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Introduction

1 Introduction

The rapid adoption of emerging technologies in vehicles, communications, and
sensing is revolutionizing the way people travel. While people continue to choose the
traditional transportation modes (e.g., driving and taking public transit) to complete
their daily trips, more new transportation modes are becoming competing alternative
traveling options due to their flexibility and convenience. For example, novel mobility
services, including micro-transit, car sharing service, fix- or flex-route shared mobility
services, have been proposed and experimented in some U.S. cities in order to improve
the mobility in low-density residential areas (Grahn, Qian, & Hendrickson, 2021). The
coexistence of such diversified transportation modes results in a very complex multi-
modal transportation system. Although this complex system may enable innovative
ways to combat traffic congestion and enhance travel reliability, it also presents a big
challenge for transportation practitioners and researchers: how to effectively estimate
and manage the vehicle and passenger flows in this multi-modal system in order to im-
prove the overall network operational efficiency. One of the critical components that
help address this challenge is accurately estimating the dynamic multi-modal origin-
destination (O-D) demand, which plays a key role in transportation planning, opera-
tion, and management. To the authors’ best knowledge, such studies are lacking in
terms of understanding and estimating the dynamic OD demand for the multi-modal
transportation network using sparse and partial flow observations. To fill this gap, this
study presents a data-driven framework for multi-modal dynamic OD demand estima-
tion (MMDODE) in large-scale networks. Based on the previous studies of one of the
authors on the multi-modal dynamic user equilibrium (MMDUE) in (Pi, Ma, & Qian,
2019) and the multi-class dynamic OD demand estimation (MCDODE) in (Ma, Pi, &
Qian, 2020), the MMDODE problem is formulated using a computational graph, and
the forward-backward algorithm in (Ma et al., 2020) is further modified and extended
to estimate the dynamic OD demand for the multi-modal transportation network effi-
ciently and effectively.

The dynamic OD demand for the multi-modal transportation network repre-
sents the time-varying number of travelers departing from an origin and heading to a
destination. Only with accurate fine-grained demand information as input can dynamic
multi-modal transportation network models produce realistic path/link flows, revealing
the spatio-temporal mobility patterns. Such results can help policymakers better under-
stand the whole system from different perspectives such as departure/arrival patterns,
mode choice of travelers, and public transit ridership. In addition, the dynamic OD
demand is also beneficial for policymakers to evaluate the impacts of introducing new
mode on the overall system and further devise appropriate operational strategies and
pricing plans.
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Introduction

Given the importance of the dynamic OD demand, the dynamic OD estimation
(DODE) has attracted substantial research attention over the past decades. Tradition-
ally, it is formulated as a bi-level optimization problem with the goal of finding the
optimal dynamic OD demand to minimize the discrepancy between the observations
from the real world traffic data (e.g, vehicle counts) and the simulation results. The up-
per level aims to adjust the OD demand given the observed and the simulated path/link
flows while the lower level relies on dynamic traffic assignment (DTA) models to out-
put the simulation results with the OD demand as input. A large body of literature on
the bi-level structure is available (Fisk, 1989; Yang, Sasaki, Iida, & Asakura, 1992;
Florian & Chen, 1995; Jha et al., 2004). Researchers have also relaxed the bi-level
problem to a single-level problem (C.-C. Lu, Zhou, & Zhang, 2013; Nie & Zhang,
2008).

Methods to solve the DODE problem can be generally classified into two cat-
egories: gradient-free and gradient-based approaches. The gradient-free methods are
usually meta-heuristics such as genetic algorithms (Kim, Baek, & Lim, 2001; Kattan &
Abdulhai, 2006; Vaze, Antoniou, Wen, & Ben-Akiva, 2009) and simulated annealing
(Stathopoulos & Tsekeris, 2004). As for the gradient-based method, the Simultane-
ous Perturbation Stochastic Approximation (SPSA) method has been widely adopted,
in which the finite differences are used to approximate the gradients of OD demand
(Cipriani, Florian, Mahut, & Nigro, 2011; Ben-Akiva, Gao, Wei, & Wen, 2012; Can-
telmo, Viti, Tampère, Cipriani, & Nigro, 2014; L. Lu, Xu, Antoniou, & Ben-Akiva,
2015). However, researchers also pointed out that the aforementioned meta-heuristics
and the SPSA method belong to general-purpose optimization algorithms and have
certain drawbacks in tackling the DODE problem. One of the main issues is that these
general-purpose algorithms can be computational burdensome or even infeasible, es-
pecially in dealing with large-scale networks (Ma et al., 2020; Osorio, 2019). This
is because they require multiple runs of expensive DTA models to generate sufficient
information to drive the optimization. Research efforts have been devoted to the op-
timization algorithms with fewer DTA runs. For example, Lu et al. (C.-C. Lu et al.,
2013) derive the gradient of the link flow with respect to path flow using cumulative
curves. Osorio (Osorio, 2019) approximates the DTA model with a meta-model. In
our past work, Ma et al. (Ma et al., 2020) proposes a novel computational-graph-based
approach to linearly approximate the objective function with respect to the dynamic
OD demand. Their method can not only deal with multiple vehicle classes and multi-
source traffic data, but can also leverage multi-core CPUs or Graphics Processing Units
(GPUs) to be efficiently applied to large-scale networks.

However, it can be found that most existing literature on the DODE has mainly
focused on the transportation network with single travel mode (e.g., driving only),
neglected the presence of other modes, and thus yielded the estimated OD demand
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Introduction

for single mode (e.g., dynamic OD vehicle demand for driving-only mode). Such
single mode demand might not be sufficient to understand the whole transportation
system since the real transportation can be multi-modal in nature. Meanwhile, there
also lacks sufficient research on the general framework for the large-scale multi-modal
transportation modeling, which can explicitly include both passenger flow and vehic-
ular flow and holistically consider heterogeneous traffic flow and various travel modes
(e.g., solo-driving, carpooling, ride-hailing, bus transit, railway transit, and park-and-
ride) (Pi et al., 2019). Therefore, it remains a challenge to estimate the dynamic OD
demand that matches multi-source spatio-temporal data and reflects the multi-modal
traffic dynamics for a large-scale transportation network.

In light of this, this project aims to provide a general data-driven DODE frame-
work for multi-modal transportation networks that incorporates the mode choice be-
havior of travelers and dynamic interactions among different modes in the network
and facilitates further validation by emerging real-world data collected from the differ-
ent components of the transportation system (e.g., roadway, public transit, and parking
systems). Building on top of the MMDUE in (Pi et al., 2019) and the MCDODE in (Ma
et al., 2020), this framework extends the computational graph approach to estimating
the dynamic OD demand for multi-modal transportation networks with the advanced
multi-modal DTA model capturing the underlying dynamics of both passenger flows
and vehicular flows.

The main contributions of this study are summarized as follows:

1. It proposes a general formulation for estimating dynamic OD demand for multi-
modal transportation networks. The formulation is represented on a computa-
tional graph such that the MMDODE can be solved for large-scale networks
with multi-source traffic data. The MMDODE formulation can handle different
forms of traffic data, such as passenger and vehicle flow, speed or trip cost.

2. It adopts a general simulation-based multi-modal DTA model to capture the flow
dynamics of a multi-modal transportation network. This model considers travel-
ers’ mode choice and route choice behavior and explicitly models the propaga-
tion of mixed traffic flows including cars, trucks, buses, and passengers.

3. It presents a novel forward-backward algorithm to solve for the MMDODE for-
mulation on the computational graph with simulation-based multi-modal DTA
models. It transforms the MMDODE problem into a machine-learning task
which can be solved effectively and efficiently with gradient descent algorithms.

4. It derives the gradient approximations of the objective function with respect to
the dynamic OD demand considering the effects of the coexistence of multiple
modes.
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Introduction

The remainder of this report is organized as follows. The modeling of multi-
modal transportation network and the multi-modal dynamic user equilibrium condition
are first introduced. It then presents the formulation and the solution algorithm for
the MMDODE problem. A toy example is used to illustrate the effectiveness of the
proposed framework. A case study is further carried out on a real-world regional multi-
modal transportation network in Columbus, OH to analyze the impacts of mobility
service on the whole network. Conclusions and future work are discussed at last.
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Multi-modal dynamic traffic assignment

2 Multi-modal dynamic traffic assignment

The DTA model is usually an essential part of the DODE problem. In the MM-
DODE, a simulation-based multi-modal DTA model based on the MMDUE condition
proposed by (Pi et al., 2019) is adopted as the underlying DTA model to generate
path/flow patterns given the dynamic traveler OD demand as input.

2.1 Multi-modal transportation network

Although the MMDUE framework by (Pi et al., 2019) can accommodate many
different modes, this paper focuses on three modes: driving (DR), taking bus transit
(BT), and using mobility service with bus transit (MSBT). For the MSBT mode, trav-
elers will take the mobility service to arrive at middle points of their trips first and then
take the public transit to reach their final destinations. The middle points are usually
set as the main transit hubs. To this end, a multi-modal transportation network is estab-
lished, which consists of an auto network, a virtual bus network, and parking facilities
(as shown in Figure 1).

Figure 1: Illustration of a multi-modal transportation network: O: OD node; A: auto
node; P: parking node; PS: physical bus stop; VS: virtual bus stop (Pi et al., 2019)

The auto network is the roadway network used by vehicles. The reason the
bus network is called virtual is that buses share the same roadway network with other
vehicles, so the virtual bus network is a combination of part of the auto network and
bus stops. Two types of bus stops exist here: physical and virtual. A physical stop (PS)
is a real bus stop where bus passengers board/alight the buses, and multiple routes
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Multi-modal dynamic traffic assignment

can traverse it. A virtual stop (VS), however, does not exist physically but is assumed
here for the convenience of modeling and routing. A VS connects a PS to only one
particular route and since a PS can be associated with multiple routes, a PS can be
connected to multiple VSes. The links connecting a PS with a VS are called passenger
boarding and alighting links. A virtual bus link is a link with endpoints being VSes and
only corresponds to one particular route. A bus route is thus a sequence of one or more
VSes (or virtual bus links). A bus follows a fixed route in this virtual bus network,
but its travel cost/time is determined by the dynamic network loading (DNL) model
with heterogeneous traffic flows, e.g., private cars, trucks, buses, and passengers. The
parking facilities here refer to the near-destination parking lots/spaces. Travelers who
choose the DR mode will drive all the way to their destination and have to park near
their destinations and pay parking fees. In addition, the walking links are explicitly
modeled to represent walking from origin to bus stops, from the middle destination to
bus stops, transfer among bus stops, and from bus stops to the final destination.

With this representation, a path for a traveler for any OD pair can be composed
of multiple components from different parts of this multi-modal network, depending
on his/her mode choice. For example, a path for a traveler choosing the MSBT mode
consists of auto links and nodes for the mobility service part, walking links for the
transfer part, and bus links and stops for the bus riding part.

2.2 Generalized travel cost

To make modal choices, travelers need to make trade-offs among traffic con-
gestion, convenience, parking fare, and expenditures to pay for travel. A logit model
is adopted here to describe the mode choice behavior. For any O-D pair rs, the gener-
alized travel cost function of DR, BT, and MSBT for a traveler departing at time t and
taking the path k are defined in Eqs. 1, 2, and 3, respectively.

crs
dr,k,t = αwrs

k,t +max[γ(t +wrs
k,t − t∗),β (t∗− t −wrs

k,t)]+ pi/n+∆
rs
k,t(n)+ξ ,∀k ∈ Prs

dr

(1)

crs
bt,k,t = αwrs

k,t +max[γ(t +wrs
k,t − t∗),β (t∗− t −wrs

k,t)]+δ
rs +σ

rs
k,t ,∀k ∈ Prs

bt (2)

crs
msbt,k,t = αwrs

k,t +max[γ(t +wrs
k,t − t∗),β (t∗− t −wrs

k,t)]+η
rs +ω

rs
k,t ,∀k ∈ Prs

msbt (3)
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where Prs
dr , Prs

bt , and Prs
msbt denote the path sets for DR, BT, and MSBT from r to s, re-

spectively; wrs
k,t denotes the actual travel time which might be the summation of driving

time, possible transfer time, bus travel time, and all possible walking time during the
trip; t∗ is the target arrival time (e.g., standard work starting time); α is the unit cost
of travel time; γ and β are the unit costs of time for arriving late and arriving early,
respectively (this second term is also known as the schedule delay cost); pi in Eq. 1 is
the parking fee at parking area of the destination; n in Eq. 1 is the number of pooled
travelers; ∆rs

k,t(n) in Eq. 1 represents the carpooling impedance cost; ξ in Eq. 1 is an
indicator of accessibility to a private car (if the traveler owns a car or has access to
a private car then it can be set to 0, otherwise it should be a large constant); δ rs in
Eq. 2 represents the transit fare; σ rs

k,t in Eq. 2 is the possible perceived inconvenience
cost of the transit mode associated with the crowding of transit route; ηrs and ωrs

k,t in
Eq. 3 are the fare and the possible perceived inconvenience cost of the MSBT mode,
respectively. More terms can be incorporated to achieve a higher model fidelity (e.g.,
fuel costs and vehicle depreciation).

2.3 Multi-modal dynamic network loading

The actual travel time wrs
k,t in Eqs. 1-3 is obtained from the DNL process and

can be further decomposed into summation of more detailed terms:

DR : wrs
k,t = wrs

k,t(car travel)+wrs
k,t ′(parking cruising)+wrs

k,t ′′(walking)

BT : wrs
k,t = wrs

k,t(walking)+wrs
k,t ′(transfer/waiting)+wrs

k,t ′′(bus travel)

+wrs
k,t ′′′(walking)

MSBT : wrs
k,t = wrs

k,t(car travel)+wrs
k,t ′(transfer/waiting)+wrs

k,t ′′(bus travel)

+wrs
k,t ′′′(walking)

(4)

where t < t ′ < t ′′ < t ′′′ indicates the sequence of start time of a trip component along a
path.

2.3.1 Car/bus travel time
Since the cars and the buses share the same auto network, the car/bus travel

time in Eq. 4 is extracted from the DNL process considering the heterogeneous vehic-
ular flow (i.e., light-duty vehicles like private cars and heavy-duty vehicles like buses
and trucks). A multi-class traffic flow model proposed in (Z. S. Qian, Li, Li, Zhang,
& Wang, 2017) is adopted here to capture the flow dynamics consisting of multiple
classes of vehicles with distinct flow characteristics. Moreover, the multi-class cell
transmission model (CTM) in (Z. S. Qian et al., 2017) is further modified to incorpo-
rate the passenger pick-up and drop-off behavior for buses.

7
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Due to the size and the speed, buses are regarded as a special type of trucks in
the DNL. Pi et al. (Pi et al., 2019) do not explicitly model buses but approximate buses
with trucks in the traffic flow. This study extends their work by introducing the explicit
bus modeling in the DNL. With the CTM link model, a bus stop (e.g., a PS and its
associated VSes) is placed in one of the cells of the link depending on its geographic
location. When a bus reaches the cell that contains a bus stop on its route, the bus will
stop in this cell if either one or two of the following conditions are met: (1) there are
in-vehicle passengers who will alight at this bus stop; (2) there are passengers at the
bus stop who want to board and the number of in-vehicle passenger is less than the bus
capacity. It is assumed that the bus stops in the bus bay of the bus stop, which separates
the bus from the travel lanes of a roadway. In this way, the normal trucks behind the
bus can pass the bus when the bus stops.

Since the DNL module is a mesoscopic one and all vehicles and passengers
are realized using agent-based modeling techniques, this truck passing the bus in the
simulation simply means that the position of the bus and that of the truck behind it are
swapped. However, the vehicle travel time is computed using the cumulative curves
from the DNL and it means that the first-in-first-out rule needs to hold (Nie & Zhang,
2008; Z. S. Qian et al., 2017; Pi et al., 2019). To this end, different cumulative curves
are set up for normal vehicles (cars and trucks) and buses separately. For each link in
auto link, there are one pair of arrival and departure curves for cars and the other pair
for trucks. Although buses are treated as trucks in the DNL, the cumulative curves for
the auto link do not account for buses. Instead, buses are counted using another pair of
arrival and departure curves that are associated with the virtual bus link in the virtual
bus network. So when the bus reaches or leaves a bus stop, the corresponding arrival
and departure curves of the bus link will increase.

2.3.2 Travel time of other modes
Other travel time terms in Eq. 4 can be computed in a similar fashion with (Pi

et al., 2019).
The parking cruising time depends on the expected parking occupancy in the

destination area: wrs
k,t(parking cruising) = εi/(1− ei(t)/Ei), where the parking area

i is on path k, and the εi is the average parking time of a parking area when it is
empty, Ei is the total capacity of the parking area, and ei(t) is the time-dependent
parking occupancy which can be either determined based on the DNL or estimated
using historical parking data.

The transfer/waiting time wrs
k,t ′(transfer/waiting) can also be either determined

based on the DNL or estimated using historical bus transit data.
The walking time is set to be proportional to the walking distance. wrs

k,t(walking)=
lrs
k,t/v̄, where v̄ is the average walking speed and lrs

k,t is the total walking distance in the

8
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route k at time t from r to s.

2.4 Multi-modal dynamic user equilibrium

In this study, given the traveler OD demand, the resultant path/flow pattern is
assumed to reach the MMDUE condition, which read:

crs
m,k,t −µ

rs
m,t = 0 if ∀k ∈ Prs

m , f rs
m,k,t > 0

crs
m,k,t −µ

rs
m,t ≥ 0 if ∀k ∈ Prs

m , f rs
m,k,t = 0

hrs
m,t

qrs
t

=
exp(−(αm +β1µrs

m,t)

∑m′ exp(−(αm′
+β1µrs

m′,t)

∀r,s, t,m

(5)

where µrs
m,t denotes the equilibrium cost of travel mode m from r to s departing at time t;

f rs
m,k,t is the flow of path k in mode m from r to s departing at time t. hrs

m,t = ∑k∈Prs
m,t

f rs
m,k,t

represents the flow of mode m from r to s departing at time t; qrs
t = ∑m∈{dr,bt,msbt} hrs

m,t

represents the total flow from r to s departing at time t.
The MMDUE can further formulated as a variational inequality (VI) problem

and can be solved using the closed-form gradient projection method proposed in (Pi
et al., 2019), which is more efficient than the existing projection-based methods for
large-scale networks.

To summarize, in the multi-modal dynamic traffic assignment model, with the
dynamic traveler OD demand as input, the mode choice and route choice models yield
the traveler path/flow based on initial network conditions. Then, the traveler path/flow
is converted into vehicular and passenger flows based on their mode choices. The
vehicular and passenger flows are further loaded onto the network, leading to updated
network conditions (e.g., traffic states on links and at intersections, and waiting time
at bus stops). The mode and route choices can be updated based on new network
conditions, so do the passenger flow and vehicle flow. This procedure goes on until the
equilibrium state is achieved. The whole process is shown in Figure 2.

Figure 2: The whole process of the multi-modal dynamic traffic assignment
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Multi-modal dynamic origin-destination estimation

3 Multi-modal dynamic origin-destination estimation

With the multi-modal dynamic traffic assignment, this section discusses the
MMDODE framework.

3.1 Formulation

The MMDODE aims to find the optimal dynamic traveler OD demand for the
multi-modal transportation network to minimize the discrepancy between the obser-
vations from the real world traffic data and the simulation results. It is formulated as
a bi-level optimization problem in Eqs. 6-23, which is an extension to the multi-class
dynamic origin-destination estimation (MCDODE) in (Ma et al., 2020).

min
{q,qtruck}

L =L1 +L2 +L3 +L4

=w1(∥y′vehicle −yvehicle∥2
2)

+w2(∥y′passenger −ypassenger∥2
2)

+w3(∥z′vehicle − zvehicle∥2
2)

+w4(∥z′bus − zbus∥2
2)

(6)

subject to

{wdr,wbt,wmsbt,cdr,cbt,cmsbt,ρρρdr
car,ρρρ

bt
passenger,ρρρ

msbt
car ,ρρρmsbt

passenger,ρρρ truck}

= Λ(fdr
car, f

bt
passenger, f

msbt
passenger, ftruck, fbus)

(7)

qm = umq ∀m ∈ {dr,bt,msbt} (8)

fm
i = pm

i qm

∀(m, i) ∈ {(dr,car),(bt,passenger),(msbt,passenger)}
(9)

ftruck = ptruckqtruck (10)

{udr,ubt,umsbt,pdr
car,p

bt
passenger,p

msbt
passenger,ptruck}

= (wdr,wbt,wmsbt,cdr,cbt,cmsbt)
(11)

xdr
car = ρρρ

dr
carf

dr
car (12)

xbt
passenger = ρρρ

bt
passengerf

bt
passenger (13)

10
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xmsbt
car = ρρρ

msbt
car fmsbt

passenger (14)

xmsbt
passenger = ρρρ

msbt
passengerf

msbt
passenger (15)

xtruck = ρρρ truckftruck (16)

xcar = xdr
car +xmsbt

car (17)

xpassenger = xbt
passenger +xmsbt

passenger (18)

yvehicle = ∑
i∈{car,truck}

Lixi (19)

ypassenger = Lpassengerxpassenger (20)

zvehicle = ∑
i∈{car,truck}

Miti (21)

zbus = Mbustbus (22)

q ≥ 0,qtruck ≥ 0 (23)

For the sake of notation brevity and further tensor manipulation, all variables in the
MMDODE are represented using tensors and are explained in Table 1. Other notations
are listed in Table 2.

Eq. 6 is the objective function, which is to minimize the discrepancy between
the observed traffic data and the estimated one. It consists of four parts: L1 and
L2 are the losses related to traffic counts while L3 and L4 are the losses related to
travel times. In addition to the vehicle-related data as in existing DODE literature, it
also accounts for the bus transit data (i.e., passenger count and bus travel time). The
parameters w1, w2, w3, and w4 are the weights to balance the scales of these four parts
in the optimization.

Eq. 7 represents the multi-modal DNL process described in Section 2.3. The
DNL function Λ(·) takes the multi-modal and multi-class path flow as input and out-
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puts the spatio-temporal network conditions and the DAR matrices.
Eqs. 8 and 9 represent the mode choice and the route choice for travelers, re-

spectively. Eq. 10 describes the route choice for trucks. It should be noted that the
trucks serve as "background" traffic in the MMDODE and form mixed traffic flows
with cars in the DNL in order to capture more realistic flow dynamics. The truck de-
mand is also estimated along with the traveler demand. The mode choice and the route
choice are obtained from a generalized function Ψ(·) in Eq. 11 which takes in the path
travel time/cost defined in Eqs. 1-3 and outputs the mode choice matrix and the route
choice matrix. The Ψ(·) can be either determined by exogenous mode/route choice
data or chosen to be analytical models such as logit or probit models (Maher, Zhang,
& Van Vliet, 2001).

Eqs. 12-16 represent the link traffic flow as the multiplication of the dynamic
assignment ratio (DAR) matrix and the path flow. The element of the DAR matrix de-
scribes the link arrival/departure information with respect to total number of travelers
using a certain path traveling between a certain OD pair departing at a certain time
(Ma & Qian, 2018). The DAR matrix is obtained from the DNL results and varies
with different travel demand input. Since obtaining the DAR matrix is often computa-
tionally challenging, the tree-based cumulative curves are adopted here to alleviate the
computational burden to construct the DAR matrix (Ma et al., 2020).

Eqs. 17 and 18 describe the contributions of different modes to the link traffic
flow. Specifically, Eq. 17 indicates that the car flow on the auto link comes from both
the DR mode and the MSBT mode while Eq. 18 shows that both the BT mode and the
MSBT mode contribute to the passenger flow on the bus link.

Eqs. 19 and 20 are the estimated flow for vehicles and passengers, respectively,
while Eqs. 21 and 22 are the estimated travel time for vehicles and buses, respectively.
It should be pointed out that Li and Mi represent different aggregation of the link-level
data. For example, the observed path travel time can be expressed as a summation of
the travel time of multiple links. These variables expand the framework’s flexibility
to accommodate the observed data aggregated in various forms. More details and
examples can be found in (Ma et al., 2020).

Eq. 23 is the non-negativity constraint for the demand.

Table 1: Tensors in MMDODE framework

Variable type Vector Dimension Type Description

12



Multi-modal dynamic origin-destination estimation

OD demand q,qtruck RN|K| Dense Traveler OD
demand and
truck OD
demand

Path flow fdr
car RNΠdr

Dense Path flow for car
in DR mode

fbt
passenger RNΠbt

Dense Path flow for
passenger in BT
mode

fmsbt
passenger RNΠmsbt

Dense Path flow for
passenger in
MSBT mode

ftruck RNΠtruck Dense Truck path flow

fbus RNΠbus Dense Bus path flow

Link flow xdr
car RN|A| Dense Car link flow

from DR mode

xmsbt
car RN|A| Dense Car link flow

from MSBT
mode

xcar RN|A| Dense Car link flow

xtruck RN|A| Dense Truck link flow

xbt
passenger RN|B| Dense Passenger link

flow from BT
mode

xmsbt
passenger RN|B| Dense Passenger link

flow from MSBT
mode

xpassenger RN|B| Dense Passenger link
flow

Link travel time tcar, ttruck RN|A| Dense Car and truck
link travel time

13
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tbus RN|B| Dense Bus link travel
time

Path travel time
and cost

wdr,wbt,wmsbt RNΠm
Dense Path travel time

of three modes

cdr,cbt,cmsbt RNΠm
Dense Path travel cost

of three modes

Observed and
estimated flow

y′vehicle,
yvehicle

R|Ca| Dense Observed and
estimated car and
truck flow

y′passenger,
ypassenger

R|Cb| Dense Observed and
estimated
passenger flow

Observed and
estimated travel
time

z′vehicle,
zvehicle

R|Ta| Dense Observed and
estimated car and
truck travel time

z′bus, zbus R|Tb| Dense Observed and
estimated bus
link travel time

DAR matrix ρρρdr
car RN|A|×NΠdr

Sparse DAR matrix for
cars in DR mode

ρρρbt
passenger RN|B|×NΠbt

Sparse DAR matrix for
passengers in BT
mode

ρρρmsbt
car RN|A|×NΠmsbt

Sparse DAR matrix for
cars in MSBT
mode

ρρρmsbt
passenger RN|B|×NΠmsbt

Sparse DAR matrix for
passengers in
MSBT mode

ρρρ truck RN|A|×NΠtruck Sparse DAR matrix for
trucks

14
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Mode choice
matrix

um RN|K|×N|K| Sparse Mode choice
matrix for each
mode

Route choice
matrix

pdr
car RNΠdr×N|K| Sparse Route choice

matrix for DR
mode

pbt
passenger RNΠbt×N|K| Sparse Route choice

matrix for BT
mode

pmsbt
passenger RNΠmsbt×N|K| Sparse Route choice

matrix for MSBT
mode

ptruck RNΠtruck×N|K| Sparse Route choice
matrix for trucks

Observation/link
incidence matrix

Lcar, Ltruck R|Ca|×N|A| Sparse Observation/link
incidence matrix
for cars and
trucks

Lpassenger R|Cb|×N|B| Sparse Observation/link
incidence matrix
for passengers

Link travel time
portion matrix

Mcar,Mtruck R|Ta|×N|A| Sparse Link travel time
portion matrices
for cars and
trucks

Mpassenger R|Tb|×N|B| Sparse Link travel time
portion matrix
for passengers

3.2 Solution algorithm

In order to solve the MMDODE problem, the key is to obtain the gradients of
the objective function with respect to the dynamic OD demands ∂L /∂q and ∂L /∂qtruck

15
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Table 2: Other notations in MMDODE framework

A The set of all links of the auto network

B The set of all links of the bus network

K The set of all OD pairs

Ca,Cb The set of indices of the observed flow for auto
network and bus network

Ta,Tb The set of indices of the observed travel time
for auto network and bus network

Πm The number of all paths in mode m

Πtruck The number of all paths for trucks

Πbus The number of all paths for buses

N The total number of time intervals

i The index of vehicle class and passenger

m The index of mode

for the formulation above. The computational-graph-based approach proposed by (Ma
et al., 2020) shows promising results in solving single-mode DODE problems on large-
scale networks and is thus adopted here and further extended to the MMDODE prob-
lem.

First the MMDODE problem is cast into a computational graph representa-
tion, and Figure 3 describes the structure of the computational graph for MMDODE.
A forward-backward algorithm running on the computational graph is used to obtain
the gradients. The algorithm consists of two processes: the forward iteration and the
backward iteration.

The forward iteration solves for the network conditions when the OD demand
is given, while the backward iteration updates the OD demand when the network con-
ditions are fixed. The forward-backward algorithm resembles some heuristic methods
that solve the upper level and lower level problem iteratively but it also explores the
analogy of a MMDODE problem and a machine learning task (i.e., training neural
networks).

The forward iteration basically means solving the multi-modal DTA described
in Section 2 and obtaining the mode/route choices (i.e., um in Eq. 8, pm

i in Eq. 9, and
ptruck in Eq. 10) and network conditions (i.e., , Λ(·) in Eq. 7).

The backward iteration is responsible for obtaining the gradients of the objec-
tive function via the backpropagation method. Taking the derivative of the objective
function step by step and based on the chain rule, the gradients of interest are showed
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Figure 3: An illustration of the forward-backward algorithm

in Sections 3.2.1 and 3.2.2.

3.2.1 Gradients of flow-related losses
For the flow-related losses L1 and L2:

∂L1

∂xcar
=−2w1LT

car(y
′
vehicle − ∑

i∈{car,truck}
Lixi) (24)

∂L1

∂xtruck
=−2w1LT

truck(y
′
vehicle − ∑

i∈{car,truck}
Lixi) (25)

∂L2

∂xpassenger
=−2w2LT

passenger(y
′
passenger −Lpassengerxpassenger) (26)

∂L1

∂xdr
car

=
∂L1

∂xcar
(27)

∂L1

∂xmsbt
car

=
∂L1

∂xcar
(28)

∂L2

∂xbt
passenger

=
∂L2

∂xpassenger
(29)

∂L2

∂xmsbt
passenger

=
∂L2

∂xpassenger
(30)

∂L1

∂ fdr
car

= ρρρ
dr
car

T ∂L1

∂xdr
car

(31)

∂L2

∂ fbt
passenger

= ρρρ
bt
passenger

T ∂L2

∂xbt
passenger

(32)
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∂L1

∂ fmsbt
passenger

= ρρρ
msbt
car

T ∂L1

∂xmsbt
car

(33)

∂L2

∂ fmsbt
passenger

= ρρρ
msbt
passenger

T ∂L2

∂xmsbt
passenger

(34)

∂L1

∂ ftruck
= ρρρ truck

T ∂L1

∂xtruck
(35)

∂L1

∂qdr = pdr
car

T ∂L1

∂ fdr
car

(36)

∂L2

∂qbt = pbt
passenger

T ∂L2

∂ fbt
passenger

(37)

∂L1

∂qmsbt = pmsbt
passenger

T ∂L1

∂ fmsbt
passenger

(38)

∂L2

∂qmsbt = pmsbt
passenger

T ∂L2

∂ fmsbt
passenger

(39)

∂L1

∂qtruck
= ptruck

T ∂L1

∂ ftruck
(40)

∂L1

∂q
= udrT ∂L1

∂qdr +umsbtT ∂L1

∂qmsbt (41)

∂L2

∂q
= ubtT ∂L2

∂qbt +umsbtT ∂L2

∂qmsbt (42)

It is noted that due to the presence of multiple modes, the gradients involve
more terms and more intermediate steps compared to those for the single-mode DODE
problem in (Ma et al., 2020). For example, Eq. 33 and Eq. 34 describe that the traveler
flow in MSBT mode contributes to both vehicle and passenger link flows.

3.2.2 Gradients of travel-time-related losses
Similarly, for the travel-time-related losses L3 and L4:

∂L3

∂ tcar
=−2w3MT

car(z
′
vehicle − ∑

i∈{car,truck}
Miti) (43)

∂L3

∂ ttruck
=−2w3MT

truck(z
′
vehicle − ∑

i∈{car,truck}
Miti) (44)

∂L4

∂ tbus
=−2w4MT

bus(z
′
bus −Mbustbus) (45)
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∂L3

∂xcar
=

∂ Λ̄({xi}i)

∂xcar

∂L3

∂ tcar
(46)

∂L3

∂xtruck
=

∂ Λ̄({xi}i)

∂xtruck

∂L3

∂ ttruck
(47)

∂L4

∂xtruck
=

∂ Λ̄({xi}i)

∂xtruck

∂ tbus

∂ ttruck

∂L4

∂ tbus
(48)

∂L4

∂xpassenger
=

∂ tbus

∂xpassenger

∂L4

∂ tbus
(49)

∂L3

∂xdr
car

=
∂L3

∂xcar
(50)

∂L3

∂xmsbt
car

=
∂L3

∂xcar
(51)

∂L4

∂xbt
passenger

=
∂L4

∂xpassenger
(52)

∂L4

∂xmsbt
passenger

=
∂L4

∂xpassenger
(53)

∂L3

∂ fdr
car

= ρρρ
dr
car

T ∂L3

∂xdr
car

(54)

∂L4

∂ fbt
passenger

= ρρρ
bt
passenger

T ∂L4

∂xbt
passenger

(55)

∂L3

∂ fmsbt
passenger

= ρρρ
msbt
car

T ∂L3

∂xmsbt
car

(56)

∂L4

∂ fmsbt
passenger

= ρρρ
msbt
passenger

T ∂L4

∂xmsbt
passenger

(57)

∂L3

∂ ftruck
= ρρρ truck

T ∂L3

∂xtruck
(58)

∂L4

∂ ftruck
= ρρρ truck

T ∂L4

∂xtruck
(59)

∂L3

∂qdr = pdr
car

T ∂L3

∂ fdr
car

(60)

∂L4

∂qbt = pbt
passenger

T ∂L4

∂ fbt
passenger

(61)
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∂L3

∂qmsbt = pmsbt
passenger

T ∂L3

∂ fmsbt
passenger

(62)

∂L4

∂qmsbt = pmsbt
passenger

T ∂L4

∂ fmsbt
passenger

(63)

∂L3

∂qtruck
= ptruck

T ∂L3

∂ ftruck
(64)

∂L4

∂qtruck
= ptruck

T ∂L4

∂ ftruck
(65)

∂L3

∂q
= udrT ∂L3

∂qdr +umsbtT ∂L3

∂qmsbt (66)

∂L4

∂q
= ubtT ∂L4

∂qbt +umsbtT ∂L4

∂qmsbt (67)

Special attention should be paid to Eqs. 46-49. The Λ̄(·) is the dynamic link
model, a part of the function Λ(·) in Eq. 7, and it takes the dynamic link flow as input
and outputs the dynamic link travel time. It is assumed that the link travel time {ti}i is
differentiable with respect to the incoming link flow. Most existing link models such
as CTM, link queque model, and link transmission model are compatible.

However, no closed form exists for the derivative Λ̄({xi}i)/xi. It is common
practice to rely on approximation approaches (C.-C. Lu et al., 2013; Z. S. Qian, Shen,
& Zhang, 2012; Ma et al., 2020). The approximation approach in (Ma et al., 2020) is
adopted here. Specifically, Λ̄({xi}i)/xi is zero matrix when all links are not congested,
and Λ̄({xi}i)/xi = diag(x̃−1

i ) when all links are congested. x̃−1
i is the element-wise

reciprocal of x̃i, which is the flow exiting from the head of each link for different
vehicles. diag(x̃−1

i ) is a square matrix with the diagonal elements being x̃−1
i and other

elements being zero. In the implementation, each entry of Λ̄({xi}i)/xi is chosen from
either the zero matrix or diag(x̃−1

i ) depending on whether the corresponding link is
congested or not.

As for the bus link travel time in Eqs. 48 and 49, it assumes that each bus link
travel time in tbus consists of the bus travel time and the dwelling time at the bus stop:

tbus,b = ∑
a∈S (b)

rattruck,a + tdwelling (68)

where S (b) represents the set of auto links the bus link b covers and ra represents the
portion of the overlapped length between the bus link b and the auto link a to the whole
length of the auto link a. This is because the bus stop can be in the middle of the auto
link, and each bus link can overlap with multiple auto links. Since buses are treated as
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trucks in the DNL, the actual time for bus traversing from one bus stop to the next one
can be approximated by the corresponding truck travel time. The second term tdwelling

considers the dwelling time for a bus at a bus stop due to passenger pick-up or drop-off.
The derivative of tdwelling with respect to the passenger flow can be approximated as an
additional boarding or alighting time incurred by an additional passenger.

Therefore, according to the chain rule, the gradients of the objective function
with respect to the OD demand can be written as:

∂L

∂q
=

∂L1

∂q
+

∂L2

∂q
+

∂L3

∂q
+

∂L4

∂q
(69)

∂L

∂qtruck
=

∂L1

∂qtruck
+

∂L3

∂qtruck
+

∂L4

∂qtruck
(70)

With the MMDODE formulation on a computational graph and the gradients
above, the MMDODE problem can be solved as a machine learning/deep learning task
with gradient descent methods. Ma et al. (Ma et al., 2020) only apply the stochastic
gradient descent (SGD) and a handcrafted Adagrad in their work. The implementation
of the optimization in this work is based on PyTorch (Paszke et al., 2019) and enables
the direct use of more off-the-shelf algorithms such as RMSProp, Adam, NAdam, and
Adamax. The code is opensourced on Github1.

1https://github.com/maccmu/macposts
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4 Toy network example

The proposed MMDODE framework is first illustrated using a small grid net-
work. All the experiments are conducted on a desktop with Intel Core i7-7700 K CPU
4.20 GHz × 8, 32 GB RAM, and 500 GB SSD.

The small grid network is depicted in Figure 4 and has 4 OD pairs and 3 bus
routes. The node 16 is set as the middle point for the MSBT mode, namely, travelers
can first reach node 16 via mobility services and then switch to the bus transit to get
to their final destinations. The auto links (1, 3), (14, 3), (15, 5), (2, 5), (9, 12), (9,
17), (11, 13), and (11, 18) are OD connectors and are modeled using the point queue
model while the rest of links are modeled with the CTM and the identical triangular
fundamental diagram (FD). In the FD, the length of the auto links (3, 4), (5, 4), (7, 6),
(7, 8), (10, 9), and (10, 11) is 0.15 mile, the length of the auto links (4, 7) and (7, 10)
is 0.25 mile, and the length of the auto links (3, 6), (5, 8), (6, 9), and (8, 11) is 0.55
mile. The free flow speed is 35 miles/hour for car and 25 miles/hour for truck. The
flow capacity is 2,200 vehicles/hour for car and 1,200 vehicles/hour for truck, and the
holding capacity is 200 vehicles/mile for car and 80 vehicles/mile for truck.

The analysis horizon is 150 minutes and divided into ten 15-minute time inter-
vals (i.e., N = 10). To generate the ground truth data for training, the path flows for
different modes fdr

car, fbt
passenger, fmsbt

passenger, and ftruck are randomly sampled from uniform
distributions Unif(0, 800), Unif(0, 50), Unif(0, 100), and Unif(0, 50), for each time
interval, respectively. The mode choice and route choice portions are also randomly
generated and treated as unknown, then we run the DNL to obtain the “true” network
conditions.

The auto links (3, 4), (5, 4), (4, 7), (5, 8), (7, 6), and (7, 8) are chosen to
generate the observed flow and travel time data for cars and trucks separately. All bus
links are chosen to generate the observed passenger flow and bus travel time data. The
observed data is then multiplied by 1+ ε to get the observed data with noise, where
ε ∼ Unif(−ξ ,ξ ) and ξ ∈ [0,1) represents the noise level. In this example, the noise
level ξ = 0.1. The NAdam algorithm in PyTorch is used.

The change of loss L against the number of iterations is presented in Figure 5.
To analyze the convergence of loss for cars, trucks, and passengers separately, the loss
L is also decomposed into six components: car flow, truck flow, passenger flow, car
travel time, truck travel time, and bus travel time, which are depicted in Figure 6. Note
the losses are normalized to be within [0, 1]. The travel cost means the travel time.
It can be seen that the total loss and the loss components all decrease as the iteration
progresses.

The R-squared metric is also used to measure the goodness of fit between the
true flow/cost and the estimated flow/cost. The scatter plots are shown in Figures 7
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Figure 4: A small grid network
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and 8. It can be seen that the R-squared of all flow and cost is above 0.9, except for
the bus link travel time. The R-squared for the bus link travel time is about 0.8. The
reasons are twofold: (1) the bus flow is relatively low compared to the other vehicle
flow (only one bus every 15 mins for each route). This means that the other vehicles
can largely affect the bus traveling in the DNL, making the task of estimating the bus
travel time matching the true bus schedule challenging. (2) the bus link travel time is
approximated by the truck travel time and the derivative of link travel time Λ̄({xi}i)/xi

is also approximated by simulation rather than an accurate closed form. Due to the
discretization and the randomness of the DNL process, such approximations can be
noisy.

This small example shows that the proposed MMDODE framework yields ac-
curate estimation of the dynamic OD demand for this small multi-modal network.

Figure 5: Convergence curve for the loss for the small grid network
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Figure 6: Decomposed convergence curve for the small grid network (normalized)

Figure 7: Estimated and “true” observed flow for cars, trucks, and passengers for the
small grid network (unit: number of vehicles / 15 minutes or number of passengers /

15 minutes)

Figure 8: Estimated and “true” observed cost for cars, trucks, and passengers for the
small grid network (unit: second)
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5 Case study in Columbus, OH

5.1 OD demand estimation

The MMDODE framework is further applied to a large-scale network in central
Ohio region (Figure 9), with Columbus located in the center, to test its feasibility and
scalability. The parameters for this network are listed in the Table 3. For the MSBT
mode, a total of 13 locations, where multiple bus routes cross, are selected as middle
destinations. Due to data availability, only car, truck, and passenger flow data is used
for the training. The traffic data is from multiple sources. The car and truck flow data
is from Ohio Department of Transportation (ODOT), where car traffic volume counts
are measured for all passenger cars and truck traffic volume counts includes all kinds
of trucks at the measured location. There are a total of 883 auto links with valid car or
truck count data. The bus passenger counts are from the Central Ohio Transit Authority
(COTA). The average waiting time for each bus stop is set as 15 minutes. All the traffic
flow observations are aggregated to a single data sample to represent the traffic state of
a typical day. The NAdam algorithm is used to solve the MMDODE.

Table 3: Network parameters

Name Value

Studying period 5:00 AM - 9:00 AM

Simulation unit interval 5 s

Length of time interval 15 min

Number of time intervals 16

Number of auto links 26,357

Number of nodes 8,706

Number of O-D pairs 11,092

Number of bus routes 60

Number of physical bus stops 2,493

Number of virtual bus stops 3,284

Number of bus links 3,224

Number of walking links 7,979

The MMDODE framework runs for 40 iterations. Each iteration takes about 30
minutes so the whole process takes around 30×40 = 1200 minutes. The convergence
of the loss and the decomposed loss are shown in Figures 10 and 11, respectively. It can
be observed that this proposed method converges fairly quickly for this large network.
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Figure 9: MORPC network in central Ohio

Figure 10: Convergence curve for the loss for 40 iterations for the network in the
central Ohio region
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Figure 11: Decomposed convergence curve for the network in the central Ohio region
(normalized)

The comparisons for the observed flow are presented in Figure 12. The R-
squared is 0.81 and 0.84 for car and truck flow, respectively. But the R-squared for
passenger flow is low, only 0.20. This is because the passenger flow is rather low
compared to the vehicle flow. Again, due to the discretization and the randomness of
the DNL, it is challenging to estimate the low traffic flow accurately. It can be observed
that the loss for the passenger flow in Figure 11 does decrease but not as much as
those for vehicle flows. This indicates that the proposed framework can minimize the
passenger flow loss towards the right direction. One possible strategy to improve this
result is using more comprehensive bus transit data. Note that only the passenger flow
data is used in the training, but the passenger flow can be highly dependent on the
bus schedule. It is an ongoing effort to integrate the bus schedule data to improve the
passenger flow estimation (as in the small grid network above).

Overall, the results of the MMDODE framework is satisfactory for this large
network in terms of the car and truck flow. Although the accuracy for the passen-
ger flow estimation is not ideal, the loss function shows the correct decreasing trend,
which means the proposed framework works to some extent but requires further im-
provement.

5.2 Impacts of mobility services

Based on the estimated OD demand, we run some scenario analyses to investi-
gate the impacts of mobility services on the whole network. We assume travelers can
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Figure 12: Estimated and true observed flow for cars, trucks, and passengers for the
network in the central Ohio region (unit: number of vehicles / 15 minutes or number

of passengers / 15 minutes)

make mode choices among driving, bus transit, and mobility services + bus transit.
Due to the network size, we select 5,713 O-D pairs for demonstration because only
these O-D pairs have more than two modes available. We select 13 locations, where
multiple bus routes cross, as middle points for mobility services + bus transit. The
study period is from 6 AM to 10 AM.

For travelers choosing the driving mode, we assume they will pay the parking
fee ranging from $3 to $8 depending on the locations and their travel time includes the
cruising time in the parking lot. The waiting time for mobility service and bus transit
is set to 5 min and 10 min, separately. We also consider the effects of different demand
levels.

The comparison of general metrics at the system level with and without mobil-
ity services is presented in Table 4, 5, and 6. We can find that introducing the mobility
services can reduce emissions and improve the traffic efficiency. Note these results are
based on a small amount of O-D demands, we expect that when the whole O-D pairs
are considered, these reductions can be more significant.

Table 4: General metrics without mobility service

Demand

multiplier

Fuel

(gallon)

CO2

(ton)

HC

(ton)

CO

(ton)

NOX

(ton)

VMT

(mile)

VHT

(hour)

Average Travel Time

(min)

1 28,347.31 251.92 0.47 1.15 1.02 756,640.27 11,118.39 9.89

1.2 33,952.95 301.74 0.56 1.36 1.19 908,954.52 13,374.67 9.92

Table 5: General metrics with mobility service

Demand

multiplier

Fuel

(gallon)

CO2

(ton)

HC

(ton)

CO

(ton)

NOX

(ton)

VMT

(mile)

VHT

(hour)

Average Travel Time

(min)

1 27,204.17 241.76 0.45 1.10 0.98 725,547.32 10,665.20 9.53

1.2 30,230.59 268.66 0.50 1.22 1.08 807,665.05 11,881.53 9.59
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Case study in Columbus, OH

Table 6: Reduction of general metrics when introducing mobility service

Demand

multiplier

Fuel

(gallon)

CO2

(ton)

HC

(ton)

CO

(ton)

NOX

(ton)

VMT

(mile)

VHT

(hour)

Average Travel Time

(min)

1 4.03% 4.03% 3.92% 3.74% 3.47% 4.11% 4.08% 3.64%

1.2 10.96% 10.96% 10.66% 10.33% 9.59% 11.14% 11.16% 3.31%

We also calculate the mode shares in different scenarios in Table 7. It shows
that approximately 13% travelers choose mobility services + bus transit mode. This is
also depicted in the flow pattern in Figure 13: more people use the bus transit when
mobility service exists.

Table 7: Comparison of mode shares with and without mobility service

Demand

multiplier
Driving Bus transit

Mobility services +

Bus transit

w/o mobility services 99.67% 0.33% -
1

w/ mobility services 86.84% 0.29% 12.87%

w/o mobility services 99.66% 0.34% -
1.2

w/ mobility services 86.93% 0.29% 12.78%

5.3 Mobility energy productivity metric

Mobility energy productivity (MEP) is a metric that quantifies the ability of
an area’s transportation system to connect individuals to goods, services, employment
opportunities, and other activities while accounting for time, cost, and energy. It offers
an innovative approach to characterize, measure, and inform the movement of people
within a given location or region. The ability to quantify mobility using MEP has the
potential to create more livable communities that offer transportation choices that are
affordable and accessible, create economic opportunities, and lead to a higher quality
of life for citizens.

oikt = ∑
j

oi jkt
N∗

N j

f j

∑ j f j
(71)

Mikt = αek +β t +σck (72)

MEPi = ∑
k

∑
t
(oikt −oik(t−10))exp(Mikt) (73)
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(a) Without mobility service

(b) With mobility service

Figure 13: Comparison of passenger flows with and without mobility service during
7:30AM - 7:45AM
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Case study in Columbus, OH

Currently, we can calculate the MEP using the driving data, as shown in Fig-
ure 14. Integrating the bus transit data is an ongoing work.

Figure 14: MEP for the central Ohio area based on driving data
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Conclusion

6 Conclusion

Despite that the transportation is becoming more complex and multi-modal,
the existing DODE frameworks usually focus on the single-mode transportation net-
work. This project aims to develop a data-driven framework to estimate the dynamic
OD demand for multi-modal transportation networks. By formulating the MMDODE
problem on a computational graph, the problem can be solved by a forward-backward
algorithm. In the forward iteration, the multi-modal dynamic traffic assignment prob-
lem is solved and the network conditions are obtained. In the backward iteration, the
OD demand is updated by the backpropagation method with gradients extracted from
the result of the forward iteration. The proposed framework provides a new perspective
to view the MMDODE problem as a machine-learning task.

The effectiveness of this framework is tested on a small grid network as well as
a real-world large-scale network. The experiment results indicate that this framework
can yield satisfactory dynamic OD demand estimation results in terms of the car and
truck flow. It also points out that accurately estimating the bus transit data can be
challenging due to sparse bus and passenger flows and requires further research efforts.
The preliminary results from the case study show that introducing mobility services has
the potential to reduce emissions and improve the travel efficiency.

In future work, the estimation accuracy of the MMDODE framework can be
enhanced in the following directions: (1) more bus transit data can be incorporated to
improve the passenger flow estimation. Bus schedule can be embedded in the DNL to
accurately simulate the bus arrival/departure; (2) the derivative of link travel time can
be further improved by more accurate approximation methods, e.g., (Z. Qian & Zhang,
2011; Zhang & Qian, 2020).
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Appendix

Appendix

The code for MMDODE is made available at https://github.com/maccmu/
macposts. The transportation network in Columbus, OH with estimated vehicle de-
mand is available at https://github.com/maccmu/macposts-examples.

34

https://github.com/maccmu/macposts
https://github.com/maccmu/macposts
https://github.com/maccmu/macposts-examples


References

References

Ben-Akiva, M. E., Gao, S., Wei, Z., & Wen, Y. (2012). A dynamic traffic assignment
model for highly congested urban networks. Transportation research part C:

emerging technologies, 24, 62–82.
Cantelmo, G., Viti, F., Tampère, C. M., Cipriani, E., & Nigro, M. (2014). Two-step

approach for correction of seed matrix in dynamic demand estimation. Trans-

portation Research Record, 2466(1), 125–133.
Cipriani, E., Florian, M., Mahut, M., & Nigro, M. (2011). A gradient approximation

approach for adjusting temporal origin–destination matrices. Transportation Re-

search Part C: Emerging Technologies, 19(2), 270–282.
Fisk, C. (1989). Trip matrix estimation from link traffic counts: The congested network

case. Transportation Research Part B: Methodological, 23(5), 331–336.
Florian, M., & Chen, Y. (1995). A coordinate descent method for the bi-level od matrix

adjustment problem. International Transactions in Operational Research, 2(2),
165–179.

Grahn, R., Qian, S., & Hendrickson, C. (2021). Improving the performance of first-and
last-mile mobility services through transit coordination, real-time demand pre-
diction, advanced reservations, and trip prioritization. Transportation Research

Part C: Emerging Technologies, 133, 103430.
Jha, M., Gopalan, G., Garms, A., Mahanti, B. P., Toledo, T., & Ben-Akiva, M. E.

(2004). Development and calibration of a large-scale microscopic traffic simu-
lation model. Transportation Research Record, 1876(1), 121–131.

Kattan, L., & Abdulhai, B. (2006). Noniterative approach to dynamic traffic origin–
destination estimation with parallel evolutionary algorithms. Transportation re-

search record, 1964(1), 201–210.
Kim, H., Baek, S., & Lim, Y. (2001). Origin-destination matrices estimated with

a genetic algorithm from link traffic counts. Transportation Research Record,
1771(1), 156–163.

Lu, C.-C., Zhou, X., & Zhang, K. (2013). Dynamic origin–destination demand flow
estimation under congested traffic conditions. Transportation Research Part C:

Emerging Technologies, 34, 16–37.
Lu, L., Xu, Y., Antoniou, C., & Ben-Akiva, M. (2015). An enhanced spsa algorithm for

the calibration of dynamic traffic assignment models. Transportation Research

Part C: Emerging Technologies, 51, 149–166.
Ma, W., Pi, X., & Qian, Z. (2020). Estimating multi-class dynamic origin-destination

demand through a forward-backward algorithm on computational graphs. Trans-

portation Research Part C: Emerging Technologies, 102747.

35



References

Ma, W., & Qian, Z. S. (2018). Estimating multi-year 24/7 origin-destination demand
using high-granular multi-source traffic data. Transportation Research Part C:

Emerging Technologies, 96, 96–121.
Maher, M. J., Zhang, X., & Van Vliet, D. (2001). A bi-level programming approach for

trip matrix estimation and traffic control problems with stochastic user equilib-
rium link flows. Transportation Research Part B: Methodological, 35(1), 23–40.

Nie, Y. M., & Zhang, H. M. (2008). A variational inequality formulation for inferring
dynamic origin–destination travel demands. Transportation Research Part B:

Methodological, 42(7-8), 635–662.
Osorio, C. (2019). Dynamic origin-destination matrix calibration for large-scale net-

work simulators. Transportation Research Part C: Emerging Technologies, 98,
186–206.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., . . . Chintala, S.
(2019). Pytorch: An imperative style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Garnett
(Eds.), Advances in neural information processing systems 32 (pp. 8024–8035).
Curran Associates, Inc.

Pi, X., Ma, W., & Qian, Z. S. (2019). A general formulation for multi-modal dynamic
traffic assignment considering multi-class vehicles, public transit and parking.
Transportation Research Part C: Emerging Technologies, 104(May), 369–389.
doi: 10.1016/j.trc.2019.05.011

Qian, Z., & Zhang, H. M. (2011). Computing individual path marginal cost in networks
with queue spillbacks. Transportation Research Record, 2263(1), 9–18.

Qian, Z. S., Li, J., Li, X., Zhang, M., & Wang, H. (2017). Modeling heterogeneous
traffic flow: A pragmatic approach. Transportation Research Part B: Method-

ological, 99, 183–204.
Qian, Z. S., Shen, W., & Zhang, H. (2012). System-optimal dynamic traffic assign-

ment with and without queue spillback: Its path-based formulation and solution
via approximate path marginal cost. Transportation research part B: method-

ological, 46(7), 874–893.
Stathopoulos, A., & Tsekeris, T. (2004). Hybrid meta-heuristic algorithm for the

simultaneous optimization of the o–d trip matrix estimation. Computer-Aided

Civil and Infrastructure Engineering, 19(6), 421–435.
Vaze, V., Antoniou, C., Wen, Y., & Ben-Akiva, M. (2009). Calibration of dynamic

traffic assignment models with point-to-point traffic surveillance. Transportation

Research Record, 2090(1), 1–9.
Yang, H., Sasaki, T., Iida, Y., & Asakura, Y. (1992). Estimation of origin-destination

matrices from link traffic counts on congested networks. Transportation Re-

search Part B: Methodological, 26(6), 417–434.

36



References

Zhang, P., & Qian, S. (2020). Path-based system optimal dynamic traffic assignment:
A subgradient approach. Transportation Research Part B: Methodological, 134,
41–63.

37


	Introduction
	Multi-modal dynamic traffic assignment
	Multi-modal transportation network
	Generalized travel cost
	Multi-modal dynamic network loading
	Car/bus travel time
	Travel time of other modes

	Multi-modal dynamic user equilibrium

	Multi-modal dynamic origin-destination estimation
	Formulation
	Solution algorithm
	Gradients of flow-related losses
	Gradients of travel-time-related losses


	Toy network example
	Case study in Columbus, OH
	OD demand estimation
	Impacts of mobility services
	Mobility energy productivity metric

	Conclusion
	Appendix
	References

	A Modeling Framework to Quantify Impacts of Mobility: 
	RNK: 
	RNKNK: 
	A: 
	The set of all links of the auto network: 
	1httpsgithubcommaccmumacposts: 
	Name: 
	Value: 
	Demand: 
	Fuel: 
	CO2: 
	HC: 
	CO: 
	NOX: 
	VMT: 
	VHT: 
	Average Travel Time: 
	Demand_2: 
	Fuel_2: 
	CO2_2: 
	HC_2: 
	CO_2: 
	NOX_2: 
	VMT_2: 
	VHT_2: 
	Average Travel Time_2: 
	Demand_3: 
	Fuel_3: 
	CO2_3: 
	HC_3: 
	CO_3: 
	NOX_3: 
	VMT_3: 
	VHT_3: 
	Average Travel Time_3: 
	Demand_4: 
	Mobility services: 


