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1. Introduction 
Roadwork zones present a serious impediment to vehicular mobility. Whether new construction or 

maintenance is taking place, work in road environments causes lower vehicle speeds, congestion, 

increased risk of rear-end collisions, and more difficult maneuvering. For example, around 24% of non-

recurring congestion occurs in roadwork zones, which equates to 482 million vehicle hours of delays3. To 

combat the disruption of roadwork zones, Departments of Transportation4 are employing predictive 

analysis tools to deploy more efficient roadwork configurations. Further efficiencies can be gained for 

individual drivers with crowd-sourced navigation systems like Waze, but those data must be manually 

entered causing a visual, motor, and cognitive distraction for the driver. Google maps now automatically 

shows roadwork, but those data are often slow to update and do not distinguish between active/inactive 

work zones or specify lane restrictions/changes. Additionally, driver assistive and autonomous driving 

technology do not reliably function or navigate a vehicle through roadwork especially when lane 

markings are absent. For example, a driverless autonomous vehicle recently navigated itself into a 

construction site then drove itself into an open trench5.  

In this work, we focus on using visual data from affordable cameras to address some of these problems 

of roadwork identification by developing computer vision and machine learning methods for automatic 

detection and localization of roadwork zones. We envision that the calculated information can be shared 

with other drivers and enable dynamic route planning for navigation systems, driver assist systems, and 

self-driving cars for efficiently and safely maneuvering through or around road work zones. Moreover, a 

comprehensive view of road work activity in a region can be constructed from information shared and 

distributed by users. Such a view would prove to be a useful tool for dynamic detour route adjustment to 

optimize traffic flow. 

 

Figure 1: Example roadwork zones exemplifying their heterogenous appearance.  

 
3 FHWA, "Making Work Zones Work Better". https://ops.fhwa.dot.gov/aboutus/one_pagers/wz.htm 
4 Kirkpatrick, Rich."PREDICTIVE WORK ZONE ANALYSIS TOOL OFFICIALLY DEPLOYED JULY 1". PennDOT Bureau of 
Innovations, July 28, 2021. https://www.penndot.pa.gov/PennDOTWay/pages/Article.aspx?post=451 
5 Zigoris, Julie. "Driverless Waymo Car Almost Digs Itself Into Hole—Literally". San Francisco Standard, January 15, 
2023. https://sfstandard.com/2023/01/15/driverless-waymo-car-digs-itself-into-hole-literally/ 



2. Methods 
Identifying roadwork from visual data from cameras, as well as data from other sensors such as LIDAR, is 

an extremely challenging problem because road work zones are dynamic and heterogeneous in 

appearance (Figure 1). No two roadwork sites (construction or maintenance) look alike. Because of this, 

driver-assist and self-driving systems have difficulty with navigation within these zones. For example, 

longitudinal road markings not changed during lane shifts may cause lane keep assist systems to steer 

towards barriers or other objects. In this example, a system that automatically recognizes a roadwork 

zone on approach could provide a warning to the driver and disable lane keep assist. To our knowledge, 

there is little work being done in this area. Our approach was to detect objects commonly located within 

roadwork sites and based on their proximity to each other, location relative to surfaces (e.g., roads, 

sidewalks, bike lanes, etc.), other heuristics, determine whether roadwork is present. Achieving this 

objective required development in the following areas. 

2.1. Roadwork Dataset Creation 
There are not any known datasets that provide labeled roadwork zones or labeled objects commonly 

found within roadwork zones. Therefore, a novel, comprehensive dataset was created. To create the 

dataset roadwork images from 19 different U.S. cities were manually labeled (assigned a class) and 

segmented (delineated with a polygon), collectively referred to as annotated in this report. Descriptive 

tags were assigned to each image to capture additional information about the roadwork zone and the 

environment. Additionally, a general description describes the roadwork objects and roadwork zone.  

Images were obtained from cameras mounted on vehicles driving around in 19 U.S. cities. We collected 

images in the Greater Pittsburgh Area with an Apple iPhone 14 Pro Max mounted on the inside 

windshield of a standard passenger vehicle. Areas of roadwork were found by following data provided by 

the PA government, e.g., 511PA6 and random searches. Once a roadwork zone was found, images were 

captured by means of a wireless (Bluetooth) remote camera trigger. Images were filtered to reduce the 

number of similar viewpoints of the same roadwork zone. Images not containing roadwork were also 

captured for testing purposes. In total, there are 3,171 Pittsburgh images that we captured in the 

Roadwork Dataset.  

Table 1: Number of images for each data source and city included in the roadwork dataset resulting in a total of 8,556 images. 

Data Source: City # Images Data Source - City # Images 

CMU: Pittsburgh 3,171 Roadbotics: Indianapolis 95 

Roadbotics: Philadelphia 161 Roadbotics: San Antonio 381 

Roadbotics: Washington DC 266 Roadbotics: Boston 861 

Roadbotics: Pittsburgh 597 Roadbotics: Phoenix 42 

Roadbotics: Houston 63 Roadbotics: Minneapolis 116 

Roadbotics: Charlotte 223 Roadbotics: San Francisco 236 

Roadbotics: Detroit 522 Roadbotics: Seattle 293 

Roadbotics: New York City 124 Roadbotics: Denver 465 

Roadbotics: Jacksonville 38 Roadbotics: Los Angeles 674 

Roadbotics: Chicago 118 Roadbotics Columbus 110 

 

 
6 https://www.511pa.com/ 



To add more instances of roadwork objects and roadwork zones in Pittsburgh and other U.S. cities, 

images were used from the RoadBotics Open Data Set7. Using images in other cities also captures the 

variability of objects, work vehicles, etc. present in other cities. The RoadBotics dataset includes videos 

captured by windshield mounted devices, GPS data, and accelerometer data. Frames were extracted 

from the video files by assuming that most roadwork zones have traffic cones. A simple traffic cone 

detector was used on the video files to save the image frames. Often the vehicle was stopped resulting 

in a sequence of images capturing the same exact scene. In such cases, the image sequence was 

manually filtered by deleting repetitive images. In some cases, images were kept if they captured unique 

obstructions of roadwork objects or roadwork zones. 8,556 images were saved for the dataset. The 

number of images for each data source and city are summarized in Table 1. While images were 

annotated, models were trained and evaluated to determine which objects were rarer and required 

more annotations. Further efforts to filter images focused on more rare objects hence the lower number 

of images that were saved for some cities. 

The objects common to roadwork zones found in the United States were identified and named according 

to the Federal Highway Administration’s Manual on Uniform Traffic Control Devices (MUTCD)8. 

Additionally, the main surfaces found in a road environment were also of interest for localization 

potential. Objects were segmented either completely manually or with the guidance of semantic 

segmentation (Figure 2). Any objects that were occluded were marked as such within the native CVAT 

framework. The results of semantic segmentation still required manual intervention for assigning labels 

to relevant objects and, at times, correcting polygon points to follow object boundaries better. Non-work 

people and non-work vehicles were also sparsely included since they were reliably delineated with 

semantic segmentation. The Computer Vision Annotation Tool (CVAT)9, which is a free and open-source 

web-based tool was used for annotating the images. CVAT was installed on a server in a secure lab where 

members of the team and external labeling companies (SRN Tech Solutions and Label Your Data) 

segmented the images. Most labels were assigned to segmented objects by a single person at CMU. A 

list of the objects that were annotated are in Table 2. 

 

Figure 2: Left shows an example image of a work zone. Right shows an example with objects of interest that have been 
manually segmented by polygons. The polygons are overlayed with a unique color. Each segmented object is outlined with a 
solid line if it is not occluded and a dashed line if it is occluded.  

 
7 https://www.roadbotics.com/2021/03/15/roadbotics-open-data-set/ 
8 https://mutcd.fhwa.dot.gov/pdfs/2003/Ch6F.pdf 
9 https://www.cvat.ai/ 



Table 2: List of objects that were manually annotated. Light gray objects are not typically associated with 
roadwork and those shown in dark gray are the main surfaces found in a road environment.  

Object Object Object 

Worker Barricade Non-Work Person 
Work Vehicle Vertical Panel Non-Work Vehicle 

Work Equipment Tubular Marker Road 
TTC* Sign Cone Sidewalk 
Guide Sign Drum Bike Lane 

Lane Ends Sign Fence Off Road 
TTC Message Board Other Roadwork Objects Roadside 

Arrow Board Police Officer 
Work Zone 

Barrier Police Vehicle 

* TTC: Temporary Traffic Control 

The descriptive info included with each image was manually assigned. Almost all of the info was assigned 

by the same person at CMU. The categories are below followed by each of the options.  

• Environment: Urban, Suburban, Highway, Rural, Unknown, Other 

• Time: Dark, Light, Twilight, Unknown, Other 

• Work Zone?: Yes, No, Unsure 

• Travel Alteration: Lane Shift, Partially Blocked, Fully Blocked, None, Other 

• Weather: Snow, Sunny, Wet, Cloudy, Partly Cloudy, Fog or Mist, Ice, Other, Unknown 

A General Description was also manually written to describe the roadwork objects and zone. The dataset 

is available at https://cs.cmu.edu/~ILIM/roadwork_dataset 

2.2. Dataset Augmentation 
It is costly to capture and annotate the many thousands of images needed to train models for each of 

the objects of interest. To augment these real-world images, a method was developed to paste manually 

segmented objects into other images allowing us to create roadwork zones in images that do not contain 

roadwork zones. Roadwork object models can be trained on many more images to improve detection 

results.  

Achieving instance segmentation with performance capabilities reliable enough for real-world 

applications, machine learning models are typically pre-trained on a large, annotated dataset of common 

objects and then fine-tuned on a dataset representative of the context in which the model will be 

deployed and containing the categories relevant for detection. However, building large-scale, annotated 

datasets is a very costly and time-consuming process. To mitigate this issue, methods of creating new 

annotated images by augmenting existing datasets have been explored. For example, Copy-Paste 

methods place manually segmented objects into another image randomly10 or based on surrounding 

context11, and placing objects in different random locations within the same image12.  

 
10 G. Ghiasi, Y. Cui, A. Srinivas, R. Qian, T.-Y. Lin, E. D. Cubuk, Q. V. Le, and B. Zoph, “Simple copy-paste is a strong 
data augmentation method for instance segmentation,” in Proceedings of the IEEE/CVF conference on computer 
vision and pattern recognition, 2021, pp. 2918–2928.  
11 N. Dvornik, J. Mairal, and C. Schmid, “Modeling visual context is key to augmenting object detection datasets,” in 
Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 364–380. 



 

Figure 3: Overview of the GeometryPaste method. Objects are copied from their original images and pasted into new images 
using geometry and context. 

A limitation of these methods is the lack of automatic object scaling. We developed a Copy-Paste 

method called GeometryPaste to incorporate geometric information to ensure pasted objects are of the 

correct scale relative to their depth from the camera. The result is realistic data augmentation to 

increase instance segmentation performance on rare object categories. GeometryPaste copies objects 

from their original images and paste them onto new background images using both the geometry and 

context of the objects and background images. First, we randomly choose an object and a background 

image. Then we choose a random point on the existing road segmentation in the background image to 

paste the object onto. Next, the object is scaled to the appropriate size based on the location of the 

chosen point. The object is then pasted onto the new image, allowing for partial truncation. Finally, 

existing object annotations are updated to account for occlusions from the pasted object. The entire 

system overview is shown in Figure 3. Each step of the method is described below, and results can be 

found in Section 3.2.  

Object Selection: Although multiple objects can be used with our method, we focus on objects that are 

underrepresented and difficult for our model to detect based on AP scores. Specifically, we choose only 

the TTC Message Board from our dataset to paste into new background images. Because TTC Message 

Boards have many sizes, configurations, and messages, we select 27 TTC Message Boards with high-

quality annotations from our training dataset to ensure diversity in the generated images. Despite being 

the highest quality, some quality issues exist with the selected TTC Message Boards, including small 

occlusions from other objects and missing parts due to annotation errors. 

 
12 H.-S. Fang, J. Sun, R. Wang, M. Gou, Y.-L. Li, and C. Lu, “Instaboost: Boosting instance segmentation via probability 
map guided copypasting,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 
682–691. 



Background Selection: Background images are chosen from our training dataset and contain existing 

objects. Because most images contain at most one TTC Message Board, we select background images 

without TTC Message Boards. Again, due to annotation errors, many images do not contain road 

segmentations. Since the objects will be pasted onto points selected from the road segmentation, we 

ensure the chosen images contain a road segmentation. Another constraint is that the image must 

contain its predicted vanishing point. This constraint is imposed to assist with visual analysis of the 

quality of the vanishing point prediction, which is used in our scaling function. In total, there are 1,640 

candidate background images. 

Pasting, Truncation, and Occlusions: To maintain appropriate context, objects are pasted onto randomly 

chosen points from the road segmentation of background images. Truncation occurs when the object is 

pasted such that the image boundary partially occludes it. Our policy for truncation is the same as in 

Dwibedi, et al13. That is, we ensure at least 25% of the object’s bounding box remains in the image. If, 

after scaling the object, the chosen location results in a truncation of more than 75%, a new location is 

selected. In addition to truncation, occlusions of existing objects may occur after pasting the object into 

the new image. Existing object annotations are updated accordingly to account for occlusions for objects 

that remain at least 25% visible and removed otherwise. 

Object Scaling: Having the camera parameters for our dataset and ensuring the vanishing line is within 

the image allows us to scale the object to the appropriate size. Let 𝑦 be the object height, f the camera 

focal length, 𝑣𝑐 the camera optical center y-coordinate, 𝑦𝑐  the camera height, 𝑣0 the y-coordinate of the 

horizon line, and 𝑣𝑡 and 𝑣𝑏the object top and bottom coordinates, respectively.  

 

Therefore,  

 

Letting 𝑣𝑏 be the y-coordinate of the new location, the new height becomes 𝑣𝑡 − 𝑣𝑏, and the width is 

scaled accordingly to maintain the aspect ratio. The y-coordinate of the horizon line 𝑣0 is predicted using 

NeurVPS14, a deep neural network vanishing point detector. The object’s height 𝑦 in its original image is 

obtained using its ground-truth annotation, known camera parameters, and predicted vanishing point 

with Equation (5) from15. 

Blending: We apply either no blending or Gaussian blurring to pasted objects. When Gaussian blurring is 

applied, each image is generated twice: once with no blending and once with Gaussian blurring. The 

background image remains the same, and the object maintains the same position and scale, with the 

only difference being the blending strategy. 

 
13 D. Dwibedi, I. Misra, and M. Hebert, “Cut, paste and learn: Surprisingly easy synthesis for instance detection,” in 
Proceedings of the IEEE international conference on computer vision, 2017, pp. 1301–1310. 
14 Y. Zhou, H. Qi, J. Huang, and Y. Ma, “Neurvps: Neural vanishing point scanning via conic convolution,” Advances in 
Neural Information Processing Systems, vol. 32, 2019. 
15 D. Hoiem, A. A. Efros, and M. Hebert, “Putting objects in perspective,” International Journal of Computer Vision, 
vol. 80, pp. 3–15, 2008. 



2.3. Road Marking Detection 
Markings on the pavement such as center markings, edge markings, and lane markings are crucial for 

providing guidance to drivers. Often in roadwork zones, these pavements markings are painted over and 

repainted, which can be confusing to drivers. A system that automatically detects road markings in 

roadwork zones can warn drivers or even provide more accurate information to driver assist systems. 

Unfortunately, detecting roadwork markings in roadwork zones is very challenging because there are not 

any known datasets. In this work, we developed a method to transfer labels for roadwork markings from 

a publicly available dataset to images in our roadwork dataset. 

The roadwork dataset has 26 classes, but there are 

many more classes that could be relevant for 

detecting roadwork zones. For example, detecting 

road markings and comparing them to past data can 

be indicative of roadwork activity. Manually 

annotating road markings would be extremely time 

consuming. However, other datasets may have road 

markings annotated. This work focuses on a 

framework for training a segmentation model that 

incorporates annotations from two separate datasets 

(Figure 4) Motivated by the need for a unified and 

versatile instance segmentation model, we explored 

how to train such a model effectively using datasets 

with diverse label spaces. Leveraging the power of 

transformer-based architectures, particularly the 

Mask2Former model, we built an instance 

segmentation model capable of detecting a broader 

array of objects than individual datasets alone.  

The primary research question revolves around understanding how the Mask2Former model can 

generalize and adapt to different label spaces, thereby enabling the detection of additional categories in 

an efficient and accurate manner. To accomplish this, we adopt a two-step approach: firstly, we train the 

Mask2Former model using the Mapillary Vistas dataset16, and secondly, we fine-tune the model on an 

augmented dataset, obtained by pseudo-labeling the Roadbotics dataset with instances of the “lane 

marking-general” category from Mapillary Vistas. The whole training process is done with mmdetection17 

and Detectron218, two open source libraries that provides all kinds of Mask2Former segmentation 

models. By examining the model’s performance on the test set, including Precision-Recall curves and 

Qualitative results, we aim to assess the effectiveness of our proposed method. 

 
16 Connor Shorten and Taghi M Khoshgoftaar. “A survey on image data augmentation for deep learning”. In: Journal 
of big data 6.1 (2019), pp. 1–48. 
17 Kai Chen et al. “MMDetection: Open MMLab Detection Toolbox and Benchmark”. In: arXiv preprint 
arXiv:1906.07155 (2019). 
18 Yuxin Wu et al. Detectron2. https://github.com/facebookresearch/detectron2. 2019. 

Figure 4: Training a segmentation model that incorporates 
annotations from two datasets. 



 

Figure 5: Three step pipeline for training a unified detector.  

A three-step pipeline (Figure 5) was developed for training a unified object detector from two separate 
datasets. First, two separate detectors are trained on each of the datasets. Second, a pseudo ground 
truth is obtained. Finally, the unified detector is trained with the pseudo ground truth.  

Datasets: Our study utilizes two critical datasets, namely the publicly available Mapillary Vistas dataset 
and the in-house collected Roadbotics dataset. The Mapillary Vistas dataset comprises a diverse 
collection of street scene images. On the other hand, the Roadbotics dataset focuses on construction 
zone-related objects. 

1) Mapillary Vistas Dataset: Mapillary Vistas dataset is a large-scale street-level image dataset containing 
25,000 high resolution images annotated into 66/124 object categories of which 37/70 classes are 
instance-specific labels (v.1.2 and v2.0, respectively). In the Mapillary Vistas dataset, the “lane marking-
general” category is labeled as ‘stuff’, representing the continuous and amorphous regions of lane 
markings. Since lane markings are not treated as individual instances but rather as part of the 
background in the instance segmentation setting, we utilized a panoptic segmentation model to 
inference and segment the semantic component of the “lane marking-general” category.  

2) Roadbotics Dataset: The Roadbotics dataset focuses on objects closely related to construction zone 
areas. The whole dataset has 5071 images and is then split into 3 sets, where the training set has 3584 
images and 44537 annotations; the validation set has 513 images and has 6331 annotations; the test set 
has 974 images and 16932 annotations. By utilizing the approach of pseudo labeling, we then add 31475 
annotations of lane markings to the training set, 4477 annotations of lane markings to the validation set 
and 9371 annotations of lane markings to the test set. 

 

Figure 6: Example of pseudo-labeling an image: (a) Original Image; (b) Inference with pretrained panoptic 
segmentation model; (c) Extracting the mask; (d) Segmenting masks based on connectivity; (e) Original 
annotation of the image; (f) Image with pseudo labels added. 



Pretrain the Panoptic Segmentation Model: We select the panoptic segmentation model of 

Mask2Former pretrained on the Mapillary Vistas dataset from the model of Detectron2. The pre-trained 

Mask2Former model with 200 queries utilizes the Swin-L backbone trained on the IN21k dataset for 

300,000 iterations. It achieves competitive performance with a PQ (Panoptic Quality) score of 45.5 and 

an mIoU (mean Intersection over Union) of 60.8 on the Mapillary Vistas dataset.  

Pseudo Labeling: Given that the original label space of the Roadbotics dataset does not include the lane 

marking, the pretrained model analyzes each image and generates pixel-level predictions in the form of a 

two-dimensional matrix, representing the semantic information for various object categories present in 

the scene. This process corresponds to the subfigure (a)-(b) in Figure 6. Once we have the inference 

results, we need to extract the mask corresponding to the lane markings from the generated matrix. We 

define specific rules and criteria to isolate the lane markings based on their semantic class labels. These 

rules help us segment and extract the specific pixels that represent lane markings from the inference 

matrix. This process corresponds to the subfigure (c)-(d) in Figure 6. 

After successfully extracting the mask for lane markings, the next step is to convert these masks into a 

COCO compliant format. We follow the COCO annotation format guidelines and organize the mask 

information into suitable JSON files. Each instance of lane marking is represented as a separate mask, 

and its corresponding category information is associated with a unique identifier. This allows us to create 

an augmented dataset in the COCO format, which includes the pseudo-labeled instances of lane 

markings, along with their corresponding semantic information. This process corresponds to the 

subfigure (e)-(f) in Figure 6. 

Model Training: In this phase, we conducted fine-tuning of the instance segmentation models, utilizing 

the pseudo-labeled dataset generated earlier. The Mask2Former architecture was employed, and the 

training was carried out in two different frameworks, namely mmdetection and detectron2. To expedite 

parameter updates and promote faster convergence, a strategic decision was made to employ the 

ResNet-50 backbone for the Mask2Former model in both mmdetection and detectron2 frameworks. This 

choice was carefully made, considering computational efficiency while ensuring the retention of strong 

feature representation capabilities.  

To harness transferable knowledge and facilitate faster convergence, both models underwent pretraining 

on the original Roadbotics dataset before fine-tuning on the augmented pseudo-labeled Roadbotics 

dataset. This approach allowed the models to efficiently adapt to the new dataset and effectively 

recognize lane markings. Results can be found in Section 3.3.  

2.4. Roadwork Detection and Localization 
Current methods for road work zones mainly rely either on object detection or fine-tuning large pre-

trained image classification models. Methods that categorize work zones only on object detection 

neglect to interpret the dynamics, structure, and functional significance of the work zone while also 

using a limited list of items missing crucial elements that have great significance. On the other hand, 

current methods that employ transfer learning on large pre-trained image classification models do not 

make any progress toward localization and fail to refute spurious correlations or unintentional 

memorization.  

In this work, we present a novel approach to road work zone detection and localization that leverages 

two distinct deep learning models in tandem. In this study, we define detection as the process of 



identifying the presence or absence of a work zone, while localization refers to the process of identifying 

the spatial location of the work zones. Our research begins with the introduction of an annotated 

roadwork dataset, which encompasses road-work-specific categories such as arrow boards, work 

vehicles, workers, and barricades, among others, as demonstrated in Figure 7. For the detection task we 

employ transfer learning with EfficientNet19 pre-trained on ImageNet20 to accurately classify a wide 

range of work zone scenarios. If a work zone is detected, we then utilize our second model, a Mask R-

CNN21 instance segmentation model fine-tuned for this task. After applying the convex hull algorithm to 

 
19 Tan, M. and Le, Q.V. (2019) EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. 
Proceedings of the 36th International Conference on Machine Learning, ICML 2019, Long Beach, 9-15 June 2019, 
6105-6114. 
20 J. Deng, W. Dong, R. Socher, L. -J. Li, Kai Li and Li Fei-Fei, ”ImageNet: A large-scale hierarchical image database,” 
2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 2009, pp. 248- 255, doi: 
10.1109/CVPR.2009.5206848. 
21 K. He, G. Gkioxari, P. Doll´ar and R. Girshick, ”Mask RCNN,” 2017 IEEE International Conference on Computer 
Vision (ICCV), Venice, Italy, 2017, pp. 2980-2988, doi: 10.1109/ICCV.2017.322. 

Figure 7: Road view images from the roadwork dataset and their respective instance 
segmentation predicted mask in a variety of work zone scenarios. The mask is converted to 
binary before overlay resulting in uniform representation irrespective of class. 



the output, a “work zone” mask is generated, providing detailed localization. This dual-model approach 

is designed to mitigate false positives in scenarios where the instance segmentation model identifies 

objects associated with work zones in the absence of one. This cooperation of models ensures 

robustness and precision in our detection and localization tasks. The methodology is illustrated in Figure 

8 and explained in detail below. 

 

Figure 8: Overview of method on a sample image. Each image passes through two models 
simultaneously, EfficientNet-B3 for work zone detection and Mask R-CNN for localization. 
The instance segmentation output is converted to binary and then the Convex Hull 
algorithm is applied. If the EfficientNet model detects a work zone the mask is then 
overlayed. 

Detection: Transfer learning is a powerful technique that enables training deep learning models for 

specific or complex tasks that may not have sufficient data available by leveraging feature 

representations learned from larger, more encompassing datasets22. In this study, we used transfer 

learning to finetune the EfficientNet-B3 model for the purpose of work zone detection, a binary 

classification task. The EfficientNet models, which are pre-trained on the ImageNet dataset, provide 

great performance, exceptional parameter efficiency, and speed in comparison to similar-performing 

model architectures.  

We modified the EfficientNet-B3’s architecture by replacing its final output layer with a linear layer 

customized for our binary classification task and utilized a CUDA-enabled GPU. For training, we used 

cross-entropy loss as the objective function, and the Adam algorithm for optimization, with a learning 

rate set at 0.001. These configurations enable our model to accurately recognize and discern the 

presence of a wide variety of work zone situations that are represented in the dataset.  

We evaluate detection performance using the Area under the Receiver Operating Characteristic (ROC) 

curve (AUC), supplemented by confusion matrices. The AUC provides a comprehensive measure of a 

model’s binary classification ability, assessing its skill in distinguishing positive from negative instances 

across all classification thresholds. We apply both same-distribution and different-distribution evaluation 

setups. The former splits images from all cities into training and testing sets, while the latter uses images 

from 11 cities for training and a distinct set of 8 cities for testing. This approach allows us to assess the 

model’s generalization capacity on unseen cities. 

 

 
22 F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, ”A Comprehensive Survey on Transfer 
Learning,” in Proceedings of the IEEE, vol. 109, no. 1, pp. 43-76, 2021, doi: 10.1109/JPROC.2020.3004555. 



 

Figure 9: Image mask prediction and ground truth for work zone evaluation. 

Localization: Similar to the task of detection, we utilize transfer learning for work zone localization. We 

employed a Mask R-CNN model with a ResNet50 backbone pre-trained on the COCO dataset23. The 

choice of Mask R-CNN was motivated by its excellent performance in instance segmentation tasks. The 

Mask R-CNN model is fine-tuned on the manually annotated RoadBotics dataset using the 

MMDetection24 opensource computer vision toolbox. After generating the instance segmentation mask, 

a convex hull algorithm is applied to generate a more encapsulating mask that encompasses all objects 

in a broader area. 

The Convex Hull algorithm is a mathematical tool commonly used in image processing for tasks such as 

object recognition and noise reduction. In our approach, we apply the Convex Hull algorithm to the 

output masks generated by the instance segmentation model. A Convex Hull can be understood as the 

minimum convex set encompassing a given point set S25. In the context of images, provided a binary 

image, the convex hull is the set of active pixels that form the smallest convex polygon for each 

disconnected region. An intuitive description oftentimes used is given nails in a board, a stretched 

rubber band around the nails is the convex hull. Before the Convex Hull operation, we perform a dilation 

operation to connect proximal objects and reduce small holes. After this we perform labeling, the 

process of clustering groups and assigning a unique pixel value (label) per group. We then independently 

use the Convex Hull algorithm for each group and overlay the resulting matrix onto the original image. 

We apply two separate evaluation methodologies for localization: the first concerns the performance of 

the instance segmentation model on work zone-related objects, while the second focuses on evaluating 

our methods’ ability to accurately identify work zone areas as demonstrated in Figure 9. Results for our 

detection and localization method can be found in Section 3.4. 

 
23 T.-Y. Lin et al., “Microsoft Coco: Common Objects in Context,” Computer Vision – ECCV 2014, pp. 740–755, 2014. 
doi:10.1007/978-3-319-10602-148. 
24 K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Xu, Z. Zhang, D. Cheng, C. Zhu, T. Cheng, 
Q. Zhao, B. Li, X. Lu, R. Zhu, Y. Wu, J. Dai, J. Wang, J. Shi, W. Ouyang, C. C. Loy, and D. Lin, ”MMDetection: Open 
MMLab Detection Toolbox and Benchmark,” arXiv preprint arXiv:1906.07155, 2019. 
25 R. V. Chadnov and A. V. Skvortsov, ”Convex hull algorithms review,” Proceedings. The 8th Russian-Korean 
International Symposium on Science and Technology, 2004. KORUS 2004., Tomsk, Russia, 2004, pp. 112-115 vol. 2, 
doi: 10.1109/KORUS.2004.1555560. 



3. Findings 
3.1. Roadwork Dataset Creation 
All 8,556 images in the dataset were manually labeled and segmented. The total number of annotated 

roadwork objects are shown in Figure 10. Shown in Figure 11 is a breakdown of annotated roadwork 

objects for each city. The dataset is available on the website: 

https://www.cs.cmu.edu/~ILIM/roadwork_dataset/  

 

Figure 10: Number of instances for each type of object in the Roadwork Dataset.  

 

Figure 11: Total number of objects that were annotated for each city in the Roadwork Dataset. 
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Total Counts for Each Object

Boston Charlotte Chicago Columbus Washington DC Denver Detroit Houston Indianapolis Jacksonville Los Angeles Minneapolis New York City Philadelphia Phoenix San Antonio San Francisco Seattle Pittsburgh

Worker 276 204 104 75 144 160 113 31 52 32 441 36 129 93 51 363 228 93 1592

Work Vehicle 829 343 172 123 229 339 568 65 127 57 867 101 206 175 55 395 437 175 2975

Work Equipment 99 3 8 13 65 26 39 3 35 6 26 19 119 16 7 6 23 16 234

TTC Sign 416 108 16 120 85 424 150 18 44 19 388 113 29 74 37 430 59 74 2232

Guide Sign 45 26 12 86 69 82 62 51 16 10 133 92 33 18 54 85 30 18 328

Lane Ends Sign 0 5 5 8 26 0 11 10 3 3 225 22 8 13 3 3 12 13 9

TTC Message Board 18 8 13 6 25 9 34 7 7 0 26 2 1 3 0 11 8 3 106

Arrow Board 12 11 23 13 47 98 69 10 15 3 88 0 5 5 6 6 32 5 230

Barrier 557 95 21 64 213 148 314 41 39 10 237 113 115 111 46 76 155 111 1116

Barricade 149 116 169 104 22 184 231 46 17 28 768 205 59 82 72 218 121 82 1645

Vertical Panel 31 0 0 9 10 1006 1 6 1 0 14 1 8 0 32 217 3 0 6703

Tubular Marker 3586 125 13 58 16 486 300 11 11 3 128 64 18 9 3 488 76 9 1840

Cone 1564 142 64 43 208 1669 236 20 62 33 580 44 97 129 14 1192 184 129 6624

Drum 594 432 193 425 533 183 1042 299 193 15 23 345 114 242 0 913 2 242 790

Fence 268 112 24 74 112 222 381 19 69 10 203 69 59 74 37 169 78 74 775

Other Roadwork Objects 71 0 0 0 0 17 0 0 0 0 0 0 0 0 0 4 0 0 182

Police Officer 17 0 0 0 0 1 0 0 0 0 0 0 0 0 0 20 0 0 16

Police Vehicle 7 0 0 0 0 3 0 0 0 0 0 0 0 0 0 23 1 0 8

Non-Work Person 403 0 0 0 0 703 0 0 0 0 0 0 0 0 0 189 0 0 900

Non-Work Vehicle 1829 0 0 0 0 3128 0 0 0 0 0 0 0 0 0 2013 0 0 6010

Road 276 0 0 0 0 497 0 0 0 0 0 0 0 0 0 381 0 0 1849

Sidewalk 270 0 0 0 0 610 0 0 0 0 0 0 0 0 0 413 0 0 1260

Bike Lane 16 0 0 0 0 40 0 0 0 0 0 0 0 0 0 2 0 0 237

Off-Road 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 132

Roadside 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Work Zone 0 73 0 0 0 0 0 57 0 0 0 0 0 0 0 0 0 0 0



3.2. Dataset Augmentation 
Dataset: We fine-tuned our pre-trained model on a specialized dataset of images containing roadwork 

objects from different cities from the Roadwork Dataset. However, many images in our dataset contain 

missing or low-quality annotations, and there are also inconsistent labeling issues. In constructing our 

dataset, irrelevant categories and images without annotations are removed, yielding 15 categories of 

roadwork objects and 4,908 images, from which we create training/validation/testing splits of sizes 

70%/10%/20%. The distribution of objects in the dataset are shown in Figure 12. 

 

Figure 12: Distribution of objects in the baseline dataset. 

Augmented Datasets: We built several augmented datasets according to different strategies for 

evaluation: random Copy-Paste, Geometry- Paste, and GeometryPaste blended. In the random Copy-

Paste dataset, objects are pasted onto randomly chosen locations and randomly scaled to 0.1 - 2.0 times 

their original size. The GeometryPaste and GeometryPaste blended datasets are constructed using our 

method, with the only difference being that GeometryPaste blended contains both blended and 

nonblended images, whereas GeometryPaste contains only nonblended images. We utilized 27 TTC 

Message Boards 64 times each, generating 1,728 new training images for the random Copy-Paste and 

GeometryPaste datasets and 3,456 new training images for the GeometryPaste blended dataset. 

Training and Evaluation: We employ the Mask2Former26 architecture with a ResNet-50 backbone27 pre-

trained on COCO to evaluate our method. Mask2Former builds on MaskFormer28 and utilizes the 

Detectron229 framework. We follow the baseline Mask2Former settings, which include using the 

AdamW30 optimizer, an initial learning rate of 0.0001, and a batch size of 16. We fine-tune on each 

dataset for 45k iterations on 8 Bridges231 GPUs. The baseline training regime utilizes only the original 

 
26 B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar, “Masked-attention mask transformer for universal 
image segmentation,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 
2022, pp. 1290–1299. 
27 K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE 
conference on computer vision and pattern recognition, 2016, pp. 770–778. 
28 B. Cheng, A. Schwing, and A. Kirillov, “Per-pixel classification is not all you need for semantic segmentation,” 
Advances in Neural Information Processing Systems, vol. 34, pp. 17 864–17 875, 2021. 
29 Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,” 
https://github.com/facebookresearch/detectron2, 2019. 
30 I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv preprint arXiv:1711.05101, 2017. 
31 S. T. Brown, P. Buitrago, E. Hanna, S. Sanielevici, R. Scibek, and N. A. Nystrom, “Bridges-2: A platform for rapidly-
evolving and data intensive research,” in Practice and Experience in Advanced Research Computing, ser. PEARC ’21. 
New York, NY, USA: Association for Computing Machinery, 2021. 



dataset, whereas all training with augmented datasets consists of the augmented and original datasets. 

We report the overall AP and TTC Message Board AP scores. 

 

Figure 13: The object scales generated by GeometryPaste follow a right-skewed. 

Results: Figure 13 shows that our method generates a right-skewed distribution of scales ranging from 

0.1 - 20.1, with the vast majority being from 0.1 – 1.1. The overall appearance of the images generated is 

more realistic than the ones generated with random Copy-Paste. However, some objects are placed off 

the ground due to low-quality road segmentations. This, along with vanishing point prediction errors, 

resulted in some objects being scaled incorrectly since our scaling function depends on the coordinates 

of the road and vanishing point. Figure 14 shows each method’s overall AP and TTC Message Board AP 

scores. We see that the highest AP score for the TTC Message board was 35.5, achieved by 

GeometryPaste with the model trained for 30k iterations. We also see that the highest overall AP score 

was 31.3, achieved by GeometryPaste with Gaussian blurring with the model trained for 35k iterations. 

Fig. 5 provides an example where GeometryPaste was the only method that detected the TTC Message 

Board in the given image. 

 

Figure 14: AP scores for each method. The highest overall AP score was 31.3, achieved by 
GeometryPaste with Gaussian blurring with the model trained for 35k iterations. The highest 
TTC Message board AP score was 35.5, achieved by GeometryPaste with the model trained for 
30k iterations. 



 

Figure 15: Visualization of results obtained from the model trained for 30k iterations. 
The TTC Message Board was only detectable with GeometryPaste without blending. 

3.3. Road Marking Detection 
 In the evaluation section of our 

methodology, we employed the widely 

recognized COCO metric32 to rigorously 

assess the performance of the new 

detector. Specifically, we leveraged the 

Precision-Recall (PR) curve, a well-

established evaluation measure for object 

detection models, to gain comprehensive 

insights into the detector’s capabilities. 

We compute the Precision-Recall curve 

respectively for small, medium and large 

objects, the scale of which has been 

defined by COCO Metrics. The figure 

below explains the three kinds of lane 

markings in a single picture (Figure 16). 

Performance on the Pseudo Labeled Test Set: We present the performance evaluation of the new 

instance segmentation model on the lane markings category across various object scales, namely small, 

 
32 Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In: Computer Vision–ECCV 2014: 13th European 
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer. 2014, pp. 740–755. 

Figure 16: Visualization for Small, Medium, Large objects. 



medium, and large, based on the pseudo-labeled test set. The precision-recall curves serve as a robust 

tool to gauge the model’s detection capabilities for each scale category. The findings reveal that the 

overall performance of the new model on lane markings is moderate, yet intriguing trends emerge when 

considering different object scales. Remarkably, the new model demonstrates a noticeable improvement 

in detecting large lane markings compared to medium and small ones. Although its performance on 

small and medium lane markings may not be as satisfactory, the substantial gain in accuracy for large 

instances is an encouraging outcome (Figure 17). The evaluation of the new detector on lane markings of 

different scales yields significant insights. When assessing the detector’s performance at an Intersection 

over Union (IoU) threshold of 0.75, notable disparities are observed among small, medium, and large 

lane markings. These discrepancies imply that the detector’s precision and recall are sensitive to the IoU 

threshold for objects of varying sizes, possibly due to the diverse complexities and appearances of lane 

markings at different scales.  

 

Figure 17: The unified detector performs best on large road markings with the pseudo labeled test set. 

 

Figure 18: The unified detector performs best on large road markings with the manually labeled test set. 

However, a compelling pattern emerges when the IoU threshold is set to 0.50. The new detector 

achieves a consistent overall average precision and recall of 60.0% for both medium and large lane 

markings. This suggests a robust performance for these two size categories under a lower IoU threshold. 

Interestingly, the precision for medium lane markings experiences a sharp decline, whereas the 

performance for large lane markings remains more stable. This finding implies that the detector excels in 

accurately detecting and localizing larger lane markings but faces challenges in precisely identifying and 

delineating medium-sized lane markings.  

These results provide valuable insights into the detector’s scale-dependent behavior and its sensitivity to 

the IoU threshold. They underscore the importance of carefully calibrating the IoU threshold based on 

the specific application requirements and characteristics of the target objects. Furthermore, the 

observed variations prompt further exploration into the factors influencing the detector’s performance 



on different scales. Addressing the challenges associated with medium lane markings through targeted 

fine-tuning may lead to overall performance enhancements and bolster its practical applicability in real-

world autonomous driving scenarios.  

Performance on the Manually Labeled Test Set: In the absence of manually labeled instances of lane 
markings in our original Roadbotics dataset, the introduction of pseudo labeled test set may result in 
increased noise. To address this limitation, we manually annotated visible lane markings in 50 randomly 
selected images from the Roadbotics test set. This manually labeled test set serves as a reliable ground 
truth, enabling a direct comparison with our new model’s predictions. Subsequently, we generated a 
Precision-Recall curve based solely on the lane marking category using the manually labeled test set 
(Figure 18). This curve allows us to evaluate the new detector’s performance in comparison to human-
perceived lane markings and provides a basis for comparison with the results obtained from the pseudo 
labeled test set.  

Although the Precision-Recall curve obtained from the manually labeled test set follows a similar trend 
to the one derived from the pseudo labeled test set, the jaggedness of the curve could be attributed to 
the limited number of test images. Despite this, the analysis reveals significant distinctions in the 
performance of the new detector across small, medium, and large lane markings when evaluated with 
an IoU threshold of 0.75. When the IoU threshold is set to 0.50, it becomes evident that the detector 
demonstrates an overall average precision and recall of 60.0% for both medium and large lane markings. 
Notably, the precision for medium lane markings experiences a sharp decline, while the performance on 
large lane markings remains comparatively more stable. 

 

Figure 19: Detection model performance as illustrated by the receiver operating 
characteristic curve and confusion matrix. The results on the left column are for the 
scenario where images from all cities form the training and testing data sets, while 
the right column has cities split into training and testing. 

3.4. Roadwork Detection and Localization 
For the Mask R-CNN instance segmentation model, we conduct an analysis across multiple intersection-

over-union (IoU) thresholds. We computed the Average Precision (AP) at specified IoU values of 0.50 and 

0.75, as well as across the range of 0.50 - 0.95. These metrics are also obtained for objects of different 



sizes: small, medium, and large depending on the area. Additionally, for each class, we calculate the 

mean Average Precision (mAP) overall, and across the different size categories. To measure the 

performance of work zone localization we use a variety of metrics including precision, recall, F1 score, 

dice coefficient (DSC), and IoU. Precision is the ratio of true positives (TP) to the sum of true positives 

and false positives (FP). Recall is the ratio of true positives to the sum of true positives and false 

negatives (FN). The F1 score considers both precision (P) and recall (R), providing a single metric that 

unifies both. The F1 metric is defined as . The dice coefficient metric measures the overlap 

between the predicted and ground truth masks. For sets X (prediction) and Y (ground truth), the DSC is 

computed as .  

Detection: The detection models’ performance in same city and different-city settings is shown in Figure 

19. When all images from all cities are split between training and testing the AUC is 0.99. This 

demonstrates very effective work zone identification abilities. When tested on images from cities not 

included in training the AUC decreased a negligible amount of 0.01 demonstrating the generalization 

proficiency. For reference, an AUC of 1.0 implies the model has perfect classification abilities, and an 

AUC of 0.5 means that the model has no discriminative abilities between positive and negative classes. 

The confusion matrix compares the predicted classification with the ground truth. We observe 

comparable classification tendencies across both settings with a minimal increase in false positives when 

testing on unseen cities. However, there is an overall accurate classification ability by the detection 

model. 

Localization: For the task of instance segmentation the Mask 

R-CNN achieves an AP of 0.363 when averaged over all 

classes, object sizes, and IoU thresholds from 0.50 to 0.95. 

With an IoU threshold of 0.5 the AP is 0.562, and 0.403 with a 

threshold of 0.75 (Figure 20). 

The performance for segmentation across different classes is 

shown in Figure 21. The metrics include mean Average 

Precision (mAP) overall, as well as by size (small, medium, 

large). The results vary across classes with the highest-

performing classes being arrow-board, drum, and road all 

having an mAP above 0.5. The rest of the classes’ mAP range 

from 0.2 - 0.5 with only Non-Work person, Guide Sign, 

Tubular marker, and work equipment having a mAP less than 

0.2. The results vary potentially due to the common size of 

the object or when difficult contexts are required such as 

with workers and nonworkers.  

 

Figure 20: Average Precision across all objects 
with vary areas and IoU thresholds. 

Figure 21: Mean Average Precision overall, and 
per size category for individual class categories. 



 

Figure 22: Zone localization performance for instance segmentation mask output 
and Convex Hull transformed masks. 

In order to evaluate the method’s ability to localize diverse representations of work zones a new class 

called ’work zone’ was created and manually annotated. This class contains samples over 130 images. 

We evaluate the direct instance segmentation output after applying a binary filter alongside the same 

ouptut with the Convex Hull algorithm applied to it. We observe an increase in every metric when the 

Convex Hull algorithm is applied as can be observed in Figure 22. 

4. Recommendations 
Automatic detection of roadwork zones from camera data is an extremely challenging problem. A 

challenge of developing computer vision and machine learning methods is the need for a comprehensive 

dataset of roadwork zones. For generalization, the dataset should have many hundreds of thousands of 

images of roadwork zones due to their irregular appearance, but also because roadwork objects (e.g., 

work vehicles, work equipment, etc.) appear differently in many states and even cities across the 

country. The dataset also needs to encompass different road environments, weather conditions, and 

light conditions. Roadwork vehicles equipped with cameras would be great candidates for capturing 

roadwork images. So would other public and service vehicles that are routinely on the road such as 

public works vehicles, buses, waste disposal trucks, etc. 

Recommendation 1: DOTs actively pursue the capture of imaging data in 

roadwork zones.  

Another aspect needed for a roadwork dataset is annotations (labels and segmentations). Although we 

demonstrated some success with a unified detector, annotations should be performed manually to 

establish a reliable ground-truth for model training. This is a labor-intensive and expensive task to 

perform. 

Recommendation 2: DOT sponsors grants or challenges to specifically 

have the dataset images manually annotated.  

In this work, it was demonstrated that computer vision and machine learning can be utilized to 

automatically detect roadwork zones to report information about roadwork zones to a driver, driver-

assist system, or autonomous vehicle navigation system. Other drivers, especially those without a 

detection system, would also benefit from the information if it could be easily shared. 

Recommendation 3: Support and invest in infrastructure that wirelessly 

relays and transmits information about roadwork zones. 

 



5. Conclusion and Future Work 
This study addressed mobility issues caused by roadwork zones. The approach taken was to 

automatically detect roadwork zones from a vehicle’s camera data so that the driver or vehicle can take 

appropriate actions. We found that there is not much work done in this area of computer vision and 

machine learning. Consequently, a novel dataset was created to train machine learning models and 

algorithms were developed to supplement the dataset and perform roadwork detection and localization. 

The dataset consists of 8,556 real world images where each image has associated manual object 

segmentations, object labels, and image descriptors. Approximately 20 roadwork object classes were 

identified for annotation.  

The current state of the roadwork dataset has been made available. The dataset will be expanded by 

adding synthetically created roadwork images using the GeometryPaste method that was developed as 

part of this study. This method copies manual segmented objects into an image with correct placement 

(on the road) and with the correct size. It was shown that training with a mix of real-world images and 

synthetic images can improve detection results. Additionally, we plan on inviting researchers to add their 

own images or annotations to the dataset. Rather than relying solely on manual annotations, we 

investigated the use of a unified detector to merge object classes from multiple datasets. Results were 

promising with road markings. Finally, a method was developed for roadwork detection and localization, 

which showed very promising results.  

To further improve automatic detection and localization of roadwork zones, the below areas should be 

considered for future work.  

• Expand the roadwork dataset by: 

o Including images from different cities, captured during different weather conditions and 

light conditions,  

o Including augmented with pasted manually annotated objects with geometric scaling 

and context (GeometryPaste method), 

o Capturing images with work vehicles, 

o Enabling people to contribute manual annotations. 

• Further develop the GeometryPaste method to also alter the appearance of objects to match the 

conditions (e.g., weather and light) in the destination image.  

• Further develop the detection and localization method for improved accuracy. 

• Explore the use of labels and text descriptions with natural language processing to understand 

the context of the road work zone. 

• Develop a universal wireless infrastructure for transmitting and receiving roadwork zone 

information in a standardized manner. 

 


