

ẋ = Fx(x, ξ) + Fu(x)u, (2.1) 

with some possibly nonlinear functions Fx, Fu to represent the dynamics. 
The vehicle dynamics are parameterized by ξ ∈ Rl . The values of ξ can 
change over time, so its exact values may not be accessible by the controller. 
The system dynamics in (2.1) is afne to the control action u. The proposed 
technique is agnostic to the choice of vehicle models, and thus Fx and Fu can 
be high-dimensional and highly nonlinear functions and/or built from data. 
In order to implement the controller in digital systems, we discretize (2.1) 

as follows. 

xk+1 = F (xk, uk, ξk). (2.2) 

Let (2.2) be the discretized system dynamics, where F is a function derived 
from (2.1). Let xk and uk be the value of xt and ut evaluated at the discrete 
time point t = k∆t, respectively, where ∆t is the sampling time of the digital 
controller. 

2.2.2 Nominal Controller 

We assume the existence of an estimator for the vehicle parameters ξ. Let 
ξ̂k denote the latest estimate of ξ available at time step k. We allow the 
estimator to operate in diferent time scale from the controller or be updated 
intermittently. We additionally assume that the estimator gives the posterior 
of the estimate. Let z denote the vehicle state and estimated parameter at 
time k, i.e., � �TT ˆ ∈ Rm+l zk = xk , ξk . (2.3) 
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The distribution of zk is determined from the vehicle dynamics, the estimator, 
and environmental changes. 
The system is equipped with a nominal optimization-based (MPC) con-

troller of the following form: 

uk:k+H = arg min J(xk:k+H , uk:k+H ) (2.4a) 
uk:k+H ∈U 

s.t. C(xk:k+H , uk:k+H ) ⪰ 0 (2.4b) 

ˆ ˆxi+1 = F (xi, ui, ξk), i = k, · · · , k + H (2.4c) 

where xk:k+H = {xk, xk+1, · · · , xk+H }, and uk:k+H = {uk, uk+1, · · · , uk+H }. 
Here, H is the MPC outlook horizon, and the optimization domain U is 
the admissible set of control actions. In this optimization problem, the cost 
function J(xk:k+H , uk:k+H ) for system state and control is minimized. Condi-
tion (2.4b) represents the constraints in the vehicle states and controls (e.g., 
steering angle limits). The left hand side of (2.4b), C(xk:k+H , uk:k+H ), is 
a vector valued function of xk:k+H , uk:k+H , and the inequality of (2.4b) is 
taken point-wise. Condition (2.4c) accounts for the knowledge of the sys-
tem dynamics, which approximates the original dynamics (2.2), i.e., F ≈ F̂ . 
This controller is designed based on the performance specifcations of the 
system and does not necessarily account for the safety specifcations, which 
is described in the next subsection. 

2.2.3 Safety Specifcations 

We represent the safe event using a set S ∈ Rm defned as the 0-superlevel 
set of a function ϕ : Rm × Rl → R, i.e., 

S(ξ) = {x : ϕ(x, ξ) ≥ 0}, (2.5) 

where the function ϕ(x, ξ) involves the internal state of the vehicle x and 
external/environmental variables ξ (e.g., friction coefcients). The safety 
specifcations is then given by the following condition: the vehicle state stays 
within the safe set, i.e., 

x ∈ S(ξ). (2.6) 

A major challenge to ensure (2.6) arises from the uncertainties in the system. 
For example, safety depends on ξ, and when it changes, the controller must 
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adapt its action before an accurate estimate of ξ can be constructed from 
samples. When the uncertainty of ξ is large, it can be impossible to have (2.6) 
with probability 1. Moreover, ensuring (2.6) for all possible worst cases may 
not be feasible and/or leads to unnecessarily conservative control actions, 
which compromise the robustness and performance of the system. Instead, 
we aim to control the safety probability defned below. 
Specifcally, we want to ensure x ∈ S(ξ) during an outlook time window 

T (k) = {k, k +1, · · · , k + T } with probability 1 − ϵ: i.e., at any time k ∈ Z+, 

P(xτ ∈ S(ξτ ), ∀τ ∈ T (k)) ≥ 1 − ϵ. (2.7) 

Here ϵ can be interpreted as the tolerance level for unsafe events. The outlook 
time horizon T should be sufciently long to avoid myopic behaviors that are 
unsafe. Note that the outlook time horizon T does not need to be identical to 
the outlook horizon H of the MPC controller (2.4). The beneft of choosing 
diferent T and H will be explained later in Remark 3. 

2.3 Proposed Method 

In this section, we present the proposed safety condition in section 2.3.1, and 
the proposed safe adaptation algorithm in section 2.3.2. 

2.3.1 Proposed Safety and Recovery Condition 

In this subsection, we propose an adaptive safe control method that exploits 
prediction and mediates behaviors based on the level of uncertainties. We 
frst derive a sufcient condition that ensures safe probability based on a novel 
probabilistic forward invariance condition. The key novelty of this condition 
is that it can ensure long-term safety probability to be ensured using a myopic 
controller that can be computed in real-time onboard computation, while 
standard control barrier function (CBF) based methods often lead to unsafe 
behaviors because of the long tail distribution of the unsafe events. The 
long-term safety probability can be computed ofine and be continuously 
learned using the driving history. The controller only needs to myopically 
evaluate the immediate control action using a linear constraint, which can 
be easily integrated into optimization-based planning and control processes 
(e.g., MPC [40, 41,42,45,46]). 
Let A denote the following discrete-time generator. 
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Defnition 2 (Discrete-time Generator). The discrete-time generator A of 
a discrete-time stochastic process {yk ∈ Rn}k∈Z+ with sampling interval ∆t 
evaluated at time k is given by 

E[G(yk+1)|yk] − G(yk)
AG(yk) = (2.8)

∆t 

whose domain is the set of all functions G : Rn → R of the stochastic process. 

The discrete-time generator can be considered as the discrete-time coun-
terpart of the infnitesimal generator for a continuous-time process. 
Let F(z) be the probability of the vehicle originating from state zk = z 

at time k to remain safe during outlook time horizon T (k), i.e., 

F(z) := P(xτ ∈ S(ξτ ), ∀τ ∈ T (k)|zk = z). (2.9) 

Note that, conditioned on zk = z, this probability does not depend on k. 1 

In order to ensure safety of the system, we propose to constrain the control 
action uk to satisfy the following conditions at all time k ∈ Z+: 

AF(zk) ≥ −γ(F(zk) − (1 − ϵ)). (2.10) 

Here, γ : R → R is a function of F(zk) − (1 − ϵ). When F(zk) ≤ 1 − ϵ, 
the value of AF(zk), if positive, can be interpreted as the the recovery rate. 
Condition (2.10) essentially constrains the discrete-time generator of F(zk) 
to be lower bounded by −γ(F(zk) − (1 − ϵ)). 

Remark 2. Since function F(zk) gives the safety probability of the system in 
the time horizon T (k), it encodes information of prediction on the future as 
well as the level of uncertainties. 

We impose the following two conditions for γ(q): 

Requirement 1: γ(q) is strictly concave or linear in q. 

Requirement 2: γ(q) ≤ q, ∀q ∈ R. 

Condition (2.10) with design requirements 1 and 2 guarantees the safe prob-
ability condition (2.7) to hold, as stated below. 

1This property holds because the system dynamics in (2.2) is time-invariant. The 
functions Fx and Fu do not depend on time. 
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Theorem 3. Consider the open-loop system (2.2). Let γ(q) satisfy require-
ments 1 and 2. If the state and parameter estimation originate at z0 = z 
with F(z) > 1 − ϵ, and the control action satisfes (2.10) at all time, then the 
following condition holds: 

P(xτ ∈ S(ξτ ), ∀τ ∈ T (k)) ≥ 1 − ϵ (2.11) 

for all time k ∈ Z+. Here, the probability is taken over zk conditioned on 
z0 = x, and F in (2.9) gives the probability of safety of the future trajectories 
{zκ}{k+1,k+2,··· ,k+T } conditioned on zk. 

Proof. See [47]. 

Note that the left hand side of (2.11) is equivalent to E [P(xτ ∈ S(ξτ ), ∀τ ∈ T (k))], 
where the expectation is taken over zk conditioned on z0 = x, and F in (2.9) 
gives the probability of safety of the future trajectories {zκ}{k+1,k+2,··· ,k+T }
conditioned on zk. 

2.3.2 Proposed Safe Adaptation Algorithm 

Next, we show that AF(zk) can be approximated using a linear function of uk 

when the sampling interval ∆t is sufciently small. With z defned in (2.3), 
let D(z) denote the frst m entries of the gradient of F(z) evaluated at z, 
i.e., 

D(z) = [D(1)(z), D(2)(z), ∈ Rm · · · , D(m)(z)]T , (2.12) 

where 

F(z +∆(i)) − F(z − ∆(i))
D(i)(z) = . (2.13)

2∆ 
Here, ∆ is the step size to calculate the fnite diference of the safety proba-
bility, ∆(i) denotes a vector that takes a scalar value of ∆ in i-th entry and 
0 otherwise. Note that D(z) has the same dimension with the state x. 
We make the following assumptions:� � � � 

zk+1 − zk Fx(xk, uk, ξ̂  
k) + Fu(xk)uklim E = (2.14)

∆t→0 ∆t 0 
1 � � 

lim E (zk+1 − zk)
T M(zk+1 − zk) | zk = ck (2.15)

∆t→0 2∆t 
1 

lim E [R2 (zk, zk+1) | zk] = 0. (2.16)
∆t→0 ∆t 
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Here, M is a matrix of appropriate dimension, ck is a constant ck, and R2 de-
notes the terms with order greater than 2 in the Taylor expansion of Ψ, i.e.,� � 
R2 (zk, zk+1) = o ∥zk+1 − zk∥2 . Condition (2.14) assumes the limit of the 
derivative of x equals to the dynamics with the estimated parameter, and the 
estimated parameter is not changing in the infnitesimal time. This holds for 
ordinary diferential equation (ODE) systems with additive Gaussian noise, 
which is commonly assumed in stochastic safe control community [10,48]. It 
is assumed in (2.14) that information about the future value of ξ̂  is not avail-
able. Condition (2.15) says the second order term in the Taylor expansion 
of Ψ equals to some constant ck. Note that this term does not necessarily 
vanish (e.g., Ito’s calculus), but it will not depend on u. Condition (2.16) 
implies that terms higher than third order will vanish. 

Lemma 2. Assume (2.14)–(2.16) hold. Then, the following condition holds. 

ˆlim AF(zk) = D(zk) · (Fx(xk, ξk) + Fu(xk)uk + ck). (2.17)
∆t→0 

Proof. See [47] 

From Lemma 2, we can use sufciently small sampling interval ∆t and 
evaluate condition (2.10) using 

ˆD(zk) · (Fx(xk, ξk) + Fu(xk)u + ck) ≥ −γ(F(zk) − (1 − ϵ)). (2.18) 

Since D, Fx, Fu and F are all constant given xk and ξ̂  
k, condition (2.18) 

is linear in u, thus can be used in LQ or convex problem without losing 
convexity. Therefore, it can be easily integrated into existing optimization-
based controllers (e.g., [49,50,51,52]) without much extra computational [40, 
53]. For example, we can impose (2.18) as an addition constraints in the 
nominal MPC controller (2.4), i.e., 

uk:k+H = arg min J(xk:k+H , uk:k+H ), (2.19a) 
uk:k+H ∈U 

s.t. (2.4b), (2.4c) and (2.18). (2.19b) 

This controller exploits prediction through both MPC forward rollout and 
the long-term safety probability function F(z) in (2.9), with diferent outlook 
horizon H and T , respectively. 

Remark 3. The computation load of the MPC controller (2.4) often scales ex-
ponentially with its time horizon H. Interestingly, the safety condition (2.10) 
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can be used to ensure safety during horizon T without requiring the MPC 
controller to extend its outlook horizon to T . Thus, if the value D in (2.12)-
(2.13) is computed ofine, the computation load of the MPC controller only 
needs to scale with H(≪ T ). 

The overall safe control strategy is given by Algorithm 2. At each time 
step k, Algorithm 2 functions as follows. In line 5, it obtains from the estima-
tor the latest estimate ξ̂  

k for the system parameter ξ. In line 6, it evaluates 
the functions F and D at zk either using online or ofine computation. These 
values can be obtained by sampling the system dynamics (2.1) or (2.2), or 
can be continuously learned from the past driving data. In line 7, it fnds an 
control action uk either using the optimization problem (2.19). This control 
action uk is executed in line 8, and its impact on xk+1 is observed in line 4 
at the next time step. 

Algorithm 1 Safe control algorithm 

1: Initialize ∆z 
2: k ← 0 
3: while k < Kmax do 
4: Observe xk 

5: Obtain ξ̂  
k from the estimator 

6: Obtain F(zk) and D(zk) 
7: Find uk ← solve {uk in (2.19)}
8: Execute action uk 

9: k ← k + 1 
10: end while 

2.4 Deployment and Experiment 

We evaluated the efcacy of the proposed adaptive safe control method with 
simulation on a four-wheel 3-DoF vehicle. The design goal is to track a refer-
ence path without slipping. We present the vehicle dynamics in section 2.4.1, 
the controller and the design specifcation in section 2.4.2, and the results 
and discussions in section 2.4.3. 
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Figure 2.1: Freebody diagram of the vehicle. 

2.4.1 Vehicle Model 

We consider the vehicle model presented in [54] and Burckhardt’s tire model 
based on the Kamm friction circle [55]. 
Fig. 2.1 shows the diagram of the vehicle model. In this model, each tire 

is associated with a longitudinal and lateral force. We use Ft to denote the 
total tire force on each of the four wheels, calculated as the squared sum of 
the lateral and longitudinal tire force. The saturated tire grip force is given 
by 

Fsat = µmg/4, (2.20) 

where m is the vehicle mass, and g is gravitational acceleration constant, 
µ is the friction coefcient between the tire and road (referred to as c1 in 
Burckhardt’s tire model). The vehicle system’s state and control actions are 

x = [xCoG, yCoG, ψ, vx, vy, r, ωfr, ωfr, ωrl, ωrr, δ]
T (2.21) h iT 

u = Te, δ̇ , (2.22) 

where xCoG, yCoG, and ψ are the vehicle’s inertial pose, vx and vy are the 
vehicle’s frame velocities, r is the yaw rate, ωfl, ωfr, ωrl, and ωrr are the 
tire angular rates, δ is the steering angle, Te is the input torque from the 
diferential and δ̇ is the steering rate. The specifc choice of parameters for 
simulation are summarized in Table 2.1. The friction coefcient µ is the 
unknown parameter ξ in our simulation, by adding an additive zero-mean 
Gaussian noise with variance σ2 to µ. Please see [47] for more details of the 
vehicle model. 
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Table 2.1: Simulation Parameters 

Parameter Defnition Value 
Cf cornering stifness for front tire 6680 N/rad 
Cr cornering stifness for rear tire 6680 N/rad 
ba aerodynamic drag coefcient 100 Ns/m 
br tire drag coefcient 100 Ns/m 
µ tire to road friction coefcient 0.03 
m mass of the vehicle 1500 kg 
g gravitational acceleration 29.8 m/s
Lf front wheel distance to vehicle center 1.070 m 
Lr rear wheel distance to vehicle center 1.605 m 
W width of the vehicle 1.517 m 
Iz rotational inertia about the center 2600 kgm2 

2.4.2 Controllers and Design Specifcations 

The performance specifcation is to track a reference trajectory. This can 
be achieved by a linear time-varying MPC controller (LTV-MPC) of the 
form (2.4) with 

F̂ (x, u) = Alin xe + Blin ue, (2.23a) 

J(x, u) = 
1 T x Qxee2 

+ 
1 T u Rue,e2 

(2.23b) 

C(x, u) ≤ 0, (2.23c) 

where xe = x − xr, ue = u − ur with [xr, ur] be the reference trajectory, Alin 

and Blin are the Jacobian of a reduced-order linearized vehicle dynamics at 
each time step, with states x = [xCoG, yCoG, ψ, vx, vy, r]T and controls u = 
[v̇x, δ]

T [56]. The reference trajectories [xr, ur] are obtained from a B-spline 
based planner and reference generator demonstrated in [54]. The objective J 
is the weighted quadratic penalties on the trajectory tracking error xe and the 
diference between the actual control and the reference control ue. Constraint 
function C limits the control inputs of the vehicle system within a certain 
range. LTV-MPC linearizes the system at each time step, and predicatively 
optimize the control input in a given horizon H to make sure the vehicle 
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is tracking the reference trajectory while satisfying necessary constraints. 
However, we do not add any safety specifc constraints in LTV-MPC. This is 
because LTV-MPC uses a reduced state space model of the vehicle and the 
tire force dynamic is highly nonlinear and under-actuated in this state space. 
Moreover, the nonlinearity of tire-force dynamics and the under-actuated 
nature of the safety specifcation prevents control barrier function methods 
to be used for constructing a linear constraint. 
The safety specifcation is to limit each tire’s total force within a certain 

percentage η ∈ (0, 1) of the maximum tire force Fsat, beyond which the 
vehicle starts to slip. The safety condition is defned by (2.5) with � � �2 � �2

4Ftfl 4Ftfr 
ϕ(x, ξ) = min 1 − , 1 − ,

ηξmg ηξmg � �2 � �2 � (2.24) 
4Ftrl 4Ftrr 

1 − , 1 − ,
ηξmg ηξmg 

where ξ = µ is the friction coefcient, Ftfl and Ftrr, etc, are the tire forces 
on front left wheel, rear right wheel, etc. With this defnition, if any of the 
four tire’s total force Ft exceed ηFsat, function ϕ(x, ξ) in (2.24) will become 
negative indicating that safety is being compromised. Accordingly, the pro-
posed controller is given by (2.19) whose parameters are defned by (2.23). 
This controller essentially add to LTV-MPC a linear constraint (2.18) that 
ensures the long-term safe probability and probabilistic recovery speed. 

2.4.3 Results 

Impact of uncertainty on safety and performance. Fig 2.2 shows the safety 
and performance for varying levels of uncertainties for the proposed method 
and the LTV-MPC. The safety is measured by the averaged value of the 
safety specifcation function (2.24), the performance is measured by the av-
eraged cost function value, and the level of uncertainty is measured by σ. In 
contrast to LTV-MPC, the proposed method has a more graceful degradation 
in safety and performance. With the proposed method, the tire force always 
stayed within 85% of its saturation (Fig. 2.3) and produced stable trajec-
tories (Fig. 2.4 left). This can be achieved because the proposed controller 
will look into the future and impose a more efective safe control on the sys-
tem once the safety probability has an tendency of dropping, i.e., the system 
state is getting close to some potentially unsafe regions. With LTV-MPC, 
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Figure 2.2: Impact of uncertainty on safety (left) and performance (right). 

Figure 2.3: Total tire force of each wheel. 

the total tire force started to exceed the maximum desired saturation rate 
from around 8 seconds. This is because LTV-MPC can not directly account 
for the safety specifcations in its constraints, as mentioned in the previous 
section. 

Safety versus performance tradeofs. Fig. 2.5 shows the tradeofs be-
tween the safety and performance for the proposed method and the LTV-
MPC. The proposed methods have an improved tradeof than LTV-MPC. 

Figure 2.4: Trajectory of the vehicle for varying uncertainty σ (left) and 
tolerance ϵ (right). 
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Figure 2.5: Safety v.s. performance tradeofs. 

Figure 2.6: Impact of MPC time horizon H on computation load (left) and 
safety (right). 

This is achieved because it can systematically trade-of long-term safety vs 
performance by varying the tolerance level ϵ. With a looser safety require-
ment, more aggressive control was produced to improve performance (Fig. 2.4 
right). 

Time horizon, computation load, and safety. Fig. 2.6 shows the efect of 
the MPC outlook time horizon H and resulting computation load and safety. 
The computation load grows with H in the order of O(H3) [57,58]. However, 
reducing H does not compromise safety because the proposed methods only 
requires myopic evaluation to achieve long-term safety. 

2.5 Summary 

This chapter proposes a stochastic adaptive safe control technique for adverse 
driving conditions that can exploit prediction, mediate behaviors based on 
uncertainty, and adapt to changes. We demonstrate its reliability, efciency, 
and modularity through theoretical and numerical studies. The reliability is 
due to its provable guarantee of long-term safe probability or probabilistic 
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recovery speeds. The computational efciency of imposing chance constraints 
in nonlinear systems is achieved through a novel use of probabilistic forward 
invariance conditions. Finally, the derived safety condition can be modularly 
integrated into existing controllers, which largely improves its applicability. 
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Chapter 3 

Dealing with Other Agents on 
the Road 

3.1 Background 

Multi-agent autonomous systems must balance safety and performance spec-
ifcations in uncertain environments with distributed control in real-time. 
There can be information sharing constraints between agents due to lim-
ited communication or the scale of the network. In such systems, an agent 
may only have access to the information of a small subset of the whole net-
work or its neighboring agents. Despite the information sharing constraints, 
the safety and performance specifcations are often given as global specif-
cations that need to be ensured in the long-term. For example, swarms of 
autonomous agents must collaboratively achieve some common goal (e.g., 
when a swarm of surveillance drones need to collectively cover the search 
areas, and when at least one robot should reach a target area to perform 
some tasks). Safety (e.g., collision avoidance, stability) must also be satis-
fed at all times. Nonlinear systems can have an unsafe (unstable) region of 
attractions, which often cannot be avoided by myopically moving away from 
unsafe regions. Moreover, the environments in which these agents operate 
can be highly uncertain and dynamic. These uncertainties can come from a 
multitude of factors, arising from human and other agents’ behaviors, dis-
turbance and noise, limited communications, and unmodeled dynamics. Due 
to the highly dynamic nature, agents must have a fast feedback loop and 
respond quickly. Such latency requirements may prohibit the use of cloud 
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computation and delayed communication, and the agents’ control actions 
often need to be computed using onboard hardware. To tackle these chal-
lenges, this chapter studies how to ensure long-term global objectives with 
information sharing constraints and limited online computation in uncertain 
environments. 

3.1.1 Related Work 

There has been great advancement in safe control techniques for uncertain 
or multi-agent systems in the past decade. When the control objective is to 
avoid obstacles (one agent crashes into another), the existing literature has 
proposed to use a distance-based barrier function that can be evaluated using 
local information [59, 60]. This approach is based on the idea that one only 
needs to know the distance between two agents to control their possibility of 
crashes. More generally, this approach works when a control objective can 
be translated into a local condition whose safe set is defned by a level set of 
decomposable Barrier or Lyapunov functions [1, 61,62]. Here, decomposable 
functions refer to the ones that can be evaluated using only the informa-
tion available to each agent. Although global objectives are quite common 
in many multi-agent systems (as stated above), this approach cannot ac-
count for global objectives that cannot be represented by non-decomposable 
Barrier/Lyapunov functions. 
There often exists stringent tradeofs between assuring long-term behav-

iors vs. computational efciency. On one hand, there exist model prediction 
control and reachability-based techniques that account for future trajectories 
of long time horizon to ensure long-term safety [63,64,65]. These techniques 
are often computationally expensive because the space of possible trajecto-
ries exponentially increases with the horizon. To reduce the computation 
burden, various techniques based on barrier function approaches have been 
proposed to ensure short-term safety conditions myopically [9,10,11]. On the 
other hand, approaches such as stochastic control barrier functions achieve 
a signifcant reduction in computational cost due to their use of myopic con-
trollers, but can result in unsafe behaviors in a longer time horizon due to the 
compounding probabilities of unsafe events [1, 14, 66, 67]. These approaches 
cannot control the accumulation of tail distribution and may result in small 
long-term safe probability. To better account for tradeofs, we have proposed 
a framework to ensure long-term safe probability using myopic evaluation for 
fully observable centralized systems [68]. In this chapter, we will generalize 
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our prior work to distributed systems with information sharing constraints. 

3.1.2 Contributions of This Chapter 

In this chapter, we propose a stochastic safe control technique that can ensure 
multiple global objectives for multi-agent systems in uncertain environments. 
We frst defne a new notion of probabilistic forward invariance and forward 
convergence which can represent the satisfaction of safety and operational 
specifcations with high probability. The specifcations can be given global 
specifcations in the form of unions and intersections of forward invariance 
and forward convergence conditions. Then, we show a sufcient condition 
for the probability of the control objectives to be within a desired range. 
This sufcient condition has two features. First, it can achieve all global 
objectives using local computation. The global objectives can be something 
that cannot be represented by decomposable barrier functions. At the same 
time, the condition can be used by each agent with only local information 
to certify the safety of an existing action or modify it to satisfy the safety 
and operational specifcations. Second, it can achieve long-term safety or 
performance specifcations using myopic evaluation. The specifcation can 
be defned as satisfying forward invariance condition (safety) or forward con-
vergence condition (operational) through an outlook time horizon, while its 
condition can be evaluated using future evolution of an immediate next step. 
When the sampling frequency is sufciently high, the certifcation and mod-
ifcation scheme can be done using a linear constraint and be integrated into 
a convex/quadratic program. Using this condition, we propose a distributed 
control algorithm for each agent: Each agent solves an optimization problem 
with the linear constraints; the information sharing structure or the decision 
of control actions has a tree structure that can accommodate the relative 
priority (power) between agents. 
The proposed methods have the following advantages. 
Advantage 1: The proposed methods can use local information to ensure 

global safety and performance specifcations. The proposed method can be 
implemented in a decentralized manner: Each agent can use its local informa-
tion to certify or modify its control actions based on the sufcient condition 
described above. If all agents can fnd a feasible action, the global safety 
or operational specifcations will be satisfed with desired probabilities, even 
global specifcations which are represented using non-decomposable Barrier 
or Lyapunov functions. 
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Advantage 2: The proposed methods can ensure long-term safety us-
ing myopic evaluation. The proposed method embeds the probability of 
long-term safety or performance into a Barrier-like function. This embed-
ding allows a new notion of conditional forward invariance to be applied on 
the long-term probability. This new notion allows each agent to typically 
evaluate the outcome of the immediate future horizon, only using its local 
information, to ensure long term probability. 
To achieve advantages 1 and 2, our novel defnition of conditional proba-

bilistic forward invariance and forward convergence condition (see section 3.2.3 
for detail) is critical to achieve this property. To the best of our knowledge, 
there does not exist any existing methods that can achieve advantages 1 and 
2 simultaneously. 

3.2 Problem Statement 

The notations of this chapter follow the conventions set up in section 1.2. 

3.2.1 System Model 

We consider a multi-agent time-invariant stochastic dynamical system with 
M agents. The dynamics of agent i, i ∈ {1, 2, · · · ,M}, is given by the 
stochastic diferential equation (SDE): 

dX i = (F i(X i) + Gi(X i)U i)dt + Σi(X i)dW i , (3.1) 

where X i ∈ Rmi 
is the system state of agent i, U i ∈ Rni 

is the control input 
of agent i, and W i ∈ Rωi 

captures the system uncertainties of agent i. We 
assume that W i is the independent standard Brownian motions with 0 initial 
value. The value of Σi(X i) is determined based on the size of uncertainty in 
agent i. We assume that the dynamics of agent i does not depend on other 
agents. Thus, the dynamics of the entire multi-agent system can be written 
as 

dX = (F (X ) + G(X )U )dt + Σ(X )dW , (3.2) 
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where  
X1 U1 W 1 

X = 
 

X2 

. . . 

 , U = 
 

U2 

. . . 

 ,W = 
 

W 2 

. . . 

 , (3.3) 

XN UN W N 

and 

F = diag(F 1, F 2 , · · · , F M ) 

G = diag(G1, G2 , · · · , GM ) 

Σ = diag(Σ1 , Σ2 , · · · , ΣM ). 

(3.4) 

(3.5) 

(3.6) 

Let 

XM 

m = m i (3.7) 
i=1 

denote the dimension of the state, i.e., X ∈ Rm . To implement the controller 
in digital system, we discretize the time into sampled points of equal interval 
∆t, i.e., tk = ∆tk, ∀k ∈ Z+. Accordingly, system (3.1) and (3.2) can be 
written in discrete-time as 

X i = F i(X i , U i ,W i) (3.8)k+1 k k k 

and 

= F (Xk, Uk,Wk), (3.9)Xk+1 

respectively. With slight abuse of notation, we use Xk to denote X evaluated 
at time k∆t. 
We assume that agent i can access the information of its own states and 

the states and control inputs of a few other agents. Let Ai be the set of 
agents whose states and information can be accessed by agent i. Then, the 
information available to agent i at time k is given by 

Qi = {Xj , Uk
l : j ∈ Ai, l ∈ Ai\{i}}. (3.10)k k 
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3.2.2 Nominal Controller 

We assume the existence of a nominal controller 

U i
k = N i(Qi

k) (3.11) 

for each agent i. The nominal controller is assumed to satisfy some perfor-
mance specifcations, but not necessarily all safety and operational specifca-
tions, as we will introduce in section 3.2.3. The proposed framework does not 
restrict the choice of nominal controllers, and each agent can have diferent 
forms of nominal controllers. 

3.2.3 Design Goal 

Our goal is to ensure long term safety of all agents as well as satisfaction of 
operational specifcations. We assume that there are B such specifcations, 
indexed by j = 1, 2, · · · , B, and each specifcation is represented as follows: 
at time k, specifcation j is defned by the event 

Cjk = {x ∈ Rm : ϕj
k(x) ≥ 0}, (3.12) 

where ϕj
k(x) : Rm → R is a continuous mapping. Here, B is the number 

of safety/operational specifcations. We consider two forms of conditions: 
forward invariance and forward convergence, formally defned below. 

Forward Invariance 

The forward invariance specifcations require the condition to continuously 
hold. If the j-th condition is given as a forward invariance condition, its 
satisfaction during time horizon T j

k is given by 

Sj
k = {xτ ∈ C jk, ∀τ ∈ {k, k + 1, · · · , k + T j

k}}. (3.13) 

Forward Convergence 

The forward convergence specifcations require the system to satisfy the con-
dition eventually. If the j-th condition is given as a forward convergence 
condition, its satisfaction before time horizon T j

k is given by 

Sj
k = {∃τ ∈ {k, k + 1, · · · 
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The overall performance specifcation can be represented by the intersec-
tions and/or unions of condition Sj, j ∈ {1, 2, · · · , B}, denoted by S. The 
design goal is to satisfy the S with probability above 1 − ϵ at each time k, 
i.e., 

P(Sk) ≥ 1 − ϵ, ∀k ≥ 0. (3.15) 

The forward invariance specifcations and forward convergence specifcations 
are combined in (4.9). This is diferent from existing techniques that use 
two separate processes. In a separate design, the control input calculated 
based on one specifcation may compromise other specifcations. The advan-
tage of combining them into one condition is to jointly account for multiple 
specifcations of both types and not compromising any specifcation. 

3.3 Proposed Method 

Here, we present a sufcient condition to achieve the design goal in sec-
tion 3.3.1 and prove its performance guarantee in section 3.3.3. Based on 
this condition, we propose a distributed controller in section 3.3.2. 

3.3.1 Conditions to Assure Safety and Operational Spec-
ifcations 

In this subsection, we present a sufcient condition to satisfy the performance 
and safety specifcations. Let 

Ψk(I) := P(Sk|I) ∈ R (3.16) 

be the sequence of probability of event Sk conditioned on the information I. 
We defne a new notion of conditional discrete-time generator as below. 

Defnition 3 (Conditional discrete-time generator). The conditional discrete-
time generator A of a discrete-time stochastic process {xk}k∈Z+ conditioned 
on another process {yk}k∈Z+ with sampling interval ∆t evaluated at time k 
is given by 

E[ϕ(xk+1)|yk] − E[ϕ(xk)|yk]
Aϕ(xk|yk) = (3.17)

∆t 

whose domain is the set of all functions ϕ : Rn → R of the stochastic process. 
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When xk = yk, this generator can be considered as the discrete-time 
counterpart of the continuous-time infnitesimal generator. We additionally 
add the conditioning of yk in order to capture the information-sharing con-
straints. Although the value of Aϕ(yk) depends on both xk and yk, with 
slight abuse of notation, for the rest of the chapter, we will use Aϕ(yk) where 
the discrete-time stochastic process xk in Defnition 4 is the full state of the 
system, i.e., Xk in (3.9). 
We consider the following condition at all time k: 

AΨk(Qk
i ) ≥ −γ(Ψk(Qk

i ) − (1 − ϵ)), ∀k ≥ 0. (3.18) 

Here, γ : R → R is a function that satisfes the following 2 design require-
ments: 

Requirement 1: γ(h) is linear and increasing in h. 

Requirement 2: γ(h) ≤ h for any h ∈ R. 

The probability measure of P(Sk|I) is taken over X, the global state, con-
ditioned on Qi , the information that can be accessed by agent i. Therefore, 
the values on both sides of (3.18) can be computed using Qi . Thus, the 
form of (3.18) is advantageous in distributed networks without centralized 
information or computing (see section 3.3.2). Interestingly, this localizable 
property does not require the global safety and operational specifcations S 
to be decomposable (i.e., the design specifcations S can depend on the value 
of all states). This is in stark contrast with the existing literature for deter-
ministic and standard barrier functions: agent i can only evaluate the safety 
constraint S only depending on the information of Qi . 

Theorem 4. Consider system (3.8) and (3.9). We assume the initial con-
dition X0 = x satisfes P(S0|X0 = x) ≥ 1 − ϵ. If at each time k, each agent 
i generates a control policy that satisfes (3.18), then the following condition 
holds: 

E[P(Sk|Xk)] ≥ 1 − ϵ, ∀k ≥ 0. (3.19) 

Interestingly, although the conditions in (3.18) can be imposed by each 
agent i using its local information Qi

k, the behavior can be guaranteed for 
global safety and operational specifcations. The proof of theorem 4 is given 
in section 3.3.3. 
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3.3.2 Proposed Controller 

To efciently implement condition (3.18) in real time, we frst show that 
(3.18) can Pbe implemented as a linear function of U i We defne Γi : Rm ×k. D 

j∈Ai mR × R → R 
j 

to be1 

Γi 
D(Xk, a, δ) 

j−1X Pj−1[a− l=1 m
l] 

={Xj 
k + δ1{1 ≤ a − m l ≤ mj }1 : j ∈ Ai}. (3.20)jm 

l=1 

Note that although Γi 
D takes input of the state of the whole system, only the 

information available to agent i is required for evaluation. Let Di(Xk) be 
defned as 

Di(Xk) = [Di , Di 
(1)(Xk), Di · · · (m)(Xk)]

⊺ ∈ Rm , (3.21)(2)(Xk), 

where 

Ψk(Γ
i 
D(Xk, a, ∆)) − Ψk(ΓD 

i (Xk, a, −∆))Di (Xk) = . (3.22)(a) 2∆ 
Here, ∆ is the step size to calculate the fnite diference of Ψk. We addition-P 

j∈Ai mally defne Γi 
H : R

m × R × R × R × R → R 
j 

to be 

Γi 
H(Xk, a, b, δa, δb) X 

X 

j−1 

+ δa1{1 ≤ a − m 

j−1 

Pj−1[a− l=1 m
l] 

={Xj 
k 

l ≤ mj }1 jm 
l=1 Pj−1[b− l=1 m

l]l ≤ mj }1 : j ∈ Ai}. 
mj+δb1{1 ≤ b − (3.23)m 

l=1 

Note that although Γi 
H takes input of the state of the whole system, only the 

information available to agent i is required for evaluation. Let 

= 

  

) 

Hi (Xk)(1,1) Hi (Xk)(1,2) · · · Hi (Xk)(1,m)

Hi (Xk)(2,1) Hi (Xk)(2,2) · · · Hi (Xk)(2,m)

Hi(Xk 

. . ... . . .. 
Hi (Xk) Hi (Xk) · · · Hi (Xk) 

. . . 

(m,1) (m,2) (m,m) 

  (3.24), 

P 
j∈Ai m

j
1Here, we use R 

P
j real elements. to denote the set that has j∈Ai m 
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where 

1 H( ia,b)(Xk) =∆2 
(Ψk(Γ

i 
H(Xk, a, b, ∆, ∆)) 

− Ψk(Γ
i 
H(Xk, a, b, −∆, ∆)) 

− Ψk(Γ
i 
H(Xk, a, b, ∆, −∆)) 

+Ψk(ΓH 
i (Xk, a, b, −∆, −∆))). (3.25) 

Lemma 3. If the limit of lim∆t→0 AΨk(Q
i
k) exists, the following condition 

holds: 

lim AΨk(Q
i
k) = lim (Di(Xk) · (F (Xk) + G(Xk)Uk)

∆t→0 ∆→0 

1 
+ tr(Σ⊺(Xk)Hi(Xk)Σ(Xk))). (3.26)
2 

Remark 4. The function Ψk(x) can be smooth even when ϕ(x) is not difer-
entiable. For example, consider the case with system (3.2) with F = −1

2 X, 
G = 0 and Σ = 2. The system is discretized with ∆t = 0.1. As an example, 
we defne 3 barrier functions: 

ϕ1(x) = −x 2 − 1 (3.27) 
1 

ϕ2(x) = x − 1 (3.28) 
2 

ϕ3(x) = sin (x), (3.29) 

and specify a composition of ϕ1(x), ϕ2(x), and ϕ3(x), given by 

ϕ(x) = min(max(ϕ1(x), ϕ2(x)), ϕ3(x)). (3.30) 

Observe that ϕ(x) is not diferentiable. However, 

Ψ(x) = P(ϕ(Xτ ) ≥ 0, ∀τ ∈ {1, 2, · · · , 10}|X0 = x) (3.31) 

is smooth, as shown in fg. 3.1. 

For each agent i, if the information of the a-th entry of X is not accessible, 
then the a-th entry of Di will be 0. Similarly, if either information of the a-th 
or b-th entry of X is not accessible, then the (a, b)-th entry of Hi will be 0. 
Therefore, (3.26) can be evaluated using only the local information available 
to agent i and the current control action of other agents whose states are 
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Figure 3.1: Min and max composition of 3 barrier functions. Note that 
although ϕ(x) (top plot) is not diferentiable, the probabilistic formulation 
Ψ(x) (bottom plot) is smooth. 

available to agent i, i.e., {U j : j ∈ Ai}. Since the control action of agent i isk 
computed based on the control actions of other agents, the control actions of 
agents must be available in an order such that later agents can compute their 
control actions based on previously available control actions. To calculate 
(4.10) using the state information of the agents whose control actions are 
not available yet and ensure that there exist feasible control actions for these 
agent, we assume the existence of another controller: 

Uk
i = Ri(Qi

k). (3.32) 

This controller can be considered to be a controller that is conservative in 
terms of performance. With this controller, we propose a cascading architec-
ture. We assume that there exists a way to rank all agents such that agent i 
computes its control action using its own state measurement, and the state 
measurements and control actions of a subset of agents j, 1 ≤ j < i. Based on 
theorem 4 and lemma 3, we propose the following constrained optimization 
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problem to fnd the control action. Each agent i uses Qi
k to solve 

Uk
i = arg min J i(N(Qi

k), u i) (3.33) 
iu 

s.t. Di(Xk) · (F (Xk) + G(Xk)u) 
1 

+ tr(Σ⊺(Xk)Hi(Xk)Σ(Xk))2 
≥ −γ(Ψk(Q

i
k) − (1 − ϵ)) 

uj = 0, ∀j ̸∈ Ai . 

Here, u contains the control actions of all agents and ui is the control action 
of agent i. When computing (4.10), the agents with index j < i are assumed 
to use the nominal control action N j , while the agents with index j > i are 
assumed to use Rj . The mapping J i : Rni × Rni → R is an objective function 
that penalizes the derivation from the nominal controller policy for agent i. 
Additional constraints can be added to the optimization problem (3.33) to 
account other constraints, such as actuation limits. The proposed algorithm 
is shown in algorithm 2. 

Remark 5. Although the input of Di and Hi is the full state Xk, they can 
be evaluated using Qi

k only, as defned in (3.20) to (3.25). Therefore, the 
constraint of (3.33) can be evaluated using local information Qi

k only. 

Algorithm 2 Proposed control algorithm 

1: k ← 0 
2: while k < Kmax do 
3: for i = 1 : M do 
4: Obtain Qi

k 

5: Receive Uk
l , l ∈ Ai\{i}

6: Find U i ← solve {ui in (3.33)}k 

7: end for 
8: Execute control actions Uk

i , 1 ≤ i ≤ M 
9: k ← k + 1 

10: end while 

Remark 6. In algorithm 2, agents with larger indexes make decisions based 
on the actions of agents with smaller indexes, so agents with smaller index 
gets more priority in decision making. Apart from this priority hierarchy, the 

66 



information sharing structure can also take forms of general tree structures, 
where the agents on the child nodes make decisions based on the actions of 
all the nodes on the path to the root node. There exists multiple ways to 
structure the information sharing structure and choose priorities for agents. 
One example is based on the physics of the system (e.g., in a truck platooning 
system, the vehicles in behind make control decisions based on the vehicles 
before them). Another example is based on pre-defned priority (e.g., in an 
intersection, emergency vehicles such as ambulance have higher priority in 
making control decisions compared to other vehicles). 

3.3.3 Proof of Theorem 4 

Lemma 4. Let S be an event with marginal probability P(S) and conditional 
probability P(S|Y ), where Y is a random variable with probability density 
function fY (y). Then, we have the following condition. 

E[P(S|Y )] = P(S). (3.34) 

Proof (lemma 4). We have Z ∞ 

E[P(S|Y )] = P(S|Y = y)fY (y)dy (3.35) 
−∞ 

= P(S) (3.36) 

due to the law of total probability. ■ 

Proof (theorem 4). We frst show that 

E[Ψk(Xk)] = E[Ψk(Q
i
k)], ∀i ∈ {1, 2, · · · ,M}. (3.37) 

We have 

E[Ψk(Xk)] 

=E[P(Sk|Xk)] (3.38) 

=P(Sk) (3.39) 

=E[P(Sk|Qi
k)], ∀i ∈ {1, 2, · · · ,M} (3.40) 

=E[Ψk(Q
i )], ∀i ∈ {1, 2, · · · ,M}. (3.41)k 
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Here, (3.38) and (3.41) is due to defnition (4.10), and (3.39) and (3.40) is 
due to lemma 4. Therefore, for all i ∈ {1, 2, · · · ,M}, we have 

E[−γ(Ψk(Q
i
k) − (1 − ϵ))] 

= − γ(E[Ψk(Qk
i )] − (1 − ϵ)) (3.42) 

= − γ(E[Ψk(Xk)] − (1 − ϵ)) (3.43) 

=E[−γ(Ψk(Xk) − (1 − ϵ))]. (3.44) 

Here, (3.42) and (3.44) is due to design requirement 1. In addition, for all 
i ∈ {1, 2, · · · ,M}, we have 

E[AΨk(Q
i
k)] 

E[Ψk+1 )|Qi ] − E[Ψk(Xk)|Qi ](Xk+1 k k =E[ ] (3.45)
∆t 

E[E[Ψk+1(X
i )|Qi ]] E[E[Ψk(X

i )|Qi ]] 
= k k − k k (3.46)

∆t ∆t 
E[Ψk+1(Xk+1)] E[Ψk(Xk)] = − (3.47)

∆t ∆t 
E[E[Ψk+1(Xk+1)|Xk]] E[Ψk(Xk)] = − (3.48)

∆t ∆t 
E[Ψk+1(Xk+1)|Xk] − Ψk(Xk) =E[ ] (3.49)

∆t 
=E[AΨk(Xk)]. (3.50) 

Here, (3.45) and (3.50) is due to (4.11), and (3.47) and (3.48) is due to the 
law of total expectation. From (3.44) and (3.50), we know that 

E[AΨk(Qk
i )] ≥ E[−γ(Ψk(Qk

i ) − (1 − ϵ))] (3.51) 

implies 

E[AΨk(Xk)] ≥ E[−γ(Ψk(Xk) − (1 − ϵ))]. (3.52) 

Here, (3.51) holds because of safety condition (3.18). 
Next, we use mathematical induction to prove (4.13). Condition (4.13) 

holds for k = 0 due to the assumption on initial condition. We suppose (4.13) 
holds at time k > 0, and show (4.13) holds at time k + 1. Let 

E[Ψk(Xk)] = E[P(Sk|Xk)] = 1 − ϵ + h (3.53) 
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for some h > 0. We defne the set of events Vi and variables vi, hi, and δi, 
i ∈ {0, 1}, as follows: 

V0 = {Ψk(Xk) < 1 − ϵ} , (3.54) 

V1 = {Ψk(Xk) ≥ 1 − ϵ} , (3.55) 

v0 = E [Ψk(Xk) | V0] = 1 − ϵ − δ0, (3.56) 

v1 = E [Ψk(Xk) | V1] = 1 − ϵ + δ1, (3.57) 

h0 = P(V0), (3.58) 

h1 = P(V1). (3.59) 

The left hand side of (3.53) can then be written as 

E[Ψk(Xk)] 

=E [Ψk(Xk) | V0] P(V0) + E [Ψk(Xk) | V1] P(V1) 
=v0h0 + v1h1. (3.60) 

From 

E [Ψk(Xk) | V0] < 1 − ϵ, 
(3.61)

E [Ψk(Xk) | V1] ≥ 1 − ϵ, 

we obtain 

δ0 ≥ 0 (3.62) 

and 

δ1 ≥ 0. (3.63) 

Moreover, {hi}i∈{0,1} satisfes 

P(V0) + P(V1) = h0 + h1 = 1. (3.64) 

Combining (3.53) and section 3.3.3 gives 

1 − ϵ + h = v0h0 + v1h1. (3.65) 

Applying (3.56) and (3.57) to (3.65) gives 

1 − ϵ + h = (1 − ϵ − δ0) h0 + (1 − ϵ + δ1) h1, (3.66) 
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which, combined with (3.64), yields 

h = δ1h1 − δ0h0. (3.67) 

On the other hand, we have 

E [γ (Ψk(Xk) − (1 − ϵ))] 

=P(V0) (E [γ (Ψk(Xk) − (1 − ϵ)) | V0]) 
+ P(V1) (E [γ (Ψk(Xk) − (1 − ϵ)) | V1]) (3.69) 

=h0 (E [γ (Ψk(Xk) − (1 − ϵ)) | V0]) 
+ h1 (E [γ (Ψk(Xk) − (1 − ϵ)) | V1]) (3.70) 

=h0 (γ (E [Ψk(Xk) − (1 − ϵ) | V0])) 
+ h1 (γ (E [Ψk(Xk) − (1 − ϵ) | V1])) (3.71) 

=h0 (γ (−δ0)) + h1 (γ (δ1)) (3.72) 

=γ (−h0δ0 + h1δ1) (3.73) 

=γ(h) (3.74) 

≤h. (3.75) 

Here, section 3.3.3 is due to (3.58) and (3.59); section 3.3.3 is obtained from 
design requirement 1; section 3.3.3 is based on (3.56) and (3.57); section 3.3.3 
is due to design requirement 1 and (3.64); section 3.3.3 is due to (3.67); and 
(3.75) is due to design requirement 2. From section 3.3.3 to section 3.3.3, we 
have 

E [−γ (Ψk(Xk) − (1 − ϵ))] ≥ −h. (3.76) 

Recall that the control action is chosen to satisfy section 3.3.1. Now, we take 
the expectation over both side of section 3.3.1 to obtain 

E[AΨk(Xk)] ≥ E[−γ(Ψk(Xk) − (1 − ϵ))]. (3.77) 

From (4.11), we have 

E[Ψk+1 ) − Ψk )|Xk](Xk+1 (XkAΨk(Xk) = . 
∆t 

(3.78) 

Therefore, (3.77) can be written as 

E[E[Ψk+1(Xk+1) − Ψk(Xk)|Xk]] 

∆t 
≥E[−γ(Ψk(Xk) − (1 − ϵ))]. (3.79) 
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Using the law of total expectation, we have 

E[Ψk+1 ) − Ψk(Xk)](Xk+1 

∆t 
≥E[−γ(Ψk(Xk) − (1 − ϵ))]. (3.80) 

Combining (3.53), (3.76), section 3.3.3 and design requirement 2 yields 

)]E[Ψk+1(Xk+1 

≥E[Ψk(Xk)] + E[−γ(Ψk(Xk) − (1 − ϵ))]∆t (3.81) 

≥1 − ϵ + h − h∆t (3.82) 

=1 − ϵ + h(1 − ∆t). (3.83) 

Since ∆t ≪ 1 and h ≥ 0, we have 

E[Ψk+1 )] ≥ 1 − ϵ. (3.84)(Xk+1 

■ 

3.4 Deployment and Experiment 

In this section, we test the empirical performance of the proposed method 
using numerical simulation of the deployment environment. We consider 
a multi-agent system whose setting resembles the group robot operations. 
Examples of such operations include warehouse robots operations and swarm 
vehicle operations. The simulation runs for a total time of tmax. The system 
consists a total of M autonomous agents. Let superscript i denote the i-th 
agent. All agents are governed by the following nonlinear dynamical system: 

dpxi = v i cos(θi)dt (3.85)t t t 

dpyi i 
t = vt sin(θt

i)dt (3.86) 

dvt
i = at

idt + σvidW vi (3.87) 

dθt
i = ϕi

tdt + σϕidW ϕi , (3.88) 

xi yi iwhere p and p are the position, v is the speed, θi is the heading angle, 
ai is the acceleration, and ϕi is the steering rate. The amount of uncertainty 
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is characterized by W vi and W ϕi , which we assume are the independent 
Brownian motions with 0 initial value. For all i ∈ {1, 2, · · · ,M}, let � � � � � � 

i i W vi v at tXt
i := 

θi 
, Ut

i := 
ϕi ,W i := 

W ϕi � t � �t � 
σvi 1 0 0 

Gi Σi:= := . (3.89)
σϕi0 1 0 

Thus, (3.87) and (3.88) can be written as 

dXt
i = GiUt

idt + ΣidW i . (3.90) 

To implement the controller in digital system, we discretize the time into 
sampled points of equal interval ∆t, i.e., tk = k∆t, ∀k ∈ Z+, such that (3.90) 
can be written in discrete time as 

X i = F i(U i ,W i). (3.91)k+1 k k 

xi yi xi yi Let p0 and p0 be the starting point of agent i, and pgoal and p be thegoal 
goal of agent i. The set of agents whose information is available to agent i 
at time k is given by q 

Ai xi xj yi yj = {j : (p − p )2 + (p − p )2 ≤ r}, (3.92)k k k k k 

where r is the maximum range that an agent can broadcast its state and 
control action information. The operational goal for each agent i is to follow 
a reference trajectory Xri that enables them to reach the goal, i.e., " # 

vmax 
Xri yi yi = p −p , (3.93)k goal katan2( )xip −pxi 

goal k 

where vmax is the maximum speed. The nominal controller aims to follow 
this reference using a proportional controller, i.e., 

− Xri N i(Qi ) = K(X i ), ∀i ∈ {1, 2, · · · ,M}, (3.94)k k k 

where K is the controller gain. In addition to the nominal controller, which 
is considered to give the most aggressive control action, we also assume there 
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exists a controller that gives the most conservative control action. One ex-
ample is a controller that makes the vehicle decelerate in the maximum rate, 
i.e., � � 

−sign(vki )amaxRi(X i ) = , ∀i ∈ {1, 2, · · · ,M}, (3.95)k 0 

where amax is the maximum acceleration rate. In addition to the aforemen-
tioned agent, we also add an agent, labeled M +1, who does not execute safe 
control policies and whose state is completely unobservable to other agents. 
However, the other agents knows the initial location, the system dynamics, 
and the control policy of this agent. Specifcally, the system dynamics of 
this agent is identical to other agents except for having larger uncertainties, 
and the control policy is identical to the nominal control policy for the other 
agents, given in (3.94). The safety specifcation for all agent is given by q 

xj yi yj Sk = { (pxi − pτ )2 + (pτ − pτ )2 ≥ l, τ 

∀τ ∈ {k, k + 1, · · · , k + T }, i, j ∈ {1, 2, · · · ,M}, i ̸= j}, (3.96) 

where l is the lowest safe distance, and T is the outlook time horizon. We 
implement the controller based on Algorithm 2. The objective function in 
(3.33) is given by 

J i(N(Qi
k), u i) = ||N(Qk

i ) − u i||2, ∀i ∈ {1, 2, · · · ,M}. (3.97) 

The key simulation parameters are shown in Table 3.1. In the simulation, 
we use 

γ(h) = h − 10. (3.98) 

Using the same randomly generated starting points and goals, we run simula-
tion with the nominal controller and the proposed control policy. The results 
are illustrated in Figure 3.2, and Figure 3.3. A video of the simulation show-
ing the evolution of the trajectories is available at https://github.com/ 
haomingj/Probabilistic-Safety-Certificate-for-Multi-agent-Systems. 

Analysis. The proposed controller is able to ensure safety while pre-
serving the performance of the system. This is shown in Figure 3.2, where 
all vehicles reach their goals in the simulation time. In addition, in Fig-
ure 3.3, the successful achievement of the safety objective at all times shows 
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Parameter Value Parameter Value 
∆t 0.01 T 100 
K 1 l 0.5 
r 10 vmax 10 

amax 20 ϵ 0.15 
M 15 tmax 20 

σvi , ∀i 2 σϕi , ∀i 2 

Table 3.1: Key parameters in the simulation. 

Figure 3.2: Agent trajectories with nominal controller (left) and proposed 
controller (right). The triangles show the starting point and direction for 
the agents and the circles show the goal regions. The dashed line shows 
the trajectory of the unobservable agent. All agents reach their goals within 
simulation time. 
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Figure 3.3: The minimum distance between any 2 agents (including the 
unobservable agent) for the nominal controller and the proposed controller 
(left) and the expected long term safe probability of the proposed method 
(right). For the nominal controller, the safety specifcation is violated several 
times. For the proposed controller, the safety specifcation is never violated, 
and the expected safe probability is maintained over 1 − ϵ. 

the proposed controller’s ability to maintain safety under a few challenging 
conditions. Firstly, the system (3.85) to (3.88) is nonlinear. Secondly, the 
agents only have partial system state information specifed in Ai and cannot 
evaluate the full safety condition. The state information of one of the agent 
is completely inaccessible to other agents, which breaks of the assumptions of 
many existing method since the barrier function cannot be explicitly evalu-
ated. Thirdly, the safety condition is composed of multiple barrier functions 
representing the distance between all agent pairs. This barrier function can 
be non-diferentiable with respect to state since the closest agent to ego agent 
may change any time. Since most existing methods are not designed to ensure 
long term safety and performance under uncertainty as well as incorporating 
a binary composition of multiple barrier functions that can only be evalu-
ated locally based on partial information or cannot be explicitly evaluated, 
comparison with existing methods is not included in the simulation. 

3.5 Summary 

In this chapter, we propose a safety certifcate for multi-agent systems that 
ensures long term safety and performance using myopic controllers, achieves 
safety without overly compromising performance, and provides global guar-
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antee on safety and performance conditions that can not be sufciently eval-
uated with the information locally available to each agent. We verify the ef-
fectiveness of the proposed method in a simulation setting concerning group 
robot operation. 
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Chapter 4 

Dealing with Vehicle Occlusions 

4.1 Background 

Visual occlusions impose huge challenges to autonomous driving because 
most sensors can not see through opaque objects, leading to large unob-
served regions and potentially unsafe behaviors of the ego vehicle [69, 70]. 
Besides, the stochastic nature of all road users (other vehicles, pedestrians, 
etc.) introduces uncertainties into the system, which further increases the 
difculty of dealing with occlusions [71]. Given such uncertainties caused by 
occlusions and complex interactions between road users, designing a safe con-
troller for the ego vehicle is very difcult [72]. In this study, we focus on the 
problem of safe autonomous driving under scenarios with visual occlusions. 
The challenges of this problem include: 

1. It is hard to control the level of safety of autonomous vehicles when 
there are visual occlusions and potential interactions with other road 
users, because the latent risks are difcult to measure [73]; 

2. Considering all aspects of the uncertainties in the system with long 
time horizons could be computationally intractable, which imposes dif-
fculties for applications in real-world scenarios [74]; 

3. Approximately accounting for the latent risks will lead to over-conservative 
behaviors which compromise performance to certain extents [75]. 
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4.1.1 Related Works 

Previous studies for the safe control of vehicles in the presence of occlusions 
can be categorized into the following approaches. 

1. External perception from infrastructures. With external perceptions 
from infrastructures, the autonomous vehicle directly gets information 
from other vehicles behind the occlusion, thus can execute safe con-
trol [76]. However, such pervasive perception requires expensive infras-
tructure systems, but autonomous vehicles may also need to operate in 
regions when such infrastructure is unavailable. The proposed method 
compasses this issue by leveraging the system model and data to ac-
quire the latent risk of any given road situation with only onboard 
sensors. 

2. Learning-based control. The learning-based method leverages the data 
from expert drivers and builds a mapping from the vehicle sensory 
input to the desired control of the vehicle [77, 78]. Even if the amount 
of data is enormous, generalization to the diferent scenarios is not 
guaranteed. The relationship between occlusion and vehicle motion is 
obscure due to the black-box nature of neural networks. In comparison, 
the proposed method characterizes the exact risk of diferent scenarios 
and can produce desired safety probability as specifed. 

3. Partially observed Markov decision process (POMDP). POMDP uses 
a belief state to represent the latent dynamics of occluded vehicles and 
solve the optimal control [79]. This framework considers the uncer-
tainty of perception, but the computation is expensive for continuous 
control and often cannot be implemented in real-time [71]. On the other 
hand, the proposed method only requires solving a quadratic program 
to get the vehicle control, which has efcient online implementation. 

4.1.2 Contributions of This Chapter 

To resolve the aforementioned issues, we propose a model-based probabilistic 
safe control strategy to regulate the vehicle’s speed and steering profles under 
visual occlusions. Inspired by [80], the proposed method encodes future safety 
information into a probability value and imposes a linear constraint on the 
control input to guarantee the long-term safety of the system. The resulting 
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Table 4.1: Features of the existing methods and the proposed method. 

Method On-board Transparency Real-time 
sensing in design computation 

Infrastructures ✓ ✓ 
Learning-based ✓ ✓ 
POMDP ✓ ✓ 
Proposed ✓ ✓ ✓ 

optimization-based controller can be solved efciently via quadratic programs 
(QPs) while meeting other goals and constraints. The technical merits of the 
proposed method are 

1. Guaranteed long-term safety accounting for latent risks that are invis-
ible and occluded (see Theorem 4.3.1). 

2. Balancing competing for safety and performance objectives, ensuring 
robustness to large uncertainty without being over-conservative (see 
Fig. 4.7 and Fig. 4.8). 

3. Ease of design and transparency to the exposed risks (see the proposed 
optimization-based controller (4.17), remark 7 and remark 8). 

4. Fast real-time response that ensures long-term safety using onboard 
resources (see section 4.4.2 for real-time hardware implementation). 

The features of the proposed method compared to the existing methods is 
summarized in table 4.1. 
The rest of the chapter is organized as follows. In section 4.2, we for-

mulate the safe control problem of interest, in section 4.3, we introduce the 
proposed occlusion-aware control framework, and in section 4.4 we present 
the numerical and on-board simulations to validate the proposed method, 
and at the end, we present a summary of this chapter in section 4.5. 

4.2 Problem Statement 

In this section, we introduce the general problem statement, which includes 
the vehicle dynamics in section 4.2.1, interaction model in section 4.2.2, the 
occlusion model in 4.2.3, and the safety specifcations in section 4.2.4. 
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4.2.1 System Model 

We consider a general discrete-time control-afne dynamical model for the 
vehicle as follows: 

xk+1 = f(xk) + g(xk)uk (4.1) 

where x ∈ Rn is the vehicle’s state, u ∈ Rm is the control input, and f : Rn → 
→ Rn×mRn and g : Rn encompass the system dynamics, and k is the time 

step. We consider discrete-time dynamics throughout the chapter because 
all real-world vehicle controls are achieved with digital systems. One can 
discretize any continuous dynamics into the form of (4.1) as in [81]. The 
choice of model can range from simple double-integrators [82] to complete 
6 DoF models [55]. The control action u is determined by a predetermined 
control law N : Rn → Rm: 

u = N(x) (4.2) 

This nominal controller will satisfy desired performance specifcations, such 
as ensuring that the vehicle follows a planned trajectory and can be obtained 
via MPC, back-stepping, machine learning, or other techniques but may 
not guarantee safety. The closed-loop vehicle dynamics with the nominal 
controller will be: 

xk+1 = f(xk) + g(xk)N(xk) (4.3) 

The specifc realizations of the vehicle model and the nominal controller for 
experiments are introduced in section 4.4. 

4.2.2 Interaction Model 

We model road users’ behavior as a combination of decision-making and 
motion dynamics. The decision-making model characterizes the high-level 
decisions of the agent based on the surrounding situation and the context. 
Let X ∈ Rz be the joint state of all agents involved in the interaction, Z be 
the external factors that afect the decision-making, such as physical context, 
trafc characteristic and social contexts, as described in [83], and D be the 
decision-making function that outputs a distribution of the intentions of the 
agent (e.g., go/wait, lane-keep/lane-change) with respect to the joint state 
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X conditioned on the context Z. The general decision-making process can 
be formulated as follows: 

dk ∼ D(Xk|Zk) (4.4) 

where d is the road users’ decision, and we assume that d can take on a 
fnite number of decision values. In practice, this decision-making process 
can be modeled as a fnite state machine [84], a POMDP [85], an interactive 
multiple model (IMM) flter [86], or a neural network [87]. 
The motion model characterizes the agents’ behavior given the intention 

d. Specifcally, the motion model is written as: 

Xk+1 ∼ fz(Xk | dk) (4.5) 

where fz is the distribution of the state update function of the agents. Previ-
ous studies have used social force model [88] and recurrent neural network [89] 
to represent the motion model fz of the road users. For a given decision d, 
many models assume that fz for each state X follows a Gaussian distribution, 
as diferent sources of noise and uncertainties will add up to a Gaussian due to 
the Central Limit Theorem [90]. The specifc formulation of the interaction 
model used for the case study is described in section 4.4. 

4.2.3 Occlusion Model 

Occlusion is defned by the space where the ego vehicle is not visible. Visibil-
ity here broadly includes images and videos, radars, sonars and other sensing 
devices. Occlusion Hk is defned in map space M, and Ot is the occupied 
space by objects and V(x(k), Ok) is the visible space in the feld of view 
(FOV) of the ego vehicle at time k. Then the occlusion Hk is defned as 
follow: 

Hk = (Ō 
k ∩ V̄(x(k), Ok)) ∈M (4.6) 

¯ ¯where O and V are the exclusive space of O and V from the map space M, 
and the occlusion Hk is the space excluding obstacle and visible spaces in the 
map. In Eq. (4.6), the method for identifying Ok and V(x(k), Ok) is highly 
dependent on the confguration of the sensor. With the use of LiDAR, it 
is typical that Ok is detected using neural networks [91], and V(x(k), Ok) is 
calculated virtually by ray casting algorithm [92]. Although it is expected 
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that the infrastructure-to-vehicle (I2V) or vehicle-to-vehicle(V2V) communi-
cation systems can compensate a part of the occlusion [76], not all occlusions 
can be covered in various driving scenes. Occlusion detection is out of scope 
in this chapter. However, the proposed method can incorporate the size and 
shape of the detected occlusion as parameters. 

4.2.4 Safety Specifcation 

Our goal is to ensure the long-term safety of all road users. We assume 
that there are B safety specifcations for the overall interaction system, in-
dexed by j ∈ {1, 2, · · · , B}, and each specifcation is represented as follows: 
specifcation j is defned by the event 

Cj = {X ∈ Rz : ϕj (X) ≥ 0}, (4.7) 

where ϕj (X) : Rz → R is a continuous mapping. The defnition can capture 
various safety requirements in autonomous driving, e.g., all road users do not 
collide with each other, and the vehicle’s speed should be less than a certain 
value when it is close to other vehicles. Let 

S = {Xτ ∈ Cj , ∀τ ∈ {k, k + 1, · · · , k + T }, ∀j}, (4.8) 

where T is the outlook time horizon. The long-term safety we aim to ensure 
is defned as 

P(S) ≥ 1 − ϵ, ∀k ≥ 0. (4.9) 

We will present the specifc choice of safe event used in the experiments in 
section 4.4. 

4.3 Proposed Method 

In this section, we present the safe condition to ensure long-term safety in 
subsection 4.3.1 and its realization as the safe occlusion-aware control algo-
rithm in subsection 4.3.2. 
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4.3.1 Condition for Assuring Safety 

In this subsection, we present a sufcient condition for the long-term safety 
specifcations (4.9). Let 

Ψ(I) := P(S|I) ∈ R (4.10) 

be the sequence of probability of event S conditioned on the information I. 
We defne a new notion of conditional discrete-time generator as below. 

Defnition 4. (Conditional discrete-time generator). The conditional discrete-
time generator A of a discrete-time stochastic process {xk}k∈Z+ conditioned 
on another process {yk}k∈Z+ with sampling interval ∆t evaluated at time k 
is given by 

E[ϕ(xk+1)|yk] − E[ϕ(xk)|yk]
Aϕ(xk|yk) = (4.11)

∆t 

whose domain is the set of all functions ϕ : Rn → R of the stochastic process. 

When xk = yk, this generator becomes the discrete-time counterpart of 
the continuous-time infnitesimal generator. We add the conditioning of yk to 
capture the ego vehicle’s limited information due to occlusions. Although the 
value of Aϕ(yk) depends on both xk and yk, with a slight abuse of notation, for 
the rest of the chapter, we will use Aϕ(yk) where the discrete-time stochastic 
process xk in Defnition 4 is the full state of the interaction system, i.e., Xk 

in (4.5). 
Let Qk be the information that the ego vehicle can acquire at time k. 

This information Qk will be Qk = [xk, x
o
k] with xok being the observed state 

of all other road users by the ego vehicle at time k. Note that Qk = xk if no 
other road users appear from the occlusions. 
We consider the following condition at all time k: 

AΨ(Qk) ≥ −γ(Ψ(Qk) − (1 − ϵ)), ∀k ≥ 0. (4.12) 

Here, γ : R → R is a function that satisfes the following 2 design require-
ments: 

Requirement 1: γ(h) is linear and increasing in h. 

Requirement 2: γ(h) ≤ h for any h ∈ R. 
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The probability measure of P(S|I) is taken over X, the global state, con-
ditioned on Q, the information that can be accessed by the ego vehicle. 
Therefore, the values on both sides of (4.12) can be computed using Q. 

Theorem 4.3.1. Consider systems (4.1) and (4.5). We assume the initial 
condition x0 = x satisfes P(S|x0 = x) ≥ 1 − ϵ. If at each time k, the 
ego vehicle generates a control policy that satisfes (4.12), then the following 
condition holds: 

P(S) = E[P(S|xk)] ≥ 1 − ϵ, ∀k ≥ 0. (4.13) 

See [93,94] for the proof. Theorem 4.3.1 says the long-term safety of the 
system is guaranteed by the proposed safe condition (4.12) for all time with 
desired probability. 

4.3.2 Proposed Safe Occlusion-Aware Control 

In this section, we propose a control strategy that imposes (4.12) to ensure 
long-term safety of the system. We start by approximating AΨ(Q), the 
infnitesimal generator of long-term safety. Since only the ego’s vehicle’s 
state can be controlled, with a slight abuse of notation, we use Ψ(x) to 
represent Ψ(Q) in the control design phase for the rest of the chapter. This 
Ψ(x) will refer to diferent Ψ(Q) under specifc situations (e.g., there are no 
other road users in sight, or pedestrians are currently crossing the street). 
Let D(x) ∈ Rn denote the fnite-diference approximation of the gradient 
∇xΨ(x), i.e., 

Ψ(x +∆ej ) − Ψ(x − ∆ej )Dj (x) = (4.14)
2∆ 

where Dj is the jth element of D, ∆ is the step-size, and ej denotes a vector 
that takes a scalar value of 1 in the jth entry and 0 otherwise. 

Lemma 5. If AΨ(x) exists, then: 

DTAΨ(x) = lim (x) (f(x) + g(x)u) . (4.15)j
∆→0 

Lemma 5 is a result of the chain rule, with the left-hand side of (4.15) 
being the time derivative of Ψ(x), and the right-hand side being the state 
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derivative of Ψ(x) multiplies dx/dt which is the dynamics (4.1). With this, 
we obtain the inequality constraint on the control-action u: 

−Dj
T (x)g(x)u ≤ Dj

T (x)f(x) + γ (Ψ(x) − (1 − ϵ)) (4.16) 

Utilizing the safety condition (4.16) and the nominal controller N from sec-
tion 4.2.1, we can formulate the safe controller K : Rn → Rm as a constrained 
quadratic optimization problem: 

K(x) := arg min ∥u − N(x)∥2 
u∈Rm (4.17) 
s.t. (4.16) 

The optimization problem penalizes deviation from the nominal control ac-
tion (minimally invasive) while ensuring the specifed constraints are satisfed, 
complying with requisite safety specifcations. 

Remark 7. The proposed optimization-based safe control (4.17) is easy to 
design and implement because it only contains function γ and the desired 
risk tolerance ϵ as tunable parameters and only imposes linear constraints on 
control, which forms an efcient quadratic program (QP). 

Remark 8. The variable Ψ(x) has the physical meaning of the safety prob-
ability of the system in the long term. Its value at x indicates how risky 
the system will be in the future, evolving from state x. This property of 
Ψ(x) can also guide the control design when necessary (e.g., one can directly 
specify the expected future state and control based on Ψ(x) when the control 
constraint (4.16) is numerically infeasible). 

4.3.3 Algorithm Description 

We present the overall safe control strategy in Algorithm 3. The safety 
probability, in procedure Ψ(x), is numerically estimated using Monte-Carlo 
simulations; we loop over the number of specifed MC-episodes (NE), and at 
the kth iteration, we do the following. In line 3, we initialize the safety check 
pk that switches to 0 when a violation is detected. In line 4, we initialize 
the state of vehicle dynamics initial value problem (IVP) with the current 
state estimate of the actual vehicle. Next, in line 5, we jointly solve the time-
invariant closed-loop vehicle dynamics IVP (4.3) with the initial condition 
from line 4 and the interaction motion model (4.5) over the specifed time 
interval T = {k, k + 1, · · · k + T }, giving us a forward rollout. Since both 
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Algorithm 3 Occlusion and interaction-aware safe controller 
Input: x ▷ Vehicle State 
Output: u ▷ Safe Control Action 
Parameters: T,NE ▷ Preview Horizon, # Episodes 

1: procedure Ψ(x) 
2: for k ∈ {1, 2, . . . , NE } do ▷ MC Episodes 
3: pk ← 1 ▷ Initialize safety check 
4: x0 ← x ▷ Initialize state 
5: Solve (4.3) and (4.5) in T ▷ Forward Rollout 
6: if not S then 
7: pk ← 0 ▷ Safety Violation 
8: end if 
9: end for 

1 PNE10: return pk ▷ Safe probability 
NE k=1 

11: end procedure 
12: 

13: procedure K(x) 
14: uN ← N(x) ▷ Compute nominal control action 
15: Obtain D(x) using (4.14) ▷ Gradient of Ψ 
16: Obtain u by solving QP (4.17) with constraint (4.16) 
17: return u 
18: end procedure 

the vehicle and the interaction models are time-invariant, the start and end 
times of the interval T are irrelevant. In line 7, we check for a safety violation 
in the forward rollout. Finally, at the end of the procedure, we compute and 
return the mean of pk over all the episodes. Since Ψ(x) gives the safety 
probability of the system over the time horizon T , it encodes information of 
prediction on the future as well as the levels of uncertainty. 
Procedure K(x) encompasses the constrained optimization controller out-

lined in (4.17), which involves evaluating the nominal control action uN in 
line 14, computing the fnite diference approximation of the gradient of safe 
probability D(x), and fnally obtaining the safe control action by solving the 
QP (4.17). This control action ensures that condition (4.9) is met. 
Therefore, Algorithm 3 can account for long-term safety and guarantees 

to steer system trajectories toward the direction of non-decreasing long-term 
safe probability in the presence of latent risks, eliminating potential myopic 
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Figure 4.1: Occluded crosswalk scenario of interest. 

decision-making, typically seen in traditional safe control techniques [1], that 
may result in unsafe behaviors in the future. 

4.4 Deployment and Experiment 

For the remainder of this chapter, we focus on a case study of the safe control 
strategy on a pedestrian-vehicle interaction scenario at occluded crossing 
intersections. We introduce the design of the simulation in section 4.4.1, 
the experiments on a 1/10th scale autonomous vehicle in section 4.4.2, and 
present the results in section 4.4.3. We point out that even though we have 
chosen to examine the safety of pedestrian-vehicle interactions at crossing 
intersections as the case study, the proposed control strategy can be applied 
to diferent road scenarios without redesign. 

4.4.1 Case Study Scenario 

We consider a case of an intersection with an unsignalized marked crosswalk 
(zebra crossing) as seen in Fig. 4.1. We use local coordinates whose origin is 
D away from the edge of the crosswalk. 
Here, the vehicle’s position is (xc, yc) , the distance from the car to the 

crosswalk is D − xc, and the ith pedestrian’s position along the crosswalk is 
denoted by yp

(i) 
. We assign a bounding box to each pedestrian with dimen-

sions (δx, δy), centered around the pedestrian’s position, as seen in Fig. 4.1. 
The obstruction, which is a parked truck, has size o and occludes pedestrians’ 
presence from the feld of view of the vehicle until they have moved past it. 
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1) Vehicle Model: For the simulation, we start by setting up the dy-
namics of the vehicle based upon [82]. Assuming the vehicle is a point-mass 
moving along a straight line, we get the following dynamics 

dv 
m = Ft − Fr, (4.18)
dt 

where m is the mass of the vehicle, v is the longitudinal velocity of the 
vehicle, Ft is the tire force generated by the engine/motor, and Fr is the net 
drag force due to the tire’s rolling resistance and aerodynamic drag. Here, 
we assume Ft to be our control input. With this, we can write down the� �T 
governing equations of motion as an ODE. Let x = x1 x2 , where x1 

is the vehicle’s position, and ẋ 1 = x2 = v the longitudinal velocity. With 
this, assuming a time-step of ∆t, we get the following discrete-time system 
dynamics using the forward-Euler method � � � � 

x2k 0 
xk+1 = xk +∆t +∆t 1 uk. (4.19)− 1 

m Fr m| {z } | {z } 
f(xk) g(xk) 

2) Nominal Cruise Controller: The cruise controller maintains a set 
cruising speed while ensuring comfortable acceleration/deceleration. When 
a pedestrian is visible in the vehicle’s feld of view, the cruise controller at-
tempts to reduce the vehicle’s speed based on the calculated time-to-collision 
TTTC to that pedestrian 

r 
TTTC = , (4.20)

max (−r,˙ 0+) 

where 0+ is a small positive constant and r is the estimated range to the 
pedestrian, note that the vehicle’s auxiliary automatic emergency braking 
system will take precedence over the nominal cruise controller in a catas-
trophic situation. 

3) Pedestrian Model: In our study, we model the behaviors of pedestrians 
as the combination of decision-making and motion dynamics described in 
section 4.2.2. Specifcally, in the scenario shown in Fig. 4.1, we model that 
the pedestrians keep crossing without detecting the ego vehicles with a certain 
probability. This pedestrian model allows us to account for the worst-case 
scenarios when evaluating safety (e.g., distracted pedestrian keeps crossing 
even as a car approaches them). 
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The decision process for pedestrian i, assumes that after the pedestrian 
has crossed the occlusion, they will recognize the oncoming vehicle and stop 
with a probability α: ( 

Bernoulli(α) if yi ≥ o(i) pd(k) ∼ D(y | Zk) = (4.21)p 
0 if yp

i < o 

where Zk is the event of a vehicle currently approaching the crosswalk at 
time step k and d(k) ∈ {0, 1} is a Bernoulli stochastic process, indicating 
whether or not the pedestrian recognizes the vehicle and stops. 
For the pedestrian motion model, we have that when pedestrian i begins 

crossing, they travel at a fxed speed sampled from a normal distribution 
v
(i) ∼ N ( vped, σ2 ) [95] till they’ve reached the end of the crosswalk orped ped 

stop after recognizing the oncoming car: 

(i) (i)
yp ∼ fz(yp | d(k))(k+1) (k)( 
0 if d(k) = 1 (4.22) 

= (i) (i)
v ∆t + yp if d(k) = 0ped (k) 

Further, we assume that pedestrians arrive at the crossing independently 
of each other and at random with a mean interarrival time Ta [96,97]. That 
is to say, within an infnitesimally small time interval dt, the probability of 
a pedestrian arriving at the crossing is dt/Ta. As a consequence, the time 
interval ∆T between two successive pedestrians arriving at the crosswalk will 
follow an exponential distribution, and the number of pedestrians Np that 
arrive within a time interval ∆t will follow a Poisson distribution: 

∆T ∼ Exponential (1/Ta) (4.23) 

Nped ∼ Poisson (∆t/Ta) (4.24) 

5) Safety Specifcation: For this case study, we defne the safety criteria 
in terms of the set Bi ⊂ R2 , which is set of the ith pedestrian’s bounding box 
as seen in Fig. 4.1: � � � � 

(i) (i) (i) (i)Bi = x − δx, x + δx × y − δy, y + δy (4.25)p p p p 

with this, we specify the safe event Cti at time t as the set of outcomes wherein 
the vehicle is not present in Bi , i.e., (xc, yc ∈ Bi) / . 
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4.4.2 Hardware Experimental Setup 

We evaluate the feasibility and efcacy of the proposed safe control algorithm 
in a real-world scaled setting of our case-study environment. In particular, 
we implement the proposed method on a 1/10th scale autonomous vehicle 
(AV) (see [98] for specifc details on the hardware platform). We used an 
NVIDIA Jetson Xavier NX with a CPU SPEC2006 score of 18.9 GFLOPS as 
our mobile-embedded computing platform and ROS-2 in C++ for software. 
The computing capability of our platform is relatively limited. One major 
challenge of the hardware experiments includes added stochasticity due to 
imperfect state estimation, which in our case, comes from a particle flter. 
Another challenge is that most autonomous driving stacks rely on kinematic 
control inputs, i.e., velocity and not acceleration. To account for this, we use 
an online double integrator model of the vehicle dynamics (4.19) to trans-
late our proposed controller’s acceleration outputs into velocity commands, 
allowing seamless integration into existing state-of-the-art platforms. 

1) Hardware Nominal Controller: For path tracking, we use a kinematic 
model-based linear time-varying MPC [99]. We use the cruise controller 
outlined in section 4.4.1 for speed control. 

2) Proposed Controller Implementation: The limited compute capability 
of the embedded platform poses a challenge to real-time implementation. To 
address this issue, we propose modifying procedure Ψ(x) in Algorithm 3 as 
follows. First, we ofine precompute the values of Ψ(x) with a mesh grid of x 
to form a lookup table as shown in Fig. 4.2. We then store this lookup table 
and use it to build a sinc interpolator. With the interpolator, it is possible 
to achieve real-time performance. 

3) Experiment Setup: Fig. 4.3 shows the experimental setup for the 
hardware evaluation. The goal of the nominal controller, in this case, would 
be to drive the vehicle along the corridor and through the occluded intersec-
tion (blue bin) as seen in Fig. 4.3. 

4.4.3 Results and Analyses 

In this section, we present empirical results of proposed method’s perfor-
mance with numerical simulations and hardware experiments. These serve 
to quantify and corroborate the technical merits of the proposed method, 
specifcally the guaranteed long-term safety, balancing opposing safety and 
performance objectives and robustness to large uncertainties. For all experi-
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Figure 4.2: Precomputed lookup table of Ψ(x). 

Figure 4.3: Case-study environment for hardware experiments. 
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Figure 4.4: Long-term safe probability of proposed method for three param-
eter cases. The top subplot shows the efect of varying the mean interarrival 
time Ta, the middle varies in occlusion size o, and the bottom-most varies in 
pedestrian awareness probability α. 

ments, we pick an outlook horizon of T = 10 s and a baseline cruising velocity 
of vcruise = 35 mph. 

1) Long-term safety guarantee: We choose a risk tolerance of ϵ = 0.10. 
We run the proposed controller with diferent pedestrian interarrival time 
Ta, occlusion size o, and pedestrian awareness α. We choose Ta = 25 s, 
o = 2.25 m, and α = 0.4 as the baseline parameter values and vary one of 
the parameter values for ablation experiments. 
Fig. 4.4 shows the proposed controller’s ability to guarantee long-term 

safety under all tested circumstances. In the frst subplot of Fig. 4.4, the 
safety probability drops earlier in response to shorter interarrival times, larger 
occlusion sizes, or lower pedestrian awareness, thereby demonstrating the 
algorithm’s predictive capabilities. 
Fig. 4.5 shows the vehicle velocities generated with the proposed safe 

controller on diferent parameter settings. We see that the proposed method 
modulates the vehicle’s velocity tantamount to perceived latent risks. For 
cases with higher perceived latent risk, we see that the speed reduces well 
ahead of the occlusion’s position and maintains that speed until past it, show-
casing the proposed controller’s ability to look into the future and impose a 
more efective safe control on the system once the safety probability tends 
to drop. Further, when perceived risks are lower, the controller does not 
slow down more than necessary, not compromising the desired performance. 
This phenomenon is made more evident in Fig. 4.6, where we compare the 

92 



Figure 4.5: Safe vehicle velocity generated for three parameter cases. The 
top subplot shows the efect of varying the mean interarrival time Ta, the 
middle varies in occlusion size o, and the bottom-most varies in pedestrian 
awareness probability α. 

minimum safe speeds of the vehicle with varying risk tolerance values ϵ. 
2) Safety v/s Performance Trade-of: We begin by quantifying safety, 

performance, and uncertainty in the context of our case study. We use the 
distance traveled by the vehicle over 2 minutes as the performance met-
ric; for safety, we use the minimum safe probability achieved over the run, 
and for uncertainty in the pedestrian arrival process, we evaluate the Shan-
non Entropy of (4.24). To obtain the trade-of, in the case of the nominal 
controller, we vary the desired cruising speed, and for the proposed con-
troller, we range over the risk tolerance ϵ with baseline parameters. In this 
case, we have chosen [6.433, 8.467, 10.411, 12.223, 14.258] mph as the de-
sired speeds for the nominal controller to match the risk levels achieved 
by the proposed method closely. For the proposed controller, we choose 
[0.1, 0.125, 0.150, 0.175, 0.200] as values for the risk tolerance parameter ϵ. 
And fnally, we also consider H∞ control to demonstrate the efects of using 
a deterministic worst-case safe controller. Fig. 4.7 exhibits our proposed 
method’s ability to fulfll the desired safety requirements while not being 
excessively conservative, and Fig. 4.8 shows that the proposed method’s per-
formance degrades gracefully with increasing uncertainty. Furthermore, we 
see that accounting for all possible worst-cases without considering causal-
ity, as in the case of the H∞, produces overly conservative behaviors that 
compromises performance or in some cases induces infeasibility. 

3) Hardware Experiment Results 
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Figure 4.6: Minimum safe speeds achieved with the proposed controller over 
all three parameters and for diferent risk tolerances ϵ. 

Figure 4.7: Performance v/s safety tradeof. 

Figure 4.8: Performance v/s uncertainty in pedestrian arrival process. 
Matching colors for plots of the nominal and proposed controller correspond 
to equivalent safety probabilities. 
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Figure 4.9: Experimental results of long-term safe probability (top) and safe 
vehicle velocities (bottom) for fve cases of ϵ. 

A video of the experiments can be found at Video Link. We run repeated 
identical experiments on the 1/10th scale AV over fve values of the risk 
tolerance parameter ϵ and record estimated state and sensor data. Fig. 4.9 
demonstrates that the performance of the proposed controller on hardware is 
consistent with our simulation results. Further, benchmarking the proposed 
algorithm on the embedded platform yields the following statistics for com-
putational throughput: average rate of 67.924 Hz, maximum rate of 166.67 
Hz, minimum rate of 52.631 Hz, with a standard deviation of 0.02661 Hz, 
over 61130 samples. 

4.5 Summary 
This chapter proposes an occlusion- and interaction-aware safe control strat-
egy that ensures long-term safety in the presence of latent risks without 
overly compromising performance. We demonstrate its reliability and com-
putational efciency via numerical simulations and hardware experiments. 
Finally, we show that the proposed controller is modular and can seamlessly 
integrate into existing control frameworks, vastly improving its applicability. 
Future work includes conducting real-world experiments with the proposed 
method, and comparing the results with human driving behaviors. 
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A.3 Code 

Open source code for myopic long-term safe control [68]: 
https://github.com/jacobwang925/MCLS. 

109 

https://github.com/jacobwang925/MCLS

	Theoretical Foundation
	Introduction
	Related Work
	Contributions of This Chapter

	Preliminary
	Problem Statement
	System Model
	Probabilistic Characterization of Safe Behaviors
	Design Goals

	Proposed Method
	Conditions to Assure Safety
	Safe Control Algorithms
	Improving the Accuracy of Gradient Estimation

	Deployment and Experiment
	Algorithms for Comparison
	Settings
	Results

	Summary

	Dealing with Extreme Driving Conditions
	Background
	Related Work
	Contributions of This Chapter

	Problem Statement
	System Model
	Nominal Controller
	Safety Specifications

	Proposed Method
	Proposed Safety and Recovery Condition
	Proposed Safe Adaptation Algorithm

	Deployment and Experiment
	Vehicle Model
	Controllers and Design Specifications
	Results

	Summary

	Dealing with Other Agents on the Road
	Background
	Related Work
	Contributions of This Chapter

	Problem Statement
	System Model
	Nominal Controller
	Design Goal

	Proposed Method
	Conditions to Assure Safety and Operational Specifications
	Proposed Controller
	Proof of Theorem 4

	Deployment and Experiment
	Summary

	Dealing with Vehicle Occlusions
	Background
	Related Works
	Contributions of This Chapter

	Problem Statement
	System Model
	Interaction Model
	Occlusion Model
	Safety Specification

	Proposed Method
	Condition for Assuring Safety
	Proposed Safe Occlusion-Aware Control
	Algorithm Description

	Deployment and Experiment
	Case Study Scenario
	Hardware Experimental Setup
	Results and Analyses

	Summary

	Research Products for This Project
	Journal Publications
	Conference Publications
	Code




