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Problem Description

In modern smart cities, understanding of the city-wide area is paramount to improve

transportation throughout the city. City-wide sensing (such as air-pollution monitoring,

traffic monitoring, road-surface sensing, etc.) and city-side transportation (taxis, buses,

etc.) all require wide coverage over the entire city. However, vehicles (such as taxis) are not

evenly spread and tend to be centered around the central business district. Thus, their

geographical distribution is often a poor match for transportation or sensing needs during

times where vehicles are especially needed. This distribution particularly threatens

disadvantaged communities, e.g., if taxis are used as a city’s primary means to sense air

pollution, they may concentrate in wealthy business districts during morning rush hour.

They then cannot sense the air pollution in poorer neighborhoods at this time, making it

more difficult to assess air pollution’s health impacts in those communities.

We aim to derive a method to incentivize taxis to travel to different parts of a city, with the

goal of ensuring that they sense data evenly throughout the city. We assume that taxis

continuously sense data at a fixed frequency regardless of their location. Thus, controlling

the distribution of sensed data is equivalent to controlling the movement of the taxis. In

general, taxis' natural movement will lead to them concentrating in busy locations without

many potential passengers, which is undesirable for sensing or transportation. By

incentivizing taxis to move towards locations with more passengers and higher needs, we

can also make the distribution of sensed data more spatiotemporally uniform and thus

useful for city operators.

Solving this problem, however, comes with several challenges. First, it is difficult to know in

advance how taxi drivers will react to the incentives offered, making it difficult to

determine which incentives should be offered. Indeed, even determining how incentives

should be shown to taxi drivers may be challenging, since drivers may react differently to

different types of incentives (e.g., fewer drivers may follow the incentives offered if they

are required to follow specific routes to gain the incentive payments, compared to simply

detouring from their planned routes). Modeling individual drivers’ reactions to incentives

then requires tracking significant information for individual drivers, such as their

willingness to drive to specific locations, that may not be available to us. Second, even if

we had a model for taxi drivers’ reactions to incentives, relating these actions to the

resulting distribution of data requires tracking individual drivers’ movements, which may

not scale well with multiple drivers or a large city. Our work aims to solve these problems
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by abstracting the problem into a reinforcement learning framework and evaluating the

resulting pricing algorithms on real taxi and vehicle mobility datasets.

Approach and Methodology

To solve the problems outlined above, we consider an incentives framework in which

drivers are offered a location-based incentive for reporting measurements from different

locations around a city. Since the incentives earned by each driver are then solely tied to

the driver’s current location, drivers can easily understand the actions they must take to

earn incentive payments. However, this framework also complicates our modeling of

drivers’ decision-making. For example, in order to know which routes a rational driver

seeking to maximize the earned incentive will take, we must evaluate the potential

incentives earned on each possible route, which is computationally infeasible for a large

city. Most drivers will not even act in a perfectly rational manner, instead incorporating

their intrinsic preferences for different routes into their decision making. Thus, we

circumvent this challenge by abstracting driver decisions into a reinforcement learning

framework that allows us to learn how they move through the city as a function of the

incentives that we offer at each location.

Our reinforcement learning framework takes as possible actions the prices offered at each

location, and defines the reward from these choices as the difference between the

distribution of data collected and a spatiotemporally uniform distribution. As is typical in

reinforcement learning frameworks, we then choose the prices according to state

variables; our goal is to learn the action that should be taken when each state is observed

(sometimes called learning the policy), so as to maximize the reward over time. Our state

variables encode the current distribution of active (i.e., currently carrying passengers and

thus unresponsive to incentives) and idle vehicles across different locations in the city, as

well as the number of passengers available at each location. Taxi drivers would naturally be

inclined to travel towards those locations with multiple passengers available, and

intuitively we would offer fewer incentives there.

Given this reinforcement learning framework, our next step is to design the algorithm that

can learn an optimal policy. One option is to simply utilize existing reinforcement learning

algorithms, e.g., deep deterministic policy gradient (DDPG) approaches. A key challenge to

doing so, however, has been the scalability of our algorithms to realistic time durations

and city sizes. In particular, the number of action variables scales linearly with the number

of locations, as does the number of state variables. We have begun investigating the use of

clustering algorithms to reduce the size of our state space and learn policies with a
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manageable number of free action variables. Clustering allows us to identify locations that

should offer the same prices given some state variables (e.g., due to similarities in their

states), reducing the number of actions we must consider.

Finally, the last part of our methodology is to evaluate the algorithms we propose to learn

the optimal pricing policy. We have built a simulation platform for taxi movement around a

city as a function of the incentives offered to taxi drivers, which will allow us to test our

formulation and algorithms. We can specify how taxi drivers make their decisions (e.g.,

randomly, greedily maximizing the incentives earned, etc.) in order to model different

types of driver actions. As part of the simulator construction, we have implemented

existing reinforcement learning techniques that can take as input generic state and reward

variables and attempt to learn the optimal actions. Currently, the simulator integrates data

on taxi movement from Beijing.

Findings

Our first finding identifies the challenges in applying reinforcement learning to problems

with a large number of spatial state variables, in particular scalability challenges as the size

of the state space grows. We believe that this challenge will arise in general

spatiotemporal learning scenarios beyond taxi incentivization, where an action variable

must be optimized at each location over a large geographical space. The algorithms we are

currently developing, which intelligently cluster state variables to learn a reduced policy

that is nonetheless almost optimal, may thus be useful for a more general class of

reinforcement learning problems.

Figure 1: Architecture of our taxi simulator with incentives.
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Figure 2: Heat map of the distribution of vehicles in a five-by-five grid with no (left),

uniform (center), and random (right) incentives offered. We observe that the distribution

changes dramatically depending on the incentives offered.

Our second finding is that driver reactions can significantly impact the distribution of data

collected. Figure 1 shows the architecture of the taxi simulator that we developed to test

these findings. By changing the incentive, driver reaction, and driver behavior models, we

can find that we can change the distribution of data collected over the city. Figure 2

illustrates heat maps of the spatial distribution of collected data under no, uniform, and

random incentives in a simplified five-by-five city grid. Numbers in each grid square

represent the number of measurements collected over one day. We observe significantly

different distributions for the three different incentive types, indicating the importance of

these incentives to changing driver behavior.

Figure 3: Our reinforcement learning approach decreases the KL-divergence between the

actual distribution of collected data and a spatiotemporally uniform distribution by 32%

compared to no incentivization.

Our third finding is that using reinforcement learning to optimize the prices offered is

effective in making the distribution of collected data more uniform. Figure 3 shows the

reduction in KL-divergence (a measure of how closely the achieved spatiotemporal

distribution matches a uniform one--lower means a closer resemblance) as we train the

algorithm longer. We observe a significant decrease in the KL-divergence, indicating that
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utilizing reinforcement learning to select prices is effective in optimizing the distribution of

collected data.

Finally, training and professional development opportunities have been provided in the

form of taxi datasets that have been used for projects in a data analysis course at Stanford.

We plan to use these datasets in other courses in later semesters as well.

Conclusions

We report four major conclusions from this project: (i) the development and

implementation of a software simulator for taxi drivers’ reactions to incentives offered to

them, (ii) the development of a reinforcement learning framework to optimize these

incentives, (iii) novel reinforcement learning algorithms that handle the scalability

challenges associated with our pricing problem and related spatiotemporal optimizations,

and (iv) educational integration of our findings into relevant courses.

Our simulator, which is the basis for our workshop paper, includes modules that admit

customized models for how taxi drivers react to the incentives given, e.g., some drivers

may simply ignore the incentives, while others may attempt to optimize their driving

destinations so as to maximize the incentives received. The simulator utilizes traces of taxi

activity from Beijing, China; and models the effect of taxi driver movement on congestion

throughout a city. We have released an open-source version of the simulator that would

allow other researchers to use our work in their own research on incentivization in

transportation networks.

Our reinforcement learning framework, as described above, specifies the prices chosen

throughout the city as actions taken so as to maximize a reward function, which we define

as the degree to which the taxi distribution matches a specified target distribution. These

techniques will allow sensing or taxi operators to ensure that taxis spread themselves

around a city according to sensing or passenger needs. These algorithms have also

increased the body of knowledge pertaining to spatiotemporal reinforcement learning,

and we expect to make further advances in this area over the course of the project.

Recommendations

Our first recommendation is that companies interested in controlling the distribution of

taxis over a city should consider using monetary incentives as a means to influence where

taxis should travel. While finding the right incentives to offer is challenging, our work
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shows that reinforcement learning is a promising approach to solve the resulting

optimization problem. We also introduce a framework and algorithms that can help

practitioners formulate and solve their problem as a reinforcement learning one.

We presented one workshop paper on our simulation platform at a workshop of ACM

UbiComp in September. The platform has since been released as open-source code on

Github (see below), where it is available for others to use and adapt in their own projects.

We plan to continue disseminating our results by publishing additional papers on our

frameworks and algorithms. In particular, we are working on a journal paper submission

that outlines our reinforcement learning framework ideas.

We also anticipate working with current and future partners to put our work into practice.

We have obtained taxi mobility data from DriveSally, a company that rents cars to Uber

and Lyft drivers, which we will be able to use to simulate taxi movements in response to

different driver incentives. In particular, Drive Sally would like to use our algorithms to

incentivize their drivers to locations where there are more potential passengers and they

can earn revenue by displaying effective digital advertisements. We are also discussing

how our incentive framework can be useful for our original partner Roadbotics.
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