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Abstract— Control software of autonomous robots has strin-
gent real-time requirements that must be met to achieve the
control objectives. One source of variability in the performance
of a control system is the execution time and accuracy of
the state estimator that provides the controller with state
information. This estimator is typically perception-based (e.g.,
Computer Vision-based) and is computationally expensive.
When the computational resources of the hardware platform
become overloaded, the estimation delay can compromise con-
trol performance and even stability. In this paper, we define
a framework for co-designing anytime estimation and control
algorithms, in a manner that accounts for implementation
issues like delays and inaccuracies. We construct an anytime
perception-based estimator from standard off-the-shelf Com-
puter Vision algorithms, and show how to obtain a trade-off
curve for its delay vs estimate error behavior. We use this
anytime estimator in a controller that can use this trade-
off curve at runtime to achieve its control objectives at a
reduced energy cost. When the estimation delay is too large
for correct operation, we provide an optimal manner in which
the controller can use this curve to reduce estimation delay
at the cost of higher inaccuracy, all the while guaranteeing
basic objectives are met. We illustrate our approach on an
autonomous hexrotor and demonstrate its advantage over a
system that does not exploit co-design.

I. INTRODUCTION

Real-time control of physical systems, like autonomous
robots, raises a number of timing and control-related issues
at the interface between the controller that’s providing the
actuation and the estimator that’s providing periodic state
estimates to the controller. Some of these issues have to do
with the inaccuracies introduced by the software implemen-
tation of both controller and estimator on a given hardware
platform. Specifically, controllers are typically designed to
accomplish the functional goals of the system under simpli-
fying assumptions on the quality of the state estimate (e.g.,
no or fixed error), the estimation delay (e.g., no or fixed
delay), and the actuation jitter (e.g., no jitter). Conversely,
estimation algorithms are typically designed without regard
to how their estimates will be used and under what operating
conditions. In particular, an estimator will often run to
completion: that is, its stopping criteria are designed to
provide the best estimate, regardless of runtime or energy
consumption. The problem addressed here is that as the
real-time requirements on the closed-loop system become
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Fig. 1. Contract-based controller and estimator.

more stringent, this separation in the design and execution of
controller and estimator can lead to degraded performance,
as will be shown in Example 1. The goal of this paper is
to present a rigorous framework for the joint design of the
controller and estimator, in which the estimator explicitly
presents a range of execution time/estimate error operating
modes, and the controller switches between these modes in
real-time to maintain control performance and reduce energy
consumption.

Typical design practice determines the Worst-Case Exe-
cution Time (WCET) of the estimation task, and engineers
the system to satisfy deadlines under WCET conditions.
However, the actual execution time of such estimators is
heavily dependent on the actual data being processed. So
WCET considerations, whether computed online or offline,
produce a conservative design. Moreover, classical timing
analysis does not guarantee functional correctness of the
closed-loop system. In addition, the best estimate is not
always needed: sometimes a lower quality estimate, obtained
with a smaller energy cost, is sufficient to achieve the control
objectives. Finally, when obtaining better estimates requires
longer runtimes of the estimation task, it may actually be
detrimental to ask for the best estimate. For example, when
the computational resources are overloaded, there may be a
need to spend less time computing a state estimate.

Example 1: To illustrate the impact of estimation delay
δ and estimate inaccuracy ε on control performance, we
show a simple PID controlling the motion of a point mass
in the (x, y) plane. The position of the point mass must
follow a reference constant trajectory, whose x dimension
is shown in Fig. 2 (the same plot can be obtained for
the y position). We simulate three cases of estimation (and
therefore actuation) delay and error, where a larger delay
value δ implies a smaller estimation error ε. As can be noted
in Fig. 2, the effect of delay can be non-negligible. Moreover,
decreasing delay doesn’t necessarily imply better tracking
performance: the effect of the concomitant estimation error



Fig. 2. Effect of delay, error values on control performance.

must be taken into account. In this example, it can be seen
that the increasing error causes the tracking performance to
worsen. Running an estimation task with a fixed smaller
delay but larger estimation error does not necessarily solve
the problem of degraded performance, as can be seen in
Fig. 2. Therefore, there is a need to rigorously quantify
the trade-off between computation time and estimation error,
then exploit that trade-off to achieve the best control per-
formance under the problem constraints. Rather than always
running the estimation task to completion, it is useful to have
several estimation tasks with varying utilities (i.e., varying
delay/error trade-offs). These can then be used at runtime to
satisfy the control objectives. �

In this work, we develop the above remarks into a co-
design framework for a real-time control systems, where the
controller and estimator communicate via contracts. A con-
tract is a guarantee requested by the controller, and fulfilled
by the estimator, that the latter can provide an estimate with
a certain maximum error ε, and within a certain deadline δ.
Both the deadline and the error bound are part of the contract.
Using these contracts, we show how the controller can
throttle the execution time of the estimation task to preserve
good performance and to reduce energy consumption. Our
work focuses on estimators that incorporate computationally
intensive Computer Vision (CV) algorithms, such as those
used in autonomous robot navigation. We refer to these as
perception-based estimators. Our experiments validate that
the execution time of these algorithms is significant and far
exceeds the computation time of the control software, and
can have an effect on control performance.

Fig. 1 presents the proposed structure of contract-based
estimation and control. It shows a traditional feedback loop
incorporating estimator, controller and the physical system,
augmented with the (Delay, Error) contract between con-
troller and estimator. This contract forms the basis of the
proposed approach.

Summary of contributions. We present a contract-based
framework for the co-design of real-time controller and
estimator algorithms, consisting of:
• a well-defined interface between control and estimation,

Fig. 3. Autonomous hexrotor with downward-facing camera flying over
synthetic features.

in the form of operating modes or contracts on the
accuracy and delay provided by the estimator (Section
III),

• a controller design that can vary the accuracy and delay
of the estimation to achieve control objectives at a lower
energy cost (Sections IV, V), and

• a general procedure to compose run-to-completion esti-
mation algorithms into a contract-based estimator (Sec-
tion VI).

• We illustrate our approach on an autonomous flying
robot (shown in Fig. 13) and demonstrate performance
and energy gains using our approach over a classical
controller (Section VII).

II. RELATED WORK

Anytime algorithms [1] are a class of algorithms that
can be interrupted at any point during their execution and
still return a usable solution, usually with a monotonically
improving quality with time. Contract algorithms [2] are
one class of anytime algorithms where the interruption time
is pre-determined for any given execution. Our approach,
while similar to contract algorithms in the timing aspect,
differs significantly as the meaning of a contract expands to
including both time and quality of the solution (estimation
error in our case).

Anytime algorithms have notably been studied for graph
search [3], evaluation of belief networks [4] and GPU
architectures [5].

As overloaded real-time systems are becoming increas-
ingly common, anytime algorithms for control have become
a topic of research interest. Most notably, Quevedo and
Gupta [6], Bhattacharya and Balas [7], and Fontanelli et
al. [8] have contributed to the topic. Our approach differs
significantly from these works as the anytime computation
assumption is on the perception-and-estimation algorithm
and our controller is a robust controller which can switch
between different operating modes of the anytime estimator.
Also, while most of these works require either access to
the full state of the system or have a fast estimator giving
them the state estimate [7], our algorithm accounts for
the computation time/error of the perception-and-estimation
algorithms that are common in autonomous systems.

In real-time systems, recent work [9] uses Typical Worst
Case Analysis of the software and Logical Execution Time



State 
Estimate (Delay, Error) 

Contract
Physical System

Control Action uu

Contract-based Estimator

Controller

xxx
x xx

x
xx

x x x x x

Sensor Measurement 

�

" Delay-error Curve
for Estimator

Offline Profiling

Pixel Classifier

Perception Toolchain

Connected
Components

Shape Classifier

Delay-error Curve

Timing and Accuracy
of Execution Paths PC1 PC2 PC3

SC1 SC2

CC1 CC2

(�, ") (�0, "0)

Fig. 4. Contract-based estimator and controller

semantics to provide the controller with knowledge of the
timing characteristics of the implementation. Our work, by
contrast, profiles the estimation software directly to obtain
timing and accuracy information. Whereas [9] is concerned
with formal verification of a given controller, we design
controllers to take advantage of delay/accuracy trade-offs
in real-time. The effect of increasing computation time of
a task on performance of a UAV has been explored in
[10] by using a resource allocation algorithm similar to
QRAM [11]. Our work differs from this as we consider the
execution time of a task, the estimator, which is directly
related to the control performance of a closed loop system
and also formulate a control problem around it that provides
mathematical guarantees on the performance of the closed
loop system.

Also, in the field of computer architecture approximate
computing approaches [12], [13], [14] have been studied,
seeking time or energy savings by performing a computation
approximately instead of precisely. While anytime algorithms
and approximate computing share a high-level goal, ap-
proximate computing approaches are run-to-completion and
also lack a feedback mechanism to permit computation and
resources to be balanced dynamically. Additionally the time
and energy scale that our approach works at is much higher
than what approximate computing looks at.

III. CO-DESIGN OF ESTIMATION AND CONTROL

In a traditional control system, the controller is unaware
of the implementation details of the estimation module
and the estimation module is unaware of the requirements
of the controller. For example, the design of a feedback
controller might not take into account the fact that obtaining
a state estimate from a video feed will take a non-negligible
amount of time, which we refer to as the estimation delay.
Conversely, the design of the perception and estimation
might not in general take into account the varying real-time
constraints that the controlled system must satisfy. In order to

improve performance of real-time closed loop systems using
computationally and power limited platforms, we propose the
co-design of estimation and control. The co-design involves
using a contract-based framework for both estimator and
controller. Namely, the controller requests the estimator to
provide a state estimate within a certain deadline δ seconds
and with a certain error bound ε. We refer to the tuple
(δ, ε) as the contract between controller and estimator. The
estimator then provides an estimate that respects the contract.
By requesting estimates with varying contracts during system
operation, the controller is able to adapt the closed-loop
system performance in real-time according to the current
condition of the physical system. For example, it can decide
when an estimate is needed fast (but usually with higher
error), and when a more accurate estimate is needed (but
with greater delay). Note, the (δ, ε) contract can also be
thought of as setting an operating mode for the perception-
and-estimation algorithm. A high-level view of this setup is
shown in Fig. 1.

To ensure that the estimator can respect the contract
(alternatively, that the controller is only requesting contracts
that can be fulfilled by the estimator), the estimator is profiled
off-line. Namely, the estimator’s parameters are varied and
for each setting of the parameters, it is run on a profiling
data set. This yields a finite set of (δ, ε) values, each one
corresponding to a setting of the parameters. These values
can be plotted on a curve, which we call the error-delay
curve made up of discrete points, (δ, ε), represented by the
set ∆. Examples of such a curve are shown in Figs. 7 and
14. The detailed procedure for obtaining such a curve for a
perception based algorithms is given in Section VI.

At run-time, when the estimator receives a (δ, ε) contract
request from the controller, it can adapt its execution paths
to respect the contract, namely, to provide a state estimate
in real-time within the requested error bound ε, and within
the requested deadline δ.

In addition, the controller is designed with the knowledge



of the error-delay curve of the estimation algorithm, and
requests contracts from that curve. Thus, the error-delay
curve constitutes the interface between controller and es-
timator. This gives the controller the ability to leverage the
flexible nature of the estimation algorithm to maximize some
performance measure of control performance.

Fig. 4 shows the closed loop architecture in a system with
co-design of the estimator and controller. In the co-designed
system as presented in this paper, the controller can make the
estimation algorithm switch to lower or higher time (and/or
energy) consuming modes based on the control objective at
the current time step. The main components of the co-design
architecture are a contract based perception-and-estimation
algorithm, a robust control algorithm that computes an input
to be sent to the physical system being controller as well as
the operating mode for the contract time estimator, and the
interface between them. More details on these components
are in the following sections.

A. Contract based perception algorithms

A contract based perception-and-estimation algorithm can
operate at different deadlines and provide a usable solution
for the control algorithm to operate on. This flexible opera-
tion is achieved by composing the algorithm of functional
blocks that have different execution times and result in
different qualities of outputs.

An example is a Computer Vision (CV) based Object
recognition algorithm which is composed of different func-
tional blocks of varying execution time which result in
a different accuracy when linked together to provide the
functionality of an object recognition algorithm. E.g. the
pixel classifier in the first stage of such a CV algorithm
could be a Gaussian Mixture Model with 2, 4, or 6 compo-
nents, with more components providing better classification
performance (over-fitting is ruled out by cross-validation) at
the cost of more computation time. Functions with similar
characteristics like example above, when profiled extensively
offline and composed in the right order at run-time can be
used to compose a contract time anytime perception and
estimation algorithm. More details follow in section VI.

B. Interface between contract based perception and robust
control

For the control algorithm to be able to leverage the
flexible nature of the contract based perception algorithm,
it must have information about the computation time versus
output quality trade-off that the contract based perception
algorithm offers. An interface that achieves this is obtained
by representing the profiled behaviour of the contract based
algorithm to varying deadlines, as points on a perception
quality versus deadline (δ, ε) curve, e.g. in Fig. 7. With
this profiled curve available to the controller at runtime,
the exchange of information between the contract based
perception-and-estimation algorithm and the control algo-
rithm consists of the controller assigning a deadline (δ), or a
contract to the perception algorithm while expecting a bound
on the error (ε) of its output. The perception algorithm then

returns an output after internally deciding the composition to
best meet the deadline and the expected quality requirement.
Through extensive offline profiling, we guarantee with a
high degree of confidence that the contract based estimator
does not violate the contract. This helps in formulating
a control algorithm that provides mathematical guarantees
on the feasibility of constraints for the safe operation and
stability of the closed loop dynamic system as covered in
section V.

C. Robust Control with contract based perception algorithm

The control algorithm is designed to pick the best op-
erating point for the estimator, or the right (δ, ε) contract
to request from the perception and estimation algorithm.
This is done based on the current state of the physical
system to maximize a performance measure while being
robust to the varying computation time and the varying
estimation errors of the estimator with different contracts
as is provides estimates to the controller. In section V we
present a control algorithm that achieves this while also
guaranteeing feasibility of system constraints the stability of
the closed loop system.

IV. ROBUST CONTROL WITH CONTRACT-BASED
ESTIMATOR

In this section we present the mathematical formulation
to model the controller and physical system from Fig. 1,
and demonstrate how the controller can, in real-time, use
knowledge of the estimator’s error-delay curve to decrease
computation delay and power in an error-aware fashion.

A. System Model

Consider a hexrotor, which is an autonomous flying robot
with six rotors, shown in Fig. 13. The state x of the hexrotor
is made of its 3D position and 3D velocity. The input u
to the robot consists of the desired pitch and roll angles,
and the desired thrust. The hexrotor’s mission is to fly a
pre-defined pattern given by xref , where xref (t) gives the
desired position at each time t. The dynamics of the hexrotor,
relating the time-evolution of its state to the current state and
input, can be linearized and approximated by the following
Linear Time-Invariant (LTI) ODE:

ẋ(t) = Acx(t) +Bcu(t) + wc(t) (1)

where x ∈ Rn is the state constrained to lie in a set X ⊂ Rn,
u ∈ Rm is the control input constrained to lie in a set U ⊂
Rm, and wc ∈ Rn is the bounded process noise assumed
to lie in a set Wc ⊂ Rn. Ac ∈ Rn×n and Bc ∈ Rn×m are
matrices. LTIs model a wide range of systems, and our results
apply to arbitrary LTIs of the form given in (1) with compact
and convex constraint sets X,U and Wc. The sets X and U
are part of the problem statement and are either chosen by
the designer or determined by physical constraints.For the
hexrotor, X captures limits on the state such that the LTI
dynamics provide a good approximation of the true nonlinear
dynamics. The set U restricts the inputs to values that can
be supported by the rotors.
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B. Time-Triggered Sensing and Actuation

For flight the hexrotor needs to determine its current
position and speed, i.e., it needs to produce an estimate of
its current state x. It does so by taking a video during flight
through a downward facing camera, detecting and tracking
features across frames, and deducing its own position relative
to these features. The camera captures a new frame every
T > 0 seconds, thus resulting in periodic measurements at
instants ts,k = kT , where k ∈ N.

The sampled measurement is fed to the estimator that
computes the state estimate x̂k := x̂(ts,k) with the desired
accuracy εk determined by the controller in the previous time
step. The controller then uses this state estimate to compute
the control input uk as well as decide on the state estimate’s
delay and accuracy contract (δk+1, εk+1) for the next step.
This control is applied to the physical system according to
(1) at instant ta,k = ts,k + δk + τk, where τk is the time it
takes to compute the input. See Fig. 5.

In our setting, the controller has access to the delay-error
curve ∆ of the estimator, and makes contract selections from
that curve. This curve is obtained offline as explained in
Section III, and exemplified in Section VI. We remark that
in each step k ≥ 0, the estimation accuracy εk and hence the
delay δk are already decided in the previous step and known
to the controller. In the first step k = 0, the initial accuracy
ε0, the initial delay δ0, and the initial control input u−1 are
chosen by the designer.

C. Control Performance

The goal of the controller is twofold: it needs to ensure
that the reference pattern is adhered to as closely as pos-
sible, and that the energy consumed to fly this pattern is
minimized. Thus we may define two (stage) cost functions:
first, `(x, u) = (x − xref )TQ(x − xref ) + uTRu defines a
weighted sum of the tracking error (first summand) and the
input power (second summand). Here, Q and R are positive
semidefinite matrices. Second, π(δ) captures the average
power consumed to perform an estimation of duration δ. This
power information is collected offline during the estimator
profiling phase. The paper’s formulation holds for much
more general stage cost functions. These stage cost functions
are chosen by the designer to achieve a desired control
performance.

The total cost function that the controller minimizes is
then J =

∑M
k=0 (`(xk, uk) + απ(δk)), where M ≥ 0 is the

duration of the system’s operation.

D. Discretized Dynamics

Because of time-triggered sensing and actuation, from
time ts,k to ta,k, the previous control input uk−1 is still
used. Then at ta,k the new control input uk is computed
and applied by the controller (see Fig. 5). For simplification,
we assume the computation time for the controller (τ ) to
be constant and lump it with the time for the estimator (δ).
This is justified experimentally for our problem (in Sec.VII-
B) where the time for the controller is negligible compared to
the time taken by the estimation algorithm. The discretized
dynamics are given by

xk+1 = Axk +B1(δk)uk−1 +B2(δk)uk + wk, k ≥ 0 (2)

in which

A = eAcT , wk =
∫ T

0
eAc(T−t)wc(ts,k + t)dt

B1(δ)=
∫ δ

0
eAc(T−t)Bcdt, B2(δ)=

∫ T
δ

eAc(T−t)Bcdt.

Here wk is the accumulated process noise during the interval,
and is constrained to lie in a compact convex set W because
wc(t) lies in the compact convex set Wc and T is finite.
Note that both the current control uk and the previous control
uk−1 appear in (2). Furthermore, the input matrices B1(δk)
and B2(δk) depend on the delay δk. The estimation accuracy
εk affects the state estimate x̂k used by the controller to
compute uk; therefore εk indirectly affects the dynamics via
the control input.

V. ROBUST MODEL PREDICTIVE CONTROL SOLUTION

In this section we give an overview of the Robust Adaptive
Model Predictive Controller (RAMPC) that we use in the
contract-based setup of Fig. 4. The mathematical details and
derivations are available in the online technical report [15].
Experiments confirm that the following controller can be run
in real-time, and its computation uses a negligible amount
of time relative to the estimation delay.

A. Solution overview

Recall the operation of the contract-based control and
estimation framework as presented in Section III and Fig. 4.
First, the estimator is profiled offline to obtain its delay-error
curve, which we denote by ∆. The curve ∆ represents a finite
number of (δ, ε) contracts that the estimator can satisfy. At
every time step k, the controller receives a state estimate x̂k
and uses it to compute two things: first is the control input uk
to be applied to the physical system at time ta,k. The second
is the contract (δk+1, εk+1) ∈ ∆ that will be requested
from the estimator at the next step. At k + 1, the estimator
provides an estimate with error at most εk+1 and within delay
δk+1. Finally, recall that J =

∑M
k=0 (`(xk, uk) + απ(δk))

combines tracking error and input power in the ` terms, and
estimation power consumption in the π terms. The scalar
α quantifies the importance of power consumption to the
overall performance of the system.

The contract-based controller’s task is to find a sequence
of inputs uk ∈ U and of contracts (δk, εk) ∈ ∆ such that
the cost J is minimized, and the state xk is always in the



set X . The challenge in finding the control inputs is that
the controller does not have access to the real state xk, but
only to an estimate x̂k. The norm of the error ek = x̂k −xk
is bounded by the contractual εk, which varies at each time
step.

Fix the prediction horizon N ≥ 1. Assume that the
current contract (under which the current estimate x̂k was
obtained) is (δk, εk), and that the previously applied input is
uk−1. To compute the new input value uk and next contract
(δk+1, εk+1), the proposed Robust Adaptive Model Predic-
tive Control (RAMPC) seeks to solve the following opti-
mization problem which we denote by P∆(x̂k, δk, εk, uk−1):

J∗[0 : N ] = min
u,x,δ,ε

N∑
j=0

(`(xk+j , uk+j) + απ(δk)) (3)

Here, RAMPC needs to find the optimal length-N input
sequence u∗ = (u∗k, . . . , u

∗
k+N ) ∈ UN , corresponding state

sequence x = (xk, . . . , xk+N ) ∈ XN , delay sequence
δ = (δk, . . . , δk+N ) and error sequence ε = (εk, . . . , εk+N )
such that (δk, εk) ∈ ∆, which minimize the N -step cost
J [0 : N ]. In the remainder of this section we discuss how to
make this problem tractable. As in regular MPC [16], once a
solution u∗ is found, only the first input value u∗k is applied
to the physical system, thus yielding the next state xk+1 as
per (2). At the next time step k + 1, RAMPC sets up the
new optimization P∆(x̂k+1, δk+1, εk+1, uk+1−1) and solves
it again.

To make this problem tractable, we first assume that
the mode is fixed throughout the N -step horizon, i.e.
(δk+j , εk+j) = (δ, ε) for all 1 ≤ j ≤ N . Thus for every value
(δ, ε) in ∆, we can setup a different problem (3) and solve it.
Let J∗(δ,ε) be the corresponding optimum. The solution with
the smallest objective function value yields the input value
u∗k to be applied and the next contract (δ∗, ε∗).

Because RAMPC only has access to the state estimate,
we extend the RMPC approach in [17], [18]. Namely, the
problem is solved for the nominal dynamics which assume
zero process and observation noise (wk+j = 0) and zero
estimation error (x̂k+j = xk+j) over the prediction horizon.
Let x be the state of the system under nominal conditions.
To compensate for the use of nominal dynamics, RMPC
replaces the constraint (xk+j , uk−1+j) ∈ X × U := Z
by (xk+j , uk+j) ∈ Zj(εk, ε), where Zj(εk, ε) ⊂ Z is Z
‘shrunk’ by an amount corresponding to ε, as explained in the
technical report [15]. Intuitively, by forcing (xk+j , uk−1+j)
to lie in the reduced set Zj(εk, ε), the bounded estimation
error and process noise are guaranteed not to cause the
true state and input to exit the constraint sets X and U .
The tractable optimization for a given (δ, ε), denoted by
P(δ,ε)(x̂k, δk, εk, uk−1), is then

J∗(δ,ε) = min
u,x

N∑
j=0

(`(xk+j , uk+j) + απ(δk)) (4)

s.t. ∀j ∈ {0, . . . , N}
xk+j+1 = Axk+j +B1(δk)uk+j−1 +B2(δk)uk+j

(xk+j , uk+j) ∈ Zj(εk, ε)

Algorithm 1 summarizes the RAMPC algorithm.

Algorithm 1 Robust Adaptive MPC algorithm with Anytime
Estimation.

1: (δ0, ε0) and u−1 specified by designer
2: Apply u−1

3: for k = 0, 1, . . . ,M do
4: Estimate x̂k with guarantee (δk, εk)
5: for each (δ, ε) ∈ ∆ do
6: J∗(δ,ε) ← Solve P(δ,ε)(x̂k, δk, εk, uk−1)
7: end for
8: (δ∗, ε∗, u∗k)← argmin(δ,ε)J

∗
(δ,ε)

9: Apply control input uk = u∗k and estimation mode
(δk+1, εk+1) = (δ∗, ε∗)

10: end for

We prove the following result in the technical report [15]:
Theorem 5.1: If at the initial time step there exists a

contract value (δ, ε) ∈ ∆, an initial state estimate x̂0 ∈ X ,
and an input value u−1 ∈ U , such that P(δ,ε)(x̂0, δ0, ε0, u0−1)
is feasible then the system (2) controlled by Alg. 1 and
subjected to disturbances constrained by wk ∈ W robustly
satisfies the state constraint x ∈ X and the control input
constraint u ∈ U , and all subsequent iterations of the
algorithm are feasible.

VI. CONTRACT BASED PERCEPTION ALGORITHMS

In Section III, we postulated the existence of an Estima-
tion Error vs Computation Delay curve ∆. This curve is
used at every time step by the controller to determine the
operating point (δ, ε) for the next time step. In this section
we demonstrate in detail how such a curve may be obtained
for particular applications and how points along the curve
are realized at runtime by the contract based perception
algorithms.

A. Profiling And Creating an Anytime Contract Based
Perception-and-Estimation Algorithm

The first step towards profiling a contract-based estimator
is to identify the individual components (or algorithms) of
the perception tool chain. The second step is to identify
parameters of each component, such that modifying the
values of these parameters leads to a change in the execution
time and accuracy of the component’s output. This may
be as simple as changing the number of iterations in a
loop [12] or finding alternate implementations with different
resultant execution times δ and estimation error ε. We call
these parameters knobs of the component. We implement
this procedure on a Computer Vision (CV)-based object
recognition tool chain. An overview of the tool chain is
shown in Fig. 6.

The CV tool chain takes in a video stream and tracks an
Object Of Interest (OOI) across the frames. The first stage
of the chain is a pixel classifier that assigns to each pixel
of the image (after potential pre-processing) the probability
of its being a pixel of interest, i.e., of belonging to an OOI
or being a part of the background. A binary image is then
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Fig. 6. Illustration of the various components used to compose the contract
based perception algorithm and their representation as real-time tasks. For
a given (δ, ε) contract, knob settings are chosen at run-time resulting in a
schedule to execute these sequential components, or tasks, to respect the
contract.

obtained which assigns the value 1 to pixels of interest, and
0 to all others. Next, filtering and a Connected Components
(CC) algorithm is run on the binary image to get rid of noise
in the classification process and segment its 1-valued pixels
into disconnected objects. A shape classifier is then run on
each object to determine whether it is of interest or not.

In our implementation, the pixel classifier is a Gaussian
Mixture Model (GMM) classifier, whose knob is the num-
ber of components in the GMM. Fewer Gaussians in the
GMM yield a faster but less accurate classifier while more
Gaussians will result in a higher execution time but provide
better classification performance. Knob values that cause
data overfit are discarded by a cross-validation stage as is
standard.

The filtering and Connected Components algorithm are
lumped into one stage and have a two-valued knob to
choose between a 4-connected and 8-connected component
implementation. The shape classifier is also a GMM, but the
knob for it is the number of shape features (like eccentricity
and lengths of major and minor axes). In our experiments
the number of knob settings for the entire chain is K =
(#Gaussians for pixel classifier, #neighbors for CC, #features
for shape classifier), and has a total of 3×2×2 = 12 values.

Note that for any given component in the chain, the
relation between knob value and quality of output is not
necessarily monotonic. The pixel and shape classifiers are
machine learning algorithms that need to be trained on a
training set before being used and like all machine learning
algorithms, their output quality for a given knob setting will
depend on the actual data set. The same is a fortiori true
of the quality of the output of the entire chain. This is also
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Fig. 7. Profiled delay-error curve for the object detection tool chain run
at different parameter settings.

reflected in Fig. 7 which shows the mean perception error1

and the 90th percentile execution time for the different knob
settings.

The final step is to profile all the possible combinations
of knobs by running the tool chain on a test data set. This
profiling gives us: a) the output quality (or accuracy) of
the perception-and-estimation tool chain under consideration,
and b) information about execution times for the stages of
the perception tool chain under different knob settings. This
information gathered offline is useful for making decisions
at run-time. Fig. 7 shows the profiled performance of the CV
tool chain.

B. Run-time execution of the contract-based perception al-
gorithm

Having profiled the components of the contract-based
perception algorithm, we can make run-time decisions for
knob settings in order to realize a given (δ, ε) contract.

This is the equivalent of selecting different versions of
tasks (knobs for stages) and scheduling them in sequential
order to best perform the object recognition task while
meeting the given time contract or deadline. Fig. 6 shows the
different task versions for each knob in the different stages
and the resulting schedule based on the knob settings for
the stages. The offline profiling allows us to set the knobs
such that we can achieve a feasible schedule for the given
deadline, δ while maximizing the utility, or the expected
accuracy of the perception algorithm.

C. Visual Odometry

Another algorithm we consider and later use in Section
VII is the Semi-Direct Monocular Visual Odometry (SVO)
[19]. The visual odometry algorithm detects corners in an
image and tracks them across video frames to perform self-
localization of a moving robot. These estimates are used in
the closed loop control system that flies the hexrotor, hence
it is important for the visual odometry to run at or faster
than frame rate in order to provide a timely state estimate
to the control algorithm The number #C and quality of
corners detected in a frame directly affects the runtime of the

1Error is the distance between the true centroid and the estimated centroid
of the OOI
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corner detector and the resulting quality of the state estimate.
Generally speaking, detecting more corners requires a longer
runtime, and results in better self-localization as long as we
are analysing a feature rich scene, i.e., assuming acceptable
quality of the detected corners. Thus the number #C of
corners is a knob which can be varied to obtain an error-
delay curve for self-localization with the visual odometry
algorithm. If the scene is not rich enough in features, and
a sizeable fraction of the #C corners are of poor quality
(i.e., unstable or hard to track across frames), then we can
expect the self-localization error to actually increase as the
poor quality of the unstable corners detected adds noise to
the visual odometry estimates.

Fig. 14 shows the error-delay curve of self-localization
error using the SVO. The curve was obtained on an Odroid-
U3 [20], which is the same processor as the one used on the
hexrotor for on-board computation. For each value of the
knob #C (i.e., each requested number of corners), we ran
the visual odometry algorithm on a video sequence recorded
by the downward facing camera on the hexrotor while flying
certain pre-set patterns. Ground truth for computing the self-
localization error was obtained using a Vicon motion capture
system which provides position estimates with better than
millimeter level precision. As we repeat each flight several
times, this results in a distribution of (δ, ε) values for each
value of #C. We retained the 90th percentile values for δ
and ε, since these can be used as the worst-case estimates
and delays by the controller of Ssction IV. It can be seen
that a larger number of requested corners produces a smaller
estimation error and longer runtime. Starting at 250 corners,
the error increases, however. We hypothesize this is due to
the decreasing quality of the corners being returned by the
corner detection algorithm.
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corners from the SVO algorithm.

VII. CASE STUDY: REAL-TIME FEEDBACK CONTROL OF
A HEXROTOR WITH CONTRACT BASED ESTIMATION AND

ROBUST CONTROL

A. Experimental setup

To evaluate our methodology on a real platform, we ap-
plied it to a hexrotor tasked with repeatedly following a given
circular trajectory. We use SVO (Section VI) as estimator
and RAMPC as the controller. The obtained execution time
distributions for SVO are shown in Fig.15. Details of the
experimental setup are in the online technical report [15].

B. Experimental Evaluation

After profiling the performance of the perception and
estimation algorithm and formulating the Robust Adaptive
MPC controller for the hexrotor linearized around hover
and modelled as an LTI system (Eq. 1), we experimentally
evaluate the tracking performance and estimated energy
consumption based on actual flights around a pre-defined
trajectory. For comparison, we use a Model Predictive Con-
troller with the same cost function and initial feasible sets as
in our Robust MPC formulation. The MPC controller is an
appropriate baseline against which to measure the benefits of
our co-design method, as it is a similar control algorithm that
does not leverage co-design and is unaware of the estimator
algorithm that gives it a state estimate.

For the evaluation, we fly in a predefined circular trajec-
tory, repeating the experiment 10 times to gather enough
data to conclusively measure the performance of RAMPC for
different values of α and MPC with fixed modes of (δ, ε).
Note that since the controller was a sampled discrete-time
controller working with simulated 20Hz camera updates, this
realistically restricts us to using modes of estimator operation
with delay δ less than 1/20s, i.e. modes corresponding to 50,
100, 150 and 200 maximum corners (see Fig. 14). These
modes and their estimated power consumption is in Table
I. Note, #C represents the maximum number of corners
requested, ε shows the worst case error bound on the state
estimate, δ is the 90th percentile execution time for that
mode, and P represents the expected power consumption in
that mode as profiled offline. Note, the computation time
for both the RAMPC and the MPC was less than 1ms,
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so we neglect it in comparison to the time for estimation.
This power consumption is the computation power used by
a particular mode in excess to the idle power for the Odroid
used for profiling, which was 1.5W.

TABLE I
ESTIMATION MODES USED IN THE EXPERIMENT.

Mode #C εεε δδδ (ms) PPP (W)
0 50 24.88 0.028 0.778
1 100 29.82 0.0237 0.862
2 150 34.66 0.0230 0.870
3 200 38.01 0.0113 0.951

C. Experimental Results

Once the flights are complete, to get a more accurate
picture of how the controllers really performed, we use the
following function to measure tracking performance at each
time step.

Jtrue(t) = (x(t)−xref (t))
TQ(x(t)−xref (t))+u(t)TRu(t) (5)

Note that since we have access to the true position and
velocities (x(t)) of the hexrotor with the Vicon system,
we can obtain the true tracking cost. Table II shows the
mean of the above function over the 10 flights for both
MPC across all fixed modes and RAMPC with different
values of α. It also shows the estimated energy consumption
based on the time spent in each mode (which can be seen
in Table III for RAMPC). RAMPC shows better tracking
performance (lower mean Jtrue) than MPC in all cases,
except for α = 0.2, thus demonstrating the improved control
performance that can be obtained by dynamically switching
between estimation modes in-flight at runtime.

Fig. 10 shows how the tracking cost (Jtrue) evolves
over time for RAMPC (with α = 0) and MPC (fixed
mode 0) for a portion of the hexrotor flight. The estimator
modes selected by RAMPC are overlaid in orange. Fig.
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different runtime scheduling of estimator modes based on based α. It is
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10 demonstrates that RAMPC has uniformly lower tracking
cost than MPC, enabled by RAMPC’s dynamic switching
of estimator modes at runtime. Note that RAMPC exhibits
better tracking performance throughout the flight and not just
in this portion, and also outperforms MPC at other modes
(see Table II).

Figure 11 shows that RAMPC provides better tracking
performance while using less energy to do so. For any fixed
energy budget (a point on the x-axis), RAMPC delivers lower
tracking cost (y-axis) than MPC. While MPC’s tracking
error is relatively constant across modes, RAMPC is able to
balance tracking error with energy consumption by varying
the α parameter. RAMPC’s switching between estimation
modes improves not only the control performance but also
energy efficiency.

TABLE II
TRACKING PERFORMANCE AND COMPUTATION ENERGY

Controller Est. Mode/ ααα E[Jtrue]E[Jtrue]E[Jtrue] σ(Jtrue)σ(Jtrue)σ(Jtrue) Energy(J)Energy(J)Energy(J)
MPC 0/ − 1.0903 0.104 43.89
MPC 1/ − 1.0878 0.087 49.02
MPC 2/ − 1.0760 0.098 49.60
MPC 3/ − 1.0762 0.088 54.15

RAMPC −/0 0.8836 0.079 49.28
RAMPC −/ 0.001 1.0029 0.093 48.90
RAMPC −/ 0.01 1.0280 0.089 48.69
RAMPC −/ 0.05 1.0302 0.096 46.33
RAMPC −/ 0.1 1.0601 0.086 46.01
RAMPC −/ 0.2 1.0776 0.083 44.49

Fig. 12 shows the degradation (increased mean Jtrue) in
tracking performance and reduction in energy consumption
as the weight α for the computation power in the cost
function is increased. As energy becomes more important,
RAMPC smoothly balances tracking cost and energy con-
sumption. Table III quantifies how RAMPC makes this trade-
off, by showing the fraction of time spent in the 4 modes
with RAMPC as α changes. While time is split between
modes 0 and 3 with α = 0, more and more time is spent in
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Fig. 12. RAMPC tracking cost and estimated computation energy for the
perception and estimation algorithm as a function of α.

the low-power (but less accurate) mode 0 as α increases.

TABLE III
FRACTION OF TIME SPENT IN DIFFERENT ESTIMATOR MODES AS α

CHANGES FOR RAMPC

ααα Mode 0 Mode 1 Mode 2 Mode 3
0 0.461 0.009 0.020 0.510

0.001 0.494 0.001 0.029 0.467
0.01 0.512 0.005 0.039 0.444

0.005 0.692 0.000 0.156 0.152
0.1 0.691 0.000 0.218 0.091
0.2 0.897 0.000 0.098 0.005

VIII. CONCLUSION

In this paper we presented a contract-based methodology
for co-design of estimation and control for autonomous sys-
tems. The basic idea is that the control algorithm requests a
delay and estimation error (δ, ε) contract that the perception-
and-estimation algorithm realizes. The control algorithm we
designed aims to set time-varying contracts to maximise a
performance function while respecting feasibility constraints
and stability under the time varying execution delay and
estimation error from the estimator. We also illustrate how
the contract-based perception-and-estimation algorithm is
designed offline and used at run-time to best meet the
(δ, ε) contracts set for it. Through a case study on a flying
hexrotor, we showed the applicability of our scheme to real-
time closed loop system. The experimental results show the
good performance of our scheme and how it outperforms
regular Model Predictive Control which does not leverage co-
design. A key result showed how our closed loop solution
is more energy efficient than MPC while achieving better
tracking performance. A focus of ongoing research is to
overcome the necessity of the contracts always being met by
the estimator. Another focus is on an automated tool chain to
profile perception algorithms commonly used in autonomous
systems.
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APPENDIX

In this appendix we give the detailed mathematical deriva-
tion of the results of Section III, and the details of the
experimental setup for offline profiling.

A. Problem formulation
The controller is designed using a Robust Model Predictive

Control (RMPC) approach via constraint restriction [17],
[18], and augments it by an adaptation to the error-delay
curve of the estimator. In order to ensure robust safety and
feasibility, the key idea of the RMPC approach is to tighten
the constraint sets iteratively to account for possible effect
of the disturbances. As time progresses, this “robustness
margin” is used in the MPC optimization with the nominal
dynamics, i.e., the original dynamics where the disturbances
are either removed or replaced by nominal disturbances.
Because only the nominal dynamics are used, the complexity
of the optimization is the same as for the nominal problem.

Since the controller only has access to the estimated state
x̂, we need to rewrite the plant’s dynamics with respect to
x̂. The error between xk and x̂k is ek = xk − x̂k. At time
step k + 1 we have

x̂k+1 = xk+1 − ek+1

= Axk +B1(δk)uk−1 +B2(δ[k])uk + wk − ek+1,

then, by writing xk = x̂k + ek, we obtain the dynamics

x̂k+1 = Ax̂k +B1(δ[k])uk−1 +B2(δ[k])uk + ŵk (6)

where ŵk = wk + Aek − ek+1. The set of possible
values of ŵk depends on the estimation accuracy at steps
k and k + 1 and is denoted by Ŵ(ε[k], ε[k + 1]), i.e.,
Ŵ(ε, ε′) := {w +Ae− e′ | w ∈ W, e ∈ E(ε), e′ ∈ E(ε′)}.
Note that Ŵ(ε[k], ε[k + 1]) is independent of the time step
k. It can be computed as Ŵ(ε, ε′) =W⊕AE(ε)⊕ (−E(ε′))
where the symbol ⊕ denotes the Minkowski sum of two sets.

The dynamics in (6) has a non-standard form where it
depends on both the current and the previous control inputs.
However we can expand the state variable to store the
previous control input as

ẑk =

[
x̂k
uk−1

]
∈ Rn+m

and rewrite the dynamics as, for all k ≥ 0,

ẑk+1 = Â(δk)ẑk + B̂(δk)uk + F̂ ŵk. (7)

Here, the system matrices are

Â(δk) =

[
A B1(δk)

0m×n 0m×m

]
,

B̂(δk) =

[
B2(δk)
Im

]
, F̂ =

[
In

0m×n

]
.

(8)

Let the actual expanded state be zk =
[
xTk , u

T
k−1

]T
.

Because the expanded state consists of both the plant’s state
and the previous control input, the state constraint xk ∈ X
and the control constraint uk ∈ U are equivalent to the joint
constraint zk ∈ X × U . We can now describe the RAMPC
algorithm for the dynamics in (7).

B. Tractable RAMPC Algorithm

Let N ≥ 1 be the horizon length of the RMPC optimiza-
tion. Because the system matrices in the state equation (7)
depend nonlinearly on the variables δk, the RMPC optimiza-
tion is generally a mixed-integer nonlinear program, which
is very hard to solve. To simplify the RMPC optimization to
make it tractable, we fix the estimation mode for the entire
RMPC horizon.

Let P(δ,ε)(x̂k, δk, εk, uk−1) denote the RMPC optimization
problem at step k ≥ 0 where the current state estimate is x̂k,
the current estimation mode is (δk, εk) ∈ ∆, the previous
control input is uk−1, and the estimation mode for the entire
horizon (after step k) is fixed at (δ, ε) ∈ ∆. Since the
system matrices become constant now, if the stage cost `(·)
is linear or positive semidefinite quadratic, each optimization
problem P(δ,ε)(x̂·, δ·, ε·, u·−1) is tractable and can be solved
efficiently as we will show later. The RAMPC algorithm with
Anytime Estimation is stated in Alg. 1 .

C. RMPC Formulation

We formulate the RMPC optimization
P(δ,ε)(x̂k, δk, εk, uk−1) with respect to the nominal
dynamics, which is the original dynamics in Eq. (7)
but the disturbances are either removed or replaced by
nominal disturbances. To ensure robust feasibility and
safety, the state constraint set is tightened after each step
using a candidate stabilizing state feedback control, and a
terminal constraint is derived. In this RMPC formulation,
we extend the approach in [17], [18]. At time step k,
given (x̂k, δk, εk, uk−1) and for a fixed (δ, ε), we solve the
following optimization

J∗δ,ε (x̂k, δk, εk, uk−1) = min
u,x

N∑
j=0

`(xk+j|k, uk+j|k) (9a)

subject to, ∀j ∈ {0, . . . , N}

zk+j+1|k = Â(δk+j|k)zk+j|k + B̂(δk+j|k)uk+j|k (9b)

(δk+j+1|k, εk+j+1|k)=(δ, ε)

(δk|k, εk|k)=(δk, εk) (9c)

xk+j|k =
[
In 0n×m

]
zk+j|k (9d)

zk|k =
[
x̂Tk , u

T
k−1

]T
(9e)

zk+j|k ∈ Zj (εk, ε) (9f)

zk+N+1|k ∈ Zf (εk, ε) (9g)

in which z and x are the variables of the nominal dynam-
ics. The constraints of the optimization are explained below.
• (9b) is the nominal dynamics.
• (9c) states that the estimation mode is fixed at (δ, ε)

except for the first time step when it is (δk, εk).
• (9d) extracts the nominal state x of the plant from the

nominal expanded state z.



• (9e) initializes the nominal expanded state at time step
k by stacking the current state estimate and the previous
control input.

• (9f) tightens the admissible set of the nominal expanded
states by a sequence of shrinking sets.

• (9g) constrains the terminal expanded state to the ter-
minal constraint set Zf .

The state constraint Zj: The tightened state constraint sets
Zj (εk, ε) are parameterized with two parameters εk and ε.
They are defined as follows, for all j ∈ {0, . . . , N}

Z0(εk, ε) = Z 	 F̂E(εk) (10)

Zj+1(εk, ε) = Zj(ε, ε)	 LjF̂Ŵ(εk, ε) (11)

in which the symbol 	 denotes the Pontryagin difference
between two sets. The set Z combines the constraints for
both the plant’s state and the control input: Z = X × U .
The matrix Lj is the state transition matrix for the nominal
dynamics in (9b) under a candidate state feedback gain
Kj(δ), for j ∈ {0, . . . , N}

L0 = I (12)
Lj+1 = (Â(δ) + B̂(δ)Kj(δ))Lj (13)

Note that the possibly time-varying sequence Kj(δ) is de-
signed for each choice of δ (i.e., the system matrices Â(δ)
and B̂(δ)), hence Lj depends on δ; however we write Lj for
brevity. The candidate control Kj(δ) is designed to stabilize
the nominal system (9b), desirably as fast as possible so that
the sets Zj are shrunk as little as possible. In particular, if
Kj(δ) renders the nominal system nilpotent after M < N
steps then Lj = 0 for all j ≥ M , therefore Zj (εk, ε) =
ZM (εk, ε) for all j > M .
The terminal constraint Zf : Zf is given by

Zf (εk, ε) = C(δ, ε)	 LN F̂Ŵ(εk, ε) (14)

where C(δ, ε) is a robust control invariant admissible set for
δ [21], i.e., there exists a feedback control law u = κ(z)

such that ∀z ∈ C(δ, ε) and ∀w ∈ Ŵ(ε, ε)

Â(δ)z+B̂(δ)κ(z)+LN F̂w ∈ C(δ, ε) (15)
z ∈ ZN (ε, ε) (16)

We remark that C(δ, ε) does not depend on (δk, εk), therefore
it can be computed offline for each mode (δ, ε).

D. Proofs of Feasibility

The RMPC formulation of the previous section, with a
fixed estimation mode (δ, ε) ∈ ∆, is designed to ensure
that the control problem is robustly feasible, as stated in
the following theorem.

Theorem 8.1 (Robust Feasibility of RAMPC): For any es-
timation mode (δ, ε), if P(δ,ε)(x̂k, δk, εk, uk−1) is feasible
then the system (2)controlled by the RAMPC and sub-
jected to disturbances constrained by wk ∈ W robustly
satisfies the state constraint xk ∈ X and the control in-
put constraint uk ∈ U , and all subsequent optimizations
Pδ,ε(x̂k, δ[k], ε[k], uk−1), ∀k > k0, are feasible.

Proof: We will prove the theorem by recursion. We
will show that if at any time step k the RMPC prob-
lem Pδ,ε(x̂k, δ[k], ε[k], uk−1) is feasible and feasible con-
trol input uk = u?k|k is applied with estimation mode
(δ[k + 1], ε[k + 1]) = (δ, ε) then uk is admissible and at the
next time step k + 1, the actual plant’s state xk+1 is inside
X and the optimization Pδ,ε(x̂k+1, δ[k + 1], ε[k + 1], uk)
is feasible for all disturbances. Then we can conclude the
theorem because, by recursion, feasibility at time step k0

implies robust constraint satisfaction and feasibility at time
step k0 + 1, and so on at all subsequent time steps.

Suppose Pδ,ε(x̂k, δ[k], ε[k], uk−1) is feasible. Then it has a
feasible solution

(
{z?k+j|k}

N+1
j=0 , {u?k+j|k}

N
j=0

)
that satisfies

all the constraints in (9). Now we will construct a feasi-
ble candidate solution for Pδ,ε(x̂k+1, δ[k + 1], ε[k + 1], uk)
at the next time step by shifting the above solution by
one step. Consider the following candidate solution for
Pδ,ε(x̂k+1, δ[k + 1], ε[k + 1], uk):

zk+j+1|k+1 = z?k+j+1|k + LjF̂ ŵk (17a)

zk+N+2|k+1 = Â (δ) zk+N+1|k+1 + B̂ (δ)uk+N+1|k+1

(17b)

uk+i+1|k+1 = u?k+i+1|k +Ki (δ)LiF̂ ŵk (17c)

uk+N+1|k+1 = κ
(
zk+N+1|k+1

)
(17d)

in which j ∈ {0, . . . , N}, i ∈ {0, . . . , N − 1}, and κ (·) is
the feedback control law for the invariant set C(δ, ε) that
is used in the terminal set. We first show that the input
and state constraints are satisfied for uk and xk+1, then we
will prove the feasibility of the above candidate solution for
Pδ,ε(x̂k+1, δ[k + 1], ε[k + 1], uk).
Validity of the applied input and the next state: The next
plant’s state is

xk+1 = Axk +B1 (δ[k])uk−1 +B2 (δ[k])uk + wk

= A (x̂k + ek) +B1 (δ[k])uk−1 +B2 (δ[k])u?k|k + wk

=
[
A B1 (δ[k])

] [ x̂k
uk−1

]
+B2 (δ[k])u?k|k

+ ek+1 + (wk +Aek − ek+1)

in which ek+1 ∈ E (ε) and (wk +Aek − ek+1) ∈
Ŵ (ε[k], ε). Note that z?k|k =

[
x̂Tk , u

T
k−1

]T
. Hence we have[

xk+1

uk

]
= Â(δ[k])z?k|k + B̂(δ[k])u?k|k

+ F̂ ek+1 + F̂ (wk +Aek − ek+1)

= z?k+1|k + F̂ ek+1 + F̂ (wk +Aek − ek+1)

where we use the dynamics in (9b). From (9f) and (11),
z?k+1|k satisfies z?k+1|k ∈ Z1 (ε[k], ε) = Z 	 F̂E (ε) 	
F̂Ŵ (ε[k], ε). It follows that

[
xTk+1, u

T
k

]T ∈ Z = X × U ,
therefore xk+1 ∈ X and uk ∈ U .
Initial condition: We have from (7) that ẑk+1 = Â(δ[k])ẑk+
B̂(δ[k])uk + F̂ ŵk. On the other hand, by (17a),

zk+1|k+1 = z?k+1|k + L0F̂ ŵk

= Â(δ[k])z?k|k + B̂(δ[k])u?k|k + L0F̂ ŵk.



Note that z?k|k = ẑk, uk = u?k|k, and L0 = I. Therefore
zk+1|k+1 = ẑk+1, hence the initial condition is satisfied.
Dynamics: We show that the candidate solution satisfies the
dynamics constraint in Eq. (9b). For 0 ≤ j < N we have

zk+j+2|k+1

= z?k+j+2|k + Lj+1F̂ ŵk

= Â (δ) z?k+j+1|k + B̂(δ)u?k+j+1|k + Lj+1F̂ ŵk

= Â (δ)
(
zk+j+1|k+1 − LjF̂ ŵk

)
+ B̂(δ)

(
uk+j+1|k+1 −Kj (δ)LjF̂ ŵk

)
+ Lj+1F̂ ŵk

= Â (δ) zk+j+1|k+1 + B̂(δ)uk+j+1|k+1

−
(
Â (δ) + B̂(δ)Kj (δ)

)
LjF̂ ŵk + Lj+1F̂ ŵk

= Â (δ) zk+j+1|k+1 + B̂(δ)uk+j+1|k+1

where the equality in (13) is used to derive the last equality.
Therefore the dynamics constraint is satisfied for all 0 ≤ j <
N . For j = N , the constraint is satisfied by construction by
(17b).
State constraints: We need to show that z(k+1)+j|k+1 ∈
Zj(ε, ε) for all j ∈ {0, . . . , N}. Consider any 0 ≤ j < N .
(11) states that Zj+1 (ε[k], ε) = Zj (ε, ε) 	 LjF̂Ŵ (ε[k], ε).
From the construction of the candidate solution we have
zk+j+1|k+1 = z?k+j+1|k + LjF̂ ŵk, where ŵk ∈ Ŵ (ε[k], ε)
and z?k+j+1|k ∈ Zj+1 (ε[k], ε). By definition of the Pontrya-
gin difference, we conclude that zk+j+1|k+1 ∈ Zj (ε, ε) for
all j ∈ {0, . . . , N − 1}.

At j = N the candidate solution in (17a) gives us
z(k+1)+N |k+1 = z?k+N+1|k+LN F̂ ŵk. Because z?k+N+1|k ∈
Zf (ε[k], ε) = C (δ, ε) 	 LN F̂Ŵ (ε[k], ε) and ŵk ∈
Ŵ (ε[k], ε), we have z(k+1)+N |k+1 ∈ C (δ, ε). The definition
of C (δ, ε) in (15) implies C (δ, ε) ⊆ ZN (ε, ε). Therefore
z(k+1)+N |k+1 ∈ ZN (ε, ε).
Terminal constraint: We need to show that zk+N+2|k+1 ∈
Zf (ε, ε) = C (δ, ε)	LN F̂Ŵ (ε, ε). Add LN F̂ ŵ, for any w ∈
Ŵ (ε, ε), to both sides of (17b) and note that uk+N+1|k+1 =
κ
(
zk+N+1|k+1

)
, we have

zk+N+2|k+1 + LN F̂ ŵ = Â (δ) zk+N+1|k+1

+ B̂ (δ)κ
(
zk+N+1|k+1

)
+ LN F̂ ŵ.

It follows from zk+N+1|k+1 ∈ C (δ, ε) and from the defi-
nition of the invariant control invariant admissible set C (δ, ε)
(Eq.(15)) that zk+N+2|k+1 + LN F̂ ŵ ∈ C (δ, ε) for all w ∈
Ŵ (ε, ε). Then by definition of the Pontryagin difference,
we conclude that zk+N+2|k+1 ∈ C (δ, ε) 	 LN F̂Ŵ (ε, ε) =
Zf (ε, ε).

The control algorithm in Alg. 1 , in each time step k, solves
P(δ,ε)(x̂k, δk, εk, uk−1) for each estimation mode (δ, ε) ∈ ∆
and selects the control input uk and the next estimation
mode (δk+1, εk+1) corresponding to the best total cost J(δ,ε).
Therefore, during the course of control, the algorithm may
switch between the estimation modes in ∆ depending on the

system’s state. Thm. 8.2 states that if the control algorithm
Alg. 1 is feasible in its first time step then it will be robustly
feasible and the state and control input constraints are also
robustly satisfied.

Theorem 8.2: If at the initial time step there exists (δ, ε) ∈
∆ such that P(δ,ε)(x̂0, δ0, ε0, u0−1) is feasible then the sys-
tem Eq. 6 controlled by Alg. 1 and subjected to disturbances
constrained s.t. wk ∈ W,∀k ≥ 0 robustly satisfies the
state constraint xk ∈ X,∀k ≥ 0 and the control input
constraint uk ∈ U,∀k ≥ 0, and all subsequent iterations
of the algorithm are feasible.

Proof: The Theorem can be proved by recursively ap-
plying Thm. 8.1. Indeed, suppose at time step k the algorithm
is feasible and results in control input uk and next estima-
tion mode (δk+1, εk+1), then P(δk+1,εk+1)(x̂k, δk, εk, uk−1)
is feasible. By Thm. 8.1, uk ∈ U and at the next time step
k+1, xk+1 ∈ X and P(δk+1,εk+1)(x̂k+1, δk+1, εk+1, uk+1−1)
is also feasible, hence the algorithm is feasible. Therefore,
the Theorem holds by induction.

E. Experimental Setup

To evaluate our methodology on a real platform, we
applied it to a hexrotor with the Odroid-U3 as a computation
platform, running the Robot Operating System (ROS) [22]
in Ubuntu. For the evaluation, the hexrotor is tasked with
repeatedly following a given circular trajectory. As can be
seen in Fig. 15, the visual odometry algorithm can occca-
sionaly take a long time to give a pose estimate. In our
formulation we have assumed that the estimator satisfies the
(δ, ε) contract requested by the controller. Thus, to ensure
that the estimator fulfills the contract and that the mathemat-
ical guarantees provided by our RAMPC formulation hold,
instead of using the visual odometry algorithm to fly the
robot, we injected delays and errors into the measurements
from Vicon, which is a high accuracy localization system.
These delays and errors were selected from the ∆ curve
obtained by profiling the SVO algorithm (see Section IX-
A). The hexrotor flies using these pose estimates and our
RAMPC Algorithm for both the position control and setting
the time deadline for the next estimate. The RAMPC has
the positions and velocities in the 3-axes as its states (x),
and generates control inputs in the form of desired thrust,
roll and pitch (yaw is set to 0) in order to compute a given
reference xref (t) for a low-level controller to track. The
RAMPC is coded in CVXGEN [23] and the generated C
Code is integrated in the ROS module for position control
of the hexrotor, running at 20Hz. The sets Zj are done offline
in MATLAB and then used in CVXGEN as Polyhedron
type constraints. The constraint set X defines a safe set of
positions and velocities in the flying area. The constraint
set U of inputs keeps desired pitch and roll magnitudes
less than 30 degrees and desired thrust within limits of
the hex-rotor abilities. Later in this section we show that
our approach dynamically schedules different modes of the
contract-based perception and estimation algorithm at run-
time and also controls the dynamical system in an energy-
efficient way while providing good tracking performance. In



Fig. 13. Autonomous hexrotor with downward-facing camera flying over
synthetic features.

the evaluation subsection we will compare our results to a
baseline Model Predictive Control algorithm that does not
leverage co-design and operates at a fixed (δ, ε) mode of the
perception/estimation algorithm.

F. Profiling the perception and estimation pipeline

Recall that the control algorithm needs the profiled ∆
curve for the estimator. In our experimental setup, the
estimator is given by the SVO algorithm. Fig. 14 shows the
bound on estimation error and the 90th percentile execution
times. This is obtained by varying the maximum number of
corners knob in SVO, denoted by #C, and flying extensively
over a relatively feature-rich environment for each value of
the knob (Fig. 13). The estimation error is computed using
ground truth position obtained through the Vicon motion
capture system. We profiled the performance for the same
trajectory with different settings of the odometry offline by
logging images and IMU data in-flight, and then running
the visual odometry code on the Odroid-U3 offline. This
accurately recreates the in-flight environment that is present
for the visual odometry algorithm and this profiling is then
used online for making in-flight decisions by the control
algorithm.
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Fig. 14. Error-delay curve for the SVO algorithm running on the Odroid-
U3 with different settings of maximum number of features (#C) to detect
and track. The vertical line shows the cut-off for maximum delay and the
SVO settings that are allowable for closed loop control of a hexrotor at
20Hz.

Also needed for the control optimization is a measure of
the power consumption by SVO at different values of the
knob #C. Power measurements are made using the Odroid
Smart Power meter [24], which measures consumption at
10Hz to milliwatt precision. To avoid the physical challenges
of fitting the power meter onto our hexrotor platform, we
measure the power consumption of the Odroid board on the
ground, running the same controller and vision workloads
as it does during flight as explained above, and at different
knob settings. We measure the power consumption of the
entire Odroid board, including CPU and DRAM power
consumption. Since the profiling of power is done offline
with other peripherals plugged into the odroid (e.g. a monitor
and keyboard), we measure the idle power of the Odroid and
subtract that from the power measurements when the SVO
algorithm is running on it in different modes. This gives
us a more accurate measure of the workload that the visual
odometry task is responsible for. This offline profiling now
allows us to formulate the co-design problem for the hexrotor
and experimentally evaluate our methods.
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Fig. 15. Cumulative distribution of profiled execution times for visual
odometry running on the Odroid-U3 for varying maximum number of
corners from the SVO algorithm.


