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Abstract

This paper presents a novel dataset for traffic accidents
analysis. Our goal is to resolve the lack of public data for
research about automatic spatio-temporal annotations for
traffic safety in the roads. Through the analysis of the pro-
posed dataset, we observed a significant degradation of ob-
ject detection in pedestrian category in our dataset, due to
the object sizes and complexity of the scenes. To this end,
we propose to integrate contextual information into con-
ventional Faster R-CNN using Context Mining (CM) and
Augmented Context Mining (ACM) to complement the ac-
curacy for small pedestrian detection. Our experiments in-
dicate a considerable improvement in object detection ac-
curacy: +8.51% for CM and +6.20% for ACM. Finally,
we demonstrate the performance of accident forecasting in
our dataset using Faster R-CNN and an Accident LSTM ar-
chitecture. We achieved an average of 1.684 seconds in
terms of Time-To-Accident measure with an Average Pre-
cision of 47.25%. Our Webpage for the paper is https:
//goo.gl/cqK2wE

1. Introduction
According to the National Safety Council, an estimated

40,200 people died on the nation’s roads in 2016, making
motor vehicle crashes the second leading cause of uninten-
tional deaths in the United States [21]. Our work is de-
voted toward the objective of making roads safer with neu-
tral views of the accidents from traffic cameras which are in-
stalled high on a corner of the road. The advantage of third-
person views over first-person views is two-fold: (i) third-
person views have a fixed and wider view because they are
mounted higher; and (ii) traffic camera views can be used in
the public for a vast amount of vehicles daily, thus, the cost
per vehicle per day is lower. While the former enhances the
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Figure 1: (a) Can you depict where the accidents happen
in the image plane?; (b) Can you identify and forecast the
sequences containing accidents? Best viewed in color.

views of traffic accidents, the latter enhances the trade-offs
between cost and safety: higher quality (HD 720p-1080p)
and better featured cameras, such as Palt-Tilt-Zoom HD
cameras, can be used with low cost to monitor the public
crowds. Although the exploitation of traffic camera views
is promising, the number of datasets aimed at learning to
detect and predict the accidents on those views is limited
due to several unaffordable factors: (i) traffic accidents are
rare events, thus, acquiring enough data by recording at a
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road intersection is infeasible because one may have to wait
endlessly for the an accident to happen; and (ii) the ac-
cess to traffic camera data is legally difficult to obtain in
practice. To this end, we propose an effective data collec-
tion process to exploit the edge-case data: YouTube videos
of traffic accidents that have been uploaded by users over
the world. We exploited the search engine of YouTube,
and added our annotation processes using both internal an-
notators and outside workers to build a novel dataset, the
Car Accident Detection and Prediction (CADP) dataset for
multiple purposes: temporal segmentation, object detection,
tracking, vehicle collision, accident detection and predic-
tion. Our dataset contains 230 videos, each video contain-
ing at least one accident captured from fixed traffic cam-
era views and 1,416 segments of traffic accidents. More-
over, we selected 205 segments with HD quality to annotate
spatio-temporal data for object detection, tracking and col-
lision detection. The data is made available for research use
available through https://goo.gl/cqK2wE.
Contributions Our contributions are as follows:
• We introduce a new spatio-temporally annotated

dataset, the CADP dataset, for accident forecasting us-
ing traffic camera views. Our dataset provides a novel
view for traffic accident learning, and we hope to con-
tribute to the enhancement of research on driving edu-
cation as well as road safety.
• We apply state-of-the-art object detection models such

as Faster R-CNN and accident forecasting models to
our dataset and show their results.
• We exploit the contextual information around the ob-

ject bounding box and test the impact of Context Min-
ing and Augmented Context Mining within Faster R-
CNN to improve the detection of small objects such as
person and improve the Faster R-CNN baseline scores.

2. Related Work
Dataset for Car Modelling and Accidents With the de-
velopment of the concepts of smart cities and autonomous
driving, recent works target concerning traffic safety moni-
toring using computer vision techniques. [3] provides infor-
mation about relevant datasets for traffic monitoring at road
intersections: the MIT dataset for traffic camera events (a
19-min video), NGSIM dataset for road traffic modeling,
CBSR dataset for single views at complex intersections,
CVRR dataset which simulated videos generated for traf-
fic modeling, QMUL dataset that contains recording at a
busy intersection and KIT dataset which consists of videos
with fog, rain and snow to model traffic car behaviour
near intersections. [11] performs experimentation’s using
Faster R-CNN [19] to show the detection performance on
the INRIA dataset. For the traffic accident videos, a re-
cent UCF-Crimes dataset [20] has 13 real-world anomalies
such as Abuse, Accidents, Shooting and is focused on un-

derstanding of violent scenes in video. Dashcam Accident
Dataset (DAD) [2] uses Dashboard Camera captured videos
to perform accident forecasting with 2.4 hours of video data.
We believe that both Dashboard camera views and Traffic
camera views could provide critical information for predict-
ing accidents. However, traffic cameras give an overview of
the complete road and thus will be able to track more vehi-
cles as compared to dashboard camera views.
Object Detection In recent years, object detection task
gained pace and [7, 6, 19, 9, 17] utilize the strength of
deep learning [13] in common benchmarks such as PAS-
CAL VOC [5] and Microsoft COCO [16]. R-CNN [7] uses
a region proposal algorithm as a pre-processing step prior
to CNN architecture feature extraction. These proposals are
generated using Edge Boxes [26] or Selective Search [22]
and are independent of CNN. SPP-Net [10] were proposed
to improve the R-CNN speed by sharing computation. Fast
R-CNN [6] reduces the run time exposing the region pro-
posal computation as bottleneck whereas Faster R-CNN im-
plements region proposal mechanism using CNN and thus
integrating region proposal as part of the CNN training
and prediction [19]. Mask R-CNN [9], Single-Shot De-
tector (SSD) [17] and FPN [15] combine multiple feature
maps with different resolutions to naturally handle multiple
object sizes.
Pedestrian Detection predicts information about the pedes-
trian position based on the detection in current frame. [4]
provides a comprehensive overview and arguments to re-
place continuous detection by pedestrian tracking and thus
achieve real-time performance for pedestrian detection. [1]
shows adding extra features, flow information and context
information are complementary additions resulting in sig-
nificant gains over other strong detectors. [24] uses body-
part semantics and contextual information. [14] proposes
a Haar-like cascade classifier design for fast pedestrian de-
tection. [12] proposes an extension to Faster R-CNN using
contextual information with multi-level features to detect
pedestrians in cluttered background obtaining embedding
pooling information from a larger area around original area
of interest.
Accident Detection and Forecasting In recent years, there
have been a few works focusing on the use of cameras
for accident forecasting. For example, [2] uses Dashboard
Cameras for accident forecasting. We believe that there is
a strong requirement for those datasets to improve the reac-
tion time of autonomous vehicles such as self-driving cars,
and help the road surveillance.

3. Car Accidents Dataset
Statistics of our dataset can be found in Table 1 and Fig-

ure 2. Data collection and annotation process are described
in Appendix A. Some key characteristics of our dataset are
as follows:
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Figure 2: The statistics of the CADP dataset.

Table 1: Comparison between our dataset and related datasets. T: temporal annotation; S: spatial annotation (e. g. bounding
boxes or pixel-level annotations); A: traffic accidents; C: videos were captured from a CCTV footage. The “# positives” refer
to the number of videos which contain an accident. This statistics is computed from video-level labels (no accident/accident).
Our dataset is not the largest in terms of the number of hours, but is the largest in terms of number of accidents (positive
events).

Dataset name # videos # positives Total duration Avg. # frames T S A C
UCF-Crimes [20] 1900* 151 128 hours* 7247* 3 7 3 3
DAD [2] 1730 620 2.4 hours 100 3 3 3 7

Ours 1416 1416 5.2 hours 366 3 3 3 3
* These numbers from UCF-Crimes dataset are of 13 categories of crimes (not only for traffic accidents).

• Object size: As shown in Figure 2(c), a major portion
of the CADP dataset is occupied by small objects. Ac-
curate detection of small objects has been a challenge
in surveillance videos for a long time. The CADP
dataset provides additional samples for these objects
from traffic CCTV footage.
• Video length: The average length of the videos in the

CADP dataset is 366 frames per video, which is 3.66x
longer than the dataset from [2]. The longest video has
554 frames. The UCF-Crimes [20] also has a category
for road incidents with long videos, but only temporal
annotations are provided. The CADP dataset provides
a set of videos with full spatio-temporal annotations.
• Number of positive videos (1416 videos) in our

dataset for only traffic accidents is much larger than
that in UCF-Crimes (151 videos of road accidents) and
DAD (about 600 videos). Note that, in CADP, there
are videos with more than one accident. Our dataset
is devoted to traffic accidents (positive events), and we
did not collect videos of negative events. Negative seg-
ments can be critical for learning, but the presence of
negative events can be found easily in other datasets
such as DETRAC [18].
• Time to first accident is the duration from time 0

in the video to the onset of the first accident. In the
fully annotated subset of 205 videos in CADP dataset,

this measure is 3.69 seconds in average. Compared to
DAD [2] (4.50 seconds), CADP has a shorter time-to-
first-accident. This characteristic can affect the design
of experimentation for accident forecasting.

• Real-world data: CADP contains videos collected
from YouTube which are captured under various cam-
era types and qualities, weather conditions (see Fig-
ure 1) and edited/resampled videos.

4. Improved Faster R-CNN and Forecasting
4.1. Improved Faster R-CNN for Object Detection
Faster R-CNN [19] is a deep learning architecture for ob-
ject detection in still images. Like its preceders [7, 6], it
extracts deep features of each proposal regions using a deep
learning backbone such as ResNet-50. However, Faster R-
CNN is an end-to-end architecture, because the proposal
generation step is done using an internal proposal gen-
eration mechanism, the Region Proposal Network (RPN),
which reduces the need for dependence on external proposal
algorithm such as Selective Search or Edge Boxes, with a
sliding window fashion. An important designing aspect of
Faster R-CNN is its two-stage design: after features are ex-
tracted for proposals, they are classified and regressed to
match the anchor boxes. Learning in Faster R-CNN is done
with objectives for bounding box regression and classifica-
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Figure 3: Improved Faster R-CNN with Augmented Context Mining and a system for Accident Forecasting.

tion as follows: Lreg =
∑

i smoothL1(ti − vi) ,Lcls =∑
i− log pu . where u and v are the true class and target

bounding box for a groundtruth anchor, p and t are the pre-
dicted probability of class u and predicted bounding box.
The smoothL1 loss function is defined as in [6].
Implementation details We rescale the image to 600 pixels
size to smallest size of the image as well as use 3 sizes for
the anchor boxes 1282, 2562, and 5122 pixels. Further, the
aspect ratios of the anchor boxes is fixed at 1:1, 2:1 and 1:2
pixels as in Faster R-CNN paper [6].
Training procedure The multi-task objective for learning
Faster R-CNNs is L = Lcls + λLreg. For negative min-
ing, we use the standard approach: after the predicted boxes
are filtered using non-maximum suppression (NMS) at the
overlap threshold 0.7, the RoIs which have confidences in
the range [0.1,0.5) are considered as “hard negative”, and
the RoIs which have confidence larger than 0.5 are consid-
ered as “positive”. Finally, assuming that we need 32 can-
didates to contribute to the final loss, we randomly select
positive RoIs first to fill at least 16 positions, then we ran-
domly select from the negative RoIs to fill all 32 positions.
Only these candidates contribute to the final loss. For data
augmentation, we use horizontal and vertical flips.

4.2. Context Mining
Context Mining As noticed from Figure 2(c), our dataset
consists of objects which are small objects (<100 pixels)
in majority. Moreover, from preliminary results on CADP
using ResNet-50 backbone Faster R-CNN, we found that
there is a significant degradation of accuracy (mAP@0.5)
for ”Person” (pedestrian) category. We argue that, the rea-
son is because, when captured from CCTV traffic camera
footage, a person occupies smaller areas than other vehicle
categories in our dataset. Therefore, the bounding boxes of
the pedestrians often contains fewer pixels than other ob-

jects. To this end, we propose to mine the context informa-
tion around the small objects in CADP dataset, by extract-
ing the context information in the RoI pooling layer [6].
Given the region of interest of a small object x, a context
region c in common sense (Figure 5(a)) contains x. By ex-
tending the context regions, more information is involved
into the deep features. Let C = {ci}ni=1 be the pooled con-
textual features, we choose the best responses from them by
using Maxout networks [8]. By applying the dropout pro-
cess to only linear parts of the signals, the Maxout network
is considered to have more generalization ability than tradi-
tional Dropout approach. The Maxout operator is applied to
C∩{x} to obtain final pooled feature f = Maxout(C∩{x}).
Augmented Context Mining The bounding box annota-
tions for small objects can be inaccurate due to human er-
rors (because the object size is too small and difficult for hu-
mans to draw a tight bounding box, annotators often draw
a larger box or a box which truncates a part of the body).
Furthermore, by enlarging the boxes, due to occlusion, the
context may involve a different object into the box. Thus,
to address these concerns, we also consider a different con-
text mining, the Augmented Context Mining (ACM) to fully
exploit all possible patterns of context around the small per-
son boxes. Rather than gradually extending the small re-
gions to obtain the contexts, we narrow down and extend
the small boxes in both horizontal and vertical directions.
Given a step stride s and the number of horizontal and ver-
tical steps m,n ∈ {0,±1,±2, . . .}, an augmented context
a = xm,n is defined by extending (when m,n > 0) or nar-
rowing down (whenm,n < 0) x. In the Results section, we
compare the performance of these two mining strategies.
Implementation details To control the effects of CM/ACM
on small objects, we introduce constraints based on the area
ratio of the bounding box and the image. Given a bounding
box with areaB and image with area I , and a threshold α ∈
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Figure 4: Contextual patterns. Red bounding boxes indi-
cate the original labels provided by human annotators. Blue
bounding boxes indicate contexts mined by our algorithms.
(a) The contextual bounding box is created by extending the
small object region by s = 2 pixels in horizontal and ver-
tical directions. The information of the original labels (red
box) is preserved.; (b) The augmented contextual bounding
boxes are created by extending or narrowing down the hor-
izontal and vertical sides by s = 2 pixels. Although there
are more bounding boxes with diverse information, there
are also many negative bounding boxes (boxes inside the
red frame) which do not preserve information of original
label.

[0, 1]). The context mining will be applied to a region if and
only if B ≤ αS. We choose α = 0.01 in our experiments.

4.3. Accident Forecasting
Our framework for Accident Forecasting can be found

in Figure 3(c). First, we extracted the features from the
last fc layer (2048D) in Faster R-CNN. The features are
then fed into the Dynamic-Spatial-Attention LSTM (DSA-
LSTM) [2] to output accident scores over time. DSA-
LSTM is built upon the famous Soft-Attention LSTM [25].
However, instead of applying spatial attention to regular
grid, DSA-LSTM distributes the attentional weights to spa-
tial objects detected by a state-of-the-art detector [19]. Fur-
thermore, DSA-LSTM applies to “sequences” of frames
dynamically (when Soft-Attention LSTM applies to a sin-
gle frame for caption generation). The full-frame fea-
tures are also exploited and exponential loss is applied for
training with positive sequences. In our view, the expo-
nential loss fits the nature of traffic accidents in CADP
because accidents often happen suddenly and the dam-
ages grow exponentially in a short time. The exponen-
tial loss for positive events can be formulated as fol-
lows: Lp ({a}) =

∑
t−e−max(0,y−t) log(at), where a is

the attended object, y is the time the accident happens,
and at is the accident probability of a at time t. For the
negative sequences (no accidents), we used cross-entropy
loss: Ln ({a}) =

∑
t− log(at).

Exhaustive negative mining Negative examples are often
critical for learning in various situations. However, CADP
does not provide explicit negatives. A potential source to
mine these examples is existing datasets such as the DE-

TRAC dataset [18]. In this work, we exhaustively mine the
negatives from positive sequences. Given an accident hap-
pens at time t, we mine a positive segment with length 100
frames from time t− 90 to time t+ 10. We randomly mine
a segment with length 100 frames which does not over-
lap with the positive event. Because our videos are longer
than 100 frames in average, this mining scheme was possi-
ble. However, many accidents happen between the first 100
frames and the Time-to-First-Accident in our test set is only
3.69 seconds, therefore sampling from t − 90 may not be
possible. To exhaustively mine the negative segments, we
append the dummy frames before time 0 to have 90 frames.

5. Results

5.1. Experimental setup

Cross-validation We sample a trainval set of 103 videos for
training of object detectors and accident forecasters. The
102 remaining videos have been used to test the forecast-
ers. Our choice was contingent on creating a robust model
which we wanted to test on enough samples and thus split
with a 50:50 ratio (train and test set) where each set has
similar set statistics in terms of number of objects. For ob-
ject detection, from the frames of the 103 videos in train-
val set, we sample randomly three folds (train/test split) to
compute the accuracy. After the cross-validation of object
detectors in trainval set, we select the best performers as
the feature extractor for training the accident forecaster (see
Figure 3(c)).
Implementation details Our system is implemented using
the Tensorflow framework1. During testing, we improve
performance by detecting objects with different scales of
images (multi-scale testing). For SSD, we use the imple-
mentation of [17]. We fine-tune all object detectors in the
CADP trainval set until convergence. For accident forecast-
ing, we follow the details described in the previous section.
The initial learning rate for Faster R-CNN was 10−5 and the
Adam optimizer was used.
Evaluation measures For object detection, we use mean
Average Precision at IoU=0.5 (mAP@0.5) [5] to assess the
accuracy of the detectors. For accident forecasting, we fol-
low [2] and use Time-to-Accident (ToA) and recall, pre-
cision and average precision (AP). To compute the AP, we
sample various thresholds and compute ToA, recall and pre-
cision at each operating point. AP and mean ToA are com-
puted from these data.

5.2. Object Detection
Baselines: SSD vs. Faster R-CNN The comparison be-
tween SSD and Faster R-CNN can be found in Table 2. In-
terestingly, we observed a large gap between the mAP@0.5

1https://www.tensorflow.org/



Table 2: Comparisons between state-of-the-art methods in our dataset. We choose SSD and Faster R-CNN because they are
the popular choices for object detection in surveillance video literature.

Method All Person Car Bus Two-wheeler Three-wheeler Others
SSD [17] 64.70 - - - - - -

Faster R-CNN [19] 84.39 52.26 89.39 97.27 77.56 98.88 91.00

Table 3: Cross-validation results for Faster R-CNN. We used mAP@0.5 (0.5 is IOU score) as the measure. Except the
“Person” category, Faster R-CNN performs stably across all categories of vehicles.

Fold All Person Car Bus Two-wheeler Three-wheeler Others
1 82.32 36.89 81.04 97.24 76.00 98.71 94.58
2 84.39 52.26 89.39 97.27 77.56 98.88 91.00
3 84.33 47.22 85.40 98.57 82.32 98.30 94.58

Mean 83.68 45.46 85.28 97.69 78.63 98.63 93.39

Table 4: Ablation study on different object detectors. s is
the step stride to extend or narrow down the width/height of
a context, nc is the number of contexts in Context Mining,
and m,n are the parameters of ACM.

Method Parameter s mAP@0.5
Faster R-CNN - - 84.33

Context Mining

nc = 2

2

70.52
nc = 4 81.00
nc = 8 90.49
nc = 16 92.83
nc = 2

4

77.43
nc = 4 89.04
nc = 8 92.59
nc = 16 92.84

Augmented CM m = n = 8 4 90.53

Table 5: Person detection results of the best methods.

Method mAP@0.5 Improvement
Faster R-CNN 47.22 -
Context Mining 93.67 +46.45
Augmented CM 92.44 +45.22

Table 6: Performance comparison between different ac-
cident forecasters. ToA@0.8 is the ToA when Recall is
80.0%. The results are obtained after training each mod-
els for 40 epochs like in [2].

Method AP mToA ToA@0.8
DSA [2] 47.36 1.359 1.798
ACM+DSA 47.09 1.457 2.104
CM+DSA 47.25 1.684 3.078

of SSD and Faster R-CNN (approx. 19.69%). From the ob-
servation about the performance of these two detectors, we

choose Faster R-CNN as the baseline for further experimen-
tation. The performance of Faster R-CNN over three sam-
pled folds are reported in Table 3. We can observe stable
performances of this detector in CADP trainval set. How-
ever, we can also observe that the performances degrade and
become unstable in the “Person” category.

Context Mining We choose the third fold to perform ab-
lation study on hyper-parameter of Context Mining (CM)
and Augmented Context Mining (ACM). The results are
shown in Table 4. With appropriate hyper-parameters (nc =
16, s = 4 for CM), CM and ACM significantly outperform
the baseline (+8.51% for CM and +6.20% for ACM). For
pedestrian detection, results in Table 5 indicate significant
improvements of CM and ACM over Faster R-CNN. Be-
tween CM and ACM, CM outperforms ACM by about two
points in terms of mAP@0.5. It implies that mining by
small number of contexts and by extending the original re-
gions gradually can lead to a better performance.

Runtime analysis Increasing the number of contexts re-
sults in an increase of the inference time: for Faster R-
CNN, it takes 0.56 seconds for inference of a single im-
age, while CM (nc = 16, s = 4) takes 1.04 seconds and
ACM (m = n = 8, s = 4) takes 5.81 seconds, with sin-
gle GPU. Thus, mining in a large space of contexts requires
time and resources.

5.3. Accident forecasting

The results for accident forecasting using DSA-
LSTM [2] can be found in Table 6. For a dataset with av-
erage Time-to-First-Accident is 3.84 seconds, we can issue
warning prior to the accidents at 1.359 seconds with high-
est AP is 47.36%. Moreover, when recall is 80%, the ToA
is 1.798 seconds. For Context Mining, the results are 1.684
seconds and 3.078 seconds, respectively. Using CM fea-
tures leads to better forecasting results.



6. Conclusion
We introduced the Car Accident Detection and Predic-

tion (CADP) Dataset from CCTV Traffic Camera videos.
A detailed account of the challenges faced in creation of
the dataset such as data collection, access to traffic cam-
era footage were tackled in the paper. We presented the
results of state-of-the-art object detection and accident fore-
casting models on our dataset. We highlighted the strengths
and weaknesses of these baseline models, and outperformed
the initial results by adding context mining or augmented
context mining. We finally showed that augmented context
mining does not improve the score obtained with a gradual
context mining for object detection. We demonstrate the fi-
nal model for accident forecasting that can predict accidents
about 2 seconds before they occur with 80% recall.
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Figure 5: Data collection and annotation for traffic CCTV videos.

A. Data collection and annotation

A.1. Data collection
The major challenge in collecting data for traffic acci-

dents is two-fold: (i) Abnormality: because the accidents
are rare, although there are live-streams from traffic cameras
mounted on the corner of road intersections, this is infeasi-
ble to wait for an accident to happen; and (ii) Access: access
to traffic camera data is often limited. Due to this challenge,
the data of traffic accidents from fixed third-person views is
often not available for public uses. To this end, in this work,
we attempted to exploit an edge case, the traffic accidents
captured from traffic camera views available on video shar-
ing websites such as YouTube. The whole pipeline for data
collection and annotation can be seen in Figure 5.
Keyword search To collect the data for traffic accidents,
we exploited the search engine and resources available in
YouTube. We used keywords like ”car accidents traffic
camera” to search for relevant videos. This step returned
582 YouTube videos.
Refinement However, the collected videos from these
queries contain many irrelevant items. To collect only rele-
vant items, we employ three annotators to manually watch
and report items as follows. All annotators are instructed
to know that our objective is to collect only videos which
contain at least one accident scene which is captured from
a traffic CCTV footage. The annotators then watched all
collected videos one by one, and answered a survey about
the videos. Besides basic questions to identify whether the
annotators want to download the videos based on explained
objectives, there are three follow-up questions to filter noisy
responses. The first question asks the annotators to justify
their concrete reasons for downloading the videos. The sec-
ond and third questions ask annotators about side aspects
of the videos to discover inconsistency in their responses.
Videos with inconsistent responses will be removed.

A.2. Annotations

After the refinement step, there are 230 videos that were
found to be strongly relevant to our objectives. However, for
each video, there is only a portion relevant to traffic CCTV
footage. Therefore, we employed a two-stage annotation
process to get these relevant segments: first we asked human

annotators to extract the starting and ending time-stamps
for CCTV traffic camera segments from each videos, then
we collected the segments and perform the spatio-temporal
annotation using the VATIC tool [23] (see Figure 5).
Stage 1: Temporal segmentation Most of the YouTube
videos have a duration of several minutes but contain only
several seconds with accidents from traffic CCTV footage.
Using the BeaverDam tool2, human annotators reported the
starting and ending timestamps of each relevant segment.
Based on the reported results, we extracted the frames of
relevant segments using OpenCV3.
Stage 2: Dense Spatio-Temporal annotation After Stage
1, we have 1416 video segments of positive events. The to-
tal duration is 5.24 hours with an average number of frames
of 366 frames per video (see Table 1). About 80% of videos
have a length from 100 to 600 frames. From short videos
(less than 600 frames), we choose 240 videos with HD qual-
ity to do dense spatio-temporal annotation. This stage in-
volved four human annotators and has been done in about
two months. From the 240 selected videos, the annotators
identified 35 videos which are duplicated with one of the
other videos. They are the videos with identical contents
or cropped (resized) versions of another video. Finally, we
have 205 videos with full annotations. The categories of
objects are “Person”, “Car” (including minivans), “Bus”,
“Two-wheeler” (including cyclists, motorbikes), “Three-
wheeler” and “Others” (objects which are not classified in
other categories). About temporal annotations, human an-
notators were asked to mark when a collision between vehi-
cles/pedestrians on the road happens, and when it ends.

B. Quality assurance
We hired two human annotators to do the spatio-

temporal annotation using VATIC tool. During the trial
time, we discovered that the quality of the submitted works
by human annotators was low. Therefore, we extensively
applied common practices to ensure the quality and confi-
dence.

• Peer-review: First, we found three expert reviewers
(validators) to hold the reviewing process. These ex-

2https://github.com/antingshen/BeaverDam
3https://opencv.org/



perts agreed to work voluntarily (no payment). Their
responsibility is to review the submitted works from
human annotators and take appropriate actions: (i) rec-
ommend rejections to clearly bad quality works; (ii)
recommend acceptances to clearly good works; and
(iii) make further investigations on works lying around
borderline. The three experts sometimes directly made
modifications based on the guideline (which will be
described later) to make works lying slightly under
borderline meet the standard and then the works can
get accepted later.

• Annotation guideline: A common error we obtained
during trial time is that there are misunderstanding be-
tween reviewers and annotators. To resolve this prob-
lem, we made a 8-page annotation guideline to share
the knowledge between expert reviewers and annota-
tors. The reviewers contributed to finish the guideline
based on their experience and expertise about the pro-
cess. The definition of objects, annotation procedures
and example of bad works are covered in the guide-
line. These definitions and procedures were decided
based on references (for example, definitions from dic-
tionaries and literatures) and experiences of experts.
Then, we distributed the guideline to the annotators
and asked them to read the guideline carefully. The
guideline is useful to reduce misunderstanding, and
also helped to identify bad workers who did not pay
attention to the guideline. We asked reviewers to re-
port such doubtful works.

• Pretraining: the content of this work can be unfamil-
iar to the human annotators, especially to beginners.
The two human annotators had no experiences about
spatio-temporal annotation before we asked. There-
fore, we spend a trial time with a number of small tasks
to let them understand the work. During this trial time,
three experts provided feedback to grow annotators us-
ing chat and guidelines. The trial time is also voluntar-
ily with very low payment rate (almost 0 cent per hour,
compared to payment rate during the official working
time 15$/hour).

The 8-page annotation guideline and a different report
which detailed the process are already publicly available in
the Internet. Here we share several key insights we obtained
from the work.

• Performance during trial time (pretraining) is quite
low from the standard. After the first trial, one of our
reviewers shouted that we could not barely accept 1%
of your (the annotators) works. The communicator had
to modify this sentence before sending to the annota-
tors, although it can be honest. Later, that sentence was
even written into the guideline by the reviewer.

• After performance meet the standard, the quality
become better, and even the annotators start to pro-
vide feedback to the reviewers. Most of the feedback
from annotators is about software problems, server is
not accessible, etc.

• Collaborative editing can lead to a mess. If more
than one annotator/reviewer modify a work at the same
time, unsaved work of one can be disregarded by an-
other one. To resolve this problem, we first ask the an-
notators to finish their work and submit to the review-
ers. Then, the submitted works are divided into equal
episodes without overlaps which were assigned to re-
viewers in a one-to-one mapping fashion. Reviewers
then returned bad works to the annotators for modifica-
tions with the list of errors. Good works were then im-
mediately saved and those cases are closed. This pro-
cess has been repeated until all works were finished.

Although better and more secure solutions such as Amazon
Mechanical Turk (AMT) are available, due to the volume of
works is not too large and we wanted to save money when-
ever volunteers are available, we chose to do annotation in
this way. For example, the three expert reviewers worked
without payment, while the two human annotators agreed
to work voluntarily during the most inefficient time (trial
time which lasted for about two days).


