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ABSTRACT The rising popularity of self-driving cars has led to the emergence of a new research field in
recent years: Autonomous racing. Researchers are developing software and hardware for high-performance
race vehicles which aim to operate autonomously on the edge of the vehicle’s limits: High speeds, high
accelerations, low reaction times, highly uncertain, dynamic, and adversarial environments. This paper
represents the first holistic survey that covers the research in the field of autonomous racing. We focus
on the field of autonomous racecars only and display the algorithms, methods, and approaches used in
the areas of perception, planning, control, and end-to-end learning. Further, with an increasing number
of autonomous racing competitions, researchers now have access to high-performance platforms to test
and evaluate their autonomy algorithms. This survey presents a comprehensive overview of the current
autonomous racing platforms, emphasizing the software-hardware co-evolution to the current stage. Finally,
based on additional discussion with leading researchers in the field, we conclude with a summary of open
research challenges that will guide future researchers in this field.

INDEX TERMS Autonomous systems, autonomous vehicles, intelligent vehicles, advanced driver assis-
tance, simultaneous localization and mapping, path planning, control.

I. INTRODUCTION

WHAT aerospace engineering is to aviation, motorsport
is to automotive technology. For over a century now,

racing series such as Formula 1, Indy Car, or the World Rally
Championship have inspired research and product innovation
to improve performance and safety in commercial road vehi-
cles. These developments include well-known elements such
as the disc brake, the turbocharger, or production measures
for fiber composites (e.g., carbon). In more recent years,
developments in the hybrid powertrain and the connectivity
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(real-time measurement and transfer of vehicle data) of the
vehicles have emerged. With millions of dollars of invest-
ment and prestige at stake, these developments target a
singular goal: The racecar must achieve the fastest lap time
and thus win the race at the end. With a vehicle that moves at
the dynamic limits of handling, that reaches high velocities,
that is designed for aerodynamic efficiency, and that con-
sists of pure lightweight construction, traditionally the target
of the minimum lap time can only be achieved through
extremely novel, sophisticated, and radical developments.
But the technical development of the racecar is only half
of the effort.
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In motorsport racing, it all boils down to the ability of
the driver to operate the racecar at its limits [1], [2]. Expert
race drivers are extremely proficient in pushing the racecar
to its dynamical limits of handling, while accounting for con-
tinuously changing parameters such as tire wear, changing
brake bias, and engine maps from turn to turn, communicat-
ing strategy and status with the team in the pits, and trying
to maintain track position or overtake fierce competitors all
while driving at speeds exceeding 300 km/h.
All of these facets manifest themselves in the innumerable

research and development challenges sought to be addressed
in the burgeoning field of autonomous vehicle racing. The
current state of the art of autonomous driving software –
either from commercial companies or researchers – can oper-
ate autonomously but only to a limited velocity. Everything
that we find in classic motorsport can also be found in
autonomous motorsport - with one difference: The racecar-
driver is based on software only. This means that a highly
sophisticated autonomous driving software needs to replace
the human pilot. It should be capable of detecting other vehi-
cles, localizing the vehicle position relative to the opponents
and the track while driving at high speeds, planning dynamic
trajectories to allow overtaking in adversarial environments,
and correcting at high frequency to the steering angle to
stay on the racetrack. Furthermore, the vehicle needs to exe-
cute a performance assessment on its own by adjusting the
aerodynamics, energy distribution, differential settings, or
brake balance settings based on tire wear, temperature, and
weather. On this premise, an autonomous racecar exceeds the
requirements for the software to a vast extent in comparison
to an average passenger car - which provides many learning
outcomes, research questions, and new algorithmic develop-
ments [3], [4]. It is also worthy of note that the requirements
for autonomous racecars versus passenger vehicles can be
quite disparate - precluding a direct transplant of a complete
autonomous driving stack. Therefore, autonomous racing has
emerged as a field where advanced algorithmic approaches
are tested and then individually transferred to the develop-
ment of autonomous passenger vehicles - similar to classic
motorsport.
This paper provides the first survey of state-of-the-art

research in the field of autonomous vehicle racing. By
summarizing, classifying, and evaluating the different soft-
ware and hardware developments, we provide a holistic
overview of the research in this field. Finally, we discuss
future research directions by highlighting open questions and
challenges in autonomous racing.

A. CONTRIBUTIONS
In this survey, we present the efforts and research conducted
in recent years in the field of autonomous racing. This work
has four main contributions:

1) We provide the first survey to comprehensively cover
the topic of autonomous vehicle racing for both
software and hardware developments.

2) We extensively review all research papers that
developed new autonomy software for autonomous
racecars. By splitting this software review into sub-
sections of perception, planning, and control, we
detail which methods and approaches were used. We
compare the different approaches and explain their
algorithmic setup. Furthermore, we discuss recent
efforts made with techniques from the field of deep
neural networks (DNN) and reinforcement learning
(RL) to achieve a partial or full end-to-end pipeline
for autonomous racing.

3) We review the current autonomous racing competi-
tions, which provide hardware, a racing environment,
and an organization (e.g., sports and technical reg-
ulations). We compare the different racing series
and hardware against each other and give a holistic
overview for potentially interested researchers.

4) Finally, we list open research questions and challenges
in the field of autonomous racing. We discuss that these
open challenges can be applied to the area of pas-
senger cars, too, and provide opportunities for future
researchers to work on relevant research topics.

B. PRELIMINARY REMARKS
1) DEFINITION: AUTONOMOUS RACING

Although the term autonomous racing can be referred to dif-
ferent applications (e.g., drone racing), we focus on research
in the field of autonomous racing cars. These racecars need
to have four wheels, can either have a combustion engine
or electrical engine as the main power unit, can be real
racecars (e.g., Formula 1 car) or small-scale vehicles (e.g.,
1:10 scale). In addition, the software and hardware surveyed
here must have a clear connection to the field of automobile
racing. This means that the authors of these papers either
used specific hardware that is acting in a racing environment
(e.g., racetrack, adversarial setup) they used a particular sim-
ulation that displays a racecar within a racing environment
(e.g., a racing game for PC) or their research demonstrates
specific solutions for a racing problem (e.g., driving fast
autonomously around the racetrack). Although some authors
present results and algorithms for high-speed autonomous
driving on the freeway, this work is not covered in this sur-
vey because neither the aspect of handling the vehicles at the
limits nor the adversarial context is given here sufficiently.

2) RESEARCH CATEGORIZATION

The field of autonomous racing provides plenty of devel-
opment and research categories. For this survey, we want
to display both software and hardware efforts in the area
of autonomous racing and therefore, we use the following
perception - planning - control pipeline [239] depicted in
Figure 1 to categorize the research papers.
Research and developments in the field of autonomous rac-

ing hardware (sensors and vehicle hardware) are discussed
in Section III. Unfortunately, we have not seen any specific
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FIGURE 1. Autonomous driving pipeline including both hardware and software that
provides the categorization for the survey in the field of autonomous racing.

developments of sensors for the purpose of autonomous rac-
ing and therefore, we heavily focus on the used racing vehicle
platforms. By presenting vehicle setups (sensors, compu-
tation hardware, racing environment), we provide a clear
overview of which hardware is available for researchers.
The biggest part of this survey paper presents research and
software in the field of perception, planning, and control
in Section II. In Section II-A perception, we cover all algo-
rithms that provide either a solution for mapping, localization
or object detection. In Section II-B planning we display
global and local trajectory and behavior planners. The final
Section II-C is used to present algorithms in the field of con-
trol and displays the solutions for path and velocity tracking
at the handling limits. Unfortunately, many papers out there
act on the intersection of planning and control. Those papers
have no clear distinction in which field they belong and there-
fore, we decided to categorize them in either field based on
their focus. The method of DNNs has become popular in
recent years and different authors proposed so-called end-
to-end approaches that solve the autonomous driving task.
These techniques are described in Section II-D. In addition,
some authors proposed evaluations with racecars, complete
software pipelines, modeling efforts, and simulation envi-
ronments for autonomous racecars that do not fit in the
proposed categories. Those papers are listed in Section II-E.
In summary, this survey covers all research papers in the
field published until the beginning of 2022.

II. AUTONOMOUS RACING SOFTWARE
A. PERCEPTION
Perception is the general term for all algorithms that perceive
the environment and derive knowledge about it. In particu-
lar, perception includes detecting objects, detecting the free
space, mapping the environment as well as localizing the
autonomous vehicle. In an autonomous racing environment
we deal with high speeds and therefore the question arises:
How fast is too fast? Falanga et al. [56] tried to answer
this question for autonomous robots with an additional case
study on autonomous quadrocopters. The authors conclude
that the maximum latency an autonomous system can tolerate
to guarantee safety (not crashing in an object) is related to the
desired speed, the agility of the system (e.g., the maximum
acceleration it can produce) and the perception parameter

FIGURE 2. Racetrack with environmental specifics: Inner-and outer bounds, racecar
objects, walls and run-off area.

of the sensors (e.g., the sensing range). For autonomous
racecars the same parameters can be taken into account but
no particular evaluation regarding high speed perception for
autonomous racecars has been done yet. The current state
of the art in the field of autonomous racing perception is
summarized, categorized and displayed in Table 1.
A racetrack normally provides some specifics that can

not be found on normal streets. As depicted in Figure 2, a
racetrack consists of a single lane that is the main driveable
space. This lane is defined by an inner and outer bound
that can consists of additional curbs in the turns. On both
left and right side of the track there are zones consisting
of grass, gravel or tarmac (run-off area) where racecars can
drive in an evasive maneuver or if they miss the race line.
The racetrack is finally surrounded by walls. Depending on
the racing series these types of the racetrack features can
vary (e.g., Formula E: no gravel or grass). We define the
fundamental problems for autonomous racing perception as
the following:

• High speed object detection.
• High speed localization and state estimation.
• Localization on wide areas without specific landmarks.
• Precise localization information necessary to achieve
high dynamic trajectory planning and control.

Although the racetrack provides a very simple structure
with a single driveable lane, the long distance to the walls
and non-existing landmarks make this environment quite dif-
ficult to perceive. None of the cited papers use predefined
High-Definition Maps (HD-Maps) that are known from pas-
senger autonomous driving development. An open-source
library [79] of racetracks provides a simple 2D-birds-eye-
view with inner and outer bounds (x-and y-Position) of about
30 racetracks around the world that can be used for planning
but not for localization. In Nobis et al. [136] an adaption and
enhancement of well-known simultaneous localization and
mapping (SLAM) algorithms (Google Cartographer [240],
GMapping) is described to create maps of large-scale outdoor
environments. Palafox et al. [144] use a vision-based method
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TABLE 1. Overview of research in the field of autonomous racing perception.

to detect the free space when no lane lines are present by
only using camera images and depth information as input
for a DNN.
Most perception research for autonomous racing is listed

in the field of localization techniques. Although many
research vehicles are equipped with differential GPS (dGPS)
that delivers a high localization accuracy, the goal of
many autonomous racing researchers is to deliver soft-
ware based localization solutions only. Both [28] and [70]
use a 1:10 scale vehicle for their localization techniques.
While Brunnbauer and Bader [28] use the camera to
detect cones that create features to enhance the odome-
try localization, Gotlib et al. [70] map the track with an
onboard 2D-LiDAR and run a Robot Operating System
(ROS) based Adaptive Monte Carlo Localization (AMCL).
The same AMCL approach is also used and adapted by
Stahl et al. [177] to run on the Roborace research vehicle.
By using pre-generated maps based on LiDAR data, the car
achieves a mean absolute lateral error of 0.086m at a velocity
of 150 km/h. A comparison to this work is done in [213] were
odometry, GPS and LiDAR data is fused in a Kalman Filter
(KF) based on a purely kinematic vehicle dynamics model to
achieve localization at high speeds. The Roborace vehicle is
also used for the localization research of Renzler et al. [158],
Zubaca et al. [224] and Schratter et al. [229].

To increase the localization performance at high speeds
the distortion of the LiDAR measurement is analyzed and
a compensation is proposed in [158]. It is shown that
this correction can be straightforward and has a high

performance with objects moving at faster speeds. The work
from Zubaca et al. [224] presents an extended H∞ Filter
(EHF) based on a kinematic motion model assuming con-
stant turn-rate and acceleration to fuse LiDAR, IMU (inertial
measurement unit), and vehicle dynamic sensors’ measure-
ments. The proposed EHF shows slightly better estimation
performance in high dynamic driving scenarios in compari-
son to an extended Kalman Filter (EKF). In [229] a complete
process for both mapping an localization on racetracks with
the Normal Distributions Transform (NDT) method is dis-
played. Based on this approach the Roborace vehicle reaches
up to 122 km/h and an average localization error of 0.2 m.
Massa et al. [129] are using two multi-rate EKFs and an
extend AMCL that exploits some a priori knowledge of the
environment on the Roborace vehicle. The authors showed
that the pose error heavily depends on the car’s velocity,
and varies in average from 0.1 m (at 60 km/h) to 1.48 m
(at 200 km/h) laterally and from 1.9 m (at 100 km/h) to
4.92 m (at 200 km/h) longitudinally.
For Formula Student Driverless (FSD) vehicles

Le Large et al. [118] show a comparison between
GraphSLAM and an EKF-SLAM. Based on their exper-
imental analysis with the FSD vehicle and the maps
generated by the algorithms they showed that GraphSLAM
outperforms EKF-SLAM in terms of accuracy. In [13],
[69], [194] the localization and mapping approaches for
the FSD vehicle of the AMZ team is presented. While
in [69] only a LiDAR based SLAM was used, the student
team extended the work with an additional LiDAR and
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FIGURE 3. Exemplary cone detection in the Formula Student Driverless
competition. The racetrack is defined by a left boundary (blue cones) and a right
boundary (yellow cones) which need to be detected by the teams. This image is part
of the FSOCO dataset [49] the supports FSD teams with the development of their
perception pipelines.

camera based object detection for cones on the track [13].
With this setup the team achieved a velocity of 10 m/s
while doing mapping, localization and planning at the
same time with an RSME error of 0.29 m. On the same
vehicle a recurrent neural network (RNN) was applied [175]
to derive an accurate velocity estimation. By taking
different vehicle sensors (e.g., IMU, wheel encoder) into
account this learning based approach reached 15x better
performance than an EKF approach with an RSME of
vx = 0.141 m/s and vy = 0.059 m/s. Finally, for the
IAC vehicle Sauerbeck et al. [168] provide a multi-sensor
localization approach by focusing on decoupling the lateral
and longitudinal position of the vehicle. With this approach
the vehicle reached 300 km/h with an average deviation
of 1.471 m in simulation. The current state of the art in
autonomous racing is heavily based on single vehicle races.
Therefore the subcategory of object detection algorithms
for high speed applications was not given much attention.
Nevertheless, in the FSD competition teams need to detect
both color and form of cones to let the vehicle drive
autonomously as depicted in Figure 3. In [47] a case
study with different convolutional neural network (CNN)
methods (Tiny-YOLO, Proteins) are done in comparison to
a YOLO v2 setup [48] to display the best approach for cone
detection in the FSD scenario. Strobel et al. [182] present
a combination of a YOLO v3 based object detection, pose
estimation, and time synchronization that uses data from
both stereo and monocular cameras. Furthermore, besides
these software focused developments the authors of [153]
evaluated the performance and energy consumption of pop-
ular, off-the-shelf commercial devices for DNN inference
in the formula student context. Finally, to help and support
other FSD teams in their development, Vödisch et al. [49]
presented a collaborative dataset for vision-based cone
detection systems that is open-source available.

B. PLANNING
In the following subsection we cover algorithms that plan
trajectories for the autonomous race vehicle to drive around
the racetrack. Strategies that drive the vehicle end-to-end
directly from perception to actuation is excluded from this

FIGURE 4. Theory of raceline (blue) and slow line (orange) on the racetrack.The
raceline provides the global fastest path around the complete racetrack.

part and is discussed with further details in Section II-D.
We split the discussion into the three following parts.
(i) Global planning provides an optimal path, better known

as raceline (depicted in Figure 4), around the racetrack. In
the context of racing, global planning often optimize for
the lowest lap time. Therefore, when following this race-
line, the car drives an optimal path around the racetrack –
under the constraints of the raceline generation – as fast as
possible.
(ii) Local planning (or motion planning) plans on a finer

granularity compared to global planning, usually under the
assumption that an optimal global trajectory is provided.
Local planners operate in a certain time horizon, and aim to
avoid obstacles while still provide a fast and reliable path that
does not deviate too much from the optimal global raceline.
(iii) Behavioral planning provides information about the

high-level mission planning of the racecar. This can include
the decision making about overtaking maneuvers (overtaking
left/overtaking right/stay behind), the energy management
strategy, interaction with other vehicles and the reaction to
inputs from race control (e.g., flags, speed limits). As a
summary, Table 2 provides an overview of research efforts
in the field of planning for autonomous racing. We define
the fundamental problems for autonomous racing planning
as the following:

• Minimum-time optimization for a global optimal
raceline.

• Long local planning horizon for recursive feasibility.
• Obstacle avoidance and vehicle reaction at high speeds.
• High re-planning frequency for real-time capability.
• Decision making under high uncertainty.
• Interaction planning with non-cooperative agents.

(i) Global Planning: Research from the field of global
planning can be roughly divided into different strategies
using the objectives of the overall optimization: lap time,
geometric properties of the race lines, or energy spent.
Racing, as a context for optimization, provides a clear mea-
sure of quality in lap time tlap on participating agents. So
naturally lowering tlap is a popular choice when it comes to
global planning (Figure 5).
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TABLE 2. Overview of research in the field of autonomous racing planning.

A first category of global planning approaches is the usage
of variations of Evolutionary Algorithms (EAs) to optimize
for lap times. This approach is used in [25], [141], [154] with
different parameterizations of the search spaces. In these cat-
egory, an individual “gene” models a complete configuration
of the racing environment, and sometimes vehicle hardware
and software. The algorithms also require evaluation func-
tions to gauge the performance of an individual; here, this
is the simulated lap time given a configuration. Initially, a
pool of genes (referred to as a population) is created by

sampling the search space. Then, in each iteration of the
algorithm, genes are evaluated, and mutations are performed
following different strategies depending on the specific algo-
rithm. Eventually, the individuals in the population should
converge, and a best configuration for the global optimal
raceline is found.
Another popular approach when optimizing for lap times

as the objective function is to form an optimal control
problem (OCP), usually non-linear. The OCP uses the race
vehicle’s lap times as the objective function, and respects
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FIGURE 5. Comparison of global optimal raceline algorithms based on shortest
path, minimum-curvature [78] and minimum-time [43] optimization, which lead to
different lap times tlap and trajectories.

constraints of the geometry and friction limits μmax of
the race track as well as the dynamics and control limits
of the racecar.Proposed approaches usually choose dif-
ferent vehicle dynamic models, and solvers to solve the
optimization problem. Metz and Williams [130] formulate
an OCP where the objective is the lap time, and solutions
are found by quasi-linearization with integral penalty func-
tions, and splicing of constrained and unconstrained arcs
to form a two-point boundary value problem. Kelly and
Sharp [106] use Sequential Quadratic Programming (SQP)
to solve the non-linear programming problem where lap time
is the objective. Rucco et al. [163] formulate an OCP where
the objective is the lap time. By reformulating the objec-
tive with eliminating explicit time step terms, the problem
becomes a fixed-horizon free-endpoint problem. Projection
operator-based Newton’s method is ultimately used for the
trajectory optimization. Theodosis and Gerdes [189] ini-
tialize the optimization problem with a path created by
connecting center line on the straights and clothoids between
the center lines. The sequential gradient based, non-linear
optimization then uses the lap time as the cost function
to find an improved global race line. Pagot et al. [143]
present a non-linear model-predictive framework to formu-
late a optimal control problem where time is the objective.
Vazquez et al. [196] formulate a minimum-time optimal con-
trol problem by using the centerline of the race track and
discretize the continuous space dynamics. Two regulariza-
tion terms with slip angle cost and a control input rate of
change cost are also included in the objective function for
reducing the lap time. Hermann et al. [84]–[86] formulate
an optimal control problem where the lap time, the path,
the velocity profile and the energy consumption is included
in the objective function. By formulating a multi-parametric
SQP it is possible to find the optimal velocity plan along
a race line while not violating dynamic and energy require-
ments of the drivetrain. Finally, the authors of [127] devise a
apex-finding method and calculates the optimal time global
race line by solving an OCP.
Some researchers show approaches of calculating the race

line by satisfying certain geometric properties. Usually, the
assumption that vehicles experience lateral acceleration that

results in lateral tire forces is made when it comes to
autonomous racing. It is then often desirable to minimize
the lateral acceleration to minimize the possibility of side
slip. In these cases, the aim is to find a race line with the
minimum-curvature overall. However, it is widely known
that the least curvature path is not the ideal path for a race-
car which is asymmetric in braking and acceleration and
is operated in a combined slip range. Braghin et al. [26]
create design and solve a dynamic problem to find the
best compromise between the shortest track and the least
curvature track based on the vehicle’s dynamic behavior.
Similarly, Cardamone et al. [38] also try to find the com-
promise between the same conflicting objectives, but use a
Genetic Algorithm (GA) to find the best weighting parameter
between the two objectives. Heilmeier et al. [78] extends the
work of Braghin et al. [26] to solve a quadratic optimization
problem where constraints on vehicle dynamics limits are
set up to find the minimum-curvature path around the race
track. This approach is compared to the minimum-time
optimization of [43]. For the same racetrack [78] achieves
a laptime of tlap = 86.13 s while [43] is even faster with
tlap = 84.90 s. The advantage of the minimum-curvature
planning is obviously the reduced set of parameters for the
vehicle dynamics model and the faster calculation time.
Lastly, some approaches also choose to mimic the geo-

metric properties of a race line driven by human drivers.
These approaches often decomposes a turn into different
segments and require race lines to satisfy different proper-
ties in each sections. Kuhn [113] mimics the behavior of
a racecar driver by defining the same important decision
making points on the track. It calculates the race line by
first fixing the locations of the following points: the brak-
ing points, turn-in points, apex points, turn-out points, and
accelerations points. Then a piecewise rational spline func-
tion is used to interpolate all the points and create a race
line. Theodosis and Gerdes [188] mimic the three phase cor-
nering technique used by professional drivers. It first finds
all straights along the track, and linking the straights with
curve structures. Then, each connecting curve is found by
combining clothoids and a circular arc. The parameters are
adjusted to minimize the overall curvature and ensure the
path is tangent to the following straight.
(ii) Local Planning: In local planning, the main objective

is to plan the cars motion for a fixed horizon by avoiding col-
lisions with either the environment or adversaries (Figure 6).
There are three main strategies:

1) Modifying the global plan via optimization.
2) Sample multiple dynamically feasible trajectories and

select the best one around obstacles.
3) Sample in the free space around obstacles to find a

feasible trajectory.

From the state of the art we could deduce that many
authors use Model Predictive Control (MPC) methods for
local trajectory planning. Although this method is control
technique, it is also suitable for planning a local trajectory.
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FIGURE 6. Local trajectory planning on the racetrack: The vehicle needs to
prediction the opponents motion, plans a feasible trajectory around the opponent and
stick closely to the global raceline.

In this section, we present work that is on the very thin and
fluid boundary between planning and control, but mainly
addresses the planning problem. Pure path tracking with
MPC is described later in Section II-C.
In the first category, the global plan is modified to allow

for obstacle avoidance. In these types of formulations, model
predictive controllers are usually utilized to optimize the
global plan. Upon encountering an obstacle or opponent
vehicle, the constraints or cost functions of the optimization
problem is modified, and a new motion plan is formulated.
Anderson et al. [12] switch between two MPC modes to
optimize for minimum-time objective or maximum velocity
objective to mimic a professional driver. Kapania et al. [102]
first find the optimal velocity profile given a reference path,
and then updates the given path with the fixed velocity
profile to find the minimum-curvature path by solving a
convex optimization problem. Williams et al. [206] propose
a sampling based MPC that relies on path integral control
for entropy minimization. In [63] a planner is presented
that is capable of mediating between conflicting objectives
when performing collision avoidance, vehicle stabilization,
and path tracking. Subosits and Gerdes [183] present a
real-time trajectory planning algorithm by approximating a
re-planning problem as a convex quadratically constrained
quadratic problem (QCQP) with a simplified point-mass
model. Alcalá et al. [9] reformulate the non-linear vehi-
cle dynamics in a Linear Parameter Varying (LPV) form.
This can then be used to create a convex optimization
problem which is easier to solve for search for a local path.
Kalaria et al. [233] use a nonlinear-MPC (NMPC) for local
planning where the objective consists of progress along the
race line, avoiding collision, and use drafting (reduce drag) to
make progress. Brüdigam et al. [236] use a Gaussian Process
(GP) to predict the opponent’s maneuver. These stochastic
information is then used in a Stochastic MPC to plan efficient
overtaking maneuvers.
In the second category, multiple motion primitives, or pro-

totype motion plans, are generated by forward simulating
the vehicle dynamics given the current state of the vehi-
cle using multiple different actuation input sequences. This
usually results in multiple splines or arcs to select from. In
addition, cost functions are used to give each primitive an

attached value. With a search for the best (lowest/highest)
cost in these primitives a final trajectory can then be chosen.
Liniger et al. [119], [120] generate a library of trajectories
by forward simulating the vehicle using a grid of vehi-
cle velocities and steering angles up to a certain horizon.
Stahl et al. [178] propagate the race track with a graph
that covers the entire space. The nodes are first placed
equidistantly along cross sections of the race track, then
edges connecting nodes are created by optimizing for cubic
clothoids. This planner was tested on the Roborace vehi-
cle and achieved vmax = 223 km/h with an update rate of
16.8 Hz on and NVIDIA Arm electrical control unit (ECU).
O’Kelly et al. [141] use a uniform grid of points along
the global race line as local goal points. Afterwards cubic
clothoids are optimized to connect the vehicle’s current state
and the grid points which leads ultimately to planning a local
trajectory. Finally in [171] a set of local goal points in front
of the vehicle is sampled with the help of a normalizing
flow method. Again, cubic clothoids are optimized here to
connect the vehicle’s current state and the grid points to
derive a driveable trajectory.
In the third category, sampling-based methods are used.

These approaches randomly sample the free space around
the current state of the vehicle for goal states. Once an
available goal state is found, a motion plan is then gen-
erated connecting the current state of the vehicle with the
selected goal state. By introducing randomness in the sam-
pling process, these algorithms are usually efficient, but do
not provide guarantees on their optimality. Jeon et al. [94]
combine the rapidly-exploring random tree (RRT*) method
with a local steering algorithm utilizing the dynamic model
of the vehicle. Arslan et al. [14] combine RRT with
closed-loop prediction based on the vehicle model, and incor-
porate relaxation methods for efficient construction of a tree
that guarantees asymptotic optimality. Feraco et al. [57]
combine RRT with Dubins curve to generate dynami-
cally feasible local plans. Finally, Bulsara et al. [31] use
RRT to find collision free reference paths in the free
space.
(iii) Behavioral Planning: In behavior planning, the focus

is usually on high-level decision making on tasks such as
selecting an appropriate weighting of different objectives,
or selecting plans that impedes the progress of opponents.
The research in this area mainly focuses on two different
strategies:
1) Assigning multiple cost functions with weighting and

selecting the plan with the lowest overall cost.
2) Combine the local planner with game theoretic

methods.
In the first category, cost functions are used that represent

specific racing values like progress along the track, proxim-
ity to the obstacles, effort for control inputs and the deviation
from optimal global plan. An overall cost is then found by
combining all cost functions for each candidate local trajec-
tory. Cost functions could also incorporate hard constraints
by eliminating unqualified plans. Finally, the trajectory with
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the minimum overall cost is chosen to be the local trajectory.
Liniger et al. [119] use the prototype trajectory without
collision and makes the largest progress along the track.
This approach is extended in [120] by applying viability
kernels on the track which only generates viable trajecto-
ries. O’Kelly et al. [141] assign cost functions representing
proximity to the global plan, collision with the environment
to prototype trajectories and select the best one. Finally,
Sinha et al. [171] assign cost functions for progress along
the track, overall curvature, maximum velocity, and collision
with predicted opponent motion to all prototype trajectories.
In the second category, game theoretic approaches are used

to usually find the best action in a two or multiple player
game. The continuous motion planning problem is usually
transformed into a step-by-step game where each player is
allowed to make a “move” one by one. These approaches
usually incorporate the concept of regret to try to find the
best response for winning the racing game either immedi-
ately or in the long run. Williams et al. [207] combine a
best response model of the opponent behavior with varia-
tion of MPC by including predicted opponent trajectories
into the cost of other vehicles. Notomista et al. [137] pro-
pose sensitivity-enhanced Nash equilibrium seeking, which
uses iterated best response algorithm to optimize for a
trajectory in a two car racing game. In [202] a iterated
best response with Nash equilibrium approximation is used
to plan receding horizon trajectories. This technique helps
to maximally advance the racecar along the track while
taking into account opponent’s intentions and responses.
Sinha et al. [171] build a library of opponent prototypes
offline and uses the EXP3 algorithm to solve for a multi-
armed bandit problem to approximate the current opponent’s
driving policy by using the library. Liniger and Lygeros [124]
repeat the multi-player game in a receding horizon fashion,
which results in a sequence of coupled games. With this
non-cooperative game approach the authors could show that
the vehicles create blocking maneuvers although the risk
of a collision gets higher. Wang et al. [203] use sensitivity
enhanced iterated best response to seek convergence to the
Nash equilibrium in the joint trajectory space for all agents.
Finally, Schwarting et al. [170] use local iterative Dynamic
Programming (DP) in belief space to solve a continuous
Partially Observable Markov Decision Process (POMDP).

C. CONTROL
In the previous subsection, we discussed how to compute
either a global or local trajectory on the racetrack. The tra-
jectory includes both a path (x(t), y(t) - position) and velocity
profile v(t) which provides the reference information for the
lateral and longitudinal control. In what follows, we provide
control methodologies that leverage such a reference trajec-
tory to compute control actions to navigate the car along
the waypoints. The goal is to reduce the lateral and heading
error to stay as close to the reference line and to reduce the
velocity error to be as fast as possible (Figure 7).

FIGURE 7. The goal of the control task in the autonomous racecar is to reduce
lateral and heading error while following a global optimal raceline as a reference
trajectory.

At this level of abstraction, the control actions are usually
the steering angle δ and a throttle or brake request (acceler-
ation commands along) that are sent to low-level controllers
for actuating the motor and the brakes. We denote xref(t) as
the state associated with the reference trajectory at time t,
and our goal is to design a controller policy π that, given
the current state of the vehicle at time t, denoted as x(t), and
the reference state xref(t), computes the control input u(t).
Table 3 gives an overview of the papers that address the

control problem for autonomous racing. The control papers
try to address the issue of “handling at the limits” and fol-
low the raceline/reference trajectory as accurate as possible.
We define the fundamental problems for autonomous racing
control as the following:

• Highly accurate path tracking for low lateral errors.
• Highly accurate path tracking for low heading errors.
• Highly accurate velocity tracking for fast lap times.
• Stable vehicle behavior at high accelerations.
• Exact modeling of the nonlinear vehicle behavior.
• High control frequency for real-time high speed driving.

Since the accurate control of the vehicle is relies heav-
ily on precise vehicle dynamics modeling, we include the
vehicle dynamics models used in each case. Authors use
either a point mass model, a bicycle (single-track) model,
or a four-wheel (double-track) model. Furthermore, to cap-
ture the lateral behavior, the authors use the bicycle model
either with only the kinematic behavior (no lateral forces),
linear behavior (linear tire forces based on cornering stiff-
ness), or a nonlinear behavior (nonlinear tire forces based
on the Pacejka Magic Formula or Fiala Tire). For a better
overview and understanding of the different types of control
research we categorized the papers into six subsections.
(i) Classic Control: First, we survey papers that cover

classical and well-known principles in the field of path
and velocity tracking. Ni and Hu [133] present a path
following controller for their FSD vehicle. Their overall
controller architecture consists of longitudinal, lateral and
yaw controllers that operate the vehicle on a predefined
G-G diagramm (maximum lateral and longitudinal accel-
eration.) In both [185] and [186] we see the usage of a
simple lookahead controller that provides path tracking at
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high speeds event at the limits of tire adhesion. In [111]
an autonomous racing controller is presented that uses the
vehicle’s centre of percussion (COP) to design a feedfor-
ward and feedback steering. This showed how to simplify
the equations of motion and highlights the challenge of con-
trolling a vehicle with highly saturated tires. Furthermore,
a special focus on path tracking at the tire/vehicle limits is
presented in the work of [59], [100], [112], [114]. While
the research of [59] and [112] displays the usage of a G-
G diagram to display controllers that operate the vehicle

at the limits, Laurense and Gerdes [115] presents a slip
angle-based control strategy to maintain the front tires at a
certain slip angle to create the maximum tire forces. A spe-
cial focus on longitudinal control (speed control) is shown
in [110], [114], [148]. Laurense et al. [114] presents a con-
trol framework for full tire-force utilization with slip-angle
based steering control, combined with explicit control of the
path-tracking dynamics through longitudinal speed feedback
to achieve a better path tracking. In [148] a model-free non-
linear controller for longitudinal speed control is presented.
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FIGURE 8. Qualitative comparison of an LQR, MPC and Tube MPC controller in an
autonomous racing setup based on [216]. While the MPC is outperforming the LQR
controller, it can be seen the Tube-MPC is not violating any dynamical constraints,
e.g., the maximum lateral and longitudinal acceleration.

In this approach, a dynamic reconstruction of information
on the vehicle’s motion concerning the inputs acting on the
system with sensor data is displayed. With this its possible to
reconstruct the maximum longitudinal tire forces for current
states which can be used for accurate speed tracking. Finally,
in both [198] and [199] additional sensitivity analysis of path
controlling at the limits and high sideslip maneuvers are
displayed.
(ii) Model Predictive Control: The second and most-

popular strategy used to realize an autonomous racing
controller is Model Predictive Control. In MPC a sequence
of control actions is computed by forecasting the future
trajectory of the vehicle over a short time window. In par-
ticular, given the state of the system xt, an MPC solves
a Finite Time Optimal Control Problem (FTOCP) to com-
pute an optimal sequence of states {x∗t , . . . , x∗t+N} and inputs
{u∗
t , . . . , u

∗
t+N−1} over a fixed horizon N. In autonomous

racing the objective of the optimal control problem is to
either track a global reference trajectory or to minimize the
lap time. Upon computing such sequence of optimal states
and actions, the first control action u∗

t is applied to the
system and the process is repeated at the next time step
based on the updated state xt+1. MPC-based methodolo-
gies are the main method behind several autonomous racing
controller which have been implemented on real vehicles.
The advantages of MPC are that 1) forecast is used to
act proactively and to 2) feedback is naturally incorporated
in the controller that repeatedly updates the optimal trajec-
tory. Notice that when the planning horizon N is short, the
planned trajectory may not account for the future behav-
ior of the system and as a result the controller may take
shortsighted control actions. However, computing such quan-
tities that exactly approximate the cost and constraint beyond
the prediction is challenging. In practical applications it
is preferred either to use a long prediction horizon [121]
or to approximate these quantities based on historical
data [162].
In [206] a sampling based MPC algorithm is derived.

This so called Model Predictive Path Integral Control
(MPPI) algorithm is using the methodology of path inte-
gral control that derives an optimal control based on

stochastic sampling of trajectories. It is demonstrated that
this approach explicitly provides a formula for the con-
trols over the entire time horizon and that it relaxes
the usual condition between control authority and noise
required in path integral control. The authors use this
fundamental control approach and enhance it with addi-
tional decision maker [64], game theory [209], DNNs [51]
and reinforcement learning [208] methods to derive further
improvements.
Carrau et al. [39] present at sparse Randomized MPC

(SRMPC) approach that is based on a Stochastic MPC. This
approach is used to deal with model uncertainty at high
speeds and high accelerations. While driving with the vehi-
cle it collects data along the track which is then used to
identify the model uncertainty probabilistically. This tight-
ens the constraints for the MPC automatically while still
having the size and structure of a standard MPC problem.
The optimization problem is solved in 20 ms for a 1:43 and
the results show that for a desired violation the controller
achieves faster lap times and fewer constraints violations
than a standard MPC algorithm. Reference [121] is building
on top of this approach and enhancing it with distur-
bance feedback policies to optimize over the state feedback
matrices.
In order to capture the nonlinear dynamics of the vehi-

cle and tires a nonlinear MPC (NMPC) can be designed
and modeled [27]. Although this is computationally expen-
sive, with the help of nonlinear optimization solver like
FORCES PRO [244] these type of optimizations can be
solved in real-time on the vehicle. In [138] a hierarchical
NMPC is presented that consists of two controllers: Firstly,
a high-level NMPC with point-mass model that simplifies
the vehicle dynamics and is constraint by the tire G–G
diagram. Secondly, a low-level NMPC with a high-fidelity
model uses the output (velocity profile) of the first NMPC
as a terminal constraint. This method helps to reduce the
prediction horizon and therefore calculate the vehicle dynam-
ics in real-time. Furthermore, this approach was improved
in [196] with a simpler vehicle model to run on a FSD
vehicle.
Li et al. [228] use a NMPC with a minimum-time objective

and a collision-avoidance constraint. By applying a Mixed
Integer Quadratic Programming (MIQP) method a control
strategy is created that is optimized regarding the safety
and the laptime. The authors conclude that for such an
approach the prediction horizon needs to be large enough
for creating feasible results although this leads to a higher
computation time and is therefore non real-time capable. The
authors of [123] combine a low-level MPC with a viability
kernel that efficiently generates finite look-ahead trajecto-
ries to maximize the progress of the car. At the same time
the viability kernel creates trajectories that remaining recur-
sively feasible with respect to static obstacles. The authors
apply this algorithm to both a simulation where the effects
of various design choices and parameters are identified and
showed that a hierarchical controller can be improved by
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FIGURE 9. Qualitative demonstration of a learning-based control approach based
on [101]. For each new lap the car is decreasing the tracking error by applying a
higher correction steering angle for each vehicle movement.

incorporating the viability kernel in the trajectory planning
phase.
Beal and Gerdes [19] use estimations of the friction coef-

ficient and vehicle sideslip to define state constraint and
unstable vehicle behaviors. This information is utilized in
an model predictive envelope controller to create a region
of stable vehicle motions. With this approach it is possible
to operate the vehicle on the handling and stability limits.
Similarly, Wischnewski et al. [216] and Williams et al. [211]
present a Tube-MPC (TMPC) approach where nonlinear
effects and external disturbances are taken into account of
the MPC design. By approximating a tube of reachable sets
over the prediction horizon the vehicle guarantees a space of
constraint satisfaction. Finally, because tuning the parame-
ters of a controller is time-consuming and needs experience
from experts some researches try to automatically tune the
parameters with optimization techniques. In [141] the super-
optimization toolchain TUNERCAR is presented which is
using a Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) to optimize both vehicle hardware parameters
(center of gravity, mass) and control parameters (P-, I-, D-
parameters) of the car. The evaluation is based on the laptime
of the car and the algorithm shows the capability of reducing
the laptime driven by the car by optimizing these parameters.
(iii) Learning Based Control: An additional control strat-

egy to improve the tracking of a reference trajectory is to
leverage Iterative Learning Control (ILC) based methodolo-
gies [6]. ILC methods are useful for applying them to an
autonomous race vehicle, since the vehicle is running on the
race track repeatedly for multiple laps. In this case the track-
ing error and vehicle data from previous laps can be used
to compute a feed-forward correction term that improves
the path and velocity tracking performance significantly
(Figure 9).
ILC-based strategies for autonomous racing have been

successfully implemented on full-size vehicles [101], [103].
In [30], [159]–[162] a Learning MPC (LMPC) is proposed
which is an optimization and data-driven framework to make
the car faster every lap and therefore reduce the lap time. The
optimal control problem of the MPC is enhanced in a way
so it tries to compute a solution by solving at time t of each

lap the finite time constrained optimal control problem. This
creates a convex optimization problem which can be solved
with respective solvers. The authors show that the LMPC
finds a faster trajectory for each new lap while maintaining
the set constraints.
Hewing et al. [88] present an learning-based cautious

NMPC which aims to learn from vehicle sensor data with
Gaussian Processes to improve the vehicle dynamics model.
The GP model is used for regression to identify uncertainties
and a mismatch in the vehicle dynamics model parameters
based on measurement data. The NMPC is extended with
this learning model and reformulated in a stochastic setting
which improves the performance and safety of the vehicle
at the same time. Furthermore, the authors implement this
approach on a FSD vehicle in [98] and demonstrate the
implementation and experimental validation of this kind of
learning-based control approach. Finally, Jain et al. [92] use a
similar approach but only with an extended kinematic vehicle
model for the MPC to prove that this type of learning-based
control can also leverage the usage of simplified vehicle
models.
Because of the control system quality and unmodeled

effects, it is well known that there is a gap between the
planned and the driven trajectory. This gap is unknown and
depended on the environment the vehicle is driving in. To
mitigate this gap, [214] presents a learning control approach
on the method of Gaussian Process for a nonlinear regression.
This GP learns online, while driving, how big this gap is and
then tries close it over the time by using a so called scale-
factor. This scale-factor serves as an optimization variable
that tries to maximize longitudinal and lateral accelerations
each lap.
Finally, the authors of [95] proposed a control scheme

that consists of a robust steering controller and a DNN.
While the path tracking is done via backstepping variable
structure control (BVSC) the DNN is integrated to estimate
nonlinear functions, e.g., the uncertainty of tire cornering
stiffness.
(iv) Drifting Control: Although it is not following

an optimal raceline, racing head-to-head or striving for
the fastest laptime, the field of autonomous drifting is
a special subcategory for autonomous racing. Here, the
researchers show algorithms that are able to maneuver the
car autonomously beyond the stable handling of limits and
stabilize the car in a point of high slip angle. In [89] a suc-
cessive loop structure is presented as a controller that tracks
only the vehicles sideslip based on the yaw rate as a control
input. Goh et al. [65]–[67] present a controller framework
that is able to drift autonomously with the vehicle while
tracking a predefined reference path. This enables drifting
maneuvers at special references path, e.g., a circle or figure
of 8. The authors using a single track vehicle model [65]
and experiment with different variations of control values
(sideslip [65], rotation of the vehicle’s velocity vector to
track the lateral error [66], [67]) to reach a sideslip angle
of up to −40 degree with speeds up to 45 km/h on a real
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FIGURE 10. Classic autonomous driving software pipeline in comparison to partial
and full end-to-end software pipeline.

test vehicle. Finally, Joa et al. [96] present a 3-level struc-
ture for a drift controller. First, they designed a supervisor
which determines rate and rear longitudinal slip ratio for the
drift maneuver. Second, a upper-level controller calculates
lateral force (front) and longitudinal force (rear) for tracking
the planned vehicle motion. Finally, a low-level controller
converts the commands (forces) defined by the upper-level
controller into control inputs for the vehicles (throttle, steer-
ing angle). With this setup the authors derived a steady state
drifting on a real test vehicle.

D. END-TO-END DRIVING FOR AUTONOMOUS RACING
The previous subsections described in detail which research
efforts in the fields of perception, planning and control
have been achieved for autonomous racing. Besides that,
researchers have tried to set up partial or full end-to-end
approaches to master the autonomous racing task. As dis-
played in Figure 10, in the context of autonomous driving
end-to-end means that either partial modules or all soft-
ware modules are completely replaced with data-driven
approaches like a DNN.
The partial end-to-end approach aims towards replacing or

combining modules with a DNN. This has the advantage that
the DNN provides a low-dimensional intermediate represen-
tation of the racetrack (e.g., a trajectory) that can be then
used in a classic control systems (e.g., PID-Controller). In
contrast to a full end-to-end system the final actuator output
(steering angle, throttle position) is not predicted directly.
On the one hand the field of autonomous racing provides
a perfect proving ground for end-to-end approaches: clear
driveable area, no signage (e.g., traffic lights), one class
of objects, clear objective for training (fastest laptime). On
the other hand, when using end-to-end systems large data
sets are needed to train the DNNs. This data must contain
a wide variety of situations so that the DNN achieves a
good level of performance. Similar to other DNN applica-
tions the generalization and performance of these systems
are the biggest issues. In addition to these common known
issues, we define the following main problems for end-to-end
autonomous racing:

• Open to question system architecture design: partial vs.
full end-to-end.

• Difficulty to learn the vehicle dynamics parameter -
especially the nonlinear vehicle and tire dynamics.

• Training purely in simulation environments lead to
simulation-to-reality gap.

• High amount of various data necessary for training the
artificial networks.

• Out of distribution events can cause drastic failure cases:
Driving at high speeds is rare and thus learning how to
correctly react is difficult

In the following we present research efforts that use
end-to-end approaches for autonomous racing which are
summarized in categories in Table 4.
Perez et al. [150] derives the control commands based on a

rule-based evolutionary strategy. Although the car is driving
successfully around the racetrack and follows a raceline the
controller is only able to handle low speeds. In both [164],
[166] the authors propose two fuzzy controllers for calcu-
lating the steering angle and computing the target speed of
the car based on sensor information in the TORCS simu-
lator [241]. In Oliveira et al. [142] Bayesian optimization
(BO) is used to find a control policy that minimizes the
time per lap while keeping the vehicle on the racetrack. The
BO helps to search more efficiently over high-dimensional
policy-parameter spaces an outperforms other evolutionary
algorithms.
A solution for a partial end-to-end approach is presented

in [204], [205], and [230]. The DeepRacing Framework is
an end-to-end simulation environment and virtual testbed for
training and evaluating algorithms especially for autonomous
racing. In [205] three versions to control the racecar are
presented: Pixel to control, pixel to waypoints, pixel to
curves. It was shown that a partial end-to-end approach that
provides parameterized trajectories based on a DNN outper-
forms a full end-to-end approach in terms of laptime and
failures. Reference [116] shows the combination of MPC
and CNNs to create a perceptual attention-based predictive
control algorithm. With this, the MPC learns how to place
attention on relevant areas of a visual input, which allows the
vehicle to detect unsafe conditions faster. Drews et al. [52]
are providing a framework that combines DNN based road
detection as well as MPC to drive aggressively using only
the sensor data from a monocular camera, IMU, and wheel
speed sensors on the AutoRally vehicle. By combining CNNs
and a Long Short Term Memory (LSTM) network the car
is able to learn a local cost map representation of the track
based on the camera input. This enables a global position
estimation with a particle filter against a schematic map at
high speeds. The local trajectory planning is afterwards done
with the MPC. The authors of [128] provide an evaluation
about the image sizes for a full end-to-end approach on a
1:10 scale vehicle. Based on their experiments the authors
show that by decreasing the image size as an input for
the end-to-end pipeline the car can drive faster and has a
higher response time. Another evaluation for the usage of
end-to-end algorithms is done by Wadekar et al. [235] in an
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TABLE 4. Overview and categorization of additional software in the field of end-to-end approaches for autonomous racing.

simulation environment. The authors explored different data
collection strategies with the goal of reaching high speeds
and stable driving with the racecar. They conclude that even
in the racetrack setup a high diversity and high amount of
training data is necessary to achieve decent results.
Beside these plain usage of DNNs in the software pipeline,

additional research efforts were done in the field of reinforce-
ment learning. The autonomous racecar is seen as an agent
that interacts with its environment in a continuous form. At
each timestep t the agent fulfills an action at that leads to
a reward rt as well as an observations of all environment
states st. Based on the reward rt the agent tries to maximize
the sum of the rewards over time and therefore can learn
a specific behavior in this environment. Autonomous rac-
ing researchers that develop RL algorithms are using either
the F1TENTH Gym [139], the Roborace Simulator [80],
the SVL Simulator [75] or TORCS [241]. All these simula-
tion environments have an openAI Gym [243] interface that
was created for the setup of RL developments. Both [93]
and [151] address the problem of autonomous racing by
applying the method of Advantage Actor-Critic (A3C) to a
simulation rally racing game. A complete framework for the
training of the autonomous agents in a distributed system
with different tracks and road conditions is presented as
well as the RL method for achieving the end-to-end driving.
They generate reasonable results with a fast and reliable
vehicle maneuver, especially on different road conditions,

but the approach fails to generalize well. To create a better
generalization for different racetracks de Bruin et al. [46]
provide a combination of Q-Learning and state representa-
tion learning to display that this combination learns policies
quicker and generalize better to new racetracks then sin-
gle RL. Both [135] and [156] use the method of Deep
Deterministic Policy Gradient (DDPG) to explore the usage
of RL in autonomous racing in the TORCS simulation. In
both experimental setups DDPG is specially enhanced for the
usage on the racetrack and shows good learning and execu-
tion results. The application of Soft Actor Critic (SAC) with
enhancement and variations is displayed in [42], [72], [172].
While [72] is only using a simulation, Chisari et al. [42] are
applying this approach to 1:43 small-scale vehicles and com-
pare the SAC method to a MPC path planner – the MPC
outperforms the RL method. The work from Fuchs et al. [60],
[172] is using the racing game Gran Turismo as both a train-
ing and evaluation environment. While in [60] the framework
for training the RL agents is presented Song et al. [172]
uses and enhances this approach not only to drive with a
single vehicle but also with multiple agents. They show that
their RL agent is capable of driving fast, following the race-
line and overtaking other agents without crashing. Finally,
Schwarting et al. [169] and Brunnbauer et al. [29] present
model-based reinforcement learning approaches which can
learn competitive visual control policies through self-play in
imagination (World Models idea [245]). Especially in [29]
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it is shown that model-based RL approaches outperform
non-model based methods. In addition, the authors dis-
play the sim-to-real transfer by testing the trained agent
on a F1TENTH vehicle. The vehicle shows good general-
ization on unknown tracks but no high performance (e.g.,
low laptime) because of oscillating steering.

E. APPLIED AUTONOMOUS RACING STUDIES
In the final subsection all applied autonomous racing
studies are displayed that clearly do not belong in the
previous Sections II-A–II-D. These research papers pro-
vide Evaluations that run either simulator studies or overall
analysis in the field of autonomous racing. In addition,
the efforts of Complete Software Stack developments are
displayed here. In order to achieve the vehicle’s driving
dynamics limits, there must be in-depth knowledge of the
driving dynamics behavior and thus sufficiently good vehicle
dynamic modeling. In the category of modeling the research
that shows all vehicle dynamic modeling efforts for later
usage in either trajectory planner or control algorithms is
displayed. Finally, we present Simulation efforts and envi-
ronments for autonomous racecars. A summary and overview
of the research in those categories can be found in Table 5.
(i) Evaluations: To gain more knowledge in the field

of racing different researchers conducted studies with race
drivers or racecars. Kegelman et al. [105] did a study with
real (vintage) racing cars and collected vehicle and posi-
tion data from their runs on the racetracks. By examining
the statistical dispersion of the vehicles race lines, the author
displayed a quantification of the repeatability of professional
racecar driver performance. In addition, they concluded that
different driving styles (combination of path and velocity)
can lead to similar lap times. In [167] the raceline trajec-
tory information (dGPS data) from a test vehicle is collected
to derive a path fitting algorithm that is describing a race-
line. Based on this setup the race lines can be analyzed
in-depth and results for autonomous raceline planning can
be derived. A direct comparison between autonomous racecar
against a human race driver is both done in [157] and [82].
Remonda et al. [157] conduct this study in a simulator envi-
ronment and compared the lap times, telemetry data and the
performance level of a human race driver against a pure
autonomous racing software based on RL. By doing this
the researchers were able to analyze which features have
the most impact on the drivers performance. Those features
where used afterwards to enhance the RL approach. In con-
trast, Hermansdorfer et al. [82] conduct a real world study
by comparing an autonomous racing stack on the Roborace
vehicle against a professional Formula 2 driver to find indica-
tions where the autonomous car fails to meet the performance
level of the human race driver. The main reasons are that
the human driver is detecting the vehicle limits (tire limits)
more accurate, bringing the vehicle more often beyond the
limit (higher slip angle) and is applying both brakes later
and throttle earlier. Finally in [24] an evaluation about a
crash of an autonomous racecar is displayed.

(ii) Complete Software Stack: Although many researchers
are just deploying a single algorithm for testing and eval-
uation, to fully run an autonomous vehicle a complete
software stack consisting of perception, planning and control
algorithms is necessary. Therefore, many publications aim
towards designing a holistic autonomous software stack that
describes the individual software components, the methods,
the transfer of messages from one module to the other and a
final evaluation on real hardware or simulation. In [7], [41],
[44], [61], [98], [132], [191], [221] the efforts of develop-
ing an autonomous racing software stack for FSD vehicles
are presented. Based on the tasks in the FSD competitions
(Section III) these cars need to map the environment, local-
ize themselves, plan the path on the fly and follow the
path fast and reliable. The teams provide different con-
cepts to solve those individual tasks and display at the
same time the underlying computation hardware of the their
autonomous race vehicles. In addition, the teams provide
insights in the middleware (e.g., ROS) as well as computa-
tions times of their algorithms. In contrast to the FSD efforts
the publications [22], [23], [37] show their autonomous
racing software stacks for running the Roborace vehicle.
In [23] the research is aiming towards a software that can
operate in a multi-vehicle scenario and therefore displays a
dynamic local trajectory planner as a main component. In
addition, to achieve high dynamic trajectory planning maneu-
vers the team displays a Performance Assessment Module
that is observing the controller and the tires while adjusting
parameters accordingly. Caporale et al. [37] display a holis-
tic planning and control stack that has a real-time NMPC as
main backbone to track a pre-planned racing line as well as
a mapping and localization approach for high speed driving.
(iii) Modeling: The modeling of the vehicle dynamics

behavior of the racecar is an essential part in the field
of autonomous racing. Either these models are used in
the simulation environments or model-based trajectory plan-
ning/control design approaches. The current state of the art
provides many variations of vehicle dynamics modeling such
as single track model, double track model or full vehi-
cle model. The more complicated the vehicle dynamics
model, the more parameters are needed. Unfortunately not
all of those parameters are available in detail for a vehicle
and so different methods for estimating these parameters
are proposed - especially for nonlinear vehicle parame-
ters like the tires. In [218] the design of the standard
joint-state Unscented Kalman Filter (UKF) is presented to
estimated vehicle dynamics parameters of a model car both
in simulation and with experimental data. The experimental
results show satisfactory estimates of the model parameters.
Unfortunately the tuning process of this algorithm is time
consuming and can only be implemented offline. Park and
Gerdes [147] describe the region of feasible tire forces math-
ematically with constraints on the limits of actuation. They
conclude in their work that with reasonable assumptions, the
border of feasible tire forces can be displayed by an ellipse
and circle for a wheel with steering and braking actuators.
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TABLE 5. Overview and categorization of applied research and development studies in the field of autonomous racing.

The papers [83], [90], [173], [212] are using learning based
approaches by applying DNNs to identify the model param-
eters. All of these works show that DNNs can learn and
identify the vehicle parameters more accurately than a purely
parametric model. In addition, the researchers showed that
the DNNs can generalize better than a purely non-parametric
model especially when it comes to capturing the unknown
dynamics. This makes the usage of DNNs ideal for real-
world applications where collecting data from the full state
space for a vehicle is not feasible and when different envi-
ronment dynamics (e.g., icy road) need to be captured in the
model.
(iv) Simulation: The final paragraph in this subsection dis-

plays all simulation efforts that have been done in the field
of autonomous racing. Espié et al. [241] are the authors of
TORCS - The Open Racing Car Simulator. This lightweight
3D simulator provides different race tracks, different cars,
NPC opponents as well as a sophisticated vehicle physics
model. This simulator is used for research in the field of
control, trajectory planning, game theory and RL and is
therefore providing a solution for autonomous race engi-
neers. Roborace released its own simulation environment
that is enhanced with an OpenAI Gym interface especially
for classical control or RL tasks [80] which they called
Learn-to-Race (L2R). The simulation environment provides
a racetrack, sophisticated vehicle physics simulation as well
as a wide variety of sensors. The SVL Simulator [75] is
a 3D end-to-end autonomous vehicle simulation platform
that provides different maps, vehicles, sensor modeling,

FIGURE 11. F1TENTH vehicle in the SVL simulator [75] on a 1:10 scale version of
the Indianapolis Motor Speedway.

weather simulation, APIs to well-known open source soft-
ware stacks (e.g., Autoware.Auto, Baidu Apollo) and the
possibility of a distributed simulation. The SVL Simulator
is offering both a 3D-vehicle model of the F1TENTH and the
Indy Autonomous Challenge vehicle with different racetracks
(Figure 11).
For the F1TENTH vehicle different simulation environ-

ment exist. Babu and Behl [15] present a ROS and Gazebo
based autonomous racing simulator that is providing differ-
ent maps, visualizations and model physics. The advantage
here is access to the ROS community that enables the inte-
gration of robotics packages. Another F1TENTH simulator
is the F1TENTH Gym [140] that provides a lightweight,
2D-simulation with an openAI Gym interface. Based upon
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the Carla Simulator [242] the authors of [238] present an
Autonomous System Operations (AutOps) and continuous
integration (CI) and testing framework to evaluate the soft-
ware in the context of autonomous racing. Especially for the
evaluation of trajectory planning maneuvers in a multi vehi-
cle environment Stahl and Betz [180] display an open-source
graphical user interface that allows the fast generation of
multi vehicle race scenarios. These dedicated scenarios (e.g.,
overtaking maneuvers) can be used to evaluate the trajectory
planner or safety assessment algorithms in an autonomous
racing stack.

III. AUTONOMOUS RACING HARDWARE: VEHICLES AND
COMPETITIONS
The previous section gave an overview on the efforts in the
field of algorithm and software development for autonomous
racing vehicles. Almost all of the papers provided an eval-
uation of their proposed methods in an specific simulation
environment. About half of the papers did additional eval-
uations on real vehicle hardware. This hardware is ranging
from (powerful) passenger sports cars, specific research vehi-
cle prototypes, small-scale race vehicles or real racing cars.
In the following section we provide an overview of currently
available hardware and racing competitions (Table 7) that are
available for researchers.

A. SMALL-SCALE AUTONOMOUS RACING VEHICLES
The first type of autonomous racing vehicles are so called
small-scale or reduced-scale vehicles. These racecars were
mainly developed for the purpose of testing the new
developed autonomous racing software. Those racecars are
normally derived from remote controlled (RC) cars and
therefore provide an electrical engine and a battery as a
main powertrain unit. Those vehicles are then modified with
additional hardware (sensors, ECUs), are constructed and
maintained by a team of students and researchers and usually
costs a few hundred to a few thousands of dollars. Although
these are small-scale vehicles, they reach high speeds and
accelerations for their size and therefore can be compared
to real racecars.
(i) 1:43 vehicles: In the ORCA (Optimal RC Racing)1

project researchers from the ETH Zurich developed a test
bed consisting of a race track, an infrared camera based
tracking system and modified 1:43 cars, in order to apply
research in the field of MPC algorithms at high speeds and
in real-time. A vision system captures the cars on the track
and estimates both positions and velocity of each car. This
information is then sent to a specific control platform where
the MPC controller calculates the control inputs for the cars.
This information is then sent via Bluetooth to the embed-
ded cars where the control input is actuated. The research
published with this 1:43 cars is heavily in the field of plan-
ning and control. As a result the researchers displayed new

1. https://control.ee.ethz.ch/research/team-projects/autonomous-rc-car-
racing.html

developments in the field of MPC [39], [88], [119]–[122],
game theory [124] and reinforcement learning [42].
(ii) 1:10 vehicles: In the next bigger size researchers

use modified 1:10 scale RC cars for their autonomous rac-
ing research. In the last years different institutions released
their documentation for both hardware and setup of these
1:10 vehicles and so currently versions like the Berkeley
Autonomous Racecar,2 the MIT Racecar [104], the MuSHR
racecar [174], the RoSCAR [76] or the F1TENTH [139],
[140] vehicle from the University of Pennsylvania exists.
The sensor setup on these cars is interchangeable and so it
is possible to apply monocular cameras (e.g., Raspberry Pi,
OpenCV OAK-1), stereo cameras (e.g., ZED, ZED2, Intel
Realsense d435i, OpenCV OAK-D), 2D LiDARs (Hokuyo
10LX, Hokoyu 20LX), IMU, indoor GPS or wheelspeed
sensors. As a main computation platform these vehicles use
embedded GPU systems like the Nvidia Jetson (Models:
TX1, TX2, NX, AGX Xavier, Nano). This gives the possibil-
ity to speed up the inference of DNNs. With the F1TENTH
vehicle an additional, annual autonomous racing competi-
tion was launched where students, researchers and hobbyists
can race against each other. The competitions consists of
a single vehicle time trial and a head-to-head two vehicle
race with knockout phase. In addition to these in-person
competitions virtual competitions are organized to test the
software of the developers. Similar competitions, where
those kind of racecars or variations of it are used, are the
DiYRobocar events or the Amazon DeepRacer [17], [18]
competitions. The research published with these 1:10 cars is
spread completely over all topics in perception [28], [70],
planning [97], [232] and control [30], [31], [91], [92], [143],
[162], [187], [237]. In recent years these type of vehicles got
more important for optimization pipelines [141], [171], the
application of RL techniques [29], [54], [55] and the eval-
uation of game theory methods [201], [203]. In addition,
the 1:10 vehicles are used for education purposes [7], [15],
[53], [104] to teach hands-on fundamentals of autonomous
driving.
(iii) 1:5 vehicles: A special version of an autonomous

small-scale vehicle is the so called AutoRally [68] vehicle,
a 1:5 scale autonomous racecar developed by a team of
researchers from Giorgia Tech. The AutoRally autonomous
vehicle platform is based on a RC trophy truck (length:
1 m, width: 0.6 m, mass: 22 kg) with a top speed of
∼ 90 km/h. The AutoRally vehicle uses two monocular
cameras (Point Grey Flea3 FL3-U3-13E4C-C color) as a
main sensors to perceive the environment, has an IMU for
acceleration measurements and hall-effect sensors to mea-
sure the wheel speeds. In addition, this vehicle has a GPS
receiver (Hemisphere P307) integrated which provides an
absolute position at 20 Hz with an accuracy of approximately
2 cm under ideal conditions with Real-Time Kinematic
(RTK) corrections that are derived from a GPS base station.
The main computation unit consists of standard consumer

2. www.barc-project.com/projects
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TABLE 6. Autonomous racing hardware: overview over different available hardware and racing competitions available for researchers.

computer components (Intel i7-6700 -3.4 GHz quad-core,
32 GB DDR4, Nvidia GTX-750ti SC) which are modular
and reconfigurable and are all connected on a Mini-ITX
motherboard.

3. www.f1tenth.org
4. www.evgrandprix.org/autonomous/
5. www.fsaeonline.com
6. www.indyautonomouschallenge.com
7. www.roborace.com

This brings the AutoRally setup closer to real passenger
vehicles and allows a high computation power. The research
published with the AutoRally car is in the field of plan-
ning [14], [117], [207], [219], [220] and control [52], [64],
[116], [200], [206], [208]–[212], state estimation [58], [218]
and the application of deep neural networks for perception
and planning [52], [145] with an overall special focus on
low friction surfaces.
(iv) eV Grand Prix Autonomous: In 2021 a new racing

competition called eV Grand Prix Autonomous started in the
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USA. Student teams need to acquire a standardized electric
go-kart chassis and are then allowed to modify the vehicle.
The teams can change the complete electric drivetrain and
integrate new components, e.g., battery, electrical engine,
inverter. In addition, the teams can choose their own sensor
setup (camera, radar, LiDAR, (RTK) GPS, IMU) to create
an autonomous vehicle. Furthermore, the teams develop the
software that drives the autonomous go-kart around the race-
track. The current race setup consists of single vehicle time
trial laps. Because the eV Grand Prix autonomous is still in
its early stage there was no research published with these
kind of vehicles so far.
(v) Formula Student Driverless: Since 2017 student teams

can develop a driverless vehicle for the Formula Student
Driverless competition. The students can choose on their
own how to design and equip the vehicle with both pow-
ertrain or autonomous driving hardware. Therefore different
setups with different computation platforms (e.g., consumer
hardware, Nvidia Drive PX hardware, Nvidia Jetson hard-
ware) and sensors setups (monocular cameras, 3D LiDAR)
exist. The cars compete in different single vehicle competi-
tions: Acceleration (driving 75m straight with standing start),
skid pad (two congruent circles with a diameter of 18.25m),
autocross (racing on closed loop track with unknown layout),
track drive and efficiency (racing 10 laps on a track with
additional efficiency scoring based on the consumed energy).
In addition to these pure driving competitions the cars are
then judged in an additional business plan (business idea of
the vehicle), design (judgement of hardware and software)
and cost (financial planning an manufacturing) competition.
The research published with the Formula Student cars

is spread completely over all topics in object detection
[47]–[49], [153], [182], localization [13], [69], [118], [175],
planning [57], [176], [196] and control [59], [95], [98],
[125], [133], [134] with a focus on holistic software
pipelines [41], [50], [61], [99], [132], [190], [191], [194],
[221], [222] with adjustments for the specialities of the FSD
competition.

B. FULL-SCALE AUTONOMOUS RACE VEHICLES
The small-scale vehicles offer a low-cost and easy to set up
platform for researchers. In addition, only a small space is
needed to run the vehicles and therefore these kind of small
scale vehicles are very attractive for research in the field
of autonomous racing. Unfortunately because of the scal-
ing there is still a mismatch between those vehicles and real
racecars. This has not only to do with the performance (vmax,
along,max, alat,max) but also with the kind of sensors or com-
putation units these vehicles equipped with. Furthermore, a
real racecar has a different dynamic behavior because of
the stiffness of the chassis. Based on this some compa-
nies/institutions decided do develop real autonomous race
vehicles which are explored in further detail. There was an
additional development of an autonomous dragster [20], [21],
the application of which, apart from in these papers, has not

taken place elsewhere and is therefore not be considered in
the further discussion.
(i) Roborace: Roborace is a U.K. based company

that developed different autonomous racecars (Devbot 1.0,
Devbot 2.0, Robocar). The Robocar was only used for
internal Roborace events and both Devbot 1.0 and 2.0
where provided to interested university teams and compa-
nies for their research. The Devbot 2.0 is based on a Le
Mans Prototype (LMP) chassis and is a rear wheel drive,
fully electric racecar. The vehicle is equipped with camera,
LiDAR and radar sensors and two main ECUs (Nvidia PX2,
Speedgoat Mobile Target Machine) to run the autonomous
software. The goal of this vehicle development efforts is to
provide both a vehicle platform and an annual competition
where teams can compete against each other. The teams only
need to develop the software, the hardware setup is equal
for all teams. In 2018 single vehicle time trials were exe-
cuted, in 2019 the so called Season Alpha provided different
race formats (single vehicle, multi vehicle, localization) on
racetracks in Europe. In 2020/2021 Roborace Season Beta
started with seven university teams competing against each
other in single-vehicle races (time trials). A special soft-
ware from Roborace called Metaverse provides virtual static
and dynamic objects on the track that needed to be avoided
by the teams - otherwise they get time penalties for hit-
ting these objects. The university teams used the Roborace
vehicles for their research and provided plenty of published
papers in the field of localization and motion estima-
tion [129], [158], [177], [213], [224], [229], mapping [136],
[144], planning [36], [43], [78], [81], [85], [86], [177],
[179], [181] and control [33], [40], [214]–[216], [226] as
well as energy management [84], [85] and holistic soft-
ware stack development [3], [22]–[24]. In addition, the
Roborace vehicle was used to derive some new simu-
lation [77], [79], [80] and scenario environments [180],
vehicle dynamics modeling [83], [90] and autonomous racing
benchmarks [82].
(ii) Indy Autonomous Challenge: In 2020 the Indy

Autonomous Challenge (IAC) was launched as a successor of
the DARPA Grand Challenge and DARPA Urban Challenge.
The IAC racecar is based on an Indy Lights chassis and is
a rear wheel drive racecar powered by a combustion engine
with 6 gear sequential transmission. The IAC vehicle is
equipped with camera, LiDAR and radar sensors for percep-
tion and has one main ECU to run the autonomous software.
The IAC provides universities both the vehicle platform and
several competition types. The teams only need to develop
the software, the hardware setup is equal for all teams. As
a main middleware ROS2 is used. The IAC challenge con-
sists of a single vehicle race around the Indianapolis Motor
Speedway in October 2021 and a two vehicle head-to-head
race on the Las Vegas Motor Speedway in January 2022. The
aim is to drive 290 km/h with those vehicles and therefore
the teams need to develop a high performance autonomous
software stack that executes perception, planning and con-
trol. Since the IAC competition just finished its competition
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only a few papers [168], [217], [227], [231], [235] have been
published so far.

IV. DISCUSSION AND CONCLUSION
In this section, we present short discussions on each area of
research we have presented above. We try to point out the
most predominant methods in each field and explain why
these methods are popular and preferable for autonomous
racing applications from the authors’ perspective. Since not
all the works surveyed here explicitly present their results
numerically, and even when they do they are rarely on
the same metrics. Furthermore, hardware used (i.e., small-
scale v.s. full-scale vehicles) differ tremendously between
each publication, and some approaches were only evalu-
ated in simulation. Thus, the authors think that an explicit
comparison of numerical values would lead to the reader’s
misunderstanding of each algorithm’s overall performance.
Instead of showcasing numerical analysis and direct com-
parison of results between each approach, we only compare
approaches by displaying their advantages and disadvantages
on a high level.

A. SOFTWARE PERFORMANCE
(i) Perception: In Autonomous Racing, we saw authors
adapting mostly well-known algorithms from SLAM, com-
puter vision, and deep learning for perception. These algo-
rithms are modified and enhanced for usage on the racetrack.
A common thread we see in perception for Autonomous
Racing is that LiDARs and odometry are still preferred for
almost all SLAM approaches. Although there is plenty of
research on camera-only perception, and it is widely used
on Tesla vehicles worldwide, it’s effectiveness has yet to
be demonstrated in autonomous racing. Similarly, for object
detection, well-known methods such as YOLO and its vari-
ations are used. From the authors’ perspective there is no
preferable method in this field since most approaches are
adaptation from software used on road vehicles. On contrary,
as pointed out in Section V, we see the trend to develop high-
speed localization and object detection methods. And with
the recent development of Event-based Vision [5], it would
a great candidate as a perception sensor in racing scenarios.
(ii) Planning: For global planning, the predominant

approach is to set up an optimal control problem (OCP).
The OCP not only considers the objective for the global
planner (minimum lap time), but also considers hard con-
straints on the vehicle’s dynamic behavior. The optimization
produces competent racelines has a choice of several efficient
solvers for fast computation. Since the global plan is gener-
ated offline, the higher computation time of these methods
can be neglected.
For local planning, we recommend decoupling local tra-

jectory generation and local trajectory tracking. In trajectory
generation, one can use a nominal dynamic model that
describe the vehicle’s behavior under most conditions to
create multiple dynamically viable local plans with differ-
ent characteristics. Requirements and cost objectives can be

baked into these trajectories thus path selection can be done
efficiently. E.g., sampling-based trajectory generation. Then,
when tracking the selected trajectory, an MPC could be
used with up-to-date operating condition of the vehicle. The
decoupling of trajectory generation, selection, and tracking
also allows integration with RL and game-theoretic methods
during trajectory selection.
(iii) Control: With the decoupling of planning and con-

trol, the predominant approach amongst surveyed work
is to focus on high precision path and velocity tracking
with a dedicated algorithm. Although classic controllers
(e.g., PID controllers) can achieve a good level of con-
trol precision, MPC approaches captures and considers the
vehicle’s dynamic behavior in the control loop, and thus
usually achieve higher control precision and accuracy. With
the development of high performance solvers, (e.g., [244]),
we see that Non-linear MPC can be solved in real time on
real vehicle hardware with satisfying efficiency. Furthermore,
learning-based approaches can address the limitation of tra-
ditional MPCs where the underlying predictive model can
be updated online. However, it is yet to be shown the effec-
tiveness of these approaches in a multi-vehicle competitive
scenario.
(iv) Deep and Reinforcement Learning: In all the work

surveyed in this field, only a small portion of algorithms
are tested on real vehicles in realistic high speed envi-
ronments. Among these algorithms implemented on the
real vehicle, none of them consider safety and robust-
ness constraints, which are crucial in the adversarial racing
scenario. Nevertheless, RL and Deep Learning approaches
show promising results in encoding the highly non-linear
interaction and dynamics of a racing scenario. Together with
the development of high-performance perception pipelines,
the viability of these algorithms for multi-agent interaction
is expected to improve significantly.

B. HARDWARE PERFORMANCE
This survey displays five different types of autonomous rac-
ing hardware. Additionally, researchers are using modified
sports cars to apply their developed algorithms. Because the
research in the field of autonomous racing is very much at
the edge of the dynamic driving limits, we can state that the
research work with actual vehicle applications better covers
the potential of the respective algorithms. Furthermore, we
conclude that the robustness of the algorithms demonstrated
on real hardware reaches higher speeds and accelerations
and displays higher robustness in contrast to the research
that was shown purely in simulation.
Since all autonomous racing hardware displayed in this

paper differs in their purpose, hardware setup, vehicle
dynamics capabilities, and racing competition type, no con-
clusion about the most favorable hardware can be drawn. We
are concluding that especially the small scale and reduced
scale vehicle sizes are interesting for research labs since both
their setup and operation are demanding less personal and
financial resources.
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C. FROM PASSENGER CARS TO RACING CARS
In all the software sections displayed, we saw researchers are
using and improving algorithms from the field of robotics
and regular passenger cars. This concludes that the trans-
fer from normal autonomous passenger cars to autonomous
racing cars is manageable and straightforward. One will
see impressive results in the car’s behavior by applying
state-of-the-art autonomy algorithms. For example, the open-
source autonomous driving software Autoware.Auto is used
in different research papers as a baseline software stack.
Unfortunately, none of the state-of-the-art algorithms is capa-
ble of driving fast near the vehicle’s dynamic limits or
executing high-overtaking maneuvers. To achieve this, an
extension of the software is necessary with the methods
surveyed in this paper.

D. FROM RACING CARS TO PASSENGER CARS
A direct transfer of software from autonomous race cars
to autonomous passenger cars has not been done yet. This
is because this field is relatively young and emerging and
researchers have been focusing on driving on the racetrack
only so far. This is mainly due to the fact that the context and
objectives for an autonomous racing scenario are too differ-
ent from a street scenario. For example, some areas like the
global optimal trajectory planning are not entirely of interest
for passenger cars with their current definition. Therefore,
we recommend focusing on the transfer of software from the
named subcategories. Currently, we see the most substantial
transfer possibilities in control and planning. For example,
the knowledge gained in the field of MPC is beneficial for
regular passenger cars to create a highly accurate path and
velocity tracking on our road networks. Additionally, the dis-
played work in the field of behavioral planning, e.g., with
game-theoretic approaches, has a high potential for being
integrated into passenger cars since modeling the interaction
between different road users is of high research interest.

V. OPEN RESEARCH QUESTIONS AND CHALLENGES
In the previous sections we provided a detailed overview
of all the efforts that have been made in the field of
autonomous racing for both software and hardware. The goal
of these research efforts is to contribute to the development
of safer autonomous passenger vehicles and the possibil-
ity to derive knowledge for the development of new and
advanced autonomous driving algorithms. Although the state
of the art is quite extensive, there are still some open and
unsolved research questions where the field of autonomous
racing can support, help and leverage the development of
future autonomous driving algorithms. Based on additional
discussions with leading researchers in the field we present
a list of challenges in the field that determine open research
questions:
Challenge 1 - Autonomous high speed perception: None of

the previous work addresses high speed object detection or
provides detailed insights into different fusion techniques for
high speed localization. The current state of the art presents

standard SLAM or object detection methods that are then
adapted to the field of autonomous racing. We are currently
missing methods, techniques and algorithms that are espe-
cially made for high speed driving where increased motion
blur occurs and sensor synchronization becomes more impor-
tant. A reliable detection distance above 100m is required.
This can be achieved by decreasing the computational delay,
an enhancement in the sensor fusion performance (cam-
era + Radar + LiDAR) and with an increase of the object
detection quality. When it comes to vision-based localiza-
tion we see successful research in the field of drone racing
which can be adapted and applied to the field of autonomous
racing. Besides that there is currently no public dataset for
high speed driving. However, the availability of rich data is
essential for the development of comprehensive perception
algorithms for this speed range.
Challenge 2 - Multi-vehicle trajectory planning: Most of

the papers surveyed focus on a single vehicle racing sce-
nario and only a handful of researchers tried to address
multi-vehicle scenarios (>3 vehicles). Dynamic local trajec-
tory planning at high speeds with multiple vehicles (e.g.,
for overtaking) is difficult and not covered completely in
the state of the art and displays therefore a grand chal-
lenge for future research. The trajectory planning method
must be capable of finding a path in a non-convex environ-
ment that is collision free, recursive feasible, incorporating
dynamic vehicle constraints and is executable in real-time.
Both the path and the velocity must be planned while taking
the vehicle dynamics into account to leverage the current tire
performance of the vehicle. We see this either as a chance
for creating new types of methods and algorithms for tra-
jectory planning or as a test environment for new heuristics
that decrease the computational heavy calculations.
Challenge 3 - Multi-vehicle interaction: The interaction

with other vehicles is an essential part of racing especially
when it comes to head-to-head racing (e.g., overtaking,
blocking). This interaction is covered with game theory
approaches in some of the work but is not explored exten-
sively. This interaction provides the need for new prediction
algorithms that can deal with the high uncertainty of
the opponents movements/behavior in the less structured
environment of the racetrack. Hence, the prediction of sur-
rounding objects can not rely on lane information or traffic
rules, but has to be based on a comprehensive understanding
of interactive scenarios. Besides that, a fundamental aspect
of future state prediction is that it is inherently stochastic,
as agents cannot know each other’s motivations, so multiple
modalities have to be considered. We seek a model of the
future that can provide both (1) a weighted set of dis-
crete trajectories that covers the space of likely outcomes
and (2) a closed-form evaluation of the likelihood of any
trajectory. In addition, there are no sophisticated behavior
planners that can derive critical interaction based maneu-
vers for competing in a race environment. The goal is to
enable a tight coupling between reason about the influence
of the surrounding agents on the ego systems trajectory
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and maintaining full capabilities of the ego systems vehicle
dynamics.
Challenge 4 - Adversarial driving: The racetrack enables

the testing of the capabilities of an adversarial vehicle that
is exploring and evaluating the risk of future actions by
planning and performing high risk maneuvers. This kind of
research enables knowledge for autonomous cars that need to
operate in highly crowded multi vehicle and multi passenger
scenarios while minimizing the possibility of a freezing robot
problem. This research heavily includes the calculation of
risk for a perceived environment, a risk evaluation as well as
new high precision local behavioral and trajectory planning
algorithms.
Challenge 5 - Real-time vehicle dynamics modeling:

Autonomous vehicles that operate on the limits of handling
need to have an exact knowledge about the current vehicle
dynamics state. One crucial factor here is the tire which
creates the road-vehicle contact (friction value) which is
changing drastically with aerodynamics (downforce), road
conditions (tarmac), weather conditions (rain, snow) and the
current vehicle maneuver (load shift due to braking, acceler-
ation). The high degree of model uncertainty due to external
influences combined with strongly non-linear effects in tire
and vehicle dynamics represents a challenge for both motion
planning and control (e.g., MPC) algorithms. Available mod-
els approximate the vehicle dynamics to a certain degree but
are computationally demanding, especially when it comes
to tire models. Current research efforts try to calculate the
dynamical behavior of the vehicle with the help of artificial
neural networks to be computationally faster than classical
physical models.
Challenge 6 - Balancing safety and performance: The cur-

rent work is heavily exploring the limits of an autonomous
vehicle from a software and hardware perspective with the
goal to drive fast. When it comes to a racing scenario we have
to make a trade off between safety (not crashing the car),
high performance (staying close to the opponent), energy
management and making decisions while not violating the
handling limits (stay behind opponent, overtake in particular
turn). This setup creates the need for software that explores
the trade-off between safety and performance. This software
is then coupled with motion and behavioral planners and
decides which actions to take next. In addition, the current
state of the art does not cover the safety aspects of the
autonomous racecar in particular and therefore we have an
open research area where algorithms need to be derived that
evaluate and balance both safety and performance of the
vehicle.
Challenge 7 - Autonomous racing regulations and rule-

book: Although the community currently consists of many
different racing series with different cars we have no agree-
ment on the driving rules for autonomous racecars. Although
this can be declared as less research and more a commu-
nity effort, when it comes to autonomous driving a rulebook
based definition for racecars could be helpful. This leads to
general guidelines researchers can rely on when developing

FIGURE 12. Evaluation: Published paper in the field autonomous racing from 2009
until the end of 2021.

their algorithms. Ultimately, this leads to software that is
compliant for specific racecar competitions.
Challenge 8 – Overall system software performance:

Besides the development of particular algorithms for
autonomous racing in each part of the software stack, the
in-depth analysis of the overall software performance is a
research field that is rarely covered. The synchronization
of modules and the application of real-time conditions can
reduce the overall latency significantly. Additionally, the
delay of sensors and actuators influence both reaction time
and vehicle performance. Unfortunately, these need to be
considered in the development of a full software stack for
autonomous racing. The optimal scheduling of software exe-
cution steps and an efficient management of the CPU and
GPU usage by orchestration and hypervisor methods are
additional research fields for the software development.
Challenge 9 - Autonomous high speed hardware: All plat-

forms discussed in this survey rely on standard consumer
hardware (e.g., ECUs, sensors). There is currently no spe-
cialized hardware that aims towards high speed driving or
that was made particularly for autonomous racecars regard-
ing computational demand as well as for vibration and shock
resistance. Especially when we have a closer look to execu-
tion times displayed in the listed papers we see that some of
the algorithms can be executed faster if particular hardware
would exist.

VI. SUMMARY
This survey paper presents a comprehensive overview of the
current state of the art in the field of autonomous vehi-
cle racing. By discussing the previous and ongoing research
efforts in this field we were able to demonstrate what kind
of algorithms were developed to derive autonomous high
speed driving on the racetrack. By splitting this paper into
different sections for perception, planning and control we
showed the individual achievements by researchers to estab-
lish the autonomous driving task for a racecar. Furthermore,
we displayed and categorized research in the field of end-to-
end algorithms, vehicle dynamics modeling and simulation
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TABLE 7. List of abbreviations.

environments. This survey aims towards a holistic review
in the field of autonomous racing so additionally all hard-
ware developments and autonomous racing platforms that
are available are explained in detail. Some of these vehicles

are associated with annual competitions that provide oppor-
tunities for researchers to test and evaluate the performance
of their software. In total this survey is covering 237 papers
in the field of autonomous vehicle racing. Furthermore, in
the last four years we saw an increase of papers in this field
(Figure 12).
Undoubtedly, the field of autonomous racing is an emerg-

ing field in intelligent vehicles, robotics and transportation
system that is attracting more interest from researchers.
Although we see an emphasis of research in the fields of
planning & control, emerging fields like reinforcement learn-
ing for physical systems are applicable to autonomous racing.
Based on these results we listed open research challenges
for autonomous racing. This list can be used as a guideline
for future researchers who can participate in the autonomous
racing competitions. Finally, the list of papers surveyed in
here are uploaded to a Github repository and updated on a
regular basis so other researchers have an easy, open-source
and structured access to the papers in the field of autonomous
racing.
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