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1. Overview 
Intersection safety is critical for all traffic participants, but especially for vulnerable 

road users (VRU) such as pedestrians and cyclists. Recent autonomous driving 

advances allow mitigation of several human driver risk factors, such as fatigue and 

recklessness. However, state-of-the-art autonomous driving technology also has 

limitations. The perceptual field-of-view of an individual vehicle’s sensors can be 

compromised by nearby occluding objects, greatly reducing detection accuracy with 

respect to the vehicle’s immediate and short-term future state. The vehicle’s sensors 

also have limited range, and distant objects can be difficult to detect. Both 

limitations introduce further challenges in the downstream tasks of object tracking, 

trajectory prediction, and motion planning.  

To begin to address these limitations, this project has focused on two 

complementary technology objectives: 

1. Cooperative Sensing and Planning Pipeline - Development and analysis of an 

end-to-end framework for cooperative perception, tracking, prediction and 

planning at intersections that incorporates data from the sensors of 

connected autonomous vehicles (CAVs) moving through the intersection, from 

infrastructure sensors mounted at the intersection, and from vulnerable road 

users connected to the intersection. 

2. CAV Collision Mitigation Strategies - Development and analysis of CAV 

strategies for responding to likely collisions that have been identified by the 

cooperative sensing pipeline. 

To address the first objective, we have combined ideas from prior work in 

cooperative perception, which has focused mainly on object detection to date, with 

more recent work in large language model (LLM) approaches to safe navigation of 

individual CAVs. To address the second objective, we have coupled the use of 

Control Barrier Functions with Reinforcement Learning to learn how to react safely 

in different circumstances. In both contexts, we start from the assumption of real-

time connectivity among all travelers in the vicinity of an intersection. 

In the sections below we summarize our accomplishments toward achieving each of 

these technology objectives and discuss next steps. 



2. Cooperative Sensing and Planning Pipeline* 
To address CAV detection errors due to occlusion of objects (vehicles, pedestrians, 

bicyclists, etc.) by other vehicles or buildings at the intersection, recent research has 

proposed a number of  “cooperative perception” algorithms [CHE19,CHI24,WAN20, 

XU22a,XU22b,XU22c], wherein sensor information from multiple CAVs and/or 

infrastructure sensors is shared and then fused to produce better overall detection 

or tracking results.  The performance of such algorithms has been verified and 

comparatively assessed using a growing number of publicly available datasets, both 

real and simulated, that capture traffic navigation scenarios. V2V4Real [XU23], for 

example, was the first worldwide available, real-world vehicle-to-vehicle cooperative 

perception dataset with perception benchmarks to support cooperative perception 

model training and evaluation.  

Other, more recent research has demonstrated the promise of using LLMs as the 

basis for developing end-to-end perception and planning algorithms for a single 

CAV [CHE24,NIE24,SIM24,TIA24a,TIA24b,WAN24,WAN23,XU24]. In basic LLM-

based approaches, data comprising the driving scene, object detection results and 

the ego-vehicle’s state are first transformed into text input to the LLM, and then 

the LLM generates text output including the suggested driving action or the 

planned future trajectory. More sophisticated, multi-modal LLMs (MLLMs) are 

used to encode point clouds or images into visual features, which are subsequently 

projected to the language embedding space to enable the LLM to perform visual 

understanding and question-answering tasks.  

Given the perceived potential of an LLM-based (and especially an MLLM-based) 

approach in a cooperative perception setting, we have focused in this project on 

developing an LLM-based framework for end-to-end cooperative perception and 

planning. Since prior research provides no example of an LLM-based cooperative 

perception framework, investigation of such an approach raises the additional need 

to develop a cooperative perception dataset for evaluating its performance. In the 

following two subsections we summarize these two accomplishments and 

contributions to the research community. Further details of the framework and the 

data set can be found in [CHI25a]. 

 
* This segment of the research has benefited from additional support provided by Nvidia, Inc. 

Through an internship awarded to and carried out by CMU Ph.D. student Hsu-Kuang Chiu at 

Nvidia over the summer of 2024 and extending on a part-time basis through the 2024-25 academic 

year, Nvidia has contributed GBU computing power and in-kind support for collaborating Nvidia 

researchers. 



2.1 V2V-QA: A Dataset for Cooperative Autonomous Driving with LLMs 
In contrast to datasets used for prior work in cooperative perception, our LLM-

based problem setting involves both sharing of perception data from nearby vehicles 

to a single LMM situated at a given intersection and LLM support for answering 

perception and planning questions that are subsequently asked by any nearby 

vehicle (see Figure 1). Consequently, the dataset must provide the capability to 

benchmark performance of different pipeline models on both fusing perception 

information and answering safety-critical driving related questions. Creation of the 

Vehicle-to-Vehicle Question-Answering (V2V-QA) dataset has been driven by this 

requirement. 

 

Figure 1: V2V-LLM Problem Setting – All CAVs share their perception information 

with a single LLM (located at the intersection). Any CAV can then ask the LLM a 

question to obtain useful information for driving safely. 

The V2V-QA dataset that has been developed is comprised of two splits, V2V-split 

and V2X-split, that are composed respectively from the previously developed 

V2V4Real [XU23] and V2X-Real [XIA24] datasets. For each frame contained in the 

two reference datasets 5 different types of question-answer pairs are created, 

including 3 types of grounding questions, 1 type of notable object identification 

question and 1 type of planning question. Figure 2 gives examples of each of these 5 

types of question-answer pairs, which are all designed for cooperative driving 

scenarios and include the following: 



• Q1: Grounding at reference location 

• Q2: Grounding behind a reference object at a location 

• Q3: Grounding behind a reference object in a direction 

• Q4: Notable object identification 

• Q5: Planning 

To generate instances of these question-answer pairs, we use V2V4Real and V2X-

Real's ground-truth bounding box annotations, each CAV's ground-truth 

trajectories, and individual detection results as the source information. Then we use 

different manually designed rules based on the geometric relationship among the 

entities and text templates to generate our question-answer pairs. Please refer to 

[CHI25a] for descriptions of the generation rule used for each question-answer type 

and the text templates that were used. 

 

Figure 2: Examples of V2V-QA’s 5 types of Question-Answer pairs. The arrows 

pointing at LLM indicate the perception data from CAVs. 

Also associated with the V2V-QA data set is a set of benchmark algorithms for use 

in calibrating the performance of new LLM-based cooperative driving algorithms 

that might be proposed by future research. In addition to the strong benchmark 

provided by the V2V-LLM technique developed in this project and described in the 

next section, 3 additional benchmarks that rely on different approaches to fusion of 

perception information - labeled respectively as no fusion, early fusion, and 

intermediate fusion - have also been defined and incorporated (V2V-LLM adopts 

what has historically been referred to as a late fusion approach.) As a first 



contribution to the general automated driving R&D community, we are making the 

dataset and all benchmark code publicly available for future use. It will be 

accessible at https://eddyhkchiu.github.io/v2vllm.github.io/ . 

2.2 V2V-LLM: Cooperative Perception and Planning 
Figure 3 graphically depicts the V2V-LMM architecture for cooperative autonomous 

driving. We use a multi-modal LLM (MLLM) that takes the individual perception 

features of every CAV as the vision input, a question as the language input and 

generates an answer as the language output. For extracting the perception input 

features, each CAV applies a 3D object detection model to its individual LIDAR 

point cloud. We use PointPillars [LAN19] as the 3D object detector to remain 

consistent with what was used in prior work with V2V4Real and V2X-Real datasets 

and enable fair comparisons. We utilize LLaVA [LIU23] to develop our MLLM, 

given its superior performance on visual question-answering tasks. 

 

Figure 3: Model diagram of the V2V-LMM for cooperative autonomous driving. 

https://eddyhkchiu.github.io/v2vllm.github.io/


To train our model, we first initialize by loading the pre-trained LLaVA-v1.5-7b 

checkpoint [LIU23]. We then freeze the LLM and the point cloud feature encoder, 

and finetune the projector and the LoRA [HU22] parts of the model. Complete 

details on all settings used to obtain the experimental results reported below can be 

found in [CHI25a]. We used 8 NVIDIA A100-80GB GPUs to train our model and the 

rest of the benchmarks we generated. 

Table 1 shows the relative performance of V2V-LLM on the V2V-QA dataset in 

comparison to various benchmarks that rely on other strategies for perception 

information fusion, including some drawn from prior research [XU22a,XU22b, 

XU22c]. Overall, V2V-LLM is seen to outperform all other models in the notable 

object identification and planning tasks and produces competitive results in the 

grounding tasks. In terms of communication costs, V2V-LLM increases 

communication costs by just 1.5% in relation to other intermediate fusion methods 

and is much cheaper than the early fusion benchmark. Additional qualitative 

performance analysis and an ablation study can be found in [CHI25a]. 

 

Table 1: V2V-LLM’s testing performance in V2V-QA’s V2V-split and V2X-split in 

comparison to other baseline methods. Q1: Grounding at a reference location. Q2: 

Grounding behind a reference object at a location. Q3: Grounding behind a reference 

object in a direction. QGr: Average of grounding (Q1, Q2, and Q3). Q4: Notable object 

identification. Q5: Planning. L2: L2 distance error. CR: Collision rate. Comm: 

Communication cost. In each column, the best results are in boldface, and the second-

best results are in underline. 

3. CAV Collision Mitigation Strategies 
The second technology objective of this project was the development of control 

strategies for safely responding to potential collisions predicted by our proposed 

end-to-end MLLM-based perception and planning pipeline. 



In this work [LYU24], we introduced an innovative risk-aware behavior planning 

framework designed for autonomous driving, with the aim of fostering socially 

compliant vehicle behavior in diverse mixed-traffic scenarios. Our objective was to 

enable autonomous vehicles to exhibit behavior that aligns with societal norms, 

thus enhancing their acceptability among human drivers. We expanded the scope of 

Control Barrier Function-inspired risk assessment to encompass a heterogeneous 

spectrum of road participants, allowing us to explicitly model varying degrees of 

social influences between different classes of vehicles. We also derived a 

mathematical condition for accountability tracing, enabling the identification of 

responsible entities in situations where risks surge. We established social 

compliance conditions grounded in our unique risk concept, which seamlessly 

integrate with a wide range of existing safety-critical controllers, regardless of their 

type or design. By incorporating these conditions, which encode societal 

expectations, into existing safe controllers, we were able to demonstrate that 

autonomous vehicles can exhibit context-aware behavior without compromising the 

safety guarantees provided by existing controllers. This approach effectively 

excludes behaviors that may be safe but do not align with human intuition while 

guaranteeing the least interference with the existing controller. 

We provide an illustrative example to show the validity and effectiveness of our 

proposed approach. The existing controller is set to satisfy a collision-free safety 

requirement so that the vehicle maintains a nominal travel speed whenever 

possible without collisions. We showcase the performance of our proposed approach 

in comparison to the existing controller in a two-vehicle scenario, as depicted in 

Figure 4. We have a scenario plot on the left showing the ego truck in the fast lane 

with a small passenger vehicle following it. The dashed line represents the decision 

space of the ego truck in our proposed approach on whether to change its lane and 

how fast it would like to travel. Distinct ego behavior is observed in three different 

setups (left, middle, right) on the right. 

  



 

 

 

Figure 4: Scenario illustration and simulation plots. The green vehicle is the ego truck, 

and the yellow vehicle is a small passenger vehicle. The three subplots (left, middle, right) 

on the right introduce different scenario setups with waypoints plotted out for easier 

understanding. Left: The small passenger car maintains a steady speed and doesn’t create 

any pressure or risk for the ego truck. Since no risk surge is detected, our behavior 

planning framework doesn’t need to intervene. Consequently, the ego truck continues to 

follow its existing controller. Middle: The ego truck is solely relying on its existing 

controller without our behavior planning framework. At a certain point, the small 

passenger vehicle begins to accelerate, rapidly closing the gap between the two vehicles. 

Without considering the potential risks to both itself and the human passenger vehicle, the 

controller is left with no alternative but to instruct the ego truck to also accelerate in order 

to maintain a safe inter-vehicle distance. Right: Here the small passenger vehicle takes the 

same action as in the middle subplot by accelerating. However, the difference is that the 

ego truck is equipped with our proposed algorithm. As the gap between the two vehicles 

rapidly shrinks, the increased risk to the ego truck triggers the accountability trace, leading 

the ego truck to hold the small passenger vehicle accountable. Subsequently, the 

intervention mechanism is activated. In evaluating various choices available to the ego 

truck and considering their alignment with typical human expectations, it decides to 

temporarily deviate from its nominal controller. It does so by executing a lane change to the 

right lane, allowing the small passenger vehicle to pass first. This decision is a wiser one 

compared to the scenario in the middle subplot, as the ego truck chooses not to jeopardize 

the safety of both itself and the small passenger vehicle. At the same time, it strives to 

adhere to the task-related nominal controller to the greatest extent possible. 



4. Next Steps 

4.1 Cooperative Sensing and Planning Pipeline Extensions 
Although the V2V-LLM end-to-end framework performs well on the LLM-QA 

dataset, there are a few important extensions to be considered: 

1. It may be possible to further improve the performance of the pipeline by 

providing the LLM with an explicit reasoning plan. Recent experiments 

where a Chain-of-Thoughts reasoning graph was provided to the LLM have 

produced improved results on the V2V-QA dataset, albeit at increased 

computational cost. [CHI25b] Current work is aimed at strategies for more 

cost-effectively exploiting the reasoning graph by restricting attention to a 

portion of it. 

2. One potential limitation of the V2V-LLM framework is its scalability. The 

LLM-QA dataset that we have tested on involves only 2 CAVs, and as the 

number of CAVs, infrastructure sensors, and other travelers (connected or 

not) moving through a given intersection increases, the ability of a 

centralized LLM framework to keep pace with execution becomes more 

challenging. The exploration of decentralized architectures, where CAVs are 

seen as LLM agents and the fusing of perceptual data can be limited to those 

CAVs in near proximity that a given agent needs to worry about, could 

provide a more scalable long-term solution. 

3. Finally, from an application perspective, logical next steps are to extend the 

framework to enable communication of predicted collisions back to relevant 

CAVs and detected VRUs, develop mechanisms for determining when 

trajectory prediction and planning results warrant classification as a 

potential collision, and test these integrated capabilities in the field.  

4.2 Better Collision Mitigation  
Regarding strategies for mitigation of predicted collisions, next steps include: 

1. Incorporation of human driver behavior models such as the one presented in 

[LUD24] could improve understanding and prediction of likely control 

behaviors of human-driven vehicles. 

2. Incorporation of recent bank-of-models control techniques such as [ALS25] 

can improve vehicle modeling and safety under uncertainty regarding road 

surface conditions and vehicle tire wear.  
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