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Chapter 1
Overview

Pedestrian safety has become a critical concern due to the higher risk of serious injury they

are prone to in traffic accidents. In the United States, the situation has reached alarming levels,

with pedestrian fatalities increasing dramatically over the past decade. According to the Governors

Highway Safety Association (GHSA), pedestrian deaths rose from 4,280 in 2010 to an estimated

7,508 in 2022, a staggering 77% increase [1]. This surge far outpaces the 25% rise in total traffic

fatalities during the same period, highlighting a disproportionate risk to pedestrians. The severity

of this issue is further emphasized by 2022 seeing the highest number of pedestrian deaths since

1981. On average, 20 pedestrians lose their lives daily while engaging in routine activities such

as commuting, running errands, or exercising. Intersections, where complex interactions occur

between various road users, are particularly dangerous. Approximately one-quarter of all traffic

fatalities and nearly one-half of all traffic injuries in the US occur at intersections [2].

To improve traffic safety, one promising approach is to advance the level of autonomy in

vehicles. This strategy aims to mitigate human-specific problems such as distracted driving and

impaired driving. Autonomous vehicles rely heavily on computer vision algorithms applied to data

from sensors (e.g., RGB cameras, radar, and LiDAR) which are employed to detect and identify

objects within the driving scene.

Although these algorithms perform well in detecting larger objects like vehicles, they struggle

to accurately identify pedestrians and other vulnerable road users. LiDAR provides accurate 3D

representations of objects, but falls short in semantic interpretation. LiDAR also may not give

enough points for smaller objects such as pedestrians. Cameras offer rich semantic details, but

they have limitations in measuring depth accurately. To overcome the deficiencies inherent in

single-sensor processing, multisensor fusion techniques are being devel- oped. These methods

integrate data from multiple sensing modalities to form a comprehensive and reliable perception

system. This fusion aims to combine the depth information of LiDAR with the detailed semantic

information from the cameras, thus creating a more complete and nuanced under- standing of

the driving environment [3]. Although progress in single-vehicle perception has been notable,

it exhibits significant shortcomings, notably in its limited sensing range and susceptibility to

occlusions [4]. Single-vehicle perception performance degrades in the presence of occlusions caused

by other vehicles or obstacles. Distant objects often provide sparse measurements; for instance,

they might only cover a few pixels in images or constitute a small number of points in LiDAR point

clouds. In addressing the challenges of occlusions and long-range issues, the concept of collaborative

perception (CP) has gained traction within the autonomous driving community. This paradigm

extends beyond the single vehicle perception system, allowing for a collective approach through

vehicle-to-everything (V2X) communication technologies. Through connected and autonomous

vehicles (CAVs) and smart infrastructure, collaborative perception aims to forge a more expansive

and integrated sensory network, where vehicles, infrastructure, and other entities in the traffic

1
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ecosystem share complementary perception data. CP aims to construct a more complete and

dynamic representation of the traffic environment, enhancing the decision-making capabilities of

autonomous systems.

In line with the vision of the US DOT for pedestrian safety, as well as for a more connected

autonomous vehicle approach, this work focuses on investigating existing pedestrian detection

challenges, the potential of collaborative or cooperative perception to further improve pedestrian

detection, and the impact of communication on collaborative perception. In Chapter 2, we discuss

challenges in pedestrian detection and introduces a collaborative perception approach for improving

pedestrian detection. Chapter 3 studies the impact of communication on performance of Lidar

based collaborative perception on state of the art collaborative perception method. In Chapter

4, we discuss the potential of state-of-the-art vision language models for better understanding the

pedestrian’s trajectory and behavior around intersections.



Chapter 2
Pedestrian Detection Via Collaborative Perception

2.1 Introduction

2.1.1 Challenges in Pedestrian Detection

Autonomous driving technology has made significant progress in recent years. However,

ensuring the safety of pedestrians through accurate detection remains a significant challenge.

Current systems exhibit a notable performance gap in detecting pedestrians and other Vulnerable

Road Users (VRUs) compared to larger objects such as vehicles. This performance disparity is

illustrated in Figure 2.1, which shows the average AP values for cars, pedestrians, bicycles, and

motorcycles for various distance thresholds ranging from 0.5 to 4.0 meters. Average Precision (AP)

is calculated based on the precision of object detection at various distance thresholds. Precision is

defined as the ratio of True Positives (TP) to the sum of True Positives and False Positives (FP).

The definition of a True Positive varies with the distance threshold (d), which in this evaluation

is considered at four specific distances: 0.5m, 1m, 2m, and 4m. A detection is considered a True

Positive if the center of the predicted bounding box is within the specified distance d from the

center of the ground truth bounding box. The AP value reported in the figure is the average of

the precision values calculated at these four distance thresholds. This multi-threshold approach

provides a comprehensive evaluation of the detection model’s performance, balancing the need

for precise localization (at 0.5m) with more lenient criteria (up to 4m) that may be relevant in

certain autonomous driving scenarios. The figure thus illustrates how different object classes (cars,

pedestrians, bicycles, and motorcycles) perform across these varying levels of localization strictness,

offering insights into the model’s capabilities and limitations in detecting and accurately positioning

different types of road users. The final AP indicated shows the average of AP@{0.5,1,2,4} meters.

The performance on cars consistently outperforms all other categories across all distance thresholds,

with the highest AP of about 0.83 at 4.0 meters. Pedestrians show the second-best performance

among VRUs, but their detection accuracy declines more steeply than cars as the distance threshold

decreases, i.e., as we demand smaller distance between the estimated object location and ground

truth location of that object. Motorcycles and bicycles demonstrate lower AP values overall, with

bicycles showing the poorest detection performance across all thresholds.

Several factors contribute to the underperformance of the computer vision methods on pedestrians

and other VRUs.

• Dataset bias: Existing datasets tend to have more vehicle instances compared to VRUs,

skewing detection algorithms towards larger objects. This imbalance results in models

that are better trained to recognize and localize vehicles, while underperforming on VRUs.

Creating more balanced datasets that accurately represent the diversity and frequency of

VRUs in real-world traffic scenarios is important for improving detection algorithms.

3
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Figure 2.1: Detection performance comparison across object classes. Average Precision (AP) of

top 5 models in the nuScenes [3] Vision track challenge as a function of detection distance threshold

(as of February 2024).

• Physical characteristics: Pedestrians and other VRUs present unique challenges due to

their smaller size, which leads to fewer representative pixels in the images and increased

susceptibility to occlusion. This makes it difficult for current detection systems to accurately

identify and track VRUs, especially in cluttered urban environments. Developing algorithms

that can better handle small-scale objects and partial occlusions is essential for improving

VRU detection.

• Movement patterns: VRUs exhibit less predictable movement compared to vehicles, which

typically follow established traffic rules and road layouts. This unpredictability makes

it challenging for current systems to anticipate and track VRU movements accurately.

Improving trajectory prediction models and incorporating more sophisticated behavior

modeling for VRUs could enhance detection and tracking performance.

• Environmental factors:Detection performance often degrades significantly under

challenging conditions such as poor lighting, sun glare, or extreme obstructions. These

conditions are particularly problematic for VRU detection due to their smaller size and

variable appearance. Developing robust algorithms that can maintain high performance

across a wide range of environmental conditions is crucial for reliable VRU detection in

real-world scenarios.

The widening performance gap between vehicles and VRUs at more stringent distance thresholds

highlights the challenge of precise localization for smaller, more dynamic objects. This underscores

the need for improved detection algorithms and training strategies specifically tailored to enhance

the accuracy of VRU detection in autonomous driving systems. Addressing these challenges

is crucial for improving pedestrian safety and advancing the overall capabilities of autonomous

vehicles. This chapter explores approaches to improve VRU detection, with a focus on collaborative

perception techniques that aim to mitigate these limitations and improve pedestrian safety in

autonomous driving scenarios.
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2.1.2 VRU-Specific Detector Vs Generic Detector

In order to study the need for training algorithms tailored to pedestrians, cyclists, and

motorcyclists, we used DeepAccident dataset [5] to compare the baseline model trained with six

classes to a VRU-specific specific detector. The baseline DeepAccident model has car, truck, van,

cyclist, motorcyclist, and pedestrian classes. A comparison is made with a VRU-specific model

trained with 3 classes, namely pedestrian, cyclist, and motorcyclist.

DeepAccident DeepAccident [5] is introduced for end-to-end motion and accident prediction

tasks on the autonomous vehicle side, along with various perception tasks in V2X

(vehicle-to-everything). It contains a dataset recorded from four vehicles and one infrastructure

each with six cameras at the intersection. In our experiment, we used samples with VRU classes

Figure 2.2: Performance of model trained on only three VRU classes versus generic DeepAccident

[5] baseline model trained on six classes

(pedestrians, motorcyclists, and cyclists) to compare the performance of a model specifically trained

with VRU classes with the performance of a generic baseline model trained with six classes, namely

car, truck, van, cyclist, motorcyclist, and pedestrian.

Figure 2.2 demonstrates the performance improvement gained by training a VRU-specific

model. The model trained with pedestrians, cyclists, and motorcyclists outperformed the baseline

model in AP@{0.5,1,2,4} meters for all three classes, suggesting the need to design VRU specific

detectors. It also shows that there is a performance difference between the three classes. This can

be attributed to the class imbalance problems in the dataset, as the number of pedestrian instances

is greater than that of motorcyclists and cyclists.

To address this gap, we investigate a computer vision approach that enhances pedestrian

detection through camera-only collaborative perception. This involves using synchronized cameras

in both vehicles and infrastructure to cooperatively detect pedestrians at intersections. Due to

the unavailability of annotated real-world datasets collected in a collaborative setup, we generate

synchronized vehicle and infrastructure-side video using the high-fidelity CARLA simulator. This

synthetic dataset is then used to train and evaluate deep learning algorithms for pedestrian

detection in a collaborative setting. Our preliminary results demonstrate the potential of CP

to significantly improve pedestrian detection. Our main contributions include the following:

• We first discuss in detail the concept of collaborative perception and review related works in
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detail

• Creating a synchronized dataset from both vehicle and infrastructure perspectives,

specifically tailored for pedestrian detection under normal and challenging conditions

• Developing a vision-only collaborative perception technique focused on pedestrian detection

2.2 Toward Collaborative Perception

Collaborative perception has emerged as a vital component in improving vehicle safety

and navigation. This paradigm uses collective sensory input from surrounding vehicles and road

infrastructure to create a comprehensive understanding of the environment, mitigating limitations

such as limited field of view and occlusion. Collaborative perception can be camera-only [6],

LiDAR-only [7, 8], or involve fusion of processed image and LiDAR point cloud features. In

terms of data sharing and collaboration stage, collaborative perception in autonomous vehicles

can be categorized into early fusion, intermediate fusion, and late fusion. Collaborative perception

has become an important option for in improving vehicle safety and navigation. This paradigm

leverages the collective sensory input of multiple agents, such as vehicles and infrastructure,

through vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I) and vehicle-to-everything (V2X)

communications, fostering a more comprehensive understanding of the driving environment by

improving the capabilities of individual agents by mitigating limitations such as limited field of

view and occlusion. There are three types of CP, early fusion, intermediate fusion, and late fusion,

based on the data sharing and fusion stage [9]. Fig 2.3 illustrates the three collaborative stages.

2.2.1 Fusion Types

• Early Fusion: Early fusion involves the exchange of raw-level data, such as images or LiDAR

point clouds. This method requires higher communication bandwidth due to the transmission

of unprocessed raw data. While it potentially offers better performance by allowing each

agent access to the most complete information, it comes with significant drawbacks. The

high bandwidth requirement can be a limiting factor in real-world applications. Additionally,

this approach necessitates substantial processing capability at all agents to handle the raw

data, which may not always be feasible or cost-effective.

• Late Fusion: Late fusion involves transmitting the final perception outputs, such as

detection bounding boxes. This approach requires less bandwidth than early fusion, making

it more efficient in terms of data transmission. However, it may lead to processing and

transmission delays, as the data is processed by each agent before sharing individual agent’s

perception outputs. While late fusion is bandwidth-efficient, it has its own set of challenges.

The transmission delay can be critical in time-sensitive applications, and the need for

processing capability at all agents remains a consideration.

• Intermediate Fusion: Intermediate fusion represents a balance between early and

late fusion methods. Each agent processes the raw data into intermediate features

and then compresses them before transmitting. This approach aims to strike a better

performance-bandwidth trade-off. By exchanging processed features rather than raw data

or final outputs, intermediate fusion can potentially offer a good compromise between the

high performance of early fusion and the bandwidth efficiency of late fusion. This method

allows for more flexibility in managing the balance between data transmission and processing

requirements.
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Figure 2.3: Schematic representation of the three fusion types in collaborative perception [10]:

(a) Early collaboration, where raw data is shared directly; (b) Intermediate collaboration, where

features extracted from raw data are shared; and (c) Late collaboration, where only final results

are shared among agents.

2.3 Related Work

2.3.1 Pedestrian Detection

Accurately detecting vulnerable road users (VRUs), such as pedestrians, cyclists, and

motorcyclists continues to be a significant challenge for autonomous vehicles (AVs). While

the main focus is detecting road vehicles, pedestrians are the most explored among the

VRU classes. Works on VRU perception involve a pure camera-based approach, fusing from

multiple sources and different V2X-based data exchanges between the VRUs and the vehicles,

showcasing a range of approaches from communication technologies to machine learning and

computer vision.

In [11], a computer vision-based system is proposed for recognizing VRU hand signals, using

CNN for enhanced detection accuracy. [12] introduced machine learning-based movement

models for predicting VRU behavior, demonstrating improved trajectory prediction [13]

developed a deep generative model for detecting interactions between vehicles and VRUs

at intersections, using a conditional variational auto-encoder. [14] conducted an extensive

study on the parameters affecting VRU detection in ADAS, highlighting the complexity

of VRU appearances and behaviors. The PROSPECT project [15] proposed a method

to improve active VRU safety systems by integrating various data sources and developing

advanced sensor processing and intervention strategies. [16] emphasized the importance of

simulation software in the development of VRU detection systems, combining radar and

vision sensing for effective pedestrian and cyclist detection. [17] introduced an approach

using mobile phones for vehicle-to-VRU communication, enhancing the detection and safety

of VRUs. [18] proposed a multi-sensing and communication approach, leveraging smart city

sensors and vehicle and VRU data for predicting potential collisions. [19] evaluated the

performance of V2X communications technologies in enhancing VRU safety, particularly in

urban intersection scenarios.[20] discussed the effectiveness of messaging protocols in V2X

communication for VRU protection, emphasizing the combination of sensor data sharing and

active VRU transmissions.
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2.3.2 Collaborative Perception

Collaborative perception has emerged as a vital component for enhancing vehicle safety and

navigation. This paradigm leverages the collective sensory input from multiple agents, such

as vehicles (V2V), vehicle to infrastructure (V2I), and vehicle-to-everything (V2X), to create

a comprehensive understanding of the environment by improving the capabilities of individual

agents by mitigating limitations such as limited field of view and occlusion.

The majority of studies focus on using one type of sensor for collaboration. Methods like

Robust V2V [21], V2VNet [22] and Adversial V2V [23] use point cloud input for detection,

prediction, and planning tasks of autonomous vehicle via intermediate (feature-level)

collaboration. DiscoNet [10] uses a mix of early and intermediate collaboration with

collaborative graph representation. Other LiDAR-only collaborative perception works

include AttFuse [24] which introduced attention-based intermediate V2V collaboration,

In similar work, V2X-ViT [25] introduced vision-transformer-based collaboration, while

SyncNet [26] studied latency-aware collaboration in addition to attention-based fusion. Other

research such as Where2comm [27] focused on reducing communication bandwidth needs

without affecting performance. Coopernaut [28] explores end-to-end driving via cooperative

perception. MPDA [29], and DI-V2X [30] delved into collaboration with unidentical agents.

CoAlign [21] introduced a collaborative scheme robust to unknown pose errors, [31], DUSA

[32] explores sim2real adaptation in cooperative perception. CO3 [33] studied unsupervised

contrastive learning for vehicle-infrastructure point cloud features collaboration. UMC

[34] focuses on multi-resolution collaborative learning. SCOPE [35], CORE [36], FFNet

[37], CoBEVFlow [38], FF-Tracking [39], and AR2VP [40] contribute to detection and

segmentation tasks focusing on vehicles’ navigation. While almost all previously listed works

focus only on vehicles, AdaFusion [31] gives focus to pedestrian detection as well.

To further improve perception performance in cooperative settings, recent multi-modal

intermediate-level fusion approaches explored LiDAR-camera fusion for each agent. CoBEVT

[41] and CoBEVFusion [42] demonstrated that bird’s-eye view fusion can significantly

improve segmentation and detection tasks in a cooperative setting, HM-ViT [43] introduced

graph transformer for lidar-camera fusion and between agent’s interaction, LAV [44] used

multi-modal sensor reading for perception and planning in CARLA driving challenge. Due

to the high cost of LiDAR and the ability of the camera-based approach to mimic human-like

perception, recent work focuses on camera-only collaborative perception. QUEST [45],

CoCa3D [46], V2XFormer [5] use camera-only collaboration. In other application, When2com

[47] for collaborative robotic learning from aerial RGB image.

Datasets and simulators have been equally crucial in propelling research in this domain.

Emphasis is being given to diverse and high-quality synthetic data generated on CARLA

and real cooperative datasets as well to advance this specific field. They provide the realistic

scenarios and benchmarks required to train and evaluate collaborative perception models.

V2X-Sim [48], DeepAccident [5] and DAIR-V2X [49] are noteworthy contributions, offering

a large-scale setting for vehicle-infrastructure cooperative 3D object detection. Similarly,

OPV2V has become a standard benchmark for assessing the performance of LiDAR-based

multi-agent perception systems enabling researchers to simulate and evaluate complex V2X

interactions.

Within the scope of current collaborative perception research, both datasets and algorithms

predominantly concentrate on vehicle-related tasks such as detection, tracking, and motion
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forecasting. However, this focus has inadvertently resulted in less robust perception

capabilities for other road users, including pedestrians, cyclists, and motorcyclists.

Addressing this disparity is important for a more comprehensive and safer understanding

of the road environment.

2.3.3 Perception Uncertainty

Estimating perception uncertainty is critical for AV perception. The estimated uncertainty

is used to measure robustness under challenging conditions, fuse perception from multiple

sensors (lidar, camera, radar, etc) [50], [51], [52] as well as to exchange perception results

from multiple agents. [50] introduced a method that combines multi-source perception

fusion and deep ensemble for real-time evaluation in autonomous vehicles. This approach

assesses the effectiveness of single-frame perception results and spatial uncertainty of detected

objects. Similarly, [51] presented Uncertainty-Encoded Mixture-of-Experts (UMoE) for

LiDAR-camera fusion, which uses MC dropout to effectively incorporate single-modal

uncertainties into multi-modal fusion, enhancing object detection under various challenging

conditions. Additionally, [53] addresses the domain drift problem in autonomous driving with

a domain adaptive object detection algorithm based on feature uncertainty. Their approach,

which includes a local alignment module and an instance-level alignment module guided

by feature uncertainty, shows improved detection performance in unlabeled data. These

methods show the purpose of perception uncertainty in autonomous driving, in tackling key

challenges of multi-modal fusion, robust detection, and domain adaptation, and paving the

way for more reliable and accurate autonomous driving systems.

2.4 Proposed Approach

This section outlines our methodology for generating a comprehensive dataset using the

CARLA simulator and employing it for collaborative pedestrian detection. We first describe

the dataset generation process, detailing the simulation setup and data collection techniques.

Following this, we introduce the collaborative perception method, emphasizing the per-agent

detection unit and the subsequent fusion of detection results from multiple agents to enhance

accuracy and robustness in complex urban scenarios.

2.4.1 Dataset Generation

An annotated, synchronized vehicle and infrastructure side dataset that covers a wide range

of scenarios involving pedestrians is currently not available. Thus, a multi-camera and

multi-agent dataset that focuses on pedestrians is generated using the high-fidelity CARLA

[54] simulator.

CARLA. CARLA (Car Learning to Act) is an open-source simulator for autonomous

driving research. It provides a high-fidelity virtual environment built on the Unreal Engine,

offering realistic urban settings with various weather conditions, vehicles, and pedestrians.

CARLA, as illustrated in Figure 2.4 allows for the generation of synchronized multi-agent

data, including multiple camera views from both vehicles and infrastructure, LiDAR point

clouds, depth maps, semantic segmentation, instance segmentation, and bounding boxes for
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objects. The simulator can be controlled via Python scripts, enabling customized scenario

creation and data collection. This flexibility makes CARLA ideal for generating diverse data

sets tailored to specific research needs, such as collaborative perception scenarios geared

toward pedestrians.

Figure 2.4: CARLA simulator setup for collaborative perception dataset generation. The simulator

provides a realistic urban environment, while Python scripts control scenario generation. Various

sensor outputs and annotated results are collected, including RGB images, depth maps, semantic

segmentation, and bounding boxes.

Agent and sensor setup. Figure 2.5 illustrates an example of how vehicles and

infrastructure units with cameras mounted on them are placed at the intersection. Each

vehicle and infrastructure unit is equipped with six cameras working at 20 fps frame rate.

Each camera has a field of view (FOV) of 70◦, except for the back camera, which has an FOV

of 110◦, following the nuScenes [3] data collection framework. Each image is tagged with

timestamp and saved at a 10Hz interval rate. The dataset covers different scenarios such

as occlusions and non-line-of-sight situations, crowded pedestrian scenes, diverse weather

conditions and different times of the day (noon, sunset, etc.), and varying speeds and profiles

of pedestrians.

2.4.2 Camera Only Collaborative Pereption Method

Per Agent Detection Unit

We adopt V2XFormer [5] as birds eye view (BEV)-based 3D detection method for single-agent

detection. It involves processing each image sequence with the image view encoder and

transforming it into BEV features in each agent. Then, the BEV feature is fed to the

detection head, which results in bounding box candidates and a spatial heatmap that serves

as detection confidence.
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Figure 2.5: Dataset generation setup and sample images. Left: Bird’s-eye views

of intersections showing infrastructure (green) and vehicle (blue) agents, each equipped with

six cameras. Right: Four sample images showcasing diverse scenarios: rainy conditions

(top-left), nighttime scene (top-right), sun-glare effect (bottom-left), and sunny daytime traffic

(bottom-right). Blue bounding boxes indicate pedestrians. These images demonstrate challenging

scenarios including occlusions, varying lighting conditions, and complex urban environments,

crucial for training robust collaborative perception models.

Figure 2.6: Multi-frame image processing pipeline for 3D object detection for each agent,

based on [5]. The workflow includes image-view encoding, view transformation, and ego-motion

compensation across multiple time frames (t, t-1, ..., t-N+1) for N past frames. A spatio-temporal

BEV encoder processes these inputs to generate BEV features. The decoder then produces a

confidence map and 3D bounding boxes.

Image Encoding

Given a sequence of T frames from agents N , each equipped with six cameras, every

frame from each camera is encoded into a rich and dense representation of features F ,

F ∈ RH
′
×W

′
×C

′

, where H
′
,W

′
, C

′
are the height, width, and channel of the characteristic

of the image.

Image Features to BEV Transform

Each image feature of T frames is discretized into a pseudo-density point cloud. Then, the

temporal data is encoded, and past features are warped to the current reference frame using a

spatiotemporal encoder that extracts spatial and temporal information using 3D convolution,

resulting in aligned BEV features for each agent.
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Detection & Confidence Estimation Head

The detection head consists of convolutional blocks that generate unfiltered 3D bounding

boxes. Additionally, it includes a learnable heatmap prediction block that outputs a Gaussian

heatmap representing the detection confidence. The heatmap is created with a Gaussian

kernel of radius r and standard deviation σ with the peak at the center of the bounding box.

This allows a fine-grained understanding of the detection performance across different spatial

regions and fusion based on that.

Figure 2.7: Collaborative perception for pedestrian detection. Each agent captures

sequences of images that are encoded into image features from the six cameras. These features are

subsequently converted into Birds-Eye-View (BEV) representations. The BEV features are fed into

a 3D detection head that estimates per agent 3D bounding box detection (Det.) and detection

confidence (Conf.) as shown in 2.6 which is then transformed with transformation matrix [R, t]

into the main unit for cooperative prediction.

2.4.3 Vehicle-Infrastructure Collaborative Detection

The detection results from multiple agents (vehicles and infrastructure) are fused based on

confidence estimates in the Gaussian heatmap. Each agent produces a confidence heatmap

and a list of 3D bounding boxes that are not filtered with Non-maximum Suppression (NMS).

After the confidence map and candidates for the bounding boxes of each agent are transformed

into the main cooperative unit, the final bounding box is obtained by choosing the result

from the agent with the highest spatial confidence for that bounding box. This fusion process

is guided by confidence levels, ensuring that more reliable detections have a greater influence

on the combined detection output.

2.5 Numerical Experiments

Collaborative perception setup: Each frame has a resolution of 1600x900 which is resized

to 224x224 and fed to the image backbone, resulting in a spatial dimension of 704x256. The

image features are then transformed into a BEV feature transformation of grid size 1024x1024,

corresponding to an actual ground area of 102.4x102.4 meters around the agent. We first

train a single agent detection baseline and then study the impact of adding collaborative

agents.
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2.5.1 Preliminary Results and Discussions

Figure 2.8 illustrates the average precision (AP) calculated for pedestrian detection in a

collaborative setting and compares it with the performance of a single agent. The single agent

vehicle or infrastructure side AP is calculated as the average over all six agents’ detection

results. For collaborative setup, using infrastructure as the main unit, we gradually add

one agent at a time and record the AP. Performance has steadily improved as the number

of collaborative agents increases going from AP of 0.34 for the single agent case to 0.51

when all the agents participate in the fusion process. This preliminary result suggests that

a collaborative vehicle-infrastructure system, where vehicles and infrastructure share their

perception results, can considerably improve pedestrian detection performance.

Figure 2.8: Collaborative perception performance. Average Precision (AP) improves as the number

of collaborating agents increases. Starting from a single agent or average of vehicle-only or

infrastructure-only (AP = 0.34), performance improves with vehicle-infrastructure collaboration

(AP = 0.41), reaching the best performance when all 6 agents (4 vehicles and 2 infrastructure

units) collaborate (AP = 0.51). V and I represent vehicle and infrastructure, respectively

2.6 Conclusion

This chapter presented a camera only collaborative perception approach to pedestrian

detection. We generated a synthetic dataset using the CARLA simulator, designed for

collaborative perception scenarios mainly involving pedestrians. This dataset aims to address

the current lack of annotated, synchronized vehicle and infrastructure data for pedestrian

detection in a collaborative perception set-up. We then proposed a camera-only collaborative

perception method that utilizes these multi-agent data. Our preliminary experiments

indicated an improvement in Average Precision (AP) when using collaborative perception

compared to single-agent detection. While these initial results are promising, further research

is needed to fully validate the approach. This work represents a step towards enhancing

pedestrian detection in autonomous driving systems, potentially contributing to improved

safety for vulnerable road users in urban environments.



Chapter 3

Impact of Communication Limitations on Collaborative

Perception

3.1 Introduction

As discussed in Chapter 2, the use of vehicle-to-everything (V2X) communications for

sensor data exchange is emerging as a crucial strategy for enhancing pedestrian safety.

Collaborative perception (CP) transcends single-vehicle perception systems, enabling a

collective approach through V2X communication technologies. By leveraging connected

and autonomous vehicles (CAVs) and smart infrastructure, CP aims to create an expansive

and integrated sensory network, facilitating the exchange of complementary perception data

among vehicles, infrastructure, and other entities within the traffic ecosystem. This allows the

construction of a more comprehensive and dynamic representation of the traffic environment,

thereby enhancing the decision-making capabilities of autonomous systems.

CP involves a complex multi-agent1 fusion2 process, which introduces several practical

challenges. For instance, communication latency and interruptions can significantly impact

perception performance, necessitating strategies to mitigate the effects of time delays.

Efficiency in collaborative perception is crucial, as the system must manage data exchanges

within bandwidth constraints without compromising the integrity and utility of shared

information. Moreover, collaborative systems are susceptible to adversarial attacks, requiring

robust defenses to ensure data reliability. Accurate alignment of data from multiple sensors is

also critical for maintaining CP performance, which can be affected by location errors between

collaborating agents. Additionally, integrating perception models from different vehicles

presents unique challenges, demanding advanced fusion techniques to manage discrepancies

and maintain overall system performance. Addressing these challenges requires a multifaceted

approach to ensure the seamless integration of collaborative perception into operational

systems. Consequently, managing communication limitations such as latency, bandwidth

constraints, collaborative agents’ location errors, and communication interruptions is

becoming increasingly critical. Most CP methods operate under the assumption of ideal

communication conditions, focusing primarily on improving perception performance. Despite

extensive research in CP, the impact of communication limitations has not been fully

explored. Figure 3.1 illustrates the effects of latency and communication interruptions

on LiDAR-based detection, underscoring the need to study the impact of communication

limitations on CP. This chapter examines the effects of latency, communication interruptions,

1”Agent” refers to a vehicle or infrastructure unit with sensing and connection capabilities.
2”Collaboration” and ”multi-agent fusion” are used interchangeably.

14
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Figure 3.1: Impact of communication limitations on collaborative detection. (a) Ideal

communication with all agents; (b) Presence of delayed collaborative agents (by 400 ms), resulting

in false/misaligned detections; (c) Presence of communication interruptions, leading to more missed

detections compared to (a).

and bandwidth constraints on collaborative detection performance using a state-of-the-art

CP model. To study these impacts, we conduct the followings:

– An investigation of how different levels of latency influence the performance of

LiDAR-based collaborative detection.

– An analysis of the impact of various compression levels during data transmission on

collaborative perception systems.

– An evaluation of the effects of random communication interruptions on collaborative

detection results.

– A proposed method to mitigate latency and communication interruption using a

lightweight spatio-temporal feature prediction model.

The remainder of this chapter is structured as follows: We begin with a brief introduction

to CP, followed by a detailed review of existing literature on CP systems. We then describe

the graph-based CP framework used to assess the impact of communication limitations.

Subsequently, we discuss the results of our experiments and conclude by summarizing our

findings and outlining considerations for future work in this domain.

3.2 Related Work in Non-ideal Collaborative Perception

Most collaborative perception (CP) methods discussed in Chapter 2, Section 2.3.2 assume

ideal communication scenarios. Some recent work has begun to address the challenges posed

by non-ideal conditions in real-world applications. These studies investigate how factors

such as latency, bandwidth limitations, pose errors, and the gap between simulated and real

environments can significantly impact the performance of CP systems.

In studying latency-aware collaboration, SyncNet [26] has made notable contributions. This

work not only studied the effects of communication delays but also integrated attention-based

fusion and temporal alignment techniques to mitigate these issues. Similarly, Where2comm

[27] tackled the critical challenge of bandwidth limitations in CP systems. Their approach
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focused on reducing communication bandwidth requirements without compromising the

overall performance of the collaborative perception system.

Addressing the challenge of pose errors in CP, RobustV2V [21] proposed a collaborative

scheme designed to be robust against unknown sensor location errors. This work is

particularly significant as accurate pose information is crucial for effective collaboration

between multiple agents. In an another work, V2X-ViT [25] introduced a vision

transformer-based collaboration method capable of handling both ideal and noisy localization

scenarios, further enhancing the robustness of CP systems in real-world conditions.

The gap between simulated and real environments, a persistent challenge in autonomous

driving research, has been addressed by DUSA [32]. This work explored sim2real adaptation

techniques in the context of cooperative perception, aiming to improve the transferability

of models trained in simulated environments to real-world scenarios. Additionally,

CO3 [33] contributed to this area by studying unsupervised contrastive learning for

vehicle-infrastructure point cloud feature collaboration, potentially offering a way to reduce

the reliance on large amounts of labeled real-world data.

Some researchers have also explored CP in the context of heterogeneous agent networks.

MPDA [29] and DI-V2X [30] investigated collaboration strategies for non-identical agents,

addressing the reality that different vehicles and infrastructure elements may have varying

sensing and processing capabilities. These works contribute to making CP systems more

adaptable and robust in diverse real-world settings. Lastly, Coopernaut [28] took a holistic

approach by exploring end-to-end driving via cooperative perception. This work potentially

bridges the gap between perception and control in autonomous driving systems, considering

the challenges of non-ideal conditions throughout the entire driving pipeline.

Although recent studies have advanced collaborative perception (CP) in non-ideal conditions,

a significant gap remains between theoretical progress and real-world applications. Many

current CP efforts assume ideal communication scenarios, overlooking crucial limitations

in autonomous driving environments. Our study addresses this gap by systematically

investigating the impact of communication challenges on CP performance. Specifically,

we examine the effects of varying latency levels, data compression ratios, and random

communication interruptions on LiDAR-based collaborative detection. To mitigate

these issues, we propose a lightweight spatio-temporal feature prediction model. This

comprehensive approach bridges the gap between theoretical advancements and practical

implementations, contributing to the development of more robust and reliable CP systems

for real-world autonomous driving scenarios.

3.3 Collaborative Perception Framework

In this section, we cover the CP framework used to study the impact of communication

limitations. In this work, we adopt the state-of-the-art open-source LiDAR-based CP

method named coperception with DiscoNet [10]. This method uses a student-teacher

knowledge distillation model in which the teacher uses raw-level fusion and the student uses a

graph-based feature-level collaborative method as shown in Figure 3.2. The following sections

discuss the chosen method and the components that are used to simulate the communication

limitations.
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3.3.1 Early Fusion During Training

Early collaboration provides the upper bound of performance due to the aggregation of raw

LiDAR data from all collaborating agents. As shown in Figure 3.2, the teacher model uses

early collaboration that allows for a comprehensive view of the driving environment. This

enables the use of combined data from all agents with the aim of minimizing performance

degradation due to issues such as occlusion and perception limitations faced by individual

agents. The teacher model processes these aggregated data to guide the learning process in

a student model during the inference phase. This model acts as a guide to force the student

model to improve CP performance.

The teacher model employs a feature encoder-decoder and output header that are used only

during training. For the feature encoding process, the system receives an aggregated 3D

point cloud (Xa) from all participating agents {X1, ..., Xk}, merging their collected data

points within a global coordinate framework. To align the global point cloud X to each

agent’s reference frame, it is transformed to match the individual coordinate system of

the agents, ensuring that the teacher and student models process data within a consistent

coordinate system. In the decoding stage, the teacher model feature map is transformed

through the feature decoder to produce a bird’s-eye-view (BEV)-based feature map. This

map then passes through the output header, producing category classifications and bounding

box regressions. The training follows the conventional teacher-student methodology, where

it is trained independently using binary cross-entropy for category classification and smooth

L1 loss for bounding box regression.

The overall loss is a summation of individual loss functions, representing the combined

classification and regression errors for each agent’s detected ground truth within their

perception field.

3.3.2 Graph-Based Intermediate Fusion

Intermediate collaboration is collaboration that focuses on the exchange of intermediate

features, rather than raw data or final perception output. This method strikes a balance

between bandwidth-heavy early collaboration and potentially noisy late collaboration.

Therefore, the student model employs an intermediate-level fusion. Based on [10], a

graph-based intermediate collaboration is used to model interactions and data exchange

between agents, as illustrated in Figure 3.2. In this graph-based collaboration, the nodes

represent an agent, and the edges represent matrix-valued features that are exchanged

between the collaboration agents. The strength of collaboration is encoded in these edges,

which is learned during training. The collaboration graph facilitates the aggregation of

features from different agents, allowing for a more nuanced and efficient fusion of information.

This process is designed to adaptively learn the specific contributions of each agent to the

overall perception task.

Similar to the teacher model, the student model also includes feature encoding-decoding

stages and taskhead. Here, each agent i processes the 3D point cloud input Xi with its

feature encoder. The encoder transforms the 3D point cloud into a bird’s-eye-view (BEV)

map suitable for 2D convolution operations. This BEV map, a 2D representation of the 3D

point cloud, undergoes a series of convolutional, batch normalization, and ReLU activation

operations to refine and enrich the feature data. The feature maps are then compressed
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prior to transmission. The collaboration graph allows feature map updates through agent

interactions. The collaboration graph process consists of transmission, where agents exchange

compressed feature maps and attention network, where each agent computes attention

weights to assess the importance of received feature maps; and aggregation, where agents

update their own feature maps by integrating received features based on the attention.

Through this intermediate collaboration, agents can share compressed, yet informative,

feature maps, reducing the required communication bandwidth while still enhancing the

collective perception capability. The effect of bandwidth requirement versus performance is

studied by adjusting the compression level of the matrix-valued weights of the edges on the

graph. The graph also allows for random communication interruption by removing randomly

chosen edges from the graph and studying the impact. To study the effect of latency, a frame

delay is introduced in the transmission of features from one agent to another.

Following the collaboration process, each agent uses a decoder to refine the updated BEV

feature map. This refinement involves upsampling the feature map through a series of layers,

each enhancing the details by merging with corresponding features from earlier stages and

reducing channel dimensions via convolution. Subsequently, an output header processes this

enhanced map to produce the final detection results, identifying object categories and their

bounding boxes through convolutional pathways. This structured approach ensures that

each agent can accurately interpret and respond to the collective data gathered during the

collaboration.

Figure 3.2: Collaborative perception framework. A LiDAR-based collaborative perception

approach utilizing a student-teacher knowledge distillation model [10]. Here, the teacher model

employs raw-level fusion, while the student model adopts a graph-based feature-level collaboration

method. The collaborative graph is further illustrated in Figure 3.3.

3.3.3 Feature Compression

To study the impact of the size of the information that is being exchanged, each collaborative

agent has the ability to compress its feature map (F i
s) before transmission to reduce the

bandwidth requirement. As in most previous works, a 1×1 convolutional filter is used to
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Figure 3.3: Collaborative and communication graph. Each node, {1, 2, 3, 4, 5} represents one

collaborative agent. Each edge Fi−>j is the transmitted feature from agent i to agent j when i

is different from j and its own extracted feature if i = j. Using this collaborative graph, different

levels of latency, communication interruption, and compression are simulated.

compress the channel dimension. Hence, Bi = Compress(F i
s), where Bi is compressed feature

map of the ith agent, which is subsequently transmitted to other agents.

3.3.4 Communication Interruption

Communication interruption is a critical factor that can significantly affect the performance

of collaborative perception systems. Using the collaboration graph G(V,E) shown in Figure

3.3, where V represents the agents and E the communication links between them, we

introduce random interruptions in the communication links between agents to simulate the

unreliability of real-world networks. To simulate communication interruptions, we randomly

disable certain edges E between pairs of agents from all possible pairs (i, j), where each pair

represents direct communication between two agents. This method allows us to examine

the impact of network interruptions on the system’s ability to collaboratively perceive the

environment. By altering the number of disrupted edges E in various tests, we can test how

effectively the CP system can operate amidst realistic communication interruptions.
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Figure 3.4: Spatio-temporal prediction module for handling latency and communication

interruption – Historical features undergo sequential 2D convolution to extract spatial features,

followed by LSTM layers to capture temporal dynamics and then passed through a fully

connected layer, which ensures accurate feature recovery, compensating for any data loss due

to communication limitations.

3.3.5 Latency

Latency significantly influences the performance of collaborative perception systems. In our

model, we incorporate latency directly into the communication graph to assess its impact on

data exchange between agents. Each edge (i, j) ∈ E is associated with a latency τij , which

represents the delay encountered in the transmission of information from agent i to agent j.

In doing so, we can analyze the impact of various latency scenarios on the overall effectiveness

of the CP system, evaluating how well the system can maintain detection accuracy when there

is a delay.

3.3.6 Recovery using spatio-temporal prediction module

Under ideal conditions, the aggregate feature at node i at time t, denoted F a
t , is computed

by fusing features from node j to node i, where j is an element of the set K containing all

collaborating nodes. i.e.

F a
t = ϕfuse({F j→i

t }) for i, j ∈ K (3.1)

Communication interruptions and latency occur when node j is unable to send or sends

delayed features to node i, rendering the data F j→i
t unusable at time t. In this case, the

missing information is estimated from the historical feature information through the missing

information recovery process.

F̂ j→i
t = predict(F j→i

(t−T ), F
j→i
(t−T+1), . . . , F

j→i
(t−1)) (3.2)

Where F̂ t
j→i denotes the recovered feature at node i coming from node j at time t, using the

spatio-temporal prediction module based on the features from the previous T timesteps.

This process predicts the current state of the features from accumulated past T historical

information. Figure 3.4 illustrates the architecture used for spatio-temporal feature

prediction. Historical features Ft−T , . . . , Ft−1 are input to a series of 2D convolutional layers

to first extract spatial patterns in the feature space. Then, the sequence of flattened features

is processed through LSTM layers. The output from the final LSTM layer, denoted as yT , is

passed to a fully connected (FC) layer, which maps it to the recovered feature space.
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3.4 Experiments

3.4.1 Dataset

V2X-Sim [48]. V2X-Sim is a synthetic dataset designed for collaborative perception in

autonomous driving in V2X scenarios. It is generated with CARLA and SUMO co-simulation

to simulate realistic scenarios [54]. It includes 100 scenes, each lasting 20 seconds with

recordings at 5Hz. Each scene includes 100 frames. The dataset provides synchronized

sensor data from multiple vehicles and one road-side unit (RSU) with a maximum of five

collaborating vehicles per scene. Each agent records LiDAR points with annotation for

detection, tracking, and segmentation tasks.

Dataset split. We used the V2X-Sim version 2.0 split which comprises 10,000

synchronized total frames, divided into 8,000 for training, and 1,000 each for validation

and testing. In total, the dataset contains 37,200 training samples and 5,000 samples each

for validation and testing.

3.4.2 Benchmark models studied

We studied the impact of communication limitations on early, intermediate, and late fusion

models with the single agent model as a baseline.

Single-agent : This baseline model processes point-cloud data independently for each agent

without any collaborative inputs.

When2com [47] : This technique introduces an attention-based system to determine the

formation of communication groups and when to communicate it with focus on minimizing

bandwidth usage while maximizing the perception performance.

V2VNet [22] : V2VNet uses a convolutional neural network to generate and transmit

Figure 3.5: Impact of latency on collaborative detection, showcasing the detection

performance for five agents under varying latency conditions.

compressed intermediate representations of LiDAR data, which are then fused using a



3.4. EXPERIMENTS 22

spatially-aware graph neural network.

DiscoNet [10] : This method constructs a directed collaboration graph with matrix-valued

weights on the edges, which extracts useful spatial areas using a knowledge distillation

learning mechanism. During inference, only the small student model is used for prediction.

Late Fusion: In this approach, the final results of individual agents are combined and shared

with each other.

3.4.3 Metrics

We quantify the detection performance using the mean average precision at a given

intersection over the union (IoU) threshold. For instance, for a 0.7 IoU threshold,

mAP@IoU=0.7 =
1

N

N∑
i=1

APi@(IoU = 0.7) (3.3)

Where APi@(IoU = 0.7) represents the average precision for the i-th class among a total of

N classes. The IoU threshold of 0.7 means that for a detection to be considered true positive,

the overlap between the predicted bounding box and the ground truth bounding box must

be at least 70%.

3.4.4 Results and Discussions

Impact of latency

Figure 3.5 shows the mAP@IoU=0.7 scores for five distinct agents on detection performance

for different latency scenarios, ranging from the ideal case with no delay to a maximum

of four frames of delay, τij = {1, 2, 3, 4}. A single frame delay represents 200 ms. There

is an immediate and significant decrease in performance after a delay of one frame. As

latency increases, a further, albeit smaller, decrease in performance is observed. This trend

culminates in the lowest performance at a four-frame delay, indicating that increased delays

disrupt collaborative detection capabilities.

Impact of communication interruption

The impact of communication interruption is illustrated in Figure 3.6. As the number of

agents experiencing communication interruptions increases, the corresponding mAP decreases

for each of the five agents.

This suggests that the effectiveness of the CP system is notably sensitive to interruption in the

collaboration graph. All agents show a steep decline in mAP even with a single interruption,

highlighting its dependence on uninterrupted data flow. The detection performance gets

worse when a second agent is disconnected from the graph.

Effect of compression

Figure 3.7 illustrates the impact of data compression on the performance of agents in a

collaborative detection system. Increasing compression from 2x to 16x leads to a clear

decrease in mAP, with some agents such as Agent 4 and Agent 5 being more adversely affected

than others. This highlights a trade-off between compression for efficient communication
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Figure 3.6: Communication interruption effect on collaborative perception. Comparison

of the performance of agents operating without interruptions where one or two agents are not part

of the collaborative group. The columns represent per agent detection as the levels of interruptions

increases.

Table 3.1: Performance Comparison between single-agent baseline and collaborative methods under

interruption (Inter.) and latency (Lat.)

mAP@IoU=0.50 mAP@IoU=0.70

Single Agent 0.47 0.42

Fusion Type Ideal Inter. Lat. Ideal Inter. Lat.

Late Fusion 0.58 0.43 0.39 0.54 0.39 0.34

When2com [47] 0.48 0.31 0.40 0.41 0.25 0.35

V2VNet [22] 0.72 0.51 0.64 0.65 0.47 0.56

DiscoNet [10] 0.73 0.37 0.65 0.66 0.35 0.56

DiscoNet + STP - 0.67 - 0.61

and perception fidelity, emphasizing the need for careful calibration of compression levels in

collaborative perception tasks.

Table 3.1 presents the performance of different collaborative methods under ideal

communication conditions, 400ms latency, and communication interruption of two agents.

Under ideal conditions, all collaborative methods outperform the single-agent baseline, with

early fusion achieving the highest mAP values. However, the introduction of latency and

communication interruptions causes notable performance degradation across all methods.

The spatiotemporal prediction method with DiscoNet [10] (DiscoNet + STP) demonstrates

resilience, maintaining higher mAP values compared to other approaches in both latency and

interruption scenarios, highlighting its robustness in non-ideal communication environments.
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Figure 3.7: Collaborative perception under different compression level: mAP@IoU = 0.7

for five different agents under varying levels of feature compression. The compression levels

evaluated include no compression (ideal scenario), 2x, 4x, and 16x compression, showing the

trade-off between feature size and detection performance.

Qualitative discussion

In Figure 4.2, we present a qualitative evaluation of latency and communication interruption

on collaborative detection performance.

Ideal communication. For comparison, Figure 8(a) shows the ideal communication

scenario. In this case, the agents exchange uninterrupted and synchronized perception results,

allowing for accurate detection and minimal false or missed detections. The predicted boxes

align well with the ground-truth boxes, indicative of a high-confidence consensus among the

agents. This scenario is used as a reference to compare the impact of latency and interruption.

Latency. Figure 4.2(b) shows the performance of the method when there is a delay in

collaboration between agents. Latency leads to an increase in false positives where agents

incorrectly identify objects based on outdated information and negative detections, where

current objects are missed due to the absence of timely data exchange indicating that

timely data sharing is critical for maintaining system performance. In addition, there is a

misalignment in detection as agents are unable to accurately reconcile the temporal disparity.

Interruption The effect of communication interruption is shown in Figure 4.2(c). There

are more missed detections compared to the ideal-case scenario shown in Figures 4.2(a)

and even 4.2(b) with latency, as the lack of data exchange yields a considerable increase in

missed detections, and agents are unable to compensate for the information void. However,

communication interruption shows fewer false detections compared to fusion with latency in

as 4.2(b), implying that the absence of information can be less detrimental than inaccurate

information in certain contexts.
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Figure 3.8: Visualization of the effects of latency and communication interruptions on

detection. Blue and red boxes represent ground truth and predictions, respectively. Different rows

represent different scenes. (a) displays results with uninterrupted and delay free communication

between agents; (b) demonstrates the detection degradation due to latency; (c) highlights the

impact of communication interruption; and (d) presents the detection recovery through the

spatio-temporal prediction network.

Information recovery via prediction

Figure 4.2(d) demonstrates the benefit of handling latency and interruption using

spatio-temporal prediction method. The recovery process helped align the detections that are

misaligned due to latency. In addition, storing historical frames and adding the prediction

module during interruption enabled partially recovering some of the missed detection

indicated by green dashed ellipses. The recovered detections highlight the module’s ability in

utilizing historical and contextual data to ensure reliability and robustness in collaborative

detection systems, compensating for temporal and spatial data loss caused by communication

impacts.

3.5 CONCLUSION

This chapter has examined collaborative perception systems in the context of communication

challenges, focusing on the effects of latency, communication interruption, and bandwidth

limitations. Our numerical experiments, conducted using the V2X-Sim dataset, reveal

significant performance degradation under non-ideal conditions: latency of 200ms (one
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frame delay) caused a significant decrease in mAP, while communication interruptions led

to a steep decline in performance even with a single agent disconnected. Compression for

saving bandwidth shows a clear trade-off between communication efficiency and detection

accuracy, with 16x compression significantly reducing mAP. The proposed spatio-temporal

prediction (STP) method demonstrates resilience, achieving an mAP of 0.67 and 0.61 at

IoU thresholds of 0.5 and 0.7 respectively under non-ideal conditions, outperforming other

methods including DiscoNet (0.65 and 0.56) and V2VNet (0.64 and 0.56). These results

underscore the critical need for robust and adaptive algorithms in collaborative perception

systems that can maintain performance under varying real-world communication conditions.

Future work should focus on further improving the resilience of the system to communication

challenges and validating these approaches in diverse real-world scenarios, particularly for

applications that involve vulnerable road users.



Chapter 4

Vision Language Model For Pedestrian Trajectory

Estimation

4.1 Introduction

Accurate prediction of pedestrian trajectories is crucial for pedestrian safety. As autonomous

vehicles become more prevalent, the ability to anticipate and respond to pedestrian

movements has become a critical challenge in ensuring the safety of pedestrians. Pedestrian

trajectory prediction presents inherent complexities stemming from the dynamic nature

of urban environments and the diverse, often unpredictable behavior of pedestrians. The

task requires interpreting subtle visual cues and contextual information while meeting the

demands of real-time processing in safety-critical situations. These factors collectively

contribute to the challenge of developing accurate and reliable prediction models for

autonomous driving systems.

Earlier pedestrian trajectory prediction methods have relied on recurrent neural networks

(RNNs) [55] and long-short-term memory (LSTM) networks [56] to process temporal data

for this task. These approaches have shown promise in capturing sequential patterns in

pedestrian movements. However, they often struggle to fully incorporate the rich visual

and contextual information present in real-world scenarios. More recent methods have

explored the use of advanced architectures to use both the context from the video frames

and ego-vehicle attributes. For instance, [57] proposed a future person localization method

for first-person videos, [58] developed an egocentric vision-based future vehicle localization

system for intelligent driving assistance. These approaches have made significant strides

in improving prediction accuracy, but still face challenges in integrating diverse sources of

information and reasoning about complex scenarios.

Recent advances in vision language models (VLMs) offer new possibilities to improve the

accuracy, interpretability, and robustness of pedestrian trajectory prediction. VLMs excel in

joint visual-textual understanding, providing rich pre-trained representations and enhanced

context interpretation through multi-modal reasoning. To leverage these advantages, we

propose a vision language reasoning approach on the Pedestrian Intention Estimation (PIE)

[59] benchmark. This novel approach, dubbed PieVLM (Pedestrian Intention and trajectory

Estimation using Vision Language Model), harnesses the power of VLMs for pedestrian

trajectory estimation. PieVLM aims to address current limitations in the following ways:

– Utilize VLMs’ capability to process complex visual and semantic information jointly

– Incorporate textual descriptions and annotations seamlessly into the prediction process

27
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– Enhance context understanding through multi-modal reasoning

– Offer more interpretable predictions through natural language explanations

– Improve the overall accuracy and robustness of pedestrian trajectory estimation

This chapter introduces the PieVLM architecture and demonstrates its potential to enhance

pedestrian safety in autonomous driving scenarios.

4.2 PieVLM: Vision Language Model for Pedestrian

Trajectory Prediction

PieVLM leverages vision language models (VLMs) for enhanced pedestrian trajectory

prediction through two main techniques. The first employs a two-stage approach:

pre-training with visual-linguistic supervision followed by fine-tuning for trajectory

prediction, enabling rich contextual understanding. The second explores end-to-end

prediction by framing the task as image-text to text, directly utilizing VLMs’

language modeling capabilities. These methods aim to improve prediction accuracy

and interpretability in autonomous driving scenarios by integrating advanced language

understanding with spatial reasoning.

4.2.1 Pre-training followed by Task-specific Finetuning

The pre-training approach leverages Paligemma [60], a large-scale vision-language model, for

pedestrian trajectory prediction through a two-stage process. Paligemma, which combines

the SigLIP [61] vision encoder and the Gemma-2B [62] language model, is designed to handle

a variety of tasks through a simple image-text in, text out approach. We begin by further

pretraining the Paligemma on a dataset of scenes with pedestrians as illustrated in the upper

part of Figure 4.1. This pretraining stage utilizes image-text pairs where the text describes the

pedestrian’s location, actions, and other attributes, enhancing Paligemma’s understanding

of pedestrian behavior in urban contexts. Following this, we fine-tune the pre-trained model

specifically for trajectory prediction.

During fine-tuning, we provide sequences of images and corresponding text descriptions as

input, training the model to generate accurate trajectory predictions as output after the

features are processed using temporal model. This two-stage process allows us to adapt

Paligemma’s powerful vision-language capabilities to the specific task of pedestrian trajectory

prediction, potentially improving both accuracy and interpretability of the predictions in

complex urban environments.

4.2.2 End-to-end Trajectory Prediction With VLM

For the end-to-end PieVLM, we adopt Florence-2 [63], a powerful vision-language model that

advances unified representations across vision and language tasks. Florence-2 is designed to

handle a variety of tasks through a prompt-based sequence-to-sequence framework, with

robust pre-trained features leveraging a vast dataset of 5.4 billion visual annotations for

pre-training. This approach frames pedestrian trajectory prediction as a text-to-text task,

leveraging the model’s ability to process and integrate both visual and textual inputs. The
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Figure 4.1: Two stage PieVLM architecture for pedestrian trajectory prediction. The upper

section illustrates the pre-training phase, where image-text pairs are processed to learn pedestrian

attributes and contexts. The lower section shows the fine-tuning stage, integrating pre-trained

features with a temporal module to predict trajectories.

input to the model consists of two primary components that provide a rich, multimodal

representation of the scene and pedestrian behavior.

The first component is a structured textual prompt that encapsulates detailed information

about the scene and pedestrian status. This prompt begins with a frame identifier, such as

“<PIE PREDICT> Frame 1:”, followed by the pedestrian’s current location encoded as a

series of coordinates, for example, “<loc 656><loc 681><loc 670><loc 766>”. The prompt

also includes critical contextual information such as the pedestrian’s occlusion status (e.g.,

“is full occluded from ego vehicle view”), relevant traffic elements like traffic light locations

and states (e.g., “ <loc 531><loc 591><loc 539><loc 618> Type: regular State: green”),

and additional frames of pedestrian location data to capture temporal dynamics.

The second input component is an image frame that provides the visual context of the scene.

This image is processed through a Vision Encoder, which extracts relevant visual features

that complement the textual information. The image typically shows the pedestrian and

their immediate surroundings, offering visual cues that may influence trajectory prediction.

Florence-2 processes these inputs through several sophisticated stages. Initially, the textual

prompt undergoes tokenization and embedding, transforming the structured text into a

format the model can efficiently process. Concurrently, the Vision Encoder converts the input

image frame into a rich set of visual features. The model then combines these multimodal

inputs – the embedded text and visual features – leveraging its deep architecture to interpret

the complex relationships between textual descriptions and visual cues.
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Figure 4.2: End-to-End PieVLM architecture for pedestrian trajectory prediction. The system

integrates structured text prompts (top left) containing spatial and contextual information

with image frames (bottom left). These inputs are processed through a vision-language model

comprising a tokenizer, embedding layer, and vision encoder which are then concatenated. The

model then generates predictions of future pedestrian trajectories (right), after the fusion of textual

and visual features.

The output of this end-to-end process is generated in a structured text format, predicting

the “Pedestrian Future Trajectory” across multiple frames. Each frame in the prediction

includes the expected future location coordinates of the pedestrian, formatted similarly to

the input (e.g., “<loc 714><loc 668><loc 730><loc 777>”). This format allows for precise

spatial predictions while maintaining the text-to-text paradigm.

By framing trajectory prediction in this manner, PieVLM can directly map from rich,

multimodal inputs to detailed trajectory predictions. This approach potentially captures

intricate relationships between visual elements, textual descriptions of the scene, and future

pedestrian movements that might be challenging to model using traditional computer

vision techniques alone. The end-to-end nature of this method, combined with the

powerful Florence-2 architecture, offers a novel and potentially more nuanced approach to

understanding and predicting pedestrian movements in complex urban environments.

4.3 Numerical Experiments

4.3.1 Datasets

For this study, the Pedestrian Intention Estimation (PIE) dataset [59] is used. The PIE

dataset contains over 6 hours of egocentric driving videos, comprising 911k frames from six

urban locations. It features annotations for 300k frames, including 2.1 million bounding boxes

for 1,842 unique pedestrian samples, as well as annotations for vehicles, traffic lights, and

signs. Each frame provides detailed spatial, temporal, and behavioral information, including
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pedestrian actions, attributes, and occlusion levels. The dataset also includes synchronized

ego-vehicle movement data and pedestrian intention probability annotations, ranging from 0

to 1, enhancing its utility for predictive modeling in autonomous driving applications.

4.3.2 Metrics

We present the results for a 0.5-second past observation period and a 1-second future

prediction, corresponding to 15 past frames and 30 future frames at a rate of 30 frames

per second. The trajectory prediction metrics, all reported in pixels, are as follows:

– Average Displacement Error (ADE): The average Euclidean distance between

predicted and ground truth centers over all prediction time steps.

ADE =
1

T

T∑
t=1

√
(xp

t − xg
t )

2 + (ypt − ygt )
2 (4.1)

where (xp
t , y

p
t ) is the predicted center position of the bounding box containing the

pedestrian and (xg
t , y

g
t ) is the ground truth center position at time step t, and T is

the total number of prediction time steps.

– Final Displacement Error (FDE): The Euclidean distance between the predicted

final center position and the ground truth final center position.

FDE =
√

(xp
T − xg

T )
2 + (ypT − ygT )

2 (4.2)

where T is the final prediction time step.

– Average Rotated Bbox (ARB): The average RMSE of bounding box coordinates

over all prediction time steps.

ARB =
1

T

T∑
t=1

√√√√1

4

4∑
i=1

[(xp
t,i − xg

t,i)
2 + (ypt,i − ygt,i)

2] (4.3)

where (xp
t,i, y

p
t,i) and (xg

t,i, y
g
t,i) are the predicted and ground truth coordinates of the

i-th corner of the bounding box at time step t, respectively.

– Final Rotated Bbox (FRB): The RMSE of bounding box coordinates at the final

prediction time step.

FRB =

√√√√1

4

4∑
i=1

[(xp
T,i − xg

T,i)
2 + (ygT,i − ygT,i)

2] (4.4)

where (xp
T,i, y

p
T,i) and (xg

T,i, y
g
T,i) are the predicted and ground truth coordinates of the

i-th corner of the bounding box at the final time step T , respectively.

All metrics are computed based on pixel coordinates, with lower values indicating better

performance.
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4.4 Preliminary Results

Initial experiments with PieVLM have shown promising results compared to baseline

methods, although comprehensive evaluations are still ongoing. Using the pre-training

followed by the finetuining method (PieVLM-I) as indicated in Table 4.1 shows promising

result in accurately predicting the pedestrian’s trajectory. The Florence-2 version

(PieVLM-II) demonstrated an Average Displacement Error (ADE) of 15.42 pixels and Final

Dislacement Error (FDE) of 35.84 pixels for trajectory prediction, suggesting competitive

performance in estimating pedestrian movements as shown in Table 4.1. Although these

initial results are encouraging, more metrics and more extensive evaluations are needed

to fully assess the performance of PieVLM across various scenarios and compared to

state-of-the-art methods.

Table 4.1: Trajectory Prediction Results on PIE Dataset

Method ADE FDE ARB FRB

FOL [58] 73.87 164.53 78.16 143.69

FPL [57] 56.66 132.23 - -

B-LSTM [56] 27.09 66.74 37.41 75.87

PIEtraj [59] 21.82 53.63 27.16 55.39

PIEfull [59] 19.50 45.27 24.40 49.09

BiPed [64] 15.21 35.03 19.62 39.12

PedFormer [65] 13.08 30.35 15.27 32.79

PieVLM-I 18.82 60.39 35.16 67.17

PieVLM-II 15.42 35.84 21.11 47.21

4.5 Conclusion and Future Work

PieVLM represents a novel approach to pedestrian trajectory estimation by leveraging

the power of vision language models. The use of pre-trained VLMs, combined with

task-specific fine-tuning and temporal modeling, shows promise in capturing complex visual

and contextual information for more accurate predictions. The preliminary results suggest

that this approach has the potential to advance the state of the art in pedestrian trajectory

prediction. An end-to-end approach where visual-linguistic input and text output are used

has also shown a promising result in improving pedestrian trajectory prediction.

Here’s the revised version with the dataset link as a hyperlink:



PUBLICATION AND PRODUCT

Paper: Shenkut, D. Vijaya Kumar, B.V.K. Impact of Latency and Bandwidth Limitations

on the Safety Performance of Collaborative Perception (2024 IEEE International Conference

on Computer Communications and Networks (ICCCN) ): URL Pending

Dataset: CVIPS Dataset, check dataset section

Code: https://github.com/cvips/cvips
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