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1 Overview of Platooning 

Platooning could be generally defined as two or more vehicles arranging themselves in a specific 

pattern to travel together. This leads to several benefits including improved safety for the drivers 

as well as improved overall efficiency of the vehicles involved [1]. The increase in efficiency 

is largely due to a reduction in aerodynamic drag experienced by the participating vehicles 

(including the lead vehicle) [2]. The configuration of the vehicles involved in the platoon is a 

degree of freedom that impacts the overall efficiency. A computational fluid dynamics study 

explored various configurations of medium-duty trucks in a platoon to determine the optimal 

configuration for overall platoon efficiency [3]. Based on the analysis, the study showed that 

one truck behind another in a single lane yields the greatest reduction in the average drag 

coefficient of about 23% [3]. Another study performed under the PATH project studied the 

effect of vehicle spacing and number of vehicles in a platoon on the average coefficient of drag 

of the entire platoon [4]. Using model vans, they determined the average drag coefficient in 

several configurations with different numbers of vehicles in the platoon and varying inter-vehicle 

spacing. The results for the drag coefficient reduction as a function of inter-vehicle spacing 

and number of trucks are shown in Figure 1, where vehicle spacing is the distance between the 

vehicles normalized by the length of a vehicle in the platoon. 

The aforementioned PATH project study was performed using models of vans rather than 

semi-trucks and this raises the question of whether these results will still hold for semi-trucks. 

In order to validate the data shown in Figure 1, we compare the predicted aerodynamic drag 

utilizing the data from the study[3] against other studies [6, 7], as summarized in Figure 2. The 

benchmarking cases include (i) a study by NREL based on wind tunnel experiments to determine 

the drag of a platoon of two trucks relative to a single truck [6], and (ii) an experimental study 

exploring cab shapes comparing aerodynamics of a “clean” cab relative to an aerodynamically 
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Figure 1: Average drag coefficient reduction per vehicle in the platoon as a function of the 
inter-vehicle spacing and the number of vehicles in the platoon. The drag coefficient reduction 
is expressed as the ratio of average drag coefficient of the platoon to the drag coefficient of a 
single vehicle. The inter-vehicle spacing is a normalized value that is determined by dividing 
the distance between the vehicles by the average vehicle length. We can observe that while 
significant improvements are obtained by increasing the number of vehicles from a single vehicle 
to a few vehicles, the improvements saturate after a certain number of vehicles. From ref. 5 
. 
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Figure 2: A comparison of the average drag coefficient reduction obtained from wind tunnel 
tests conducted by NREL [6] and Hammache et. al. [7]., (Cd,reduction [Data]), and the average 
drag coefficient reduction predicted by our model, (Cd,reduction [Present Model]), given the same 
initial parameters as each of the cases performed by the respective wind tunnel experiments. 
The dashed line represents the points where the predicted value exactly matches that of the 
corresponding experiment thus the farther away a value is from the line, the more inaccurate 
the prediction from the model is. From ref. 5 
. 

“dirty” cab [7]. For the cases considered, an average reduction in the coefficient of drag was 

determined meanwhile our model was used to predict the reduction in the average coefficient 

of drag using the same set up for each of the cases. The results are shown in Figure 2 and the 

dotted line represents perfect agreement between model and data. This figure shows that, in 

general, the model matched the NREL data [6] much better than the data from Hammache et al. 

[7] with an MAE and RMSE of 0.025 and 0.032 respectively compared to an MAE of 0.096 and 

an RMSE of 0.098. These values approximate the uncertainty for the potential drag coefficient 

reductions and shows that the model can be used to reasonably predict the average reduction in 

the drag coefficient for semi-truck platoons. 

In the next chapter, we will explore more accurate drag coefficients beyond our previous 

work published in ref. 5. 
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2 The Effect of Platooning with more accurate drag coefficients 

Incepts’ [8] dynamic modeling of the vehicle and the batteries allow it to capture the impact 

that the environment has on the performance of the vehicles. One aspect of the vehicle model 

that can be improved is the drag coefficient. Since Incepts has information on the wind velocity 

and the direction of the wind, Incepts can utilize a dynamic drag coefficient that is dependent 

upon the oncoming wind conditions to better estimate the resulting power requirements. In 

this project, we utilized Incepts’ dynamic models, with the additional dynamic drag coefficient 

algorithm, to better understand how their platooning trucks perform under realistic conditions. 

2.1 High-fidelity Vehicle Model 

Building on the 1D vehicle power model (Eq. 1), we introduced a variable drag coefficient 𝐶𝑑 , 

to account for the effects of platoon position (𝑖), vehicle spacing (Δ𝑣 ), wind speed (𝑣𝑤𝑟 ). 

𝐹𝑔 = 𝐶𝑟𝑟 𝑚𝑔 sin 𝑍 + 𝑚𝑔 cos 𝑍 

𝐹𝑎 = (𝑚 + 𝐼 /𝑟 ) 𝑎 · 𝑥 

𝐹𝑤 = 
1 
2 
𝐶𝑑 𝜌 𝐴 (𝑣𝑤𝑟 · 𝑣𝑣 ) × ∥𝑣𝑤𝑟 ∥ × ∥𝑣𝑣 ∥ 

𝑃 = 
 
𝐹𝑔 + 𝐹𝑎 + 𝐹𝑤 

 
𝑣𝑣 · 𝑥 + 𝑃𝑎𝑢𝑥 

(1) 

𝐶𝑑 = 𝑓 (𝑖, 𝑣𝑣 , 𝑣𝑤 , Δ𝑣 , ...) (2) 

The overall power draw of the platoon is then the sum of each individual vehicle’s power 

(Eq. 3), computed using a platooning aware 𝐶𝑑,𝑖 . We treated the platoon as a point mass centered 

on the lead vehicle, thus neglecting variable environmental conditions (i.e. road grade) along 

the platoon. For the platoons’ sizes considered, we expect this to be a reasonable approximation. 
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Figure 3: Definition for following distance 𝐷 and following offset 𝛿. Following distance 
𝐷 = Δ𝐷 

𝐿
, where Δ𝐷 is the distance from the back of the first truck to the front of the second 

truck and 𝐿 is the length of the truck in 𝑥 direction. Following offset 𝛿 = Δ𝑊 
𝑊

, where Δ𝑊 is the 
distance between the center line of two trucks in 𝑧 direction and 𝑊 is the width of truck. 

𝑃 = 
∑︁ 

𝑃𝑖 
 
𝐶𝑑,𝑖 (𝑖, 𝑣𝑣 , 𝑣𝑤 , Δ𝑣 , ...) 

 
(3) 

In order to develop a model for 𝐶𝑑 over a wide range of operating conditions (Table 1), 

a series of computation fluid dynamics (CFD) simulations of platoons of trucks in single 

vehicle and platoon configurations have been performed using a method (variational multiscale 

method (VMS)) that is comparable to Large Eddy Simulations (LES). This well-validated 

approach provides a higher fidelity flow physics simulation compared to conventional RANS 

type models [9, 10]. In this case, a standard box vehicle was chosen with a highway driving 

speed of 55 miles per hour in addition to the wind conditions. The results from these CFD 

computations are shown in Figure 4a. 

As was done in the original Incepts work [8], the wind and temperature data came from 

the NREL Windtool Kit and were recorded on 12/21/15 at 12:00 pm [11, 12, 13, 14] while the 

elevation data came from the USGS national elevation map [15]. The wind speed was taken 

at 10 meters altitude while the air temperature was taken from 2 meters altitude both of which 

are the closest to the surface heights for those particular attributes offered through the NREL 

data set. The drive cycle used throughout this analysis was the EPA Highway drive profile 

(HWFET) [16]. Since this drive cycle was repeated multiple times throughout the route, the 
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(a) Variable Truck Drag Coefficient 

(b) Power consumption with and without a variable 𝐶𝑑 

Figure 4: Using a constant Drag Coefficient underestimates energy consumption by ∼40% 
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tails of this drive cycle were trimmed such that the input drive cycle starts and ends around 30 

mph. To directly compare the impact of the dynamic drag coefficient, both sets of simulations 

utilized the exact same route. The results from both simulations are shown in Figure 4 along 

with the drag coefficient variability as a function of the streamwise speed (head wind) and 

crosswind speed. As shown by this figure, the simulation using the dynamic drag coefficient 

reached the threshold SoC, which was set to 30%, nearly 30 minutes less into the route than the 

constant drag coefficient simulation. This amounts to an underestimation in energy consumption 

by 40%. This demonstrates the importance of incorporating dynamic drag coefficients into 

electric vehicle simulations as this will drastically impact the energy requirements, and thus the 

infrastructure/safety recommendations made using this information. 
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Parameter Range Unit 
Vehicle Speed 0 70 mph 
Wind Speed 0 60 mph 
Normalized Vehicle Spacing 0.05 2 — 
Wind Angle 0 180 ° 
Number of Trucks 1 4 — 
Lateral Offset -7 7 ft 

Table 1: The explored variables and ranges for the drag coefficient CFD simulations 

3 Future Work 

3.1 Surrogate Model of CFD Platoon Drag Coefficients 

Future CFD simulations will use a representative truck model, ideally provided by Locomation, 

or an internally developed representative model. The various geometries, including number of 

vehicles, vehicle spacing (𝐷) and lateral offset (𝛿) are shown in Figure 3. Different bound-

ary conditions, such as vehicle speed, wheel rotation and apparent wind are included in the 

simulation. 

The rectilinear limits outlined in Table 1, were set to fully bound the feasible range of 

operating conditions. We expect that platooning will provide marginal benefits for some regions 

of the proposed domain (ie. low speeds, orthogonal cross-winds). However by capturing these 

points we will be able to identify the regions, that do matter, with greater fidelity. 

3.1.1 Adaptive Sampling of Domain 

Grid sampling over the operating domain is infeasible given the high dimensionality of the 

domain, and high compute cost of a single CFD simulation. Even with only 5 sample points 

along each dimension, we would need 56 → 15, 625 simulations. Further, prior research 

shows diminishing returns as Δ𝑣 increases, thus even sampling over the entire domain would be 

inefficient [5]. 

We will utilize an adaptive sampling tool, to guide the sampling of CFD simulations needed 
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to create the surrogate model. This tool will be based on an asynchronous Bayesian sampling 

based approach that can efficiently sample moderate (3-30) dimensional spaces [17]. The tool 

can orchestrate submission and execution of individual CFD simulations across HPC resources 

and can direct simulations towards regions of maximal expected improvement [18]. Sampling 

will continue until the expected root-mean-sum-square (RMSS) error in 𝐶𝑑 over the entire 

domain is less than 1%, or 20 million core-hours, whichever comes first. 

3.1.2 Surrogate Model 

Using the generated database of platooning drag coefficients, the Viswanathan Team will build 

a surrogate model for the functional form of Eq. 2. This surrogate model will be a linear 

interpolant, Multi-Layer Preceptron, or the underlying model used in 3.1.1. The final model 

selection will be based on the Bayesian Information Criteria of the examined surrogates [19]. 

3.2 Platooning Case Studies 

We proposed using the above tool to simulate platoons of trucks traveling along the routes 

outlined in Table 2. These routes were selected to highlight regions where platooning is likely 

important (Kansas City to Oklahoma City) and regions where other effects such as traffic 

(Providence to Greenport) or elevation (Salt Lake City to Denver) are expected to dominate. 

Simulations were conducted for the full range of platoon sizes and vehicle spacing as outlined 

in Table 1. 

3.2.1 Sensitivity Analysis 

As Incepts is built on Julia’s Scientific Machine Learning Ecosystem, simulation results are 

fully differentiable with respect to their input parameters. 

This capability can be leveraged to compute the sensitivity of the platoon’s consumption 
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Route Distance [mi] Elevation Change [ft] 
Providence, Rhode Island Greenport, New York 256 1k 
Salt Lake City, Utah Denver, Colorodo 517 19k 
Kansas City, Missouri Oklahoma City, Oklahoma 350 4k 

Table 2: Proposed Case Studies for Platooning Simulation 

to vehicle spacing (𝛿𝐸 /𝛿Δ𝑣 ), for the proposed routes. This is a key performance metric for 

autonomous platooning, as it will factor into the design of the vehicle control system, and any 

trade offs between safety (more space) and fuel efficiency (less space). 

Further, we can compute the sensitivity with respect to vehicle alignment offsets (i.e. how 

well the vehicles follow each other). Again this is a key performance metric for autonomous 

platooning, as it sets the trade-offs between maintaining the configuration and the vehicle’s 

power requirements. 
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Appendix: Symbols 

Symbol Term Unit 

𝑃 Vehicle Power 𝑊 

𝑃𝑎𝑢𝑥 Non-locomotion Power Consumption 𝑊 

𝐹𝑎 Vehicle Acceleration 𝑁 

𝐹𝑔 Ground Reaction Force 𝑁 

𝐶𝑟𝑟 Rolling Resistance 

𝐹𝑤 Aerodynamic Drag 𝑁 

𝑚 Vehicle Mass 𝑘 𝑔 

ˆ 𝑥 Unit Vector align longitudinally with the vehicle 

𝐼 Moment of Inertia of the vehicle 𝑘 𝑔 · 𝑚 2 

𝑟 Effective radius of rotating inertia wrt. vehicle speed 𝑚 

𝑣𝑣 Velocity of the Vehicle 𝑚/𝑠 

𝑣𝑤𝑟 Velocity of Wind rel. vehicle 𝑚/𝑠 

 𝑎 Vehicle Acceleration 𝑚/𝑠𝑠 

𝑍 Road Grade 

Δ𝑣 Vehicle Spacing 𝑚 

𝐶𝑑 Aerodynamic Drag Coefficient 

𝐴 Drag area of vehicle 𝑚 2 

𝑔 Standard Gravity 𝑚/𝑠 2 

𝜌 Air Density1 𝑘 𝑔/𝑚 3 
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