
Integrating Occupancy Grids with Spatial-Temporal

Reinforcement Learning for Enhanced Vehicle Control

Navigating Highly Dynamic and Complex Driving

Scenarios

Keith Redmill (PI) (https://orcid.org/0000-0003-1332-1332)
Zhihao Zhang (https://orcid.org/0009-0009-7932-2128)
Ekim Yurtsever (https://orcid.org/0000-0002-3103-6052)

FINAL RESEARCH REPORT - August 18, 2025

Contract # 69A3552344811/69A3552348316

DISCLAIMER The contents of this report reflect the views of the authors, who are re-
sponsible for the facts and the accuracy of the information presented herein. This document
is disseminated in the interest of information exchange. The report is funded, partially or
entirely, by a grant from the U.S. Department of Transportation’s University Transportation
Centers Program. The U.S. Government assumes no liability for the contents or use thereof.

Technical Report Documentation Page
1. Report No. 2. Government Accession No 3. Recipient’s Catalog No.
Pending assignment. n/a n/a
4. Title and Subtitle 5. Report Date
Integrating Occupancy Grids with Spatial-Temporal Reinforcement Learn-
ing for Enhanced Vehicle Control
Navigating Highly Dynamic and Complex Driving Scenarios

August 18, 2025
6. Performing Organi-
zation Code
n/a

7. Author(s)
Keith A. Redmill, Ph.D. https://orcid.org/0000-0003-1332-1332
Zhihao Zhang https://orcid.org/0009-0009-7932-2128
Ekim Yurtsever, Ph.D. https://orcid.org/0000-0002-3103-6052

8. Performing Organi-
zation Report No.
n/a

9. Performing Organization Name and Address 10. Work Unit No. (TRAIS)
The Ohio State University
Center for Automotive Research
930 Kinnear Road
Columbus, OH 43212

n/a
11. Contract or Grant No.
69A3552344811/69A3552348316

12. Sponsoring Agency Name and Address 13. Type of Report and
Period Covered

Safety21 University Transportation Center
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

Final Report.
July 1, 2024 to June 30, 2025
14. Sponsoring Agency Code
USDOT

15. Supplementary Notes
The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy
of the information presented herein. This document is disseminated in the interest of information exchange.
The report is funded, partially or entirely, by a grant from the U.S. Department of Transportation’s University
Transportation Centers Program. The U.S. Government assumes no liability for the contents or use thereof.
16. Abstract
Autonomous driving in complex traffic environments demands decision-making systems that can interpret diverse
sensory inputs, anticipate multi-agent interactions, and execute safe and efficient maneuvers. Roundabouts present
a particularly challenging case due to continuous merging, yielding, and exiting maneuvers under heterogeneous
and often unpredictable traffic flows. This study addresses these challenges by designing and evaluating a decision-
making framework capable of handling high-complexity roundabout scenarios.
We analyze the intrinsic complexity of roundabout navigation by quantifying interaction density, conflict points,
and decision latency under varying traffic densities, providing a structured benchmark for evaluating policy ro-
bustness. To model the environment, we adopt multi-layer occupancy grids as the primary spatial representation,
providing a dense encoding of occupancy, velocities, and road geometry. The backbone combines a CNN-based
spatial encoder to capture local spatial patterns with a transformer module for temporal abstraction, enabling
the model to reason over both spatial and temporal dependencies in traffic flow.
Building on this foundation, we propose the Uncertainty Weighted Decision Transformer (UWDT) to improve
decision making, safety, and efficiency in rare, high-risk situations. Unlike standard Decision Transformers,
which optimize a uniform sequence prediction loss, UWDT incorporates an uncertainty-weighted objective that
increases the learning signal for states with higher policy or value uncertainty. Experimental simulation results
demonstrate that UWDT, combined with the spatial encoder, achieves lower collision rates and shorter traversal
times compared to baseline Decision Transformers and Behavior Cloning (BC) Transformers and conventional
deep reinforcement learning agents such as Soft Actor Critic (SAC) and Conservative Q-Learning (CQL). In
particular, UWDT exhibits greater resilience in rare but safety-critical states, effectively balancing assertiveness
with caution.
17. Key Words 18. Distribution Statement
Occupancy Grids, Decision Transformer, Complex Driving Scenarios, Roundabouts No restrictions.
19. Security Classif.(of this report) 20. Security Classif.(of this page) 21. No Pages 22. Price
Unclassified Unclassified 59 pages n/a

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

Contents

List of Figures 3

List of Tables 5

Abstract 6

1 Introduction 7
1.1 Automated Vehicle Planning and Control . 8
1.2 Decision Transformers . 10
1.3 Occupancy Grids Representing Spatio-Temporal Information 11
1.4 The Roundabout Complex Traffic Scenario . 12
1.5 Quantitative Roundabout Scenario Complexity Evaluation 13

2 Problem Formulation 17
2.1 State Space Representation . 17
2.2 Action Space . 17
2.3 Reward Function . 18
2.4 Experimental Configuration . 19

2.4.1 Roundabout Traffic Simulation . 19
2.4.2 Traffic Vehicle Control . 20
2.4.3 Low-level Motion Planner . 22

2.5 Reinforcement Learning Foundations . 23
2.5.1 Online Reinforcement Learning: SAC . 23
2.5.2 Offline Reinforcement Learning: CQL . 24

2.6 Transformer-Based Behavior Cloning . 26

3 Proposed Method 28
3.1 Data Collection . 28
3.2 Reducing Exposure Bias . 29

3.2.1 Self Rollout Training . 30
3.2.2 Scheduled Sampling Training . 30

3.3 Uncertainty Weighted Decision Transformer . 31
3.3.1 Teacher Decision Transformer . 33
3.3.2 Student Decision Transformer . 36

4 Experimental Results 39
4.1 Online and Offline RL Baseline . 39
4.2 Reducing Exposure Bias . 42
4.3 Uncertainty Weighted Decision Transformer . 43

4.3.1 Performance and Entropy Statistics Results 43

1

4.3.2 Entropy Distribution Results for DT and UTDT 44
4.3.3 Single Epoch and Average Performance at Varying Interacting Vehicle Densities 47
4.3.4 Summary of Results . 47

5 Conclusion 54

Bibliography 55

2

List of Figures

1.1 A pipeline of the automated vehicle control process. 8
1.2 A pipeline of end-to-end Behavior Cloning for driving [1, 2]. 9
1.3 An RL agent interacts with the environment and learns from the environment. . . . 10
1.4 (a) Example Birds Eye View (BEV) of traffic scenario and corresponding (b) Road

information layer and (c) Presence layer . 12
1.5 Four-arm, two-lane roundabout is used in our experiments. The ego vehicle enters

from the south, circulating traffic is already inside the roundabout and travel behind
interacting traffic, interacting traffic travels immediately ahead and behind the ego
vehicle, and exiting traffic leaves from the east arm. The dashed red polygon denotes
the interaction zone, representing the ideal spatial region where traffic vehicles may
interfere with or constrain the ego vehicle’s entry into the roundabout. 13

1.6 As the number of incoming vehicles increases, MCTS requires more decision time. . 14
1.7 As the number of incoming vehicles increases, maintaining successful planning be-

comes increasingly difficult for MCTS under fixed and limited budgets. 15
1.8 Average prediction entropy of BC Transformer and DT is lowest when at most two

incoming vehicles are present and rises steadily for both agents when the number
of interacting vehicles is increased to three and then four. The upward trend indi-
cates that each model’s uncertainty grows with congestion, suggesting that motion
planning becomes progressively more difficult as the scene becomes denser and less
predictable. Error bars denote per-episode standard deviation. 16

2.1 Four-arm, two-lane roundabout used in our experiments. The ego vehicle enters from
the south, circulating traffic is already inside the roundabout and travels behind
interacting traffic, interacting traffic travels immediately ahead and behind the ego
vehicle, and exiting traffic leaves from the east arm. The dashed red polygon denotes
the interaction zone, representing the ideal spatial region where traffic vehicles may
interfere with or constrain the ego vehicle’s entry into the roundabout. 19

2.2 Speed and steering motion planner . 22

3.1 Teacher Decision Transformer is a standard DT with CNN Encoders. 33
3.2 The CNN-based encoder structure. 33
3.3 Teacher DT predictive uncertainty is estimated via the entropy of the action distri-

bution. This entropy then acts as a weighting signal during student DT training,
modulating the impact of each action prediction on the loss. 36

4.1 Episode reward during training. 40
4.2 Episode collision rate during training. 40
4.3 Episode average speed during training. 41

3

4.4 Episode length during training. 41
4.5 Episode distance during training. 42
4.6 The Entropy distribution comparison of DT and UWDT. The number of interacting

vehicles is uniformly sampled from the range [0, 4], and the results are aggregated
over 400 episodes. 45

4.7 The Entropy distribution comparison of DT and UWDT. The number of interacting
vehicles is uniformly sampled from the range [0, 2], and the results are aggregated
over 400 episodes. 45

4.8 The Entropy distribution comparison of DT and UWDT. The number of interacting
vehicles is 3, and the results are aggregated over 100 episodes. 46

4.9 The Entropy distribution comparison of DT and UWDT. The number of interacting
vehicles is 4, and the results are aggregated over 100 episodes. 46

4.10 Normalized reward with at most two incoming vehicles. UWDT consistently attains
the highest return while CQL suffers severe degradation. 48

4.11 Velocity profiles with at most two incoming vehicles. UWDT and DT quickly reach
the speed limit, whereas CQL stalls and SAC shows moderate recovery when aver-
aging across episodes. 49

4.12 Reward profiles with three incoming vehicles. BC and CQL collapse under heavy
traffic, while UWDT and DT maintain near-optimal rewards. SAC shows gradual
improvement over multiple episodes. 50

4.13 Velocity profiles with three incoming vehicles. UWDT and DT rapidly achieve max-
imum speed, CQL and BC decelerate to rest, and SAC recovers after an initial decline. 51

4.14 Reward profiles with four incoming vehicles. BC and CQL collapse under heavy
traffic, while UWDT and DT maintain near-optimal rewards. SAC shows gradual
improvement over multiple episodes. 52

4.15 Velocity profiles with four incoming vehicles. UWDT and DT rapidly achieve maxi-
mum speed, CQL and BC decelerate to rest, and SAC recovers after an initial decline. 53

4

List of Tables

1.1 Average predictive entropy (± standard deviation) for BC Transformer and DT
under three traffic-density scenarios. 16

2.1 IDM and MOBIL traffic vehicle parameters used in simulations. 22
2.2 SAC hyper-parameters used in this study. 24
2.3 CQL hyper-parameters used in this study. 25
2.4 CNN–Transformer BC hyper-parameters used in this study. 27

3.1 UWDT hyper-parameters used in this study. 34

4.1 Effect of self rollout and scheduled sampling on DT performance. Metrics are re-
ported as mean ± standard deviation over 400 evaluation episodes on the roundabout
task. 42

4.2 Performance comparison on the roundabout task. Eight metrics are reported in-
cluding accumulated reward, average speed, episode length, travel distance, reach
exit rate, collision rate, time to exit, and halt duration. Values are expressed as
mean± standard deviation over 400 evaluation episodes. 43

4.3 Action-distribution entropy statistics (minimum, maximum, and mean ± standard
deviation over the evaluation set). 44

5

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

Abstract

Autonomous driving in complex traffic environments demands decision-making systems that
can interpret diverse sensory inputs, anticipate multi-agent interactions, and execute safe and effi-
cient maneuvers. Roundabouts present a particularly challenging case due to continuous merging,
yielding, and exiting maneuvers under heterogeneous and often unpredictable traffic flows. This
study addresses these challenges by designing and evaluating a decision-making framework capable
of handling high-complexity roundabout scenarios.

We analyze the intrinsic complexity of roundabout navigation by quantifying interaction density,
conflict points, and decision latency under varying traffic densities, providing a structured bench-
mark for evaluating policy robustness. To model the environment, we adopt multi-layer occupancy
grids as the primary spatial representation, providing a dense encoding of occupancy, velocities,
and road geometry. The backbone combines a CNN-based spatial encoder to capture local spatial
patterns with a transformer module for temporal abstraction, enabling the model to reason over
both spatial and temporal dependencies in traffic flow.

Building on this foundation, we propose the UncertaintyWeighted Decision Transformer (UWDT)
to improve decision making, safety, and efficiency in rare, high-risk situations. Unlike standard De-
cision Transformers, which optimize a uniform sequence prediction loss, UWDT incorporates an
uncertainty-weighted objective that increases the learning signal for states with higher policy or
value uncertainty. Experimental simulation results demonstrate that UWDT, combined with the
spatial encoder, achieves lower collision rates and shorter traversal times compared to baseline
Decision Transformers and Behavior Cloning (BC) Transformers and conventional deep reinforce-
ment learning agents such as Soft Actor Critic (SAC) and Conservative Q-Learning (CQL). In
particular, UWDT exhibits greater resilience in rare but safety-critical states, effectively balancing
assertiveness with caution.

The results presented in this report have also been submitted for potential publication in a preferred
academic conference.

6

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

Chapter 1

Introduction

This study addresses the challenge of enabling autonomous agents to interpret and navigate
highly dynamic and complex driving environments using a structured occupancy motion grid as
the primary form of state representation. This multi-channel grid encodes semantic and kinematic
information, including vehicle presence, road layout, and local velocity components. Traditional
reinforcement learning methods often struggle to capture long-term temporal dependencies and
exploit such structured state inputs effectively. The purpose of this research is to bridge this gap
by introducing a novel transformer-based architecture that jointly models spatial and temporal
information, thereby enhancing decision-making performance in driving scenarios.

The proposed method integrates reinforcement learning with transformer-based architectures
to process occupancy grid inputs more effectively. Convolutional neural networks (CNNs) are
first employed to extract the environment structure such as road boundaries and traffic informa-
tion. To enhance temporal reasoning, we introduce a decision transformer that models sequential
dependencies across time steps. In contrast to conventional CNN-based reinforcement learning
(CNN-RL) that only consider immediate transitions, our model incorporates a longer sequence of
past observations and actions. This enables the system to make decisions based not only on the
current state but also on recent behavioral trends. To further reduce collisions and enhance safety,
we propose an Uncertainty Weighted Decision Transformer (UWDT) that explicitly down-weights
actions with high epistemic uncertainty. The proposed framework is trained and evaluated in a
set of simulated driving environments, with comparisons made against traditional CNN-RL and
CNN-Behavior cloning (CNN-BC) baselines to assess the improvements in decision quality.

The key findings of this study are:

• The novel UWDT model we propose shows notable improvements in decision accuracy when
compared to standard CNN-based RL, CNN-based BC controllers and DT.

• The inclusion of temporal modeling allows the agent to maintain smoother and more stable
behavior over time by considering the sequence of recent observations.

• The proposed model achieves higher reward and lower collision rates across a variety of driving
scenarios.

By pairing CNN-based spatial feature extraction with Transformer-based temporal modeling
in an offline reinforcement learning setting, this study demonstrates a performance advantage for
autonomous driving decision making in complex, dynamic environments. Future work will focus
on enhancing the generalization ability of the controller by developing adaptive vehicle control
strategies applicable to a broader range of driving scenarios.

7

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

1.1 Automated Vehicle Planning and Control

The emergence of autonomous vehicles has introduced a transformative paradigm in the broader
landscape of automated driving. Autonomous driving refers to the decision-making and vehicle
control processes that enable self-driving vehicles to perceive, navigate, and interact with diverse
traffic environments ranging from dense urban streets and intersections to roundabouts and free-
ways. This discipline unifies advanced artificial intelligence algorithms, robust control methods,
multi-modal sensing, sensor fusion, and real-time data processing as illustrated in Figure 1.1. To-
gether, these technologies allow a vehicle to perceive its surroundings, predict the motion of other
traffic participants, and plan safe and efficient trajectories. Typical decisions include obstacle avoid-
ance, adaptive cruising, lane changes, merging, overtaking, and negotiation of complex multi-agent
scenarios. Autonomous driving technologies promise significant improvements in road safety, re-
ductions in congestion, and enhancements in overall transportation efficiency [3–5]. The ultimate
goal is to ensure safe, efficient, and reliable autonomous travel on highways by enabling vehicles
to analyze complex scenarios, anticipate potential hazards, and execute actions that align with
traffic rules and user preferences [6]. Yet, despite remarkable strides, crafting autonomous vehicles
with the capability to make discerning decisions remains a formidable obstacle. This complexity
emanates from the amalgamation of diverse disciplines and the intricacies of real-world scenarios,
necessitating profound innovation and interdisciplinary collaboration.

Figure 1.1: A pipeline of the automated vehicle control process.

In the rapidly evolving field of automated driving systems, several fundamental methodolo-
gies have emerged as essential strategies for addressing the complex challenge of decision-making.
The first approach, characterized as conventional, embraces a modular framework that governs
the decision-making process within driving scenarios [3]. Within this paradigm, distinct mod-
ules are meticulously crafted, each responsible for addressing specific scenarios and aspects of
decision-making. These modules encompass specific behaviors such as lane changes, merging, over-
taking, and other maneuvers crucial for navigation. Ultimately, the amalgamation of these modules,
along with a behavior-planning and selection algorithm, culminates in a cohesive decision-making
system that interfaces with vehicle-control mechanisms. While promoting transparency and inter-
pretability, this approach demands meticulous calibration of diverse driving factors and a compre-
hensive understanding of a wide array of driving scenarios while accounting for safety considerations.

8

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

Figure 1.2: A pipeline of end-to-end Behavior Cloning for driving [1, 2].

A second approach, optimization-based planners such as Model Predictive Control and search
based planners such as Monte-Carlo Tree Search (MCTS) estimate risk and reward by sampling
complete roll-outs of candidate maneuver sequences in a generative traffic model [7–10]. Although
these look-ahead optimization approaches deliver interpretable decisions, every simulation step in-
curs latency, so the overall cost scales sharply with increasing time horizons and, for MCTS, the
branching factor that characterizes dense multi-lane traffic [11, 12]. State-of-the-art implementa-
tions therefore rely on high-fidelity simulators to generate roll-outs offline [13]. Meeting real-time
requirements on board remains difficult, often forcing the use of shallow trees or aggressive pruning
strategies that can adversely affect decision quality.

Conversely, behavior cloning methods, exemplified by supervised learning, take a different path
towards decision-making refinement [2,14]. As illustrated in Figure 1.2, this approach simplifies the
process by using machine-learning methods to replicate expert driving behavior. Developing such
a controller entails concurrently gathering and correlating sensor data with the respective steering,
brake, and throttle actuator actions performed by human drivers. However, a notable caveat of
this method is its demand for extensive and diverse data collection.

9

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

Figure 1.3: An RL agent interacts with the environment and learns from the environment.

Finally, as illustrated in Figure 1.3, RL emerges as a compelling paradigm, aiming to equip
autonomous systems with decision-making capabilities through simulated interaction with the en-
vironment [4,15–18]. However, online deep-RL controllers often rely on extensive exploration in the
early stages of training. Insufficient exploration can hinder the discovery of effective decision-making
behaviors, especially for coping with complex traffic conditions, and may expose the system to un-
safe states. Moreover, existing studies frequently gravitate towards simplified traffic scenarios, lim-
iting the generalizability of their findings when confronting the unpredictable nature of real-world
driving.

1.2 Decision Transformers

Decision Transformers (DT) combine sequence modeling with offline RL [19,20]. The policy is
conditioned on a desired return and is trained only on logged trajectories. This design removes
unsafe exploration required by online RL and reduces the covariate shift that limits pure behavior
cloning. It also supports long-horizon planning. A drawback is that a standard DT can be brittle
when a test state differs from the training data, a situation that occurs often in complex highway
traffic.

Studies attempt to strengthen DT through auxiliary signals or architectural changes. Methods
such as TD-steering and RL-gradient add temporal-difference or policy-gradient targets. These
targets align the sequence loss with value consistent features [21]. Episodic importance sampling
and retrieval augmented external memory re-weight updates to favor high-return transitions and
shorten effective context length, thereby boosting online adaptation and inference efficiency [22].
Bootstrapped Transformer heads form an ensemble whose variance provides principled uncertainty
estimates for conservative policy evaluation and safer offline learning [23]. Constrained DT variants
impose adaptive cost penalties so that cumulative constraint violations remain within predefined
limits without degrading return [24]. Gated Transformer-XL reorders layer norms and inserts
gating units to stabilize optimization on deep or long-horizon tasks, yielding more reliable training
dynamics [25]. Online DT blends offline pretraining with BC regularization during interaction, while
future-conditioned unsupervised pretraining exploits reward-free logs for broader generalization [26,
27]. Across categories, these approaches add auxiliary losses, memory modules, ensemble heads, or
constraint terms, yet none directly quantify per-sample reliability at decision time, leaving an open
challenge for deployment in safety-critical domains such as autonomous driving.

10

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

Uncertainty weighting is a complementary strategy for handling imbalanced or out-of-distribution
data. In image classification, predictive entropy from a teacher network guides student optimization,
giving larger weights to ambiguous samples [28]. A similar entropy-based scheme improves object
detection [29]. Offline RL applies this idea as well. The Uncertainty Weighted Actor-Critic (UWAC)
down-weights risky transitions using Monte-Carlo-dropout uncertainty during critic updates [30].
The UNcertainty-awaRE deciSion Transformer (UNREST) identifies high mutual-information seg-
ments between returns and states, then retrains those segments with clipped returns to improve
robustness in stochastic driving [31].

Building on these ideas, we use a frozen teacher Decision Transformer trained on bird’s-eye-
view occupancy grids to produce token-level entropies that reflect predictive confidence. During
student training, we multiply each token’s cross-entropy term by a weight that increases with the
teacher’s entropy. Confident tokens keep near-original influence, while uncertain tokens receive
amplified gradients. This preserves the data efficiency of offline learning, adds explicit uncertainty
awareness, and yields safer and more robust policies in complex scenarios such as dense roundabout
traffic.

1.3 Occupancy Grids Representing Spatio-Temporal Information

An occupancy grid partitions the bird’s-eye-view (BEV) plane surrounding the ego vehicle into
a fixed lattice of cells. Each cell mi stores the probability p(mi) ∈ [0, 1] that the corresponding
spatial region is occupied. We maintain cell occupancy with a Bayesian filter. Each sensor obser-
vation triggers a recursive update. Range hits provide positive evidence and raise the occupancy
probability. Free-space returns provide negative evidence and lower it. Updates are performed in
log-odds space to prevent numerical saturation and to support consistent multi-frame fusion. This
design remains robust under sensor noise and partial occlusion [32–34]. Beyond the binary pres-
ence channel, additional layers such as longitudinal velocity vx, lateral velocity vy, and an on road
mask can be stacked to form a multi-modal tensor that provide semantic, geometric, and kinematic
information for downstream learning [35].

Other frameworks for representing the state of the environment include kinematic tables, raw
point clouds, and graphs. Kinematic tables store the ego vehicle and the V closest neighbors in a
V ×F matrix where F is the dimension of the kinematic information for each traffic vehicle. They
are compact on straight, static roads but rely on fragile data association and cannot represent free
space and road information. Raw point clouds offer detail yet their sparsity and irregularity demand
costly volatilization or graph networks. Vectorized lane graphs encode HD-map topology for long-
range planning but exclude dynamic obstacles and need an additional perception stream [36].

Our four-channel occupancy grid aligns with CNNs and preserves translation equivariant map-
pings for efficient local reasoning [37]. Per cell probabilities enable principled multi-sensor and
temporal fusion without hard thresholds [38]. We stack presence, per-cell velocities, and road se-
mantics into a single tensor. Its size is fixed by the grid rather than the number of vehicles, so
it scales to any traffic density. Sparsity in occupancy and velocity keeps memory use low and
computation requirements predictable. The tensor is compact, which supports long horizons and
large batch sizes. This makes it a practical spatio-temporal state representation for end-to-end
autonomous driving.

Our experiments adopt a 4 × 41 × 50 cell grid with 2m resolution and the channel order
{presence, vx, vy, on road}. Figure 1.4 contrasts a conceptual two-lane scene with its presence
layer. Cell values of 1 denote occupied space and values of 0 denote free space, illustrating how raw
geometry becomes a dense raster amenable to convolution. The longitudinal velocity vx and lateral

11

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

velocity vy are clipped to [−vmax, vmax] and linearly mapped to [0, 1]. This normalization preserves
relative speed information while maintaining the binary occupancy cue. Higher values in the cells
indicate faster motion in the corresponding direction. In this study, CNNs are first employed to
extract the environmental structure which is then fed into the Decision Transformer, as described
in Section 3.3.1.

Figure 1.4: (a) Example Birds Eye View (BEV) of traffic scenario and corresponding (b) Road
information layer and (c) Presence layer

.

1.4 The Roundabout Complex Traffic Scenario

For this study, we consider the two-lane roundabout configuration shown in Figure 1.5. The
goal of the planner is to guide the ego vehicle entering the four arm, two lane roundabout from the
south arm safely and efficiently to its fixed exit at the north arm, while negotiating the circulating,
interacting, and exiting traffic vehicles. Randomness is introduced into the scenario by varying
the number, initial configuration and lane assignments, initial speeds, and the final destination of
each background traffic vehicle as well as perturbing the parameters of its Intelligent Driver Model
(IDM) to introduce variation in acceleration and time-gap preferences. Further details are provided
in Section 2.4 of this report. These stochastic elements ensure that every episode presents the ego
vehicle with a unique configuration of circulating, interacting, and exiting traffic.

12

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

Figure 1.5: Four-arm, two-lane roundabout is used in our experiments. The ego vehicle enters from
the south, circulating traffic is already inside the roundabout and travel behind interacting traffic,
interacting traffic travels immediately ahead and behind the ego vehicle, and exiting traffic leaves
from the east arm. The dashed red polygon denotes the interaction zone, representing the ideal
spatial region where traffic vehicles may interfere with or constrain the ego vehicle’s entry into the
roundabout.

By increasing the number of interacting vehicles, we can systematically escalate planning diffi-
culty by reducing the size and number of available gaps, increasing the uncertainty in gap accep-
tance, and forcing the planner to negotiate tighter merge windows or defer entry behaviors, all of
which dramatically elevate roundabout entry complexity under uncertainty.

1.5 Quantitative Roundabout Scenario Complexity Evaluation

Complex driving scenarios involve multi-agent interactions, high state uncertainty, and long-
horizon decision making. To quantify the planning difficulty of such scenarios, we propose using
the decision time and simulation budget required by MCTS to successfully solve the planning
problem. A higher MCTS budget and longer decision latency indicate increased planning difficulty,
reflecting the inherent complexity of the traffic environment. MCTS explores a search tree whose
size grows exponentially with the branching factor. The required rollouts and simulation budget
escalate rapidly, making real-time deployment infeasible unless strong heuristics or prior guidance
are introduced. Figure 1.6 and Figure 1.7 summarize our ablation study over planning budget and
traffic density. As the number of incoming vehicles at the roundabout increases, MCTS needs both
a larger simulation budget and additional decision time to maintain solution quality. Conversely,
holding the budget fixed while increasing traffic density lengthens the decision time and lowers the
average return. This design allows us to quantitatively attribute rising MCTS decision latency and
predictive entropy to increasing interacting vehicle counts.

These trends confirm that MCTS scales poorly in dense traffic. Moreover, the number of
incoming vehicles can offer a monotonic indicator of scenario difficulty and underscores the need
for policy learning methods that yield safe, efficient, real-time decisions without exhaustive online
search. Detailed information about MCTS will be introduced in Section 3.1.

13

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

Figure 1.6: As the number of incoming vehicles increases, MCTS requires more decision time.

14

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

Figure 1.7: As the number of incoming vehicles increases, maintaining successful planning becomes
increasingly difficult for MCTS under fixed and limited budgets.

Behavioral uncertainty offers another compact lens through which to evaluate scenario complex-
ity. Information theoretic analyses reveal that the Shannon entropy of a traffic scene increases with
the density and interaction richness of dynamic agents [39, 40]. In parallel, empirical studies link
larger predictive entropies to shorter time-to-collision intervals and higher collision probabilities,
thereby providing a practicable surrogate for safety risk. Modern uncertainty-aware controllers ex-
ploit this link. Systems from the UNREST Decision Transformer to MC-Dropout imitation-learning
policies use predictive uncertainty to schedule curricula and to trigger cautious maneuvers when
risk increases [31, 41]. For each observation ot, our BC Transformer or DT outputs a prediction
distribution π(· |ot); the step-wise entropy is

Ht = −
∑
a∈A

π(a | ot) lnπ(a | ot), (1.1)

and the episode-level score is H̄ = 1
T

∑T
t=1Ht. Higher H̄ values signify greater behavioral ambiguity

and thus more demanding planning problems. Table 1.1 and Figure 1.8 corroborate this claim. As
the number of incoming vehicles rises, H̄ grows monotonically for both BC Transformer and DT,
mirroring the increase in MCTS latency. Because entropy can be computed in constant time
per step and is independent of search branching factors, it supplies a lightweight yet informative
complement to rollout-based complexity estimates.

15

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

Incoming Vehicles BC Transformer Decision Transformer

0–2 (random) 0.714± 0.072 1.150± 0.020

3 0.788± 0.019 1.156± 0.006

4 0.796± 0.020 1.163± 0.029

Table 1.1: Average predictive entropy (± standard deviation) for BC Transformer and DT under
three traffic-density scenarios.

Figure 1.8: Average prediction entropy of BC Transformer and DT is lowest when at most two
incoming vehicles are present and rises steadily for both agents when the number of interacting ve-
hicles is increased to three and then four. The upward trend indicates that each model’s uncertainty
grows with congestion, suggesting that motion planning becomes progressively more difficult as the
scene becomes denser and less predictable. Error bars denote per-episode standard deviation.

16

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

Chapter 2

Problem Formulation

In this chapter, we introduce the problem formulation and the baseline solution strategies and
algorithms used throughout the study. A modern roundabout involves multilane merging, yielding,
and exit decisions. The state space is represented as a 4 × 41 × 50 occupancy grid that merges
static geometry with dynamic traffic kinematics. The action space comprises high-level, discrete
maneuvers that are executed by a separate low-level motion planner. The reward blends collision
penalties, speed incentives, and lane-change costs, thereby aligning optimization with both safety
and efficiency.

After outlining the general Markov Decision Process (MDP) formulation, we detail each com-
ponent. Two families of baseline methods are positioned against this backbone. BC, implemented
with a lightweight CNN–Transformer, learns a one-step mapping from grid observations to discrete
actions but is vulnerable to covariate shift. Reinforcement Learning offers both online and offline
variants: Soft Actor Critic (SAC) exploits active exploration, whereas Conservative Q-Learning
(CQL) improves a value function directly from logged data. These contrasting baseline methods
set the stage for later chapters, which will tackle the twin challenges of rare event imbalance and
generalization beyond a narrow demonstration corpus.

2.1 State Space Representation

We use the default observation provided by the highway-env [42] simulator with a 4× 41× 50
occupancy grid [33,43–46]. This grid consists of four feature channels: vehicle presence, longitudinal
velocity vx, lateral velocity vy, and a binary on road indicator. The grid is centered on the ego
vehicle and spans a physical area of 100m×82m, discretized at 2m resolution. All velocity features
are clipped to predefined ranges and linearly scaled to the interval [−1, 1] to ensure numerical
stability and compatibility with the CNN encoder used by our training policy. This representation
captures spatial and dynamic context in a fixed-size tensor format, enabling efficient processing of
surrounding traffic interactions through convolutional layers.

2.2 Action Space

In this framework, at each timestep the high-level controller processes the state information S
and selects a high-level action Ahigh. The available high-level actions for the high-level controller
are categorized into lateral and longitudinal decision-making processes. Lateral decisions include
behaviors such as left lane change, maintaining the current lane, and right lane change. Longitudinal
decisions involve adjustments to the vehicle’s speed, either by increasing or decreasing it by a

17

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

specified increment δ m/s. Lateral decisions do not interfere with longitudinal decisions. The
selected high-level action is then interpreted as instructions for setting the target goal for the low-
level controller, represented as (ltarget, Vtarget). Here, ltarget specifies a target lane index, and Vtarget

designates a target speed.
After selecting a high-level action, we employ a low-level motion planner to translate it into

corresponding acceleration and steering commands represented as (aacc, θlateral). This low-level
planner is identical to the one described in Section 2.4.3. The action spaces for acceleration aacc
and steering angle θlateral are defined as follows:

aacc ∈ [−1, 1] m/s2 (2.1)

θlateral ∈
[
− π

36
,

π

36

]
rad (2.2)

2.3 Reward Function

Following the reward structures adopted in recent tactical-driving studies for highway-env [47,
48], the objective of the roundabout driving task encourages fast and safe driving while discouraging
unnecessary lane changes.

Three scalar reward components are derived as follows:

• The collision indicator ct equals 1 if the ego-vehicle has crashed and 0 otherwise.

• The speed reward indicator vt equals 1 if the ego-vehicle’s speed is within the range [8, 16] m/s
and 0 otherwise.

• The lane-change indicator ℓt equals 1 when the chosen action commands a lane change, and
0 otherwise.

The raw reward at each time step combines these components linearly with fixed weights from
the default configuration:

rrawt = wcct + wvvt + wℓℓt, with [wc = −1, wv = 0.2, wℓ = −0.05], (2.3)

where the collision weight wc imposes a severe penalty upon collisions, the speed weight wv provides
a modest reward for maintaining high velocities (favoring efficient traffic flow without reckless
acceleration), and the lane-change weight wℓ penalizes unnecessary lateral movements to encourage
stable driving patterns. The reward is linearly scaled to [0, 1] as follows:

r̃t =
rrawt − (wc + wℓ)

wv − (wc + wℓ)
, (2.4)

such that r̃t = 0 at collision and r̃t = 1 when driving at the maximum speed without lane changes.
This ensures a consistent reward range for training across episodes.

18

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

2.4 Experimental Configuration

2.4.1 Roundabout Traffic Simulation

Figure 2.1: Four-arm, two-lane roundabout used in our experiments. The ego vehicle enters from
the south, circulating traffic is already inside the roundabout and travels behind interacting traffic,
interacting traffic travels immediately ahead and behind the ego vehicle, and exiting traffic leaves
from the east arm. The dashed red polygon denotes the interaction zone, representing the ideal
spatial region where traffic vehicles may interfere with or constrain the ego vehicle’s entry into the
roundabout.

The environment is implemented with the roundabout-v0 task in the highway-env [42] simula-
tor. It models a single roundabout whose inner and outer circulating lanes have radii of 20m and
24m, respectively. Simulation dynamics are integrated at 15Hz while the agent selects an action
at 2Hz. Each episode lasts 11 s (22 time-steps) or terminates upon collision. In our experimental
setup, the planner’s mission is to guide the ego vehicle entering the four arm, two lane roundabout
from the south arm safely and efficiently to its fixed exit at the north arm, while negotiating with
circulating, interacting, and exiting traffic.

Initial states and randomness. For every background vehicle, the initial speed

v ∼ N
(
16, 0.12

)
m/s

is sampled independently and a Gaussian perturbation (σ = 1m) is added to each longitudinal
position. Each vehicle perturbs the parameters of its Intelligent Driver Model (IDM) to introduce
variation in acceleration and time-gap preferences. These stochastic elements ensure that every

19

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

episode presents the ego vehicle with a unique configuration of circulating, interacting, and exiting
traffic.

Vehicle categories. Traffic is divided into four functional groups that correspond to Figure 2.1:

• Ego vehicle (red). Spawned 125m before the south entrance on the outer lane with an
initial speed of 8 m/s. Its fixed route exits at the north arm.

• Circulating traffic (orange). A random number of vehicles

Ncirc ∼ U{0, 1, 2}

are initialized on the western approach and enter the roundabout, occupying either the inner
or outer circulating lane. Each vehicle selects a random destination among the north, east,
or inner-west exits, simulating diverse circulation behaviors.

• Interacting traffic (teal). A random number of exiting vehicles

Ninteract ∼ U{0, 1, 2, 3, 4}

are inserted at varying positions along the circulating lanes. These vehicles are likely to
interfere with the ego vehicle’s entry decision, as they may block or yield at the merging
point. Their initial longitudinal offsets and lane assignments are randomized to reflect realistic
variability in traffic flow.

• Exiting traffic (blue). Two vehicles are placed on the eastern approach, each at a distance
of 50m upstream from the roundabout. They proceed directly toward the eastern exit,
simulating through-traffic that does not engage with the ego vehicle.

By increasing the number of interacting vehicles Ninteract, we systematically escalate planning
difficulty: higherNinteract reduces available gaps, raises uncertainty in gap acceptance, and forces the
planner to negotiate tighter merge windows or defer entry behaviors that are known to dramatically
elevate roundabout entry complexity under uncertainty. This design allows us to quantitatively
attribute rising MCTS decision latency and predictive entropy to increasing interacting vehicle
counts.

2.4.2 Traffic Vehicle Control

To control the traffic vehicles, we implement the Intelligent-Driver Model (IDM) [5] for longitu-
dinal control and the Minimizing Overall Braking Induced by Lane Change (MOBIL) model [49] for
lateral decision-making. In our roundabout simulation, vehicles circulating within the roundabout
are allowed to perform lane changes, as the roundabout contains two lanes. In contrast, vehicles
within or approaching the arms are restricted to longitudinal control. They can only adjust their
acceleration, since each entry arm consists of a single lane in each direction.

IDM [5] is a time-continuous vehicle-following model used to simulate the behavior of individual
vehicles in a traffic flow. It is a car-following model that considers various factors such as the
distance between vehicles, their relative velocity, and the desired speed of the vehicle in order to
ensure that vehicles maintain a safe following distance, avoid collisions, and adjust their speed
according to the traffic flow. In the IDM model, each vehicle aims to keep a safe distance from the
preceding vehicle while maintaining its desired speed. The desired speed is a function of the driver’s

20

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

preference and the posted speed limit. The model also includes the driver’s reaction time and the
vehicle’s acceleration and deceleration capabilities. The IDM model uses these factors to control
the acceleration and deceleration of a vehicle and maintain a safe distance from other vehicles. This
represents an autonomous vehicle model that is collision-free and has self-adaptive capabilities on
highways.

The IDM model [5] calculates the desired acceleration of the vehicle using:

acc = a

[
1−

(
v

vdesired

)δ

−
(sdesired

s

)2
]

(2.5)

where s is the gap to the front vehicle, sdesired is the desired distance to the preceding vehicle, v
is the vehicle’s current velocity, a is a parameter for acceleration, and vdesired is the target velocity
for the controlled vehicle. The desired distance to the preceding vehicle is calculated using

sdesired = S0 + Tv +
v∆v

2
√
ab

(2.6)

where S0 is the desired distance gap, T the desired time gap to the preceding vehicle, and a and
b are acceleration and deceleration parameters. The desired distance is calculated based on the
vehicle’s speed and the relative speed between the current vehicle and the preceding vehicle.

MOBIL [49] is a model that governs the lane-changing behavior of autonomous vehicles. MOBIL
aims to minimize the total amount of braking induced by lane changes while also maximizing the
overall traffic flow. It considers factors such as the relative speed and position of surrounding
vehicles, as well as the ego-vehicle’s acceleration and deceleration capabilities, to determine whether
changing lanes would be beneficial.

The MOBIL model incorporates several decision rules to determine the benefit of a lane change.
First, the MOBIL model checks if there is a gap in the target lane that the vehicle can occupy
without causing any conflict with other vehicles. If there is a gap, the model checks if the vehicle
can accelerate to its desired speed before reaching the gap. If the vehicle can safely accelerate to
the desired speed, it performs the lane change. If there is no gap in the target lane, MOBIL checks
if the lane change would allow the vehicle to travel at a higher speed than the current lane. If so,
the vehicle can perform the lane change if it can safely accelerate to the desired speed. If neither of
these conditions is met, the vehicle will remain in its current lane. By using MOBIL, autonomous
vehicles can make safe and efficient lane-changing decisions. The MOBIL model decides when to
perform a lane change based on the impact on other drivers, as defined by the following condition

(a′e − ae) + p[(a′b − ab) + (a′a − aa)] > ath (2.7)

where (a′e− ae), (a
′
b− ab), (a

′
a− aa) represent the acceleration difference of the driver’s vehicle, the

following vehicle before the lane change and the following vehicle after the lane change, respectively,
p represents the politeness factor which weighs the disadvantages imposed on other drivers due to
the lane change, and ath is the acceleration threshold. The control parameters for the traffic vehicles
are detailed in Table 2.1.

21

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

Symbol Meaning Value

l Vehicle length 5m
w Vehicle width 2m
wroad Lane width 4m
at Acceleration action range [−1, 1]m/s2

θt Steering angle range [−π/36, π/36] rad
p Politeness factor (MOBIL) 0.5
ath Acceleration threshold 0.2m/s2

a Acceleration (IDM) 0.5m/s2

b Comfortable deceleration (IDM) 0.5m/s2

δ Acceleration exponent (IDM) 4
sdesired Desired car-following distance 10m
vdesired Desired velocity 12.5m/s
S0 Minimum spacing (IDM) 10m
T Desired time gap 1.5 s

Table 2.1: IDM and MOBIL traffic vehicle parameters used in simulations.

2.4.3 Low-level Motion Planner

As we introduced in Section 2.2, after we obtain the high-level actionsAhigh and set (ltarget, Vtarget),
we implement a lateral low-level controller to execute lane changes and a longitudinal low-level con-
troller to track the target speed as shown in Figure 2.2. The same lateral low-level controller is
also used to execute lane changes for traffic vehicles using the MOBIL controller.

Figure 2.2: Speed and steering motion planner

The lateral low-level controller is based on the lateral distance to the target lane center

vlateral = −Klat∆d target (2.8)

where ∆d target is the lateral distance to target lane center line. Klat is the proportional gain for
this speed planner. In the lateral direction, the heading controller deals with the heading of the
vehicle with a similar proportional-derivative action

θlateral = Kθ(θtarget − θ) (2.9)

where θ is the vehicle’s current heading angle. θtarget is the vehicle’s heading angle after lane change
behavior. The heading angle after lane change will remain aligned with the direction of the target

22

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

lane. Kθ is a proportional gain for this heading controller. This lane change motion planner will
generate the trajectory of a vehicle from an initial lane to a target lane. Once the lane change
decision is made, the motion planner will provide a steering angle command for each time step
until the ego-vehicle reaches the target lane center line.

In the longitudinal direction, we interpret the act of accelerating or decelerating at a high-level
as setting a target speed. Speed up means to increase the target speed by δ m/s (a numeral factor)
and slow down means to decrease the target speed by δ m/s. δ is a parameter than we can select
based on the ideal speed of the specific autonomous driving problem. Since we are studying a
low-speed lane change problem with an ideal speed of 16m/s, we set δ to 2 m/s. After we set the
target speed, a speed motion planner will be implemented to control the acceleration and track the
target speed using

aacc = Kspeed∆v target (2.10)

where Kspeed is the proportional gain for speed motion planner.

2.5 Reinforcement Learning Foundations

In our methodology, we formulate the task of automated driving on highways as a MDP prob-
lem [50]. An MDP can be described by a tuple ⟨S,A, Pss′ , Rs⟩ where the states S encapsulate
the vehicle’s environment and its internal status, while the actions A reflect the vehicle’s potential
maneuvers. The transition between state-actions is denoted as Pss′ = P [St+1 = s′|St = s]. The
rewards Rs = E [Rt+1 | St = s] are designed to guide the vehicle towards an optimal driving behav-
ior. A deep-RL based controller aims to optimize the cumulative reward within a single episode,
which is derived from the external reward function.

We adopt two complementary deep-RL algorithms to learn roundabout-driving policies: Soft
Actor–Critic (SAC) for online interaction and Conservative Q-Learning (CQL) for offline learn-
ing [51,52]. Below we summarize their objectives and optimization mechanisms.

2.5.1 Online Reinforcement Learning: SAC

SAC optimizes a stochastic actor policy πϕ by maximizing the discounted return augmented
with an entropy bonus:

JSAC(πϕ) = Eπϕ

[∑∞
t=0 γ

t
(
R(st, at) + αH

[
πϕ(· | st)

])]
, (2.11)

where the temperature α > 0 trades off task reward against the differential entropy H
[
πϕ(· | st)

]
of the actor [51]. Entropy regularization encourages broad exploration in early stages and guards
against premature convergence to deterministic, sub-optimal strategies. Two action-value critic
functions Qθ1 and Qθ2 are trained with the soft Bellman backup operator, taking their minimum
when the positive bias caused by overestimating the action values is mitigated [53].

Rather than hand-tuning the temperature parameter α, SAC adjusts it online by solving the
dual problem

α⋆ = argmin
α>0

E(st,at)∼B
[
α
(
− log πϕ(at | st)− H̄

)]
, (2.12)

where B is the replay buffer and H̄ is a negative target entropy usually set to − log |A| or a scaled
variant. This adaptive mechanism is especially useful in discrete action spaces whose utilities can
vary sharply across states, as is the case in roundabout navigation.

Because SAC is off-policy, each transition stored in the replay buffer can be reused for many
gradient updates. The algorithm therefore achieves high sample efficiency, an essential property

23

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

when interacting with a computationally intensive, high-fidelity simulator that enables safe, con-
tinuous data collection without real-world risk. The pseudocode and training hyperparameters are
presented in Algorithm 1 and Table 2.2, respectively.

Symbol Meaning Value

γ Discount factor 0.99
ηπ Actor learning rate 1× 10−5

ηQ Critic learning rate 5× 10−5

ηα Entropy-coefficient learning rate 5× 10−5

τ Target-network soft update 0.005
H̄ Target entropy −1
N Batch size 64
|D| Replay buffer capacity 50000

Table 2.2: SAC hyper-parameters used in this study.

Algorithm 1 Soft Actor–Critic for Discrete Action Spaces

Require: Environment E , replay buffer D
Require: Learning rates ηQ, ηπ, ηα, discount γ, target-mix τ
1: Initialise actor πϕ, critics Qθ1 , Qθ2

2: Initialise target critics θ̄i ← θi (i = 1, 2)
3: while training not converged do
4: Observe state s and sample a ∼ πϕ(· | s)
5: Execute a in E , receive (r, s′, d)
6: Store (s, a, r, s′, d) in D
7: for all gradient steps do
8: Sample mini-batch B ⊂ D
9: Vθ̄(s

′)←
∑

a′ πϕ(a
′|s′)

[
miniQθ̄i

(s′, a′)− α log πϕ(a
′|s′)

]
10: y←r + γ(1− d)Vθ̄(s

′)

11: θi ← θi − ηQ∇θi
1
2

(
Qθi(s, a)− y

)2
(i = 1, 2)

12: ϕ← ϕ− ηπ∇ϕ
∑

a πϕ(a|s)
[
α log πϕ(a|s)−miniQθi(s, a)

]
13: α← α− ηα∇α

∑
a πϕ(a|s)

[
−α(log πϕ(a|s) + H̄)

]
14: θ̄i ← τθi + (1− τ)θ̄i (i = 1, 2)
15: end for
16: end while

2.5.2 Offline Reinforcement Learning: CQL

Offline RL forbids further interaction with the environment and must learn solely from a fixed
log D = {(s, a, r, s′)} of observation traces collected under unknown behavior policies. Standard
Q-learning tends to over-estimate unseen state and action pairs, causing extrapolation error and
catastrophic policy degradation when deployed. CQL [52] combats this failure mode by penalizing
Q-values that are large for actions not observed in D, thereby inducing a pessimistic critic that
stays within the support of the dataset.

Let Qθ denote the parametric critic and let LTD be the usual temporal-difference loss with a
target network θ̄. CQL augments this loss with a conservative regularizer that lowers any Q-value

24

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

which the dataset does not support:

LCQL(θ) = Es∼D

[
log

∑
a∈A

expQθ(s, a)− Ea∼D
[
Qθ(s, a)

]
+ λLTD(θ)

]
, (2.13)

where the log sum expectation term upper-bounds the maximum Q over all actions and the second
term anchors the estimate to actions actually present in D. The trade-off coefficient λ > 0 controls
conservatism where larger values emphasize Bellman consistency and smaller values enforce stronger
pessimism.

Once Qθ is updated, a stochastic actor πϕ is improved by minimizing the Kullback–Leibler
divergence between πϕ(· | s) and the Boltzmann distribution induced by the conservative Q-values:

min
ϕ

Es∼D

[
KL

(
πϕ(· | s) ∥ softmax

(
Qθ(s, ·)/τ

))]
, (2.14)

where τ is a temperature hyper-parameter. The resulting actor is explicitly dataset-compliant
because its behavioral support is shaped by the conservative critic.

CQL is well-suited to roundabout navigation logs that contain diverse yet safety-critical ma-
neuvers. By constraining value estimates to lie within the demonstrated action support, CQL
avoids optimistic extrapolation for high-risk actions while still allowing policy improvement on fre-
quent controls. Consequently, the learned policy inherits the feasibility and safety characteristics
of the dataset, a key requirement when offline logs originate from human drivers or previously
validated controllers. The pseudocode and training hyperparameters are presented in Algorithm 2
and Table 2.3, respectively.

Symbol Meaning Value

γ Discount factor 0.99
ηπ Actor learning rate 1× 10−5

ηQ Critic learning rate 5× 10−5

ηα Entropy-coefficient learning rate 5× 10−5

τ Target-network soft update 0.005
H̄ Target entropy −1
B Batch size 64
|D| Replay buffer capacity 200,000
T Training episodes 2000

Table 2.3: CQL hyper-parameters used in this study.

25

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

Algorithm 2 Discrete CQL built on SAC

Require: Environment E , replay buffer D
Require: Actor πϕ, critics Qθ1 , Qθ2

Require: Hyperparams: γ, τ, ηQ, ηπ, ηα
Require: CQL weight λ, target entropy H̄
1: Initialise target critics θ̄i ← θi
2: while training not converged do
3: Observe s; sample a ∼ πϕ(· |s); step env, store (s, a, r, s′, d) in D
4: for all gradient steps do
5: Sample mini-batch B ⊂ D
6: Vθ̄(s

′)←
∑

a′ πϕ(a
′|s′)

[
miniQθ̄i

(s′, a′)− α log πϕ(a
′|s′)

]
7: y ← r + γ(1− d)Vθ̄(s

′)
8: MSE← 1

2(Qθi(s, a)− y)2 for i=1, 2
9: CQLTerm← λ

[
log

∑
a expQθi(s, a)all actions −Qθi(s, a)

]
10: θi←θi − ηQ∇θi [MSE + CQLTerm]
11: ϕ← ϕ− ηπ∇ϕ

∑
a πϕ(a|s)

[
α log πϕ(a|s)−miniQθi(s, a)

]
12: α← α− ηα∇α

∑
a πϕ(a|s)

[
−α(log πϕ(a|s) + H̄)

]
13: θ̄i ← τθi + (1− τ)θ̄i
14: end for
15: end while

2.6 Transformer-Based Behavior Cloning

Behavior cloning can be reframed as an auto-regressive sequence model in which a trans-
former predicts each action token conditioned on the history of past states and actions. Because
self-attention provides unbounded receptive fields, the model implicitly captures long-range depen-
dencies that are crucial for roundabout tasks such as merge preparation.

Given a demonstration buffer D = {(s0:T , a0:T−1)}, the network is trained under the auto
regressive negative log likelihood:

min
ϕ

Eτ∼D

[∑T−1
t=0 − log πθ

(
at | s0:t, a0:t−1

)]
, (2.15)

which treats imitation purely as supervised learning—no value targets or return conditioning are re-
quired, distinguishing Transformer BC from DT that conditions on future returns. The pseudocode
and training hyperparameters are presented in Algorithm 3 and Table 2.4, respectively.

26

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

Symbol Meaning Value

K Sequence length (context window) 20
d Token/embedding dimension 32
η Learning rate 5× 10−5

B Batch size (per device) 16
E Training epochs 20
λwd Weight decay 1× 10−4

ρwu Linear warm-up ratio 0.1
β1, β2 AdamW moments 0.9, 0.999
gmax Gradient-norm clip 0.25
nlayer Transformer layers 4
nhead Attention heads 1

Table 2.4: CNN–Transformer BC hyper-parameters used in this study.

Algorithm 3 Transformer-Based Behavior Cloning

Require: Demonstration set D={τi}Ni=1, each τ = (s1, a1, . . . , sT , aT)
Require: Hyperparams: sequence length K, embedding dim d, lr η, batch size B
Require: Transformer πθ with causal mask; loss L is cross-entropy
1: for iteration = 1, . . . do
2: Sample mini-batch {τj}Bj=1 ⊂ D
3: for all τj do
4: Slice random window (st−K+1:t, at−K+1:t−1)
5: Encode tokens xt←Embed(st) ∥ Embed(at−1)
6: ât←πθ(xt−K+1:t)
7: L←L− logPθ(at = ât|x1:t)
8: end for
9: θ ← θ − η∇θL

10: end for
11: function SelectAction(history, scurr)
12: x← concatenate latest K−1 tokens & Embed(scurr)
13: p(·)← πθ(x); return argmaxa p(a)

27

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

Chapter 3

Proposed Method

This chapter presents an offline learning framework that combines expert trajectory synthesis
with uncertainty-aware sequence modelling. We begin by using Monte Carlo Tress Search (MCTS)
with the Upper Confidence Bounds applied to Trees (UCT) rule to construct a data set of 5400
near-optimal roundabout roll-outs. Because the action space is discrete and the reward mirrors the
evaluation metric, the budgeted search delivers trajectories that approximate the true optimum
while preserving diversity across traffic seeds and avoiding the sub-optimal biases found in human
demonstrations.

Building on this corpus, we introduce the novel Uncertainty Weighted Decision Transformer
(UWDT). A frozen, high-capacity teacher provides token-level predictive entropy that acts as an
automatic importance weight, increasing gradient focus on ambiguous yet safety-critical frames
that are statistically rare in the expert data. The student shares the vanilla DT architecture but
is optimized with this entropy-scaled loss, simultaneously addressing class imbalance and covari-
ate shift without architectural change. Compared with value-based offline RL or straightforward
behavior cloning, UWDT offers a principled route to risk-aware planning in a purely offline setting.

3.1 Data Collection

To train the Decision Transformer, Transformer-based BC, we first construct an expert dataset
using MCTS. MCTS is selected for its ability to generate high-quality trajectories that optimize
the task-specific reward function defined in the environment. Unlike purely heuristic rule-based
methods, MCTS explicitly balances exploration and exploitation and provably converges toward the
optimal open-loop policy under a finite simulation budget through the UCT rule [8]. This property
ensures that the collected demonstrations remain close to the reinforcement-learning objective,
providing consistent supervision across episodes.

We use Open-Loop Optimistic Planning (OLOP) [54] to split the total simulation budget B
into M episodes of length L such that

B ≥ M × L. (3.1)

Here B is the total number of calls to the generative model, M is the episode count, and L
is the planning horizon in timesteps. This allocation gives each episode the same depth while
still guaranteeing that deeper branches are explored when their optimistic value justifies the cost.
For each episode, MCTS plans a sequence of L = 22 actions and returns the first action of the
highest-visitation path. The full search tree is then replayed to generate the complete state-action-
return sequence. Because all trajectories have equal length, they map directly to the fixed-width

28

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

context window of sequence models without padding or masking. During tree expansion, nodes
leading to penalties remain in the tree because UCT keeps an optimism term on unvisited or
high-variance branches. The pseudocode is presented in Algorithm 4.

In practice we collect Nepi = 5400 expert episodes, resulting in 118800 state–action pairs.
Episodes are shuffled and stored in an offline replay buffer for all downstream learners. We record
both discounted return-to-go and per-step rewards so that sequence models can condition on either
signal at training time. The roll-out policy πroll used in line 11 of Algorithm 4 is an ε-greedy
heuristic that selects the highest-value action with probability 1−ε and samples uniformly otherwise
(ε = 0.05). Random seeds are fixed, and all generative-model calls are logged to enable exact
regeneration of the dataset.

The MCTS policy in our dataset achieves an average return of 21.81 while remaining collision-
free.

Algorithm 4 Monte–Carlo Tree Search with UCT and OLOP Budget Allocation

Require: generative model G, root state s0
Require: discount γ, exploration constant c, total budget B
1: (M,L)← OLOP allocation(B, γ) ▷ split B into M episodes of horizon L
2: Initialize root node N0; for all edges set N←0, W←0
3: for m = 1 to M do
4: path← {}, n← N0, d← 0
5: while d < L and n is fully expanded and n not terminal do

6: a← argmax
a

[
Q̂(n, a) + c

√
lnN(n)

N(n,a)+ε

]
7: path.append(n, a); n← n.child(a); d← d+ 1
8: end while
9: if d < L and n not terminal then

10: Expand n: for all a ∈ A add child nodes
11: Choose one unvisited action a; path.append(n, a); n← n.child(a)
12: end if
13: R← 0, ∆← 1, s← n.state
14: while d < L and s not terminal do
15: Sample a ∼ πroll(s); (s, r)← G(s, a)
16: R← R+∆ r; ∆← ∆ · γ; d← d+ 1
17: end while
18: for each (n̄, ā) in path reverse order do
19: N(n̄)← N(n̄) + 1; N(n̄, ā)← N(n̄, ā) + 1
20: W (n̄, ā)←W (n̄, ā) +R
21: R← r(n̄, ā) + γ R
22: end for
23: end for
24: return argmax

a
N(N0, a)

3.2 Reducing Exposure Bias

DTs are trained with teacher forcing where every decoder step receives the ground-truth action
as input. At test time, however, the policy must instead feed back its own predictions, a train–test
mismatch that accumulates errors and degrades performance exposure bias [55]. We investigate

29

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

two purely supervised remedies that integrate seamlessly with DT, self-rollout [56] and scheduled
sampling [55]. Both are implemented in Algorithm 5 and Algorithm 6.

Self-rollout refines tokens within a frame and supplies rich token-level gradients. Scheduled
sampling operates across frames and teaches the network to survive its own history. Both methods
are label-efficient and require no modification to the DT. Experiments in Section 4.2 analyze the
improvements resulting from these two strategies as compared to plain DT.

3.2.1 Self Rollout Training

Self-rollout refines the action for every frame inside a single forward pass. At time step t we
allocate a fixed refinement budget K = 4 and iteratively update a previous action sequence ãt,0:K−1.
At iteration k ∈ {0, . . . ,K−1} the decoder receives the state encoding zt,k and all previously chosen
actions ãt,0:k−1. It produces logits ℓt,k ∈ R|A| and an action prediction

ât,k ∼ Softmax
(
ℓt,k/τ

)
, (3.2)

where τ >0 is a fixed temperature and |A| is the size of the action space.
Ground-truth tokens are gradually replaced by the model’s own predictions

ãt,k =

a⋆t , with probability ε(e),

ât,k−1, otherwise,
ε(e) = 1− e

E
, (3.3)

where a⋆t is the ground truth action, e is the current epoch, E is the total number of epochs and
ât,k−1 denotes the action predicted at refinement iteration k − 1 within the same frame t. The
linear decay ε(e) follows the curriculum idea introduced in the sequence-modeling literature [55].
In contrast to the across-frame variant presented later in Section 3.2.2, this schedule operates within
a single frame. At test time we fix ε = 0 and perform the same K refinements once per frame.

The loss averaged cross-entropy over all refinement steps is

LSR =
1

K

K−1∑
k=0

T∑
t=1

mt,k CE
(
ℓt,k, a

⋆
t

)
, (3.4)

where mt,k ∈ {0, 1} masks padding positions and CE() denotes cross entropy.

Algorithm 5 Self-Rollout Inference for Frame t

Require: Encoded state fragments zt,0:K−1, refinement steps K, temperature τ
1: Initialise empty list u← []
2: for k = 0 to K − 1 do
3: context←

(
zt,0, u0, . . . , zt,k−1, uk−1, zt,k

)
4: ℓt,k ← πθ(context)
5: ât,k ∼ Softmax(ℓt,k/τ)
6: Append ât,k to u
7: end for
8: return ât = u[K − 1]

3.2.2 Scheduled Sampling Training

Scheduled sampling mitigates exposure bias by feeding the decoder a mixture of ground-truth
and self-generated actions drawn from earlier frames. Let a⋆t denote the ground truth action at

30

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

frame t and ât−1 the action predicted at frame t−1. At training epoch e the decoder input becomes

ãt−1 = bta
⋆
t−1 + (1− bt)ât−1, bt ∼ Bernoulli

(
ε(e)

)
, ε(e) = 1− e

E
, (3.5)

where bt ∈ {0, 1} selects between ground truth and model predictions. E is the total number of
epochs. The linear schedule ε(e) follows the original formulation of scheduled sampling in [55].
When ε(e) decays to zero the model trains entirely on its own predictions, improving robustness to
cascading errors. During evaluation we fix ε = 0. The loss is the cross-entropy between the logits
ℓ1:T = πθ(s1:T , ã0:T−1) and the target actions a⋆1:T as defined by

LSS =
T∑
t=1

CE(ℓt, a
⋆
t). (3.6)

Algorithm 6 Scheduled Sampling for One Minibatch

Require: minibatch {τj}Bj=1, Bernoulli schedule ε(e)
1: for all τ = (s1, a

⋆
1, . . . , sT , a

⋆
T) do

2: â1:T ← argmaxπθ(s1:T , a
⋆
0:T−1)

3: ã0 ← null
4: for t = 1 to T − 1 do
5: sample bt ∼ Bernoulli(ε(e))
6: ãt ← bt a

⋆
t + (1− bt) ât

7: end for
8: ℓ1:T ← πθ(s1:T , ã0:T−1)
9: L +=

∑T
t=1CE(ℓt, a

⋆
t)

10: end for
11: θ ← θ − η∇θL

3.3 Uncertainty Weighted Decision Transformer

Offline decision-making policies based on the DT formulation achieve state-of-the-art perfor-
mance by reframing RL as conditional sequence modeling over returns, states, and actions [19].
During training, every transition receives the same loss weight. This uniform weighting causes DTs
to memorize abundant, low-risk regimes while leaving rare yet safety-critical states (e.g., round-
about entries, forced merges, and short-gap yields) insufficiently trained, even though these sparse
cases dominate safety metrics [57].

Imbalanced data steer gradients toward frequent, low-risk cases. Focal Loss counters this effect
by stressing hard samples in dense object detection [58]. Focal Loss is defined as

L = −wi (1− pi)
γ log pi, (3.7)

where pi is the predicted probability of class i, wi is an optional class or sample weight, and γ > 0
modulates the strength of the focusing term. Unified Focal Loss generalizes the idea by combining
Dice and cross-entropy losses [59]. Uncertainty-Aware Focal Loss strengthens it further by linking
the factor (1 − pi)

γ to pixel-wise predictive variance, which improves robustness in safety-critical
segmentation [60].

31

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

A similar weighting design appears in knowledge distillation. Logit uncertainty distillation
converts teacher entropy into a reliability weight

w = f
(
H(p(T))

)
, H(p(T)) = −

∑
c

p(T)
c log p(T)

c , (3.8)

where p(T) denotes the teacher soft-max vector and f(·) maps low entropy outputs to larger
weights [28]. Teaching with Uncertainty adopts Monte-Carlo dropout, passes the resulting variance
to the student, and boosts detection accuracy with limited labels [29].

The uncertainty signal that guides vision models also stabilizes offline RL. UWAC reduces the
impact of out-of-distribution transitions by scaling the temporal-difference loss with a dropout-based
Q-variance estimate [30]. UNREST-DT follows a complementary strategy by measuring the mu-
tual information between returns and state sequence and truncating the return target when mutual
information exceeds a threshold, thereby suppressing unreliable high-variance segments [31].

Class-level imbalance calls for a different view. Class Uncertainty replaces raw class counts with
the average predictive variance

wc =
1

Nc

Nc∑
i=1

Var
[
p(i)c

]
, (3.9)

where wc is the weight for class c, Nc is its sample count, and p
(i)
c denotes the model probability

for class c on sample i [61]. A larger variance indicates a rarer or more ambiguous class and thus
receives a larger weight. Skill-level rebalancing extends this concept to sequential decision tasks.
The Skill Transformer first enumerates the skill inventory, then estimates each skill’s empirical
frequency, and finally applies a Focal-Loss-style modulation to emphasize rare skills [62]. Counting
skills and their occurrence probabilities, however, becomes infeasible in long-horizon driving where
the space of possible maneuvers grows rapidly.

Our approach removes this bottleneck. A high-capacity teacher DT supplies token-level entropy,
which we convert into the weight

wt =
(
1− pt

)γ
, (3.10)

where pt is the teacher confidence for token t and γ > 0 is a focusing parameter identical to that
in Focal Loss. The student Decision Transformer applies wt directly to its cross-entropy objective.
No skill enumeration, frequency counting, or hand-crafted class mapping is required. This design
unifies uncertainty-aware knowledge distillation and offline-RL weighting within a single, fully dif-
ferentiable objective. By operating at sequence level, it corrects both state and action imbalance
and preserves temporal coherence, a property that static class-based schemes lack.

To be specific, the Uncertainty Weighted Decision Transformer (UWDT) is trained in three
coherent stages:

1. Teacher fitting. Train a DT πT on the offline dataset. The loss is the masked cross-entropy
over valid tokens. After convergence, freeze all Teacher parameters.

2. Entropy calibration. Run the frozen Teacher DT πT once over the entire dataset to obtain
the per-token predictive entropy

Ht = −
∑
a

pT,t(a) log pT,t(a). (3.11)

Estimate robust bounds Hmin and Hmax and set the exponent

γ = ln r
/
ln
(
Hmax/Hmin

)
, (3.12)

where r is the desired dynamic range of the weights.

32

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

3. Student distillation. Initialize a Student DT πS with the same architecture as πT . For
each mini-batch, compute raw weights w̃t = Hγ

t , normalize them to unit mean, and clip them
to the maximum value wmax. Optimize πS with the weighted cross-entropy loss

LS = − 1

|Bval|
∑

t∈Bval

w̄t log pS,t(at). (3.13)

The result is a Student policy that devotes more gradient effort to tokens where the Teacher
is uncertain, improving performance in rare or ambiguous driving scenarios without altering the
model architecture.

3.3.1 Teacher Decision Transformer

Figure 3.1: Teacher Decision Transformer is a standard DT with CNN Encoders.

As shown in Figure 3.1, the teacher DT uses CNN encoders to capture spatial information
and DT for temporal reasoning. The CNN encoder structure is show in Figure 3.2. Each state
tensor st is encoded by a convolutional network: three 3 × 3 convolutions with stride 2 (channels
4→32→64→128), ReLU activations, batch normalization, and spatial dropout. The final feature
map is flattened and projected to a fixed de–dimensional embedding via a lazy fully connected
layer. Denote the resulting embedding as

ϕt = ϕ(st) ∈ Rde , de = 32. (3.14)

Figure 3.2: The CNN-based encoder structure.

33

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

Consider a finite-horizon MDP
(
S,A, P, r, γ) with discount γ ∈ [0, 1). Given an offline dataset

D = {τi}Ni=1 where each trajectory τ = (s1, a1, r1, . . . , sT , aT , rT), we first compute the return-to-go
(RTG) for every time-step:

Rt =
T∑

k=t

γ k−t rk, t = 1, . . . , T. (3.15)

We then interleave the scalar return, state, and action tokens to obtain the length-3K sequence(
Rt−K+1, st−K+1, at−K , . . . , Rt, st

)
, (3.16)

which is then fed into a causal Transformer πT that autoregressively predicts the next action
distribution πT (at | ·). DT is trained purely by supervised learning to maximize the log-likelihood
of expert actions conditioned on the context:

L(θ) = −Eτ∼D

T∑
t=1

log πT
(
at

∣∣ Rt, st, at−1, . . . , Rt−K+1, st−K+1, at−K

)
= −Eτ∼D

T∑
t=1

log πT
(
at

∣∣ X1:t

)
, (3.17)

where X1:t denotes the length-3K token context prior to at. Gradient updates are performed with
AdamW and running-mean-square layer-norm, following [19].

At inference time the Decision Transformer operates in a discrete action space. At each
timestep t it first forms the policy distribution πT (· | X1:t). It then generates at using one of
two polices

at =

sample
(
πT (· | X1:t)

)
, stochastic rollout,

argmax
a

πT
(
a | X1:t

)
, greedy rollout.

(3.18)

The selected action is then converted to a one-hot vector. The triplet (R̃t+1, st+1, at) is then ap-
pended to the autoregressive input sequence, yielding X1:t+1. In practice, we adopt the greedy
rollout because it consistently delivers higher driving performance and lower variance. After con-
vergence, Teacher parameters are frozen and reused for entropy estimation during Student DT
training. The pseudocode and training hyperparameters are presented in Algorithm 7 and Ta-
ble 3.1, respectively.

Symbol Meaning Value

K Context length (seq. window) 20
d Embedding dimension 32
γ Discount factor for returns-to-go 0.99
η Learning rate 1× 10−5

B Batch size 16
E Training epochs 20
λwd Weight decay (AdamW) 5× 10−5

ρwu Linear warm-up ratio 0.1
gmax Gradient-norm clip 0.25
nlayer Transformer decoder layers 4
nhead Attention heads 1

Table 3.1: UWDT hyper-parameters used in this study.

34

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

Algorithm 7 Decision Transformer: Return-Conditioned Sequence Modeling

Require: Offline dataset D = {τi}Ni=1 with trajectories τ = (s1, a1, r1, . . . , sT , aT , rT)
Require: Context length K, discount γ, learning rate η, batch size B
Require: Causal Transformer πT with three token embeddings (return, state, action)
1: for iteration = 1, . . . do
2: Sample B trajectories {τj}Bj=1 from D
3: for all τj do
4: Pick random index t ∈ [K, T]
5: Compute returns-to-go Rk ←

∑T
u=k γ

u−kru for k = t−K + 1 . . . , t
6: Form token sequence

X =
(
Rt−K+1, st−K+1, at−K , . . . , Rt, st

)
7: p̂(·)← πT (X)
8: L += − log p̂(at)
9: end for

10: θ ← θ − η∇θL
11: end for
12: function SelectAction(st, R

target, history)
13: Update remaining return Rt ← Rtarget −

∑t−1
u=1 ru

14: Construct latest context of length K from history + (Rt, st)
15: p(·)← πT (context)
16: return argmaxa p(a)
17: end function

35

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

3.3.2 Student Decision Transformer

Figure 3.3: Teacher DT predictive uncertainty is estimated via the entropy of the action distri-
bution. This entropy then acts as a weighting signal during student DT training, modulating the
impact of each action prediction on the loss.

The student policy πT shares the architecture with the teacher DT. After obtaining the trained
Teacher DT, we estimate predictive uncertainty by computing the entropy of its action distribution.
During Student training, this entropy serves as an uncertainty-based weight, modulating the loss
contribution of each training token. Given frozen Teacher logits uTt for a batch token t, we form
probabilities pT,t(a) = softmax(uTt)a. The predictive entropy of the action distribution is

Ht = −
A−1∑
a=0

pT,t(a) log pT,t(a), 0 ≤ Ht ≤ logA. (3.19)

Higher Ht indicates the Teacher is uncertain about which action matches the dataset at that token.
We wish to emphasize samples where the Teacher exhibits high uncertainty. Let Hmin and Hmax

denote the minimum and maximum Teacher entropies observed across the training set. In practice,
after training the Teacher DT, we deploy it in the simulation environment for 400 episodes. During
these rollouts, we record the entropy of the Teacher’s action distribution at each timestep. We then
compute the average, minimum, and maximum entropy values across all collected tokens to quantify
the Teacher’s confidence range in deployment scenarios. Collecting entropy during rollout rather
than from the static training set has two advantages. First, it reflects the Teacher’s behavior in

36

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

realistic, sequentially generated trajectories, where compounding errors and distribution shift may
arise. Second, it provides a more accurate estimate of uncertainty under deployment dynamics,
which may include rare or out-of-distribution states not well represented in the training set.

A standard DT or the Teacher DT is trained by supervised behavior cloning on the offline
dataset using the standard masked cross-entropy over valid tokens:

LT = − 1

|Bval|
∑

t∈Bval

log pT
(
at | z≤t

)
, (3.20)

where the sum ranges over all non-padded positions in the mini-batch Bval.
Compares to the above Teacher DT, the Student policy πS is architecturally identical to the

Teacher but trained with entropy-weighted supervision. Let uSt be Student logits and pS,t(a) =
softmax(uSt)a. For each valid token (mt = 1) we compute the masked cross-entropy scaled by w̄t:

LS = − 1

|Bval|
∑

t∈Bval

w̄t log pS,t(at). (3.21)

Eq. (3.21) reduces to standard behavior cloning when all w̄t=1. When γ > 0, tokens with higher
Teacher entropy carry larger gradient weight, encouraging the Student to allocate additional ca-
pacity to states the Teacher found ambiguous.

Let r > 1 denote the desired ratio between the largest and smallest per-token weights. We
adopt a power mapping

w̃t = Hγ
t , (3.22)

with exponent γ > 0 chosen so that the dynamic range matches r:

γ =
ln r

ln
(
Hmax/Hmin

) . (3.23)

Because the scale of w̃t influences optimization, we normalize in each mini-batch:

wt =
w̃t

1
M

∑M
j=1 w̃j

, (3.24)

where M is the number of valid (non-padded) tokens in the batch. Finally we clip to a ceiling
wmax:

w̄t = min{wt, wmax}. (3.25)

We set wmax = 1.5 and r = 1.3. The Student DT hyperparameters are the same with Teacher DT,
shown in Table 3.1. The pseudocode of UWDT are presented in Algorithm 8.

37

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

Algorithm 8 Uncertainty Weighted Decision Transformer (UWDT)

Require: Offline dataset D, horizon L, batch size B
Require: Target range r, max weight wmax, learning rates ηT , ηS
Require: Causal Transformers πT , πS

Stage 1: Teacher training
1: for epoch = 1, . . . , ET do
2: Sample mini-batch B ⊂ D
3: Mask padded tokens Bval
4: LT ← −

1

|Bval|
∑

t∈Bval

log pT (at | z≤t)

5: θT ← θT − ηT∇θTLT
6: end for
7: Freeze θT

Stage 2: Entropy statistics
8: Run πT over all tokens in D to get entropies Ht

9: Compute Hmin, Hmax

10: γ ← ln r

ln(Hmax/Hmin)
Stage 3: Student training

11: for epoch = 1, . . . , ES do
12: Sample mini-batch B ⊂ D
13: for all t ∈ Bval do
14: w̃t ← Hγ

t

15: end for
16: Normalize w̃t and clip to wmax, giving w̄t

17: LS ← −
1

|Bval|
∑

t∈Bval

w̄t log pS,t(at)

18: θS ← θS − ηS∇θSLS
19: end for
20: return πS
21: function SelectAction(st, R

target, history)

22: Rt ← Rtarget −
t−1∑
u=1

ru

23: Construct latest context of length K from history +(Rt, st)
24: p(·)← πS(context)
25: return argmax

a
p(a)

26: end function

38

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

Chapter 4

Experimental Results

This chapter empirically evaluates the proposed approach under three levels of roundabout
congestion and compares it with strong online, offline, and imitation-learning baselines. Each con-
troller is trained and tested under identical hyper-parameters and five random seeds; performance
is measured by accumulated reward, collision rate, average speed, halt duration, and time-to-exit,
covering both efficiency and safety. Three findings emerge:

1. UWDT sustains near-optimal reward even when four interacting vehicles occupy the circu-
lating lanes, whereas DT and SAC degrade gracefully and BC or CQL collapse.

2. Entropy histograms show that UWDT selectively broadens its action distribution during
merging conflicts yet remains deterministic in routine flow, indicating that the weighting
strategy activates precisely where uncertainty peaks.

3. Outcome variance across seeds is minimal, confirming that the observed gains stem from the
objective rather than favorable randomness.

Together, these results demonstrate the practicality of entropy-modulated sequence learning for
safety-critical autonomous driving.

4.1 Online and Offline RL Baseline

Our baselines comprise an online RL agent trained with SAC and an offline RL agent trained
with CQL. Each algorithm was run with five independent seeds, each seed executing 1 000 episodes.
Figure 4.1 reports the mean episode reward over all seeds. CQL saturates at a reward value of
approximately 12.5 and shows little improvement, whereas SAC exhibits a steady rise and eventually
outperforms CQL.

The reward function balances two terms: keeping the ego-vehicle within 8 – 16 m/s and avoiding
collisions. Figures 4.2 and 4.3 reveal that CQL maintains a non-negligible collision rate while
cruising below the desired speed band. Both shortcomings depress its cumulative reward. SAC,
in contrast, progressively lowers its collision rate, boosting the safety component of the reward.
It achieves this by adopting an ever more conservative speed profile; by the end of training, the
average speed approaches 0. Stopping before entering the roundabout maximizes safety under the
current weighting scheme but sacrifices driving efficiency.

Figures 4.4 and 4.5 corroborate this interpretation. The episode horizon is capped at 22 decision
steps. SAC approaches this upper bound as collisions disappear, yet the traveled distance per
episode shrinks because the vehicle moves slowly. CQL shows the opposite trend: shorter, riskier

39

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

episodes cover slightly longer distances but incur more crashes and therefore lower reward. These
results highlight a limitation of vanilla SAC under our safety-oriented reward: the agent learns to
drive slowly regardless of traffic situations rather than navigate efficiently.

Figure 4.1: Episode reward during training.

Figure 4.2: Episode collision rate during training.

40

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

Figure 4.3: Episode average speed during training.

Figure 4.4: Episode length during training.

41

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

Figure 4.5: Episode distance during training.

4.2 Reducing Exposure Bias

To benchmark alternative strategies for improving robustness in rare or high-uncertainty states,
we test two teacher-forcing variants of the Decision Transformer: self rollout and scheduled sam-
pling.

As shown in Table 4.1, DT already attains near-optimal performance, with a 94% exit rate and
6% collisions. Self rollout was introduced to mitigate exposure bias by augmenting the training set
with model-generated trajectories, but in our purely offline setting this procedure injects low-quality
samples whose return annotations are inconsistent with the original reward scale. The additional
data therefore acts as noise. As a result, reward falls by almost 29%, collision rate rises, and
episode length shortens. Because the Decision Transformer conditions on desired return, mislabeled
rollouts distort that conditioning return value leading to an overall degradation. Scheduled sampling
alternates between teacher-forced and model-generated tokens during training. However, scheduled
sampling perturbs the supervised signal without providing extra reward feedback, so the model’s
return-conditioning objective remains unchanged.

When return-conditioning is accurate and the offline dataset covers the relevant state distribu-
tion, neither self-rollout nor scheduled sampling yields additional benefit. In fact, the former can
poison training with low-fidelity data, while the latter merely injects noise with no upside in this
control domain.

Method
Accumulated

Reward

Average
Speed
[m/s]

Episode
Length

[s]

Travel
Distance

[m]

Reach Exit
Rate [%]

Collision
Rate [%]

Time–to–Exit
[s]

Halt Duration
(v < 1m/s) [s]

DT 20.884± 4.166 15.027± 1.730 21.020± 3.888 315.863± 68.813 94.000± 23.780 6.000± 23.780 15.765± 1.650 0.000± 0.000

DT + self-rollout 14.912± 9.214 14.818± 1.191 15.223± 8.811 225.569± 131.813 62.750± 48.410 37.250± 48.410 17.608± 3.389 0.000± 0.000

DT + scheduled sampling 20.839± 4.258 15.056± 1.690 20.970± 3.980 315.724± 69.620 93.750± 24.240 6.250± 24.240 15.758± 1.681 0.000± 0.000

Table 4.1: Effect of self rollout and scheduled sampling on DT performance. Metrics are reported
as mean ± standard deviation over 400 evaluation episodes on the roundabout task.

42

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

4.3 Uncertainty Weighted Decision Transformer

Offline RL methods aim to learn effective policies from previously collected data without fur-
ther interaction with them environment. Distributional shift between the training data and the
learned policy can cause standard off-policy algorithms to overestimate returns. CQL addresses
this by learning a conservative Q-function whose expected value lower-bounds the true value of
the policy and adds a simple Q-value regularizer to the Bellman error. SAC is an off-policy ac-
tor–critic algorithm based on the maximum entropy framework which optimizes both the expected
return and an entropy bonus, yielding improved exploration and stability across tasks. BC treats
policy learning as supervised regression from states to actions. It can be implemented with various
network architectures including transformers but it typically imitates the behavior policy and may
suffer from compounding errors on long horizons. The DT casts RL as a sequence modeling prob-
lem: a transformer is trained on sequences of returns, states and actions with an auto regressive
loss, avoiding unstable dynamic programming and producing diverse behaviors by conditioning on
desired returns. UWDT proposes to estimate epistemic uncertainty via conditional action predic-
tion entropy and to condition on truncated returns, thereby mitigating over-optimism in stochastic
environments.

In this section we evaluate our approach under varying traffic densities and compare it with
several offline and imitation–learning baselines. We consider three RL algorithms: CQL, SAC, and
our proposed UWDT. For imitation learning we include BC Transformer. Finally we evaluate the
original DT. Throughout this section rewards are normalized in [0, 1] and velocities are expressed
in m/s.

4.3.1 Performance and Entropy Statistics Results

Table 4.2 summarizes key performance metrics for the compared methods. The Episode Length
measures the average duration until episode termination, capped at 22 timesteps unless a collision
occurs earlier. Time-to-Exit denotes the average time taken to reach the exit. If a collision occurs
first, the maximum duration value of 22 timesteps is recorded. Halt Duration indicates the amount
of time spent at speeds below 1m/s.

Method
Accumulated

Reward
Average

Speed [m/s]
Episode
Length [s]

Travel
Distance [m]

Reach Exit
Rate [%]

Collision
Rate [%]

Time–to–Exit
[s]

Halt Duration
(v < 1m/s) [s]

CQL 12.82± 7.55 7.67± 3.27 14.60± 7.82 111.96± 76.64 14.00± 34.74 49.00± 50.05 21.44± 1.62 2.48± 5.11

SAC 20.66± 1.99 10.42± 6.61 21.71± 1.27 228.24± 145.33 60.00± 49.05 1.50± 7.06 17.80± 3.43 6.01± 7.76

BC Transformer 13.63± 7.82 7.89± 0.16 15.26± 8.06 120.47± 63.64 0.00± 0.00 41.25± 49.29 22.00± 0.00 0.00± 0.00

DT 20.88± 4.17 15.03± 1.73 21.02± 3.89 315.86± 68.81 94.00± 23.78 6.00± 23.78 15.77± 1.65 0.00± 0.00

UWDT 21.69± 2.01 15.31± 0.79 21.79± 1.90 333.55± 33.73 98.75± 11.12 1.25± 11.12 15.52± 0.98 0.00± 0.00

Table 4.2: Performance comparison on the roundabout task. Eight metrics are reported including
accumulated reward, average speed, episode length, travel distance, reach exit rate, collision rate,
time to exit, and halt duration. Values are expressed as mean± standard deviation over 400
evaluation episodes.

43

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

Method Min entropy Max entropy Average entropy

BC Transformer 0.60 1.27 0.68± 0.07

DT 1.14 1.47 1.15± 0.02

UWDT 1.14 1.34 1.15± 0.01

Table 4.3: Action-distribution entropy statistics (minimum, maximum, and mean ± standard de-
viation over the evaluation set).

CQL and BC rely purely on offline data. CQL penalizes uncertain, out-of-distribution actions,
obtaining the lowest reward of 12.82, the shortest trajectories of 14.60 s, and an exit rate of 14%.
BC Transformer also struggles due to compounding errors and the lack of uncertainty handling,
resulting in a low reward of 13.63 and never reaching the exit. Its performance gap versus DT
highlights poor generalization when the policy is purely imitative.

SAC, an online RL method, yields an average reward of 20.66, comparable to DT and UWDT
due to reward normalization during training. However, higher rewards mainly indicate fewer col-
lisions rather than optimal driving. With an episode length of 21.71 s and an exit success rate
of 60%, SAC often behaves overly cautiously, halting for 6.01 s. Observations show that SAC
waits excessively at the roundabout entrance, causing potential congestion despite clear merging
opportunities.

DT, which conditions actions on target returns, achieves notable improvements: a speed of
15.03m/s, a travel distance of 315.86m, and an exit rate of 94%. Yet the lack of explicit uncertainty
awareness sometimes causes premature terminations due to risky actions. Its maximum entropy of
1.47 reflects uncertainty without a mechanism to exploit it for safer decisions.

The proposed UWDT explicitly integrates epistemic uncertainty, outperforming all baselines.
It attains the highest reward of 21.69, the fastest speed of 15.31m/s, the greatest travel distance
of 333.55m, and a near-perfect exit rate of 98.75%. Table 4.3 corroborates these findings. UWDT
maintains a more tightly controlled entropy range of 1.14–1.34, confirming better-calibrated uncer-
tainty than DT.

4.3.2 Entropy Distribution Results for DT and UTDT

As previously discussed, the computational demand of MCTS grows with traffic density in
the roundabout. Specifically, as the number of incoming vehicles increases, MCTS requires more
simulation rollouts and longer decision times to generate feasible actions. We quantify scenario
complexity by the number of incoming vehicles present at the entrance of the roundabout.

During training, the number of incoming vehicles n is uniformly sampled from {0, 1, 2, 3, 4} to
expose the agent to a diverse set of driving situations. At test time, we evaluate the learned policy
under three separate complexity levels—low, medium, and high—corresponding to n ∈ {0, 1, 2},
n = 3, and n = 4, respectively.

Figures 4.6, 4.7, 4.8, and 4.9 depict the per-episode entropy distributions for DT in orange and
UWDT in green. In all scenarios the two curves peak near z ≈ −0.3, showing that both controllers
choose nearly deterministic actions in routine states. In the simplest scenes, the entropy tails of
DT and UWDT nearly overlap (Figure 4.7). The uncertainty weight rarely triggers, so UWDT
behaves like DT. As scenario complexity increases with more interacting vehicles (Figures 4.7, 4.8,
and 4.9), UWDT’s entropy distribution shifts toward higher values relative to DT. This reflects
lower confidence induced by penalizing rarely observed state–action pairs, rather than ignoring
them and overfitting to common patterns. The reweighting surfaces safety-critical but rare actions

44

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

more often and provides a stronger training signal.

Figure 4.6: The Entropy distribution comparison of DT and UWDT. The number of interacting
vehicles is uniformly sampled from the range [0, 4], and the results are aggregated over 400 episodes.

Figure 4.7: The Entropy distribution comparison of DT and UWDT. The number of interacting
vehicles is uniformly sampled from the range [0, 2], and the results are aggregated over 400 episodes.

45

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

Figure 4.8: The Entropy distribution comparison of DT and UWDT. The number of interacting
vehicles is 3, and the results are aggregated over 100 episodes.

Figure 4.9: The Entropy distribution comparison of DT and UWDT. The number of interacting
vehicles is 4, and the results are aggregated over 100 episodes.

46

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

4.3.3 Single Epoch and Average Performance at Varying Interacting Vehicle
Densities

We first consider cases involving 0-2 interacting vehicles. Figure 4.10 shows that BC Transformer
maintains a average reward of of 0.9, whereas CQL collapses to 0 within the first few steps. UWDT,
DT, and SAC saturate at the maximum reward throughout the horizon. The velocity profiles in
Figure 4.11 reveal the underlying behavior: BC Transformer cruises steadily at roughly 8m/s;
UWDT, DT, and SAC accelerate smoothly from 13 to the 16m/s speed limit; CQL stalls after
an early collision. Because no vehicle must yield, all three high-performing agents merge without
braking and achieve near-optimal performance.

With one additional interacting vehicle, the task becomes substantially harder. In Figure 4.12
the rewards of BC Transformer and CQL drop sharply, indicating frequent collisions. SAC sta-
bilises around 0.8, while UWDT and DT recover to near-optimal reward after a brief transient.
Figure 4.13 confirms that UWDT and DT reach the speed limit almost immediately and maintain
it. SAC exhibits a full stop midway, waiting for a conservative gap before merging; once merged, it
accelerates and finishes strongly. CQL decelerates to around 2.5m/s and seldom recovers, matching
its poor reward.

At the highest density of interacting vehicles, shown in Figure 4.14, BC Transformer deteriorates
fastest, losing all reward within three steps. CQL starts near 0.85 but slips to 0.2 by the end of the
horizon as collisions accumulate. SAC falls to zero reward during a prolonged wait, then merges
safely and finishes with a reward value around 0.9. This conservative policy avoids crashes but
is highly inefficient: the ego vehicle remains stationary even when sizable gaps emerge, degrading
traffic throughput and increasing travel time. UWDT and DT again dominate, sustaining nearly
perfect rewards despite the crowded roundabout. Velocity traces in Figure 4.15 corroborate these
findings. BC Transformer decelerates to rest almost instantly. CQL’s speed declines from 8 to 4m/s
as its reward vanishes. SAC’s speed profile shows a complete stop followed by a late acceleration to
4.5m/s. UWDT and DT accelerate briskly to the 16m/s limit and reamins at that speed. Across
all densities, UWDT outperforms DT by incurring fewer minor contacts, yielding slightly higher
cumulative rewards.

For every density we report single-episode traces and the mean over five independent episodes.

4.3.4 Summary of Results

Overall, these results demonstrate that our UWDT consistently outperforms conventional RL
algorithms and imitation learning baselines across varying traffic densities. By leveraging a trans-
former architecture with uncertainty-weighted return conditioning, the UWDTmaintains near-optimal
rewards and accelerates to the speed limit even in congested scenarios.

47

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

(a) Single episode reward profile with interacting vehicle count uniformly drawn from [0, 2].

(b) Average reward profile over 20 episodes with interacting-vehicle count uniformly drawn from
[0, 2].

Figure 4.10: Normalized reward with at most two incoming vehicles. UWDT consistently attains
the highest return while CQL suffers severe degradation.

48

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

(a) Single episode velocity profile with interacting vehicle count uniformly drawn from [0, 2].

(b) Average velocity profile over 20 episodes with interacting vehicle count uniformly drawn from
[0, 2].

Figure 4.11: Velocity profiles with at most two incoming vehicles. UWDT and DT quickly reach the
speed limit, whereas CQL stalls and SAC shows moderate recovery when averaging across episodes.

49

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

(a) Single episode reward profile with three interacting vehiclesz

(b) Average reward profile over 20 episodes with three interacting vehicles.

Figure 4.12: Reward profiles with three incoming vehicles. BC and CQL collapse under heavy
traffic, while UWDT and DT maintain near-optimal rewards. SAC shows gradual improvement
over multiple episodes.

50

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

(a) Single episode velocity profile with three interacting vehicles.

(b) Average velocity profile over 20 episodes with three interacting vehicles.

Figure 4.13: Velocity profiles with three incoming vehicles. UWDT and DT rapidly achieve maxi-
mum speed, CQL and BC decelerate to rest, and SAC recovers after an initial decline.

51

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

(a) Single episode reward profile with four interacting vehicles.

(b) Average reward profile over 20 episodes with four interacting vehicles.

Figure 4.14: Reward profiles with four incoming vehicles. BC and CQL collapse under heavy
traffic, while UWDT and DT maintain near-optimal rewards. SAC shows gradual improvement
over multiple episodes.

52

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

(a) Single episode velocity profile with four interacting vehicles.

(b) Average velocity profile over 20 episodes with four interacting vehicles.

Figure 4.15: Velocity profiles with four incoming vehicles. UWDT and DT rapidly achieve maxi-
mum speed, CQL and BC decelerate to rest, and SAC recovers after an initial decline.

53

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

Chapter 5

Conclusion

Our study focuses on autonomous driving in complex and dense traffic scenarios. We introduce
a quantitative complexity assessment for roundabout navigation that combines interaction density,
required MCTS budget, decision latency, and model uncertainty from both behavior cloning and
Decision Transformers. We also show that occupancy grids are an effective state representation
in dense, heterogeneous traffic. A CNN-based spatial encoder paired with a temporal transformer
backbone preserves local geometry and long-horizon dependencies.

We developed and presented the Uncertainty Weighted Decision Transformer for autonomous
navigation, which augments the standard transformer architecture with a principled mechanism for
quantifying and exploiting epistemic uncertainty at inference time. Unlike purely BC baselines or
conservative offline RL methods, UWDT conditions its action selection on both desired return and
an uncertainty measure, allowing it to choose high-reward trajectories when confident and adopt
safer maneuvers when its predictions are less certain. Through extensive simulation experiments
on a complex roundabout driving task, we demonstrated that UWDT achieves higher accumulated
rewards, longer travel distances and shorter traversal times, and near-optimal exit success rates
while simultaneously reducing collision rates to the lowest value when compared to other tested
methods including baseline Decision Transformers and Behavior Cloning (BC) Transformers and
conventional deep reinforcement learning agents such as Soft Actor Critic (SAC) and Conservative
Q-Learning (CQL).

These results underscore the importance of incorporating uncertainty into sequential decision
making, especially when critical situations are rare in the training set but have significant impact
during deployment. UWDT improves safety and efficiency, making it a promising approach for
safety critical driving applications.

54

Bibliography

[1] M. Bojarski, P. Yeres, A. Choromanska, K. Choromanski, B. Firner, L. Jackel, and U. Muller,
“Explaining how a deep neural network trained with end-to-end learning steers a car,” arXiv
preprint arXiv:1704.07911, 2017.

[2] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,
M. Monfort, U. Muller, J. Zhang, et al., “End to end learning for self-driving cars,” arXiv
preprint arXiv:1604.07316, 2016.

[3] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of autonomous driving:
Common practices and emerging technologies,” IEEE access, vol. 8, pp. 58443–58469, 2020.

[4] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, and P. Pérez,
“Deep reinforcement learning for autonomous driving: A survey,” IEEE Transactions on In-
telligent Transportation Systems, vol. 23, no. 6, pp. 4909–4926, 2021.

[5] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical observations
and microscopic simulations,” Physical review E, vol. 62, no. 2, p. 1805, 2000.

[6] P. G. Gipps, “A behavioural car-following model for computer simulation,” Transportation
research part B: methodological, vol. 15, no. 2, pp. 105–111, 1981.

[7] R. Coulom, “Efficient selectivity and backup operators in monte-carlo tree search,” in Inter-
national conference on computers and games, pp. 72–83, Springer, 2006.

[8] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in European conference on
machine learning, pp. 282–293, Springer, 2006.

[9] P.-A. Coquelin and R. Munos, “Bandit algorithms for tree search,” arXiv preprint cs/0703062,
2007.

[10] J.-F. Hren and R. Munos, “Optimistic planning of deterministic systems,” in European Work-
shop on Reinforcement Learning, pp. 151–164, Springer, 2008.

[11] Z. Cao, D. Yang, S. Xu, H. Peng, B. Li, S. Feng, and D. Zhao, “Highway exiting planner for
automated vehicles using reinforcement learning,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 22, no. 2, pp. 990–1000, 2020.

[12] C.-J. Hoel, K. Driggs-Campbell, K. Wolff, L. Laine, and M. J. Kochenderfer, “Combining
planning and deep reinforcement learning in tactical decision making for autonomous driving,”
IEEE transactions on intelligent vehicles, vol. 5, no. 2, pp. 294–305, 2019.

[13] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An open urban driving
simulator,” in Conference on robot learning, pp. 1–16, PMLR, 2017.

55

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

[14] J. Hawke, R. Shen, C. Gurau, S. Sharma, D. Reda, N. Nikolov, P. Mazur, S. Micklethwaite,
N. Griffiths, A. Shah, et al., “Urban driving with conditional imitation learning,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA), pp. 251–257, IEEE, 2020.

[15] Z. Zhang, E. Yurtsever, and K. A. Redmill, “Extensive exploration in complex traffic scenarios
using hierarchical reinforcement learning,” arXiv preprint arXiv:2501.14992, 2025.

[16] K. Redmill, Z. Zhang, E. Yurtsever, et al., “Reinforcement learning,” 2024.

[17] K. A. Redmill, Z. Zhang, and E. Yurtsever, “Hierarchical decision making and control in
rl-based autonomous driving for improved safety in complex traffic scenarios: Extensive ex-
ploration in complex traffic scenarios using hierarchical reinforcement learning,” 2024.

[18] C. Peng, Z. Zhang, S. Gong, S. Agrawal, K. A. Redmill, and A. Hereid, “Reinforcement
learning with data bootstrapping for dynamic subgoal pursuit in humanoid robot navigation,”
arXiv preprint arXiv:2506.02206, 2025.

[19] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch, “Decision transformer: Reinforcement learning via sequence modeling,” Advances
in neural information processing systems, vol. 34, pp. 15084–15097, 2021.

[20] M. Janner, Q. Li, and S. Levine, “Offline reinforcement learning as one big sequence modeling
problem,” Advances in neural information processing systems, vol. 34, pp. 1273–1286, 2021.

[21] H.-L. Hsu, A. K. Bozkurt, J. Dong, Q. Gao, V. Tarokh, and M. Pajic, “Steering decision
transformers via temporal difference learning,” arXiv preprint, 2023.

[22] X. Ma and W.-J. Li, “Weighting online decision transformer with episodic memory for offline-
to-online reinforcement learning,” in 2024 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, 2024.

[23] K. Wang, H. Zhao, X. Luo, K. Ren, W. Zhang, and D. Li, “Bootstrapped transformer for
offline reinforcement learning,” arXiv preprint arXiv:2206.08569, 2022.

[24] Z. Liu, Z. Guo, Y. Yao, Z. Cen, W. Yu, T. Zhang, and D. Zhao, “Constrained decision
transformer for offline safe reinforcement learning,” in International Conference on Machine
Learning, pp. 21611–21630, PMLR, 2023.

[25] E. Parisotto, F. Song, J. Rae, R. Pascanu, C. Gulcehre, S. Jayakumar, M. Jaderberg, R. L.
Kaufman, A. Clark, S. Noury, et al., “Stabilizing transformers for reinforcement learning,” in
International conference on machine learning, pp. 7487–7498, PMLR, 2020.

[26] Q. Zheng, A. Zhang, and A. Grover, “Online decision transformer,” in international conference
on machine learning, pp. 27042–27059, PMLR, 2022.

[27] Z. Xie, Z. Lin, D. Ye, Q. Fu, W. Yang, and S. Li, “Future-conditioned unsupervised pretraining
for decision transformer,” arXiv preprint arXiv:2305.16683, 2023. ICML 2023.

[28] Z. Guo, D. Wang, Q. He, and P. Zhang, “Leveraging logit uncertainty for better knowledge
distillation,” Scientific Reports, vol. 14, no. 1, p. 31249, 2024.

[29] J. Yi, J. Mao, T. Liu, M. Li, H. Gu, H. Zhang, X. Chang, and Y. Wang, “Teaching with
uncertainty: Unleashing the potential of knowledge distillation in object detection,” arXiv
preprint arXiv:2406.06999, 2024.

56

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

[30] Y. Wu, S. Zhai, N. Srivastava, J. Susskind, J. Zhang, R. Salakhutdinov, and H. Goh,
“Uncertainty weighted actor-critic for offline reinforcement learning,” arXiv preprint
arXiv:2105.08140, 2021.

[31] Z. Li, F. Nie, Q. Sun, F. Da, and H. Zhao, “Uncertainty-aware decision transformer for stochas-
tic driving environments,” arXiv preprint arXiv:2309.16397, 2023.

[32] A. Elfes, “Using occupancy grids for mobile robot perception and navigation,” Computer,
vol. 22, no. 6, pp. 46–57, 2002.

[33] C. Coué, C. Pradalier, C. Laugier, T. Fraichard, and P. Bessière, “Bayesian occupancy filtering
for multitarget tracking: an automotive application,” The International Journal of Robotics
Research, vol. 25, no. 1, pp. 19–30, 2006.

[34] S. Hoermann, P. Henzler, M. Bach, and K. Dietmayer, “Object detection on dynamic occu-
pancy grid maps using deep learning and automatic label generation,” in 2018 IEEE Intelligent
Vehicles Symposium (IV), pp. 826–833, IEEE, 2018.

[35] M. Schreiber, S. Hoermann, and K. Dietmayer, “Long-term occupancy grid prediction using
recurrent neural networks,” in 2019 International Conference on Robotics and Automation
(ICRA), pp. 9299–9305, IEEE, 2019.

[36] J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid, “Vectornet: Encoding
hd maps and agent dynamics from vectorized representation,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 11525–11533, 2020.

[37] Y. Ma, T. Wang, X. Bai, H. Yang, Y. Hou, Y. Wang, Y. Qiao, R. Yang, and X. Zhu, “Vision-
centric bev perception: A survey,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, 2024.

[38] J. Zhang, Y. Ding, and Z. Liu, “Occfusion: Depth estimation free multi-sensor fusion for 3d
occupancy prediction,” in Proceedings of the Asian Conference on Computer Vision, pp. 3587–
3604, 2024.

[39] T. Liu, C. Wang, Z. Yin, Z. Mi, X. Xiong, and B. Guo, “Complexity quantification of driving
scenarios with dynamic evolution characteristics,” Entropy, vol. 26, no. 12, p. 1033, 2024.

[40] P. Huang, H. Ding, and H. Chen, “An entropy-based model for quantifying multi-dimensional
traffic scenario complexity,” IET Intelligent Transport Systems, vol. 18, no. 7, pp. 1289–1305,
2024.

[41] Y. Cui, D. Isele, S. Niekum, and K. Fujimura, “Uncertainty-aware data aggregation for deep
imitation learning,” in 2019 International Conference on Robotics and Automation (ICRA),
pp. 761–767, IEEE, 2019.

[42] E. Leurent, “An environment for autonomous driving decision-making.” https://github.com/
eleurent/highway-env, 2018.

[43] S. Hoermann, M. Bach, and K. Dietmayer, “Dynamic occupancy grid prediction for urban
autonomous driving: A deep learning approach with fully automatic labeling,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA), pp. 2056–2063, IEEE, 2018.

57

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

[44] R. Danescu, F. Oniga, and S. Nedevschi, “Modeling and tracking the driving environment with
a particle-based occupancy grid,” IEEE Transactions on Intelligent Transportation Systems,
vol. 12, no. 4, pp. 1331–1342, 2011.

[45] A. Nègre, L. Rummelhard, and C. Laugier, “Hybrid sampling bayesian occupancy filter,” in
2014 IEEE Intelligent Vehicles Symposium Proceedings, pp. 1307–1312, IEEE, 2014.

[46] L. Rummelhard, A. Nègre, and C. Laugier, “Conditional monte carlo dense occupancy tracker,”
in 2015 IEEE 18th International Conference on Intelligent Transportation Systems, pp. 2485–
2490, IEEE, 2015.

[47] E. Leurent and J. Mercat, “Social attention for autonomous decision-making in dense traffic,”
arXiv preprint arXiv:1911.12250, 2019.

[48] X. Wang, Z. Li, J. Alonso-Mora, and M. Wang, “Reachability-based confidence-aware proba-
bilistic collision detection in highway driving,” Engineering, vol. 33, pp. 90–107, 2024.

[49] A. Kesting, M. Treiber, and D. Helbing, “General lane-changing model mobil for car-following
models,” Transportation Research Record, vol. 1999, no. 1, pp. 86–94, 2007.

[50] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

[51] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor,” in International conference on
machine learning, pp. 1861–1870, Pmlr, 2018.

[52] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-learning for offline reinforce-
ment learning,” Advances in neural information processing systems, vol. 33, pp. 1179–1191,
2020.

[53] P. Christodoulou, “Soft actor-critic for discrete action settings,” arXiv preprint
arXiv:1910.07207, 2019.

[54] S. Bubeck and R. Munos, “Open loop optimistic planning,” in COLT 2010-The 23rd Confer-
ence on Learning Theory, 2010.

[55] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling for sequence prediction
with recurrent neural networks,” Advances in neural information processing systems, vol. 28,
2015.

[56] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song, “Diffusion
policy: Visuomotor policy learning via action diffusion,” The International Journal of Robotics
Research, p. 02783649241273668, 2023.

[57] L. A. Rodegerdts, Roundabouts: An informational guide, vol. 672. Transportation Research
Board, 2010.

[58] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,”
in Proceedings of the IEEE international conference on computer vision, pp. 2980–2988, 2017.

[59] M. Yeung, E. Sala, C.-B. Schönlieb, and L. Rundo, “Unified focal loss: Generalising dice and
cross entropy-based losses to handle class imbalanced medical image segmentation,” Comput-
erized Medical Imaging and Graphics, vol. 95, p. 102026, 2022.

58

Integrating Occupancy Grids with Spatial-Temporal RL for Complex Driving Scenarios

[60] L. Chen, Y. Wang, J. Yang, Y. Zheng, T. Han, B. Zhang, and T. Cao, “Uncertainty-aware
focal loss for object segmentation,” Engineering Applications of Artificial Intelligence, vol. 149,
p. 110599, 2025.

[61] Z. S. Baltaci, K. Oksuz, S. Kuzucu, K. Tezoren, B. K. Konar, A. Ozkan, E. Akbas, and
S. Kalkan, “Class uncertainty: A measure to mitigate class imbalance,” arXiv preprint
arXiv:2311.14090, 2023.

[62] X. Huang, D. Batra, A. Rai, and A. Szot, “Skill transformer: A monolithic policy for mo-
bile manipulation,” in Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 10852–10862, 2023.

59

