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1. The Problem
The U.S. civil infrastructure systems, such as bridges, are at risk from aging, leading to structural 

deterioration and severe challenges to public safety and the economy (Ellingwood, 2005; Shen et 

al., 2019). ASCE reports 39% of bridges in the U.S. are 50 years or older, exceeding their average 

designed lifespan of 50 years, and 9.1% of the bridges are in structurally deficient condition (ASCE, 

2018).  

To improve the conditions of bridges, maintenance activities are scheduled and executed. When 

scheduling maintenance activities, a maintenance agency needs to consider the following factors: 

First, to decide when to schedule maintenance activities.  To be able to make that decision, it is 

necessary to assess the impacts of conducting maintenance (or not) on a bridge.  One of those 

assessments is to evaluate the reduced routine maintenance expenditure on the bridge whose 

structural conditions are improved due to the scheduled maintenance. Once it is determined that a 

maintenance activity will be conducted, it is important to assess two major impacts of maintenance 

activities: (1) The cost of detours created due to maintenance; (2) The risk of crashes that might 

be generated due to work zones. In this report, we discuss three approaches to support these three 

decisions: (1) a predictive infrastructure maintenance expenditure model that predicts the reduced 

annual routine maintenance expenditure of one bridge whose structural conditions are improved 

due to scheduled maintenance; (2) a dynamic mesoscopic traffic simulation tool that estimates the 

detour cost of work zones incurred by road users in high spatial and temporal resolution (miles 

and minutes) in a regional traffic network; (3) a work zone crash risk estimation model that 

identifies the traffic crash risk cost attributed to the presence of work zones. 

Scheduling maintenance activities involve assessing possible impacts of conducting maintenance 

(or not) on a bridge. The metrics evaluated in these assessments include the reduced construction 

cost for future routine maintenance at the improved structural conditions, and reduced repair and 

structural failure costs (Frangopol Dan M. et al., 1997; Frangopol et al., 2017). Although many 

studies have developed approaches to estimate reduced structural failure and repair costs (Yang 

and Frangopol, 2018; Yang et al., 2006b), the literature generally lacks approaches for predicting 

annual routine maintenance expenditure (AMEX) for a bridge given its structural conditions. 

While there are databases, such as the Indiana roadway maintenance expenditure database 

(Volovski, 2011), available to be utilized for predicting AMEX, the challenge is that most bridges 

will not get any maintenance in most years (leading to a zero value of AMEX). For example, over 

92% of Pennsylvania bridges are not getting any maintenance every year from 2008 to 2017 based 

on data collected from Pennsylvania Bridge Management System version 2. The excess number 

of zero values can jeopardize the AMEX estimation model based on traditional data-driven 

methods, such as Ordinary Linear Squares (OLS) and random-effect linear regression models 

(random-effect OLS) (Volovski, 2011). Without recognizing and addressing the challenge of the 

excess number of zero values, OLS and random-effect OLS will fit the distribution of AMEX data 

poorly and underestimate the reduced AMEX due to the scheduled maintenance activities. 

Therefore, our first objective in this research was to develop a predictive infrastructure 
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maintenance expenditure model that provides reliable results in cases with significant numbers of 

zeros in the database. In this study, we applied the Tobit model to handle the excess number of 

zero values in the AMEX data. We used Akaike Information Criterion (AIC) to evaluate how well 

the proposed model fits the data set. The baseline models are linear regression based on Ordinary 

Linear Squares and random-effect linear regression model.  These will be discussed in detail in 

section 2.1 of this report.  

Once a maintenance activity being scheduled, it is important to assess several impacts of 

conducting such activities.  Examples of those are: the construction cost of the planned 

maintenance action, the expected time lost due to delays or detours (mobility impacts to road users) 

in the work zone, and possible additional accident risks in a work zone due to narrowed rights-of-

way and changed daily traffic patterns (safety impacts to road users) (Aboutaha and Zhang, 2016; 

FHWA, 2019; Kim et al., 2016). The construction cost of one specific maintenance action is 

generally known, and prior studies in this area are abundant (Volovski, 2011). However, the 

mobility and safety impacts of maintenance actions are usually hard to measure due to the 

complexity of the traffic flow network and how traffic accidents occur. 

The mobility impacts of work zones are usually measured in a static network or macroscopic 

dynamic network of traffic flow (Yang and Frangopol, 2018). The static and macroscopic traffic 

simulation tools used by highway agencies include QuickZone, CA4PRS, and Dynasmart-P 

(FHWA, 2019). However, work zones usually lead to traffic congestions, and drivers may be 

detoured to other roadways. Simulation tools based on dynamic traffic assignment models are 

needed to estimate travel times in congestion. Besides, such simulation tools need to be able to 

quantify possible mobility impacts (traffic delays) in high spatial and temporal resolutions (e.g. 

miles and minutes) and at a relatively large traffic network (e.g. regional traffic network) to capture 

possible effects of congestion due to work zones comprehensively. On the one hand, traffic 

simulation tools based on the microscopic dynamic traffic assignment model are compute-

intensive. On the other hand, traffic simulation tools based on the macroscopic dynamic traffic 

assignment models cannot provide simulation results in a sufficient temporal and spatial resolution 

(e.g., miles and minutes). Therefore, our second objective in this research was to develop a 

dynamic mesoscopic traffic simulation tool that estimates detour costs of work zones incurred by 

road users in high spatial and temporal resolution (miles and minutes) in a regional traffic network. 

This study applied a mesoscopic dynamic network flow model, MAC-POSTS, to estimate road 

users' detour costs (Ma, Pi, and Qian 2019). The proposed traffic simulation tool can estimate 

traffic impact in a resolution of 5 seconds and miles within the traffic network in the Greater 

Pittsburgh Area.  The specifics of this simulation tool are discussed in Section 2.2. 

To estimate possible safety impacts of work zones, many researchers have explored the statistical 

associations between crash counts and work zones characterized by various deployment 

configurations of the corresponding work zone (e.g., Chen and Tarko, 2014; Garber and Woo, 

1990; Graham et al., 1977; Khattak et al., 2002; Ozturk et al., 2013, 2014; Pal and Sinha, 1996a; 

Qi et al., 2005; Ullman et al., 2008; Venugopal and Tarko, 2000; Yang et al., 2013, 2015b).  The 
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deployment configurations covered in those studies include work zone length, duration, or whether 

fully closed lanes on the roadway. The associational research reveals sometimes strong 

associations among increased crashes and the presence of work zones. However, findings from 

statistical associations do not necessarily indicate causal relations. Moreover, without 

understanding causal relations, it is challenging to develop effective approaches to minimize crash 

risks.   

It is difficult to distinguish the causes of crashes being related to work zones or roadway 

characteristics in associational research. Examples of roadway characteristics that might cause a 

crash include daily traffic volume, roadway surface conditions, and geometric design of roadways 

(Chen and Tarko, 2014). It is important to distinguish the crash contributing factors related to 

general roadway characteristics versus those related to work zones to develop effective work zone 

management strategies.  Therefore, our third research objective was to develop a work zone crash 

risk estimation model that identifies the traffic crash risk cost attributed to the presence of work 

zones. We developed a causal inference model based on regression discontinuity design to infer 

the crash risk caused by the presence of work zones. By a series of placebo tests, we validated that 

the proposed causal inference model can estimate the crash risk caused by work zones 

characterized by various deployment configurations (length, duration, and light conditions of the 

work zones).  More details on this are provided in Section 2.3. 

2. The Developed Approach

2.1 Bridge annual maintenance expenditure (AMEX) prediction model.
Annual routine maintenance expenditures (AMEX), incurred by highway agencies, measure the 

expected future maintenance expenditure for infrastructure maintenance given a structural 

condition improved by maintenance actions (Volovski, 2011). The reduced value of AMEX 

before and after a maintenance action improving structural conditions is one of the expected 

benefits of proactive maintenance.  

In this study, we focused on bridges specifically due to the availability of annual maintenance 

expenditure data for bridges. The existing data shows that most bridges will not get any 

maintenance in most years (leading to a large number of zero values of AMEX). This will be 

problematic when utilizing many data-driven estimation models, such as Ordinary Linear 

Regression models (Volovski, 2011). We utilized the Tobit model to manage AMEX data, which 

has an excess number of zero values. Tobit model (Tobin, 1958) has been widely applied to model 

the censored semicontinuous data.  Though it has not been widely applied in analysis for civil 

infrastructures, the Tobit model has been widely used in economics (Keeley et al., 1978; 

McDonald and Moffitt, 1980; Nelson, 1977; Tobin, 1958), social science (Smith and Brame, 2003; 

Witte, 1980), epidemiology (Bleda and Tobías, 2002; Lubin Jay H. et al., 2004; Twisk and Rijmen, 

2009), and transportation studies (NOLAN, 2003; Talley, 1995; Weiss, 1992). 
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The formula of our Tobit model is: 

𝑌𝑖(𝑡+1)
∗ = 𝛽𝑋𝑖𝑡 + 𝜖𝑖𝑡 (1) 

{
𝑌𝑖(𝑡+1) = 𝑌𝑖(𝑡+1) 

∗ 𝑖𝑓 𝑌𝑖(𝑡+1)
∗ > 0

𝑌𝑖(𝑡+1) = 0       𝑖𝑓 𝑌𝑖(𝑡+1)
∗ ≤ 0

(2) 

𝑖  represents the index of bridges, 𝑡  is the index of year. 𝑌𝑖(𝑡+1)  is the Annual Maintenance 

Expenditure (AMEX) for bridge 𝑖  at year 𝑡 + 1. 𝑌𝑖(𝑡+1)
∗  is the latent variable representing the

necessary maintenance expenditure for bridge 𝑖 at year 𝑡 + 1. 𝑋𝑖𝑡 represents the control variables 

for bridge 𝑖 at year 𝑡. The control variables include bridge material information, conditions of 

superstructure, substructure, and deck, Average Daily Traffic (ADT), and weather information. 

Note that the goal of AMEX model is to predict the annual routine maintenance expenditure with 

the information of all control variables. If we use the AMEX and control variables in the same 

year, it will be hard to distinguish whether the control variables cause the changes AMEX or 

AMEX causes the changes of the control variables. Therefore, in our model, the control variables 

are extracted one year before the year of extracting AMEX to make sure we are using the control 

variables to predict AMEX. We choose the one-year lag between AMEX and control variables 

because the bridge conditions are reported every year in the National Bridge Inventory (NBI) data 

(FHWA, 2004). 

We trained the AMEX model using maintenance data of 32,000 bridges maintained by the 

Pennsylvania Department of Transportation (DOT) in Pennsylvania during 2009-2017 (PennDOT, 

2018a). The AMEX data are obtained from Pennsylvania Bridge Management System 2 (BMS2) 

(PennDOT, 2018a). Data of other control variables are collected from National Bridge Inventory 

(NBI) data (FHWA, 2004) and the National centers for environmental information. The original 

categories of condition ratings of superstructure, substructure, and deck cannot evenly represent 

the structural conditions of bridges. Hence, the original categories of condition ratings are 

reformulated to evenly represent the structural capacity of bridges using the process proposed in 

Yang and Frangopol (2018). In detail, the "excellent" and "very good" conditions of bridges are 

merged as the best category of structural condition rating due to their negligible difference in 

structural capacity. Similarly, the "failed", "imminent failure", and "critical" conditions are merged 

as the worst condition rating of bridges. Finally, the structure condition ratings in this study are 

encoded from 1 to 7, where a higher value represents better structural conditions of the bridge. 

Our baseline model is linear regression based on Ordinary Linear Squares (OLS) (Volovski, 2011) 

and random-effect linear regression model (Volovski et al., 2017). Using the same notion of 

Equation (1) and (2), the formula of the OLS model can be represented in Equation (3). 

𝑌𝑖(𝑡+1) = 𝛽𝑋𝑖𝑡 + 𝜖𝑖𝑡 (3) 

The OLS model assumes that each observation of AMEX is independently and randomly sampled. 

However, the AMEX data are extracted from a group of bridges in multiple years. The random-

effect linear regression model can address the correlation of disturbance terms within the same 
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bridge and within the same year. Using the same notion of Equation (1) and (2), the formula of the 

random-effect linear regression model can be represented in Equation (4). 

𝑌𝑖(𝑡+1) = 𝛽𝑋𝑖𝑡+𝜇𝑖 + 𝜆𝑡 + 𝜖𝑖𝑡

𝜇𝑖 ∼ 𝑁(0, 𝜎𝜇
2)

𝜆𝑡 ∼ 𝑁(0, 𝜎𝜆
2) (4)

Where 𝜇𝑖  represents the variance between different bridges, and 𝜆𝑡  represents the variance 

between different years.  

The performance metric is the fitting statistics of the given model, Akaike Information Criterion 

(AIC) (Lee and Lemieux, 2010). For a given set of data, suppose we have a model 𝑓 with 𝑘 

estimated parameters, and the log-likelihood of 𝑓 on the given set of data is 𝐿𝐿. Then AIC of 𝑓 

can be defined as:  

𝐴𝐼𝐶(𝑓) = 2𝑘 − 2𝐿𝐿 (5) 

If one model's AIC value is smaller than 2 of the other model, we say that the former model fits 

the data better than the later model (Burnham and Anderson, 2004). 

2.2. Mesoscopic dynamic traffic assignment model 
The Mesoscopic Dynamic Traffic Assignment model is used in the traffic simulation tool to 

estimate the detour cost of work zones incurred by road users. We used a dynamic network flow 

model, MAC-POSTS, to estimate road users' detour costs (Ma, Pi, and Qian 2019). The travel 

demands are calculated based on actual travel count and speed observations in the Pittsburgh 

region.  Assuming that every road user (car or truck) tends to minimize their travel time for their 

trips, we simulated the traffic flow in 5 seconds. Emissions are calculated based on miles traveled 

by vehicles and time spent on their trips.  

In this study, we modified the roadway network as the input of the MAC-POSTS to investigate 

the mobility impacts of proposed roadwork. The roadway network is modified by changing the 

traffic capacity from the full capacity to zero capacity at the road segment where the proposed 

roadwork is performed. Then by simulating the traffic flow on the modified roadway network, we 

obtained the total travel time, total emissions, and total travel distance for all the car users and 

truck users in the Pittsburgh region. The output from the modified roadway network is compared 

with the output from the original roadway network to reflect the mobility impact of roadwork on 

road users. 

2.3. Work zone crash risk estimation model 
We developed a model based on regression discontinuity design (RDD) to infer the work zone 

deployment configurations' effect on work zone crash risk. 



6 

RDD is a quasi-experimental analysis method accounting for unobserved heterogeneity and 

confounding problems, allowing causal inference with non-randomized observation (Moscoe et 

al., 2015; Nørgaard et al., 2017). It has been applied to investigating the causal effect of light 

conditions on the traffic crash rate (Uttley and Fotios, 2017). Their essential idea is that factors 

affecting the crash occurrence rate, such as habitual travel behavior, are continuous. Only the 

ambient light condition changes immediately before and after the daylight-saving time changes. 

Therefore, by observing the traffic crash rate difference immediately before and after the daylight-

saving time changes, it is possible to get the crash rate affected only by the ambient light condition 

changes. Similarly, in this paper, our intuition is that consecutive weekly observations of crash 

risk on one specific road segment(s) are "continuous" if no work zone was deployed. By using 

"continuous," we mean that the observations of crash risk over weeks can be described as a single 

continuous function. With this assumption, we obtain the "realized outcome" – the number of 

crashes that occur on the road segments of work zones, and the "potential outcome" – the number 

of crashes that would occur on the same road segments and time of day if they had not been 

exposed to the presence of work zones. These definitions are used to obtain the number of crashes 

caused by the presence of work zones. 

The work zone crash risk estimation model in this study focuses on estimating the crashes caused 

by the presence of work zones. The number of crashes caused by the presence of work zones is 

the delta value of the numbers of observed crashes and the number of crashes caused by factors 

affecting crash risk other than work zones, such as roadway characteristics. The number of crashes 

caused by the presence of work zones is obtained through the proposed RDD method utilizing 

"potential outcome" and "realized outcome." In detail, we obtained a "potential outcome" – the 

number of crashes that would occur on the same road segments and time of day if they had not 

been exposed to the presence of work zones. The number of crashes on road segments with the 

presence of work zones is the "realized outcome" corresponding to the presence of work zone. We 

assume the road segments immediately before and after the shock are expected to be similar to the 

road segments during the presence of work zone in terms of road characteristics that affect the 

crash risk. The only difference is whether there is roadwork on the road segment. Therefore, RDD 

constructs counterfactual scenarios as if "there were no roadwork" on the road segments 

experienced roadwork in reality. The difference between the number of crashes observed (realized 

outcome) and the number of crashes estimated in the counterfactual scenario (potential outcome) 

is the quantitative measurement of work zones' safety impact. The formula of our RDD model is: 

𝑙𝑜𝑔𝑖𝑡(𝐶𝑗𝑡)~ α1𝑊𝑗𝑡 + 𝛼2𝑅𝑗𝑡 + 𝛽𝑋𝑗𝑡 + 𝜖𝑗𝑡  (6) 

𝑗 denotes the index of road segments. 𝑡 denotes the index of time. 𝐶𝑗𝑡  is the crash occurrence 

during time 𝑡 at road segment 𝑗. If a crash occurs, 𝐶𝑗𝑡=1, else 𝐶𝑗𝑡  =0. 𝑊𝑗𝑡  denotes whether the 

roadwork is performed on road segment 𝑗 during time 𝑡. If there is roadwork, 𝑊𝑗𝑡=1, else 𝑊𝑗𝑡 =0. 

𝑅𝑗𝑡  is the running variable, representing the weeks before, during, or after the roadwork. 𝑋𝑗𝑡 

denotes control variables, include work zone deployment configurations (work zone duration, 

length, whether performed during nighttime, and whether performed during weekdays), road 
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characteristics (road class, number of intersections, lane counts, and speed limit), and weather 

changes (wind speed, temperature, and precipitation). The coefficient of 𝑊𝑗𝑡 represents the value 

of crash risks caused by the presence of work zones, characterized by the roadway characteristics, 

work zone deployment configurations, and weather changes. Since weather conditions can change 

quickly, the given data sets' temporal resolution is set as 30 minutes to capture the effect of weather 

conditions on crash risk. 

Our model is trained with crash data from 2015 to 2017 in Pennsylvania. The data of crashes is 

extracted from PennDOT Crash Data on all roadways from 2015 to 2017 (PennDOT, 2018b). The 

information of work zones is extracted from Road Condition Reporting System (Commonwealth 

Pennsylvania, 2018). The data of other control variables are extracted from  PennDOT open-source 

roadway network data (Pennshare, 2018) and Federal Aviation Administration weather data 

(Pennsylvania State Climatologist, 2020). 

Our proposed model is validated by temporal and spatial placebo tests. The placebo tests are 

designed to demonstrate that the desired causal effect should not exist when the data did not capture 

the presence of work zones. Each placebo test has a hypothesis that could challenge the validity of 

the causal effect identified in the model expressed in Equation (6). For each hypothesis, we 

designed corresponding placebo tests to prove that the hypothesis is not valid. By doing this, we 

can falsify the hypothesizes and further validate the causal effect identified in Equation (6). We 

listed the hypothesis and the corresponding placebo design. 

• Temporal placebo test:

o Hypothesis: Perhaps the locations of work zones are unique and cause the observed

crashes. If it is true, the coefficient of 𝑊𝑗𝑡  in Equation (6) would represent the

causal effect of the road segments selected as work zones on crash risk.

o Placebo: We assigned the placebo treatment on road segments with roadwork, but

not on the time that roadwork occurs. Instead, we assigned the placebo treatment

one week prior and one week after the week when roadwork occurs.

• Spatial placebo test:

o Hypothesis: Perhaps the times of work zones are unique and cause the observed

crashes. If it is true, the coefficient of 𝑊𝑗𝑡  in Equation (6) would represent the

causal effect of the times when performing work zones on crash risk.

o Placebo: We assigned the placebo treatment on road segments that are randomly

selected from the roadway network of Pennsylvania and on the time when there is

one roadwork on road segments in Pennsylvania other than the selected road

segment.

We expect the placebo treatment variable to be insignificant in both the temporal and spatial 

placebo tests. Then, we can falsify those hypothesizes and validate the identified causal effect in 

our model Equation (6). 
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3. Findings

3.1. Findings from the bridge annual maintenance expenditure (AMEX) prediction model
The results of these OLS, random-effect linear regression model, and Tobit model are shown in 

Table 1. The dependent variable is the log-transformed value of AMEX. 

Firstly, the Tobit model performs better for fitting the given data set than the OLS model and 

random-effect linear regression model. It is because the Tobit model has a much smaller Akaike 

Information Criterion (AIC) compared with OLS (87,112 vs. 130,920)  model and random-effect 

linear regression model (87,112 vs. 124,786).  

Secondly, the coefficients of the bridge superstructure and substructure conditions are statistically 

significant. These coefficients can be used to estimate how much AMEX will be reduced if the 

condition rating of the bridge is improved. For example, the coefficient of the Superstructure 

condition is 0.20. It means that if the inspectors find the superstructure condition rating is one unit 

better than the condition rating inspected one year before, the AMEX of bridges is expected to be 

associated with a decrease of 22.1% (the calculation process is: (exp(0.20) − 1)) than one year 

before, controlling all the other variables. Other variables can be interpreted similarly. Therefore, 

the Tobit model helps a maintenance agency estimate how much AMEX will be reduced if they 

improve the superstructure condition ratings or substructure condition ratings. 

Overall, the proposed Tobit model estimates the reduced AMEX once the maintenance agency 

scheduled a maintenance to improve structural condition ratings of one bridge. By addressing the 

excessive number of zeros in the AMEX data, the proposed Tobit model fit the data much better 

than the baseline models (the OLS model and random-effect linear regression model)  with a 

smaller value of Akaike Information Criterion, as shown in Table 2. The proposed Tobit model 

helps maintenance agencies schedule maintenance activities by estimating the reduced AMEX due 

to the scheduled maintenance.  

Table 1 Results for bridge annual maintenance expenditure model. The coefficients of the variables at each model are shown with 

the stars to demonstrate their statistical significance, where "*" means p<0.1; "**" means p<0.05; and "***" means p<0.01; 

Standard errors of the estimated coefficients for each variable at each model are shown in parentheses 

OLS Random-

effect 

Tobit 

(1) (2) (3) 

Age 0.02*** 0.02*** 0.06*** 

(0.001) (0.002) (0.01) 

Main span material- others, compared with concrete 0.02*** 0.02*** 0.14*** 

(0.005) (0.01) (0.05) 

Main span material- steel, compared with concrete 0.02*** 0.02*** 0.20*** 

(0.002) (0.003) (0.03) 

Superstructure condition (larger value represents 

worse conditions) 

0.02*** 0.02*** 0.20*** 

(0.002) (0.002) (0.02) 

0.02*** 0.02*** 0.27*** 
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Substructure condition (larger value represents worse 

conditions) 

(0.002) 
(0.002) 

(0.02) 

Deck condition (larger value represents worse 

conditions) 

0.01*** 0.01*** 0.26*** 

(0.002) (0.002) (0.02) 

Average Daily Traffic (ADT) -0.01*** -0.01*** -0.01

(0.001) (0.001) (0.01)

Truck percentage of ADT 0.01*** 0.01*** 0.19***

(0.001) (0.001) (0.01)

Minimum Temperature 0.32***
0.32*** 5.92***

(0.05) (0.05) (0.59)

Maximum Temperature 0.30***
0.30*** 6.32***

(0.05) (0.05) (0.59)

Precipitation 0.01*** 0.01*** 0.23***

(0.002) (0.002) (0.02)

Average Temperature 0.19* 0.22** -1.07

(0.10) (0.10) (1.06)

Cooling degree days -0.19*** -0.19*** -2.31***

(0.02) (0.02) (0.24)

Heating degree days 0.64*** 0.67*** 9.09***

(0.07) (0.07) (0.81)

Palmer Drought Severity Index -0.01***
-0.02*** -0.31***

(0.004) (0.004) (0.04)

Palmer Modified Drought Index 0.002 0.01 0.33***

(0.004) (0.004) (0.04)

Palmer Z-Index -0.002 -0.002 -0.26***

(0.002) (0.002) (0.02)

Deck area -0.004*** -0.004*** 0.04***

(0.001) (0.001) (0.01)

Scour rating 0.01*** 0.01*** -0.02

(0.001) (0.001) (0.01)

Constant 0.07*** 0.07*** -3.44***

(0.001) (0.002) (0.03)

Bayesian information criterion (BIC) 131 125 124 982 87 318 

Akaike information criterion (AIC) 130 920 124 786 87 112 

Note: When "p<0.01", we say the corresponding variable are identified as statistically significantly 

associated with the AMEX of the bridge; The coefficients of the bridge superstructure and substructure 

conditions can be used to estimate how much AMEX will be reduced if the condition rating of the 

bridge is improved. E.g., if the inspectors find the superstructure condition rating is one unit better than 

the condition rating inspected one year before, the AMEX of bridges is expected to be associated with a 

decrease of 22.1% (the calculation process is: (exp(0.20)-1)) than one year before, controlling all the 

other variables 
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Table 2 Goodness of fit for AMEX prediction model.  

Model name OLS Random-effect Tobit 

Akaike information 

criterion (AIC) 
130 920 124 786 87 112 

3.2. Findings from mesoscopic dynamic traffic assignment model. 
We performed case studies in Pittsburgh. We selected the road segments under the bridge carrying 

State Road 28 over Bridge street. This bridge has low under-clearance and is more likely to be 

lifted. Hence, a work zone is possible to be performed on the selected road segments. We assumed 

that the vehicles would be blocked during the roadwork. We run MAC-POSTS to simulate the 

traffic flow changes if there is roadwork on selected road segments, considering all trucks and cars 

in Great Pittsburgh Area. The results show that trucks all over the Great Pittsburgh area will 

experience 1,133 additional hours of travel time and produce 157.5 kg additional 𝐶𝑂2 to complete 

their daily traffic demand. The cars all over the Great Pittsburgh area will experience 34,495 

additional hours of travel time and produce 222.6 kg additional 𝐶𝑂2 to complete their daily traffic 

demand. The proposed Mesoscopic Dynamic Traffic Assignment model can help maintenance 

agencies to evaluate the mobility impact of scheduled maintenance in high temporal and spatial 

resolution. 

3.3. Findings from work zone crash risk estimation model 
The results of the causal inference model for work zone deployment configurations' effects on 

crash risk are shown in Table 33. 

Firstly, this model explains the crash risk caused by the presence of work zones. The odds of 

crashes occur in roadways with the presence of work zones are 1.47 (calculated by exp(0.376)) 

times higher than the ones without work zones, controlling all the other variables. Secondly, this 

model also explains the association between the crash risk and other covariates. For example, a 1% 

increase in traffic volume (AADT) is associated with exp(0.01 × 0.764) = 1.008 times higher 

crash occurrence odds, controlling other road characteristics and weather changes. These 

interpretations can be extended to other statistically significant variables (p<0.01), such as 

numbers of interactions near the work zone, length of the work zone, and whether the roadwork is 

performed during daytime. 

The results of placebo tests are in line with our expectations. In other words, our model falsified 

the hypothesizes that the designed model captured the causal effect on the crash risk of the times 

of work zones only or locations of work zones only. Therefore, we can validate that our proposed 

model captures the causal effect of the presence of work zones.  

Overall, the proposed work zone crash risk estimation model distinguishes the crash risk caused 

by the presence of work zones and the crash risk caused by the other covariates. It can help 

maintenance agencies to estimate the crash risk caused by the presence of scheduled maintenance 

activities. 
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Table 3 Results for work zone crash risk estimation model. The coefficients of the variables at each model are shown with the 

stars to demonstrate their statistical significance, where "*" means p<0.1; "**" means p<0.05; and "***" means p<0.01; 

Standard errors of the estimated coefficients for each variable at each model are shown in parentheses. 

Crash 

occurrence 

Roadwork (𝑊) 0.376*** 

(0.119) 

WeekN (𝑅) 0.019* 

(0.010) 

Duration (s; log) -0.023

(0.056) 

Length (m; log) 0.543*** 

(0.049) 

Weekday of week -0.165

(0.119) 

Daytime of day 0.766*** 

(0.099) 

Roadwork closure type -0.443

(0.628) 

AADT (log) 0.842*** 

(0.056) 

NHS major roads -1.897*

(0.999) 

Number of intersections (log) 0.354*** 

(0.047) 

Lane counts = 1 -0.146

(0.173) 

Speed limit -0.020***

(0.003) 

Average wind speed (mph) 0.022*** 

(0.007) 

Average temperature (F) 0.005 

(0.004) 

Average precipitation (inch) -0.141

(0.627) 

Constant -19.482***

(1.016) 

Monthly Dummies Y 

Yearly Dummies Y 

Observations 2,210,443 
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R2 0.114 

chi2 
1,754.004*** 

(df = 29) 

Note: "WeekN" means weeks before, during, or after the roadwork; "NHS" means National Highway 

System. This model explains the crash risk caused by the presence of work zones. The odds of crashes 

occur in roadways with the presence of work zones are 1.47 (calculated by exp(0.376)) times higher 

than the ones without work zones, controlling all the other variables. 

4. Conclusions
It is a great challenge to maintain the deteriorating civil infrastructure systems, such as bridges. 

This study aims to assist maintenance agencies in scheduling maintenance activities when 

assessing the impacts of conducting maintenance on a bridge and the cost of the detour, and the 

risk of crashes during the presence of the maintenance activity. 

Firstly, we build a predictive infrastructure maintenance expenditure model that predicts the 

reduced annual routine maintenance expenditure of one bridge whose structural conditions are 

improved due to the scheduled maintenance. It helps highway agencies to predict the reduced value 

of AMEX due to a scheduled maintenance activity improving structural conditions. The proposed 

Tobit model solves the excessive number of zero values in the data of maintenance costs by 

introducing a latent variable representing the necessary maintenance expenditure. The Tobit model 

fits the data better than the baseline models with a smaller value of the Akaike Information 

Criterion. 

Secondly, we applied a mesoscopic dynamic traffic assignment model to estimate the detour cost 

of work zones incurred by road users in high spatial and temporal resolution (miles and minutes) 

and a regional traffic network. It helps highway agencies to predict the mobility impact of one 

scheduled maintenance activity in a high temporal and spatial resolution. We performed our case 

study on one real-world bridge in Pittsburgh. The simulated results provide an estimation of detour 

cost incurred by road users, including travel time and CO2 emissions.  

Thirdly, we proposed a causal inference model based on RDD to estimate the traffic crash risk 

caused by the presence of work zones. The model distinguishes the crash risk caused by the 

presence of work zones and the crash risk caused by the other factors. It helps highway agencies 

to predict the safety impact of one scheduled maintenance activity.  

In summary, this study helps maintenance agencies scheduling and assessing the potential impacts 

of maintenance activities on bridges. Due to data availability, we only implemented and evaluated 

our model based on data in Pennsylvania. In future studies, it would be good to test the 

methodologies proposed in this study on the data in other states. With that, it would be possible to 

compare the potential impact of maintenance activities across states. 
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