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Abstract

Real-time efficient perception is critical for autonomous navigation and
city scale sensing. Orthogonal to architectural improvements, stream-
ing perception approaches have exploited adaptive sampling improving
real-time detection performance. In this work, we propose a learnable
geometry-guided prior that incorporates rough geometry of the 3D scene
(a ground plane and a plane above) to resample images for efficient object
detection. This significantly improves small and far-away object detection
performance while also being more efficient both in terms of latency and
memory. For autonomous navigation, using the same detector and scale,
our approach improves detection rate by +4.1 APS or +39% and in
real-time performance by +5.3 sAPS or +63% for small objects over
state-of-the-art (SOTA). For fixed traffic cameras, our approach detects
small objects at image scales other methods cannot. At the same scale,
our approach improves detection of small objects by 195% (+12.5 APS)
over naive-downsampling and 63% (+4.2 APS) over SOTA.
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Chapter 1

Introduction

Visual perception is important for autonomous driving and decision-making for

smarter and sustainable cities. Real-time efficient perception is critical to accelerate

these advances. For instance, a single traffic camera captures half a million frames

every day or a commuter bus acting as a city sensor captures one million frames

every day to monitor road conditions [11] or to inform public services [23]. There

are thousands of traffic cameras [26] and nearly a million commuter buses [58] in

the United States. It is infeasible to transmit and process visual data on the cloud,

leading to the rise of edge architectures [48]. However, edge devices are severely

resource constrained and real-time inference requires down-sampling images to fit

both latency and memory constraints severely impacting accuracy.

On the other hand, humans take visual shortcuts [20] to recognize objects efficiently

and employ high-level semantics [20, 57] rooted in scene geometry to focus on relevant

parts. Consider the scene in Figure 1.1 (c), humans can recognize the distant car

despite its small appearance (Figure 1.1 (d)). We are able to contextualize the car

in the 3D scene, namely (1) it’s on the road and (2) is of the right size we’d expect

at that distance. Inspired by these observations, can we incorporate semantic priors

about scene geometry in our neural networks to improve detection?

In this work, we develop an approach that enables object detectors to “zoom” into

relevant image regions (Figure 1.1 (d) and (e)) guided by the geometry of the scene.

Our approach considers that most objects of interests are present within two planar

regions, either on the ground plane or within another plane above the ground, and their

1
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Figure 1.1: Geometric cues (black dashed lines) are implicitly present in scenes. Our
Perspective based prior exploits this geometry. Our method (a) takes an image and
(b) warps them, and performs detection on warped images. Small objects which are
(d) not detected when naively downsampled but (e) are detected when enlarged with
our geometric prior. Our method (f) uses a geometric model to construct a saliency
prior to focus on relevant areas and (g) enables sensing on resource-constrained edge
devices.
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size in the image follow a geometric relationship. Instead of uniformly downsampling,

we sample the image to enlarge far away regions more and detect those smaller

objects.

While methods like quantization [18], pruning [19], distillation [6] and runtime-

optimization [17] improve model efficiency (and are complementary), approaches

exploiting spatial and temporal sampling are key for enabling efficient real-time

perception [22, 29]. Neural warping mechanisms [24, 40] have been employed for

image classification and regression, and recently, detection for self-driving [55]. Prior

work [55] observes that end-to-end trained saliency networks fail for object detection.

They instead turn to heuristics such as dataset-wide priors and object locations

from previous frames, which are suboptimal. We show that formulation of learnable

geometric priors is critical for learning end-to-end trained saliency networks for

detection.

We validate our approach in a variety of scenarios to showcase the generalizability of

geometric priors for detection in self-driving on Argoverse-HD [29] and BDD100K [63]

datasets, and for traffic-cameras on WALT [41] dataset.

• On Argoverse-HD, our learned geometric prior improves performance over naive

downsampling by +6.6 AP and +2.7 AP over SOTA using the same detection

architecture. Gains from our approach are achieved by detecting small far-away

objects, improving by 9.6 APS (or 195%) over naive down-sampling and 4.2

APS (or 63%) over SOTA.

• On WALT, our method detects small objects at image scales where other

methods perform poorly. Further, it significantly improves detection rates by

10.7 APS over naive down-sampling and 3 APS over SOTA.

• Our approach improves object tracking (+4.8% MOTA) compared to baseline. It

also improves tracking quality, showing increase of +7.6% MT% and reduction

of -6.7% ML%.

• Our approach can be deployed in resource constrained edge devices like Jetson

AGX to detect 42% more rare instances while being 2.2X faster to enable

real-time sensing from buses.

3



1. Introduction

1.1 Background and Related Work

1.1.1 Vision Meets Geometry

Geometry has played a crucial role in multiple vision tasks like detection [9, 21, 53, 60],

segmentation [30, 51], recognition [16, 52] and reconstruction [27, 38, 49]. Perspective

Geometric constraints have been used to remove distortion [64], improve depth

prediction and semantic segmentation [28] and feature matching [56]. However, in

most previous works [27, 49, 60] exploiting these geometric constraints have mainly

been concentrated around improving 3D understanding. This can be attributed

to a direct correlation between the constraints and the accuracy of reconstruction.

Another advantage is the availability of large RGB-D and 3D datasets [5, 15, 43]

to learn and exploit 3D constraints. Such constraints have been under-explored for

learning based vision tasks like detection and segmentation. A new line of work

interpreting classical geometric constraints and algorithms as neural layers [7, 47]

have shown considerable promise in merging geometry with deep learning.

1.1.2 Learning Based Detection

Object detection has mostly been addressed as an learning problem. Even classical-

vision based approaches [13, 59] extract image features and learn to classify them

into detection scores. With deep learning, learnable architectures have been proposed

following this paradigm [4, 37, 42, 44], occasionally incorporating classical-vision

ideas such as feature pyramids for improving scale invariance [32]. While learning has

shown large improvements in accuracy over the years they still perform poorly while

detecting small objects due to lack of geometric scene understanding. To alleviate

this problem, we guide the input image with geometry constraints, and our approach

complements these architectural improvements.

1.1.3 Efficient Detection with Priors

Employing priors with learning paradigms achieves improvements with little additional

human labelling effort. Object detection has traditionally been tackled as a learning

4



1. Introduction

problem and geometric constraints were sparsely used for such tasks, constraints like

ground plane [21, 53] were used.

Temporality [14, 55, 61] has been exploited for improving detection efficiently. Some of

these methods [14, 55] deform the input image using approach that exploit temporality

to obtain saliency. This approach handles cases where object size decreases with time

(object moving away from the camera in scene), but cannot handle new incoming

objects. None of these methods explicitly utilize geometry to guide detection, which

handles both these cases. Our two-plane prior deforms the image while taking

perspective into account without biasing towards previous detections.

Another complementary line of works automatically learn metaparameters (like image

scale) [10, 17, 50] from image features. However, as they do not employ adaptive

sampling accounting for image-specific considerations, performance improvements are

limited. Methods not optimized for online perception like AdaScale [10] for video

object detection do not perform well in real-time situations.

5
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Chapter 2

Two-Plane Perspective Prior based

Image Resampling for Efficient

Object Detection

We describe how a geometric model rooted in the interpretation of a 3D scene can be

derived from the image. We then describe how to employ this rough 3D model to

construct saliency for warping images and improving detection.

2.1 Overview

Object sizes in the image are determined by the 3D geometry of the world. Let

us devise a geometric inductive prior considering a camera mounted on a vehicle.

Without loss of generality, assume the vehicle is moving in direction of the dominant

vanishing point.

We are interested in objects that are present in a planar region (See Figure 2.1) of

width P1P2 corresponding to the camera view, of length P1P3 defined in the direction

of the vanishing point. This is the planar region on the ground on which most of the

objects of interest are placed (vehicles, pedestrians, etc) and another planar region

Q1...Q4 parallel to this ground plane above horizon line, such that all the objects are

within this region (e.g., traffic lights).

From this simple geometry model, we shall incorporate relationships derived from

7



2. Two-Plane Perspective Prior based Image Resampling for Efficient Object
Detection

perspective geometry about objects, i.e., the scale of objects on ground plane is

inversely proportional to their depth w.r.t camera [21].

2.2 3D Plane parameterization from 2D images

We parameterize the planes of our inductive geometric prior. We represent 2D pixel

projections u1...u4 of 3D points P1...P4. Assume that the dominant vanishing point

in the image is v = (vx, vy) and let the image size be (w, h). Consider u1 (Figure 2.1

(b)). We can define a point on the edge of the image plane,

uL = (0, vy + vx tan θ1) (2.1)

u1 can expressed as a linear combination of v and uL,

u1 = α1uL + (1− α1)v (2.2)

Similarly, for u2, we can define uR in terms of v and θ2 and α2 while u3 and u4 are

defined like Equation 2.1 to represent any arbitrary plane in this viewing direction.

However, for simplicity, for ground plane we fix them as (0, h) and (w, h) respectively.

Consider the planar region Q1...Q4 at height H above the horizon line. We can

similarly define θ3 and θ4 to represent the angles from the horizon in the opposite

direction and define q1 and q2. Again, we set q3 as (0, 0) and q4 as (w, 0). We now

have 4 points to calculate homographies Hplane for both planes.

For now, assume v is known. However, we still do not know the values for θ’s

and α, and we shall learn these parameters end-to-end from task loss. These pa-

rameters are learned and fixed for a given scenario in our learning paradigm. Our

re-parameterization aims to ease learning of these parameters as we clamp the values

of α’s to [0, 1] and θ’s to [−π
2
, π
2
]. It should be noted that all the operations are

differentiable.

2.3 From Planes to Saliency

We leverage geometry to focus on relevant image regions through saliency guided

warping [24, 40], and create a saliency map from a parameterized homography using
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2. Two-Plane Perspective Prior based Image Resampling for Efficient Object
Detection

(a) 

C

P1
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P2
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2
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(b) 

Figure 2.1: Geometry Of The Two Plane Perspective Prior: (a) describes the
single view geometry of the proposed two plane prior. Region on the ground plane
defined by P1, ...P4, and rays emanating from camera C to Pi intersect at u1...u4 on
the image plane. The vanishing point v maps to P∞. This planar region accounts
for small objects on the ground plane. To account for objects that are tall or do not
lie on the ground plane, we consider another plane Q1..Q4 above the horizon line.
These two planes encapsulate all the relevant objects in the scene. (b) depicts the
re-parameterization of the two planes in the 2D image. Instead of representing the
planar points u1...u4 as pixel coordinates, we instead parameterize them in terms of
the vanishing point v, θ’s and α to ease learning.
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2. Two-Plane Perspective Prior based Image Resampling for Efficient Object
Detection

z
(a) Camera View

(b) Bird’s Eye View

Hplane

Sbev Splane

(c) Mapping Saliency

(d) Saliency On Scene (f) Ground Plane Warp

(e) Ground Plane Saliency

(h) Two Plane Warp

(g) Two Plane Saliency

z

Figure 2.2: Two-Plane Perspective Prior based Image Resampling: Consider
the scene of car, bus and traffic light from (a) camera view and (b) (simplified) bird’s
eye view. (c) Saliency function that captures the inverse relationship between object
size (in camera view) and depth (bird’s eye view is looking at XZ plane from above)
can be transferred to the camera view (d), by mapping row z using H (marked by
blue arrows). (e) and (f) shows that ground plane severely distorts nearby tall objects
while squishing traffic light. (g) and (h) shows that additional plane reduces distortion
for both tall objects and objects not on ground plane.

u1..u4 defined earlier. Looking at ground plane from two viewpoints (Figure 2.2 (a)

and (b)), object size decreases by their distance from the camera [21]. We shall

establish a relationship to counter this effect and “sample” far-away objects on the

ground plane more than nearby objects.

The saliency guided warping proposed by [40] operates using an inverse transformation

T −1
S parameterized by a saliency map S as follows,

I ′(x, y) = WT (I) = I(T −1
S (x, y)) (2.3)

where the warp WT implies iterating over output pixel coordinates, using T −1
S to find

corresponding input coordinates (non-integral), and bilinearly interpolating output

color from neighbouring input pixel grid points. For each input pixel (x, y), pixel

coordinates with higher S(x, y) values (i.e. salient regions) would be sampled more.

We construct a saliency S respecting the geometric properties that we desire. Let

Hplane be the homography between the camera view (using coordinates u1...u4) and

a bird’s eye view of the ground plane assuming plane size to be the original image

10



2. Two-Plane Perspective Prior based Image Resampling for Efficient Object
Detection

size (w, h). In bird’s eye view, we propose saliency function for a row of pixels z

(assuming bottom-left of this rectangle as (0, 0)) as,

Sbev(z) = eν(
z
h
−1) (2.4)

with a learnable parameter ν (> 1). ν defines the extent of sampling with respect to

depth.

To map this saliency to camera view, we warp Sbev via perspective transform Wp and

Hplane (Figure 2.2 (c)),

Splane = Wp(H
−1
plane, Sbev) (2.5)

We have defined saliency Splane given Hplane in a differentiable manner. Our saliency

ensures that objects on the ground plane separated by depth Z are sampled by the

factor eν
Z
h in the image.

2.4 Two-Plane Perspective Prior

Ground Plane saliency focuses on objects that are geometrically constrained to be on

this plane and reasonably models objects far away on the plane. However, nearby

and tall objects, and small objects far above the ground plane are not modelled

well. In Fig 2.2 (f), nearby objects above ground plane (traffic lights), they are highly

distorted. Critically, these same objects when further away are rendered small in size

and appear close to ground (and thus modelled well). Objects we should focus more

on are thus the former compared to the latter. Thus, another plane is needed, and

direction of the saliency function is reversed to Ŝbev(z) = eν̂(((h−z)/h)−1) to account for

these objects that would otherwise be severely distorted.

To represent the Two-Plane Prior, we represented the planar regions as saliencies.

The overall saliency is,

S = Sground plane + λStop plane (2.6)

where λ is a learned parameter.

11



2. Two-Plane Perspective Prior based Image Resampling for Efficient Object
Detection

2.5 Additional Considerations

Warping via a piecewise saliency function imposes additional considerations. The

choice of deformation method is critical, saliency sampler [40] implicitly avoids drastic

transformations common in other appraoches. For e.g., Thin-plate spline performs

worse [40], produces extreme transformations and requires regularization [14].

Fovea [55] observes that restricting the space of allowable warps such that axis

alignment is preserved improves accuracy, we adopt the separable formulation of T −1,

T −1
x (x) =

∫
x′ Sx(x

′)k(x′, x)x′∫
x′ Sx(x′)k(x, x′)

(2.7)

T −1
y (y) =

∫
y′
Sy(y

′)k(y′, y)y′∫
y′
Sy(y′)k(y, y′)

(2.8)

where k is a Gaussian kernel. To convert a saliency map S to Sx and Sy we marginalize

it along the two axes. Thus entire rows or columns are “stretched” or “compressed”.

Two-plane prior is learnt end to end as a learnable image warp. For object detection,

labels need to be warped too, and [40]’s warp is invertible. Like [55], We employ

the loss L(T −1(fϕ(WT (I)), L) where (I, L) is the image-label pair and omit the use

of delta encoding for training RPN [44] (which requires the existence of a closed

form T ), instead adopting GIoU loss [45]. This ensures WT is learnable, as T −1 is

differentiable.

We did not assume that the vanishing point is within the field of view of our image,

and our approach places no restrictions on the vanishing point. Thus far, we explained

our formulation while considering a single dominant vanishing point, however, multiple

vanishing points can be also considered. Please see supplementary for more details.

2.6 Obtaining the Vanishing Point

We now describe how we obtain the vanishing point. Many methods exist with

trade-offs in accuracy, latency and memory which which inform our design to perform

warping efficiently with minimal overheads.

Fixed Cameras: In settings like traffic cameras, the camera is fixed. Thus, the

vanishing point is fixed, and we can cache the corresponding saliency S, as all the

12



2. Two-Plane Perspective Prior based Image Resampling for Efficient Object
Detection

Figure 2.3: Multiple Vanishing Points: Saliency from First Vanishing Point
parallel to sidewalk “compresses” far away cars on perpendicular road. Second
Vanishing Point ensures those cars are not compressed. Please zoom in to observe
the vanishing points and deformation.

parameters, once learnt, are fixed. We can define the vanishing point for a camera

manually by annotating two parallel lines or any accurate automated approach.

Saliency caching renders our approach extremely efficient.

Autonomous Navigation: Multiple assumptions simplify the problem. We assume

that there is one dominant vanishing point and a navigating car is often moving in the

viewing direction. Thus, we assume that this vanishing point lies inside the image, and

directly regress v from image features using a modified coordinate regression module

akin to YOLO [36, 42]. This approach appears to be memory and latency efficient.

Other approaches, say, using parallel lane lines [1] or inertial measurements [3] might

also be very efficient. An even simpler assumption is to employ the average vanishing

point, as vanishing points are highly local, we observe this is a good approximation.

Temporal Redundancies: In videos, we exploit temporal redundancies, the van-

ishing point is computed every nv frames and saliency is cached to amortize latency

cost.

General Case: This is the most difficult case, and many approaches have been

explored in literature to find all vanishing points. Classical approaches [54] while fast

are not robust, while deep-learned approaches [34, 35, 66] are accurate yet expensive

(either in latency or memory).

13
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2.7 Multiple Vanishing Points

Our method can consider additional planes that correspond to lines meeting at a

different vanishing point. For example, a traffic camera with a wide field of view

that is placed at an intersection observing two roads simultaneously would benefit

from this. Assuming N vanishing points, considering Saliency Svi corresponding to

vanishing point vi,

S =
N∑
i=0

λiSvi (2.9)

where λi’s are learnable, initialized as 1
N
. Please observe the case of N = 2 in an

image from the commuter bus dataset in Figure 2.3, wherein combining saliencies

from two vanishing points (obtained from [34]) ensures far away objects of interest

are sampled more.

We observed in the datasets we considered, multiple vanishing points were rare

as it generally requires a camera with a large field of view. Thus, we employed

models [36, 66] trained on Natural Scenes dataset, which predict only one vanishing

point. However, vanishing points can be estimated from other methods [34, 35, 66]

which do predict all the vanishing points, but incur higher overheads.

2.8 Learning Geometric Prior from Pseudo-Labels

Prior work [55] have shown performance improvements on pre-trained models via

heuristics, which didn’t require any training. However, their method still employs

domain-specific labels (say, from Argoverse-HD) to generate the prior. Our method

can’t be used directly as it learns geometrically inspired parameters end-to-end.

However, domain-specific images can be exploited to learn the parameters.

There is a simple alternative to learn the proposed prior using pre-trained model

without requiring additional labels. We generate pseudo-labels from pre-trained

model inferred at 1x scale. We learn our warp function (to 0.5x scale) end-to-end

using these “free” labels. Our geometric prior shows improvements without access to

ground truth.
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Chapter 3

Experiments and Results of

Two-Plane Perspective Prior

In this chapter, we describe the datasets, evaluation details and implementation

details of the Two-Plane Perspective Prior. Then we discuss the experiments to

understand the accuracy and latency improvements of Two-Plane Perspective Prior

in detecting objects for any detector.

3.1 Datasets

Argoverse-HD [29]: We employ Argoverse-HD dataset for evaluation in the au-

tonomous navigation scenario. This dataset consists of 30fps video sequences from a

car collected at 1920× 1200 resolution, and dense box annotations are provided for

common objects of interest such as vehicles, pedestrians, signboards and traffic lights.

WALT [41]: We employ images from 8 4K cameras that overlook public urban

settings to analyze the flow of traffic vehicles. The data is captured for 3-second bursts

every few minutes and only images with notable changes are stored. We annotated

a set of 4738 images with vehicles collected over the time period of a year covering

a variety of day/night/dawn settings, seasonal changes and camera viewpoints. We

show our results on two splits (approximately 80% training and 20% testing). The

first, All-Viewpoints, images from all the cameras are equally represented in the

train and test sets. Alternatively, we split by camera, Split-by-Camera, images
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3. Experiments and Results of Two-Plane Perspective Prior

from 6 cameras are part of the training set and 2 cameras are held out for testing.

3.2 Evaluation Details

We perform apples-to-apples comparisons on the same detector trained using the

datasets with identical training schedule and hardware.

3.2.1 Data

We compare to methods that were trained on fixed training data. In contrast, sAP

leaderboards [29] don’t restrict data and evaluate on different hardware. We compare

with [17, 29] from leaderboard, which follow the same protocols. Other methods

on the leaderboard use additional training data to train off-the-self detectors. Our

detectors would see similar improvements with additional data.

3.2.2 Detection Model Choice

We experiment with Faster R-CNN as our base detection model (unless specified

otherwise) as prior work has shown it occupies the optimal sweet-spot [29] w.r.t

latency and accuracy on modern GPUs. However, our approach is agnostic to the

choice of detector and our results generalize to other detectors.

3.2.3 Latency

We capture end-to-end latency in milliseconds, that includes image pre-processing,

network inference and post-processing, following protocol from prior work [55].

3.2.4 Scale

The image down-sampling factor is equal in both spatial dimensions. So an image

originally 1920× 1200 (1x scale) when down-sampled to 0.25x is a 480× 300 image.
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Figure 3.1: Two-Plane Prior as a Neural Layer: We implemented our approach
as a global prior that is learned end-to-end from labelled data. Our prior is dependent
on a vanishing point estimate to specify the viewing direction of the camera.

3.2.5 Real-Time Evaluation

We evaluate using Streaming AP (sAP) metric proposed by [29], which integrates

latency and accuracy into a single metric. Instead of considering models via accuracy-

latency tradeoffs [22], real-time performance can be evaluated by applying real-time

constraints on the predictions [29]. Frames of the video are observed every 33

milliseconds (30 fps) and predictions for every frame must be emitted before the

frame is observed (forecasting is necessary). For a fair comparison, sAP requires

evaluation on the same hardware. Streaming results are not directly comparable with

other work [29, 55, 61] as they use other hardware (say, V100 or 2080Ti), thus we

run the evaluation on our hardware (Titan X).

3.3 Implementation Details

We implemented our approach using Pytorch [39] and mmdetection [8]. The two-plane

perspective prior is implemented as a neural network layer with learnable parameters
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3. Experiments and Results of Two-Plane Perspective Prior

that are global (fixed warps parameterized by vanishing point; Figure 3.1). We

employ differentiable versions of Direct Linear Transform and warp perspective from

Kornia [46], while we reuse implementation of separable neural warps from [55].

To detect vanishing points, we employ NeurVPS [66] for fixed cameras. We use

VPNet [36] with ResNet18 backbone for autonomous navigation.

3.3.1 Parameter Initialization

We selected one representative image, and initialized the learnable parameters (i.e. θ’s

and α’s) via visual inspection. The guiding principal was to enlarge far objects while

trying to distort the close-by objects as less as possible. The same initial parameters

are used for all the datasets. Please look at our code for the initial parameters.

3.4 Training Details

For training our proposed approaches, to train the Faster R-CNN model we use

the Adam optimizer with a learning rate of 3× 10−4. For training any methods by

Fovea [55] we follow their protocol. We follow the protocol mentioned by [10, 17] for

training their approach.

Argoverse-HD We considered the same base architecture (Faster R-CNN) for all

the methods. We compare with SOTA [55] using models provided by their public

code release, and follow the training protocol prescribed in their work, training our

models for 3 epochs.

WALT We considered the same base architecture (Faster R-CNN) for all the methods.

We trained the models (and learnt the warping function parameters, if applicable)

using the Adam optimizer with the same learning rate and other parameters for 6

epochs.

Vanishing Point Estimation For NeurVPS, we directly employ the pre-trained

model trained on Natural Scenes (TMM17) dataset [67] part of their public code

release. While for VPNet [36], as there is no public code release, we implement this

architecture employing a ResNet18 backbone attached to a modified YOLO head.

We omit the upsampling refinement procedure described in [36], as model’s median

error in vanishing point prediction is around 10 pixels with an average latency of 28
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3. Experiments and Results of Two-Plane Perspective Prior

Method Scale AP APS APM APL Latency (ms)

Faster R-CNN 0.5x 24.2 4.9 29.0 50.9 78.4± 1.8

Fovea (SD) [55] 0.5x 26.7 8.2 29.7 54.1 83± 2.5
Fovea (SI) [55] 0.5x 28.0 10.4 31.0 54.5 85± 2.7
Fovea (L:SI) [55] 0.5x 28.1 10.3 30.9 54.1 85.4± 2.7

Two-Plane Pr. (Pseudo.) 0.5x 27.1 9.8 28.9 50.2 104.5± 8.5
Two-Plane Prior 0.5x 30.8 14.5 31.6 52.9 105± 8.5

Baseline at higher scales

Faster R-CNN 0.75x 29.2 11.6 32.1 53.3 142± 2.5
Faster R-CNN 1.0x 33.3 16.8 34.8 53.6 220± 1.7

Table 3.1: Evaluation on Argoverse-HD: Two-Plane Prior outperforms both
SOTA’s dataset-wide and temporal priors in overall accuracy. Our method improves
small object detection by +4.1APS or 39% over SOTA.

ms, which is sufficient for our method to work. The off-the-shelf model is executed at

nv = 30 to amortize the cost of executing this model. We also tried using LaneAF [1]

to obtain lane lines (similar latency), however, we observed the method was prone to

errors while clustering lines and obtaining the vanishing point.

3.5 Results and Discussions

Accuracy-Latency Comparisons: On Argoverse-HD, we compare with Faster

R-CNN with naive downsampling (Baseline) and Faster R-CNN paired with adaptive

sampling from Fovea [55] which proposed two priors, a dataset-wide prior (SD) and

frame-specific temporal priors (SI & L : SI ; from previous frame detections).

Two-Plane Prior improves (Table 3.1) upon baseline at the same scale by +6.6 AP

and over SOTA by +2.7 AP . For small objects, the improvements are even more

dramatic, our method improves accuracy by +9.6 APS or 195% over baseline and

+4.2 APS or 45% over SOTA respectively. Surprisingly, our method at 0.5x scale

improves upon Faster R-CNN at 0.75x scale by +1.6 AP having latency improvement

of 35%. Our Two-Plane prior trained via pseudo-labels comes very close to SOTA

which employ ground truth labels, the gap is only -1 AP and improves upon Faster

R-CNN model trained on ground truth by +2.9 AP inferred at the same scale.

WALT dataset [41] comprises images (only images with notable changes are saved)
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3. Experiments and Results of Two-Plane Perspective Prior

ID Method Scale(s) sAP sAPS sAPM sAPL

1 Streamer [29] 0.5x 18.3 3.1 15.0 40.9

2 1 + Adascale [10] 0.2x-0.6x 13.4 0.2 8.6 37.4
3 Adaptive Streamer [17] 0.2x-0.6x 21.3 4.2 18.8 47.0
4 1 + Fovea (SI) [55] 0.5x 24.1 8.4 24.7 48.7

5 1 + Ours (Avg VP) 0.5x 29.9 13.7 31.3 52.2
6 1 + Ours 0.5x 30.0 13.7 31.5 52.2

7 1 + Ours (VP Oracle) 0.5x 30.7 14.5 31.6 52.9

Table 3.2: Streaming Evaluation on Argoverse-HD: Ours denotes Two-Plane
Prior. Every frame’s prediction (streamed at 30FPS) must be emitted before frame is
observed [29] (via forecasting). All methods evaluated on Titan X GPU. Underlying
detector (Faster R-CNN) is constant across approaches, improvements are solely
from spatial sampling mechanisms. Notice improved detection of small objects by
+5.3sAPS or 63% over SOTA.

and not videos, we compare with Fovea [55] paired with the dataset-wide prior.

We observe similar trends on both splits (Table 3.3 and Fig 3.2) and note large

improvements over baseline and a consistent improvement over Fovea [55], specially

for small objects.

Real-time/Streaming Comparisons: We use Argoverse-HD dataset, and compare

using the sAP metric (Described in Section 3.2). Algorithms may choose any scale

and frames as long as real-time latency constraint is satisfied.

All compared methods use Faster R-CNN, and we adopt their reported scales (and

other parameters). Streamer [29] converts any single frame detector for streaming by

scheduling which frames to process and interpolating predictions between processed

frames. AdaScale [10] regresses optimal scale from image features to minimize single-

frame latency while Adaptive Streamer [17] learns scale choice in the streaming

setting. Both these methods employ naive-downsampling. State-of-the-art, Fovea [55]

employs the temporal prior (SI). From Table 3.2, Two-Plane prior outperforms

the above approaches by +16.5 sAP , +8.6 sAP and +5.9 sAP respectively.

Comparison with [10, 17, 29] shows the limitations of naive downsampling, even when

“optimal” scale is chosen. Our geometric prior greatly improves small object detection

performance by 63% or +5.3 sAPS over SOTA. To consider dependence on accurate

Vanishing Point detection (and its overheads), we use NeurVPS [66] as oracle (we
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Figure 3.2: WALT All-Viewpoints Split: Our approach (Two-Plane Prior) shows
improved overall performance over naive downsampling and state-of-the-art adaptive
sampling technique, specially for small objects at all scales (starting from 0.5x).
Horizontal line (orange) indicates performance at maximum possible scale (0.6x) the
base detector was trained at (memory constraints).

simulate accurate prediction with zero delay) to obtain an upper bound, we observe

even average vanishing point location’s performance is within 0.8 sAP .

Accuracy-Scale Tradeoffs: We experiment with WALTAll-Viewpoints split to ob-

serve accuracy-scale trade-offs. The native resolution (4K) of the dataset is extremely

large and the gradients don’t fit within 12 GB memory of our Titan X GPU, thus we

cropped the skies and other static regions to reduce input scale (1x) to 1500× 2000.

Still, the highest scale we were able to train our baseline Faster R-CNN model is 0.6x.

So, we use aggressive downsampling scales {0.5, 0.4375, 0.375, 0.3125, 0.25, 0.125}. The
results are presented in Figure 3.2. We observe a large and consistent improvement

over baseline and Fovea [55], specially for small objects. For instance, considering

performance at 0.375x scale, our approach is better than baseline by +13.1 AP and

Fovea by +1.4 AP for all objects.

For small objects, we observe dramatic improvement, at scales smaller than 0.375x,

other approaches are unable to detect any small objects while our approach does so

until 0.125x scale, showing that our approach degrades more gracefully. At 0.375x

scale, our approach improves upon Faster R-CNN by +10.7 APS and Fovea by +3.0

APS.

Generalization to new viewpoints: We use WALT Camera-Split, the test
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Method Scale AP APS APM APL

Faster R-CNN 0.25x 16.7 0 7.2 42.3
FOVEA (SD) [55] 0.25x 23.2 0 13.9 54.1

Two-Plane Prior 0.25x 25.2 1.0 18.2 54.5

Faster R-CNN 0.5x 29.2 4.9 24.7 55.5
FOVEA (SD) [55] 0.5x 34.4 8.7 30.5 59.4

Two-Plane Prior 0.5x 36.4 11.6 32.3 59.0

Baseline at higher scales

Faster R-CNN 0.6x 33.2 9.3 28.6 56.7
Faster R-CNN* 1.0x 34.3 12.6 30.7 54.3

Table 3.3: WALT Camera-Split: The viewpoints on the test set were not seen, and
Two-Plane Prior shows better performance over both naive downsampling and state-
of-the-art adaptive sampling as it generalizes better to unseen scenes and viewpoints.
*Not trained at that scale due to memory constraints on Titan X.

scenes and viewpoint are unseen in training. E.g., the vanishing point of one of the

held-out cameras is beyond the image’s field of view. We operate on the same scale

factors in the earlier experiments, and results are presented in Table 3.3. We note

lower overall performance levels due to scene/viewpoint novelty in the test sets. Our

approach generalizes better due to the explicit modelling of the viewpoint via the

vanishing point (See Section 2.2). We note trends similar to previous experiment, we

demonstrate improvements of +8.5 AP over naive-downsampling and +2.0 AP over

Fovea [55] at 0.25x scale.

3.6 Results on Another Detector

Adaptive spatial sampling mechanisms leverage and exploit priors corresponding

to the input images in a way that is agnostic to the detection method. We expect

our approach to generalize across detectors, similar to observations by such warping

mechanisms and saliency priors proposed earlier [55]. We choose RetinaNet [33], a

popular single-stage object detector as our archetypal example (Faster R-CNN [44] is

the two-stage archetype). Results can be viewed in Table 3.4. Our approach improves

upon both the baseline Faster R-CNN and SOTA, specially for small and medium

sized objects, following the trends observed in the main manuscript.
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Method Scale AP APS APM APL

RetinaNet 0.5x 22.6 4.0 22.0 53.1
Fovea (SI) [55] 0.5x 24.9 7.1 27.7 50.6
Two-Plane Prior 0.5x 26.3 10.1 29.2 50.5

Baseline at higher scales

RetinaNet 0.75x 29.9 9.7 32.5 54.2

Table 3.4: Alternate Detector: We replace Faster R-CNN with RetinaNet (archety-
pal one-stage detector), and observe considerable improvements over Baseline (Reti-
naNet with uniform downsampling) and SOTA trained on Argoverse-HD dataset.

Method Scale Model AP APS APM APL

Faster R-CNN 0.5x COCO 15.3 1.1 12.5 40.5
Faster R-CNN 0.5x AVHD 15.1 1.0 10.6 39.0

Fovea (SD) [55] 0.5x AVHD 13.7 1.3 10.0 34.7
Fovea (SI) [55] 0.5x AVHD 16.4 2.1 12.8 38.6

Two-Plane Prior (Psuedo.) 0.5x AVHD 16.2 4.7 15.9 33.3
Two-Plane Prior (Psuedo.) 0.5x COCO 20.9 5.8 19.4 44.2

Baseline at higher scales

Faster R-CNN 0.75x AVHD 19.7 3.0 16.1 44.2
Faster R-CNN 0.75x COCO 20.3 3.7 18.2 45.3
Faster R-CNN 1x AVHD 22.6 5.7 20.1 45.7
Faster R-CNN 1x COCO 23.1 6.5 21.7 46.1

Table 3.5: Generalization to BDD100K: Scale in this case is fixed to 0.5x, AVHD
refers to Argoverse-HD and COCO datasets respectively. AVHD models are finetuned
from the pre-trained COCO model. We compare generalization on the BDD100K
dataset. Our method assumes availability of training set images of BDD100K and
not labels, we generate pseudo-labels from the available model (Section 3.6) to learn
the Two Plane prior.
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3. Experiments and Results of Two-Plane Perspective Prior

Method sAP sAPS sAPM sAPL

StreamYOLO-L [61] 25.9 8.6 24.2 40.9
StreamYOLO-M [61] 25.9 9.2 24.8 41.0
StreamYOLO-S [61] 29.6 11.0 30.9 51.6

Ours 30.0 13.7 31.5 52.2

Table 3.6: “Real-Time” Detectors: Streaming Comparison on Argoverse-HD on
Titan X. StreamYOLO-M and StreamYOLO-L single-frame latency is 45.8 ms and
62.9 ms respectively, is greater than 33ms, violating [61]’s “real-time” restriction.
StreamYOLO-S satisfies (20.8 ms), hence has better performance.

3.7 Additional Results on Autonomous Driving

Comparison with Learned Fovea [55]: Fovea [55] also proposed end-to-end global,

dataset-wide saliency map S learned via backpropagation (Learned Seperable and

Learned Nonseperable). However, they observed worse performance compared to

their bounding box priors (SD and SI), see Table 3.7. We show that end-to-end

learned saliency is better, with careful geometric parameterization.

Improved Performance on ground plane: We observe improved performance

over state-of-the-art on every object category for objects on the ground plane (person,

traffic light, bike, stop-sign, car, truck) apart from motorbike (See Table 3.7). On

further observation, this might be an artifact of the label skew of the Argoverse-HD

dataset (mbike has the least number of instances). For objects not on the ground

plane, like traffic-light, we observe performance as good as SOTA.
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3. Experiments and Results of Two-Plane Perspective Prior

Generalization to BDD100K: We compare generalization from approaches trained

on Argoverse-HD and COCO datasets to BDD100K MOT dataset (See Table 3.5).

Our approach assumes access to training set images from BDD100K dataset, but

not it’s ground truth labels. As our priors can be learnt without access to ground

truth data, we employ the method detailed in Section 3.6 to generate pseudo labels

to learn and adapt the geometric parameters on this dataset by training on these

pseudo-labels for 1 epoch only.

We observe that our method nearly matches SOTA when adapted starting from a

model finetuned on Argoverse-HD, however, dramatically exceeds it’s performance

when adapted from a model solely trained on COCO. We believe the reason for this

mismatch is due to catastrophic forgetting [25] observed in finetuned models when

evaluated on out-of-distribution data. Lastly, the results indicate the benefits of

learnability of our perspective prior, we observe increase in performance for “free”

even when images are available without access to ground truth.

Comparison with “Real-Time” Detectors: Real-time detectors like [61] have

been recently proposed which predict boxes Gt+1 at time t (of frame Ft+1; available

solely during training and not testing) given Ft to satisfy sAP. Approaches like these

constraint the detector to perform the computation within a latency budget (< 33ms

or 30 FPS). Our methods are complementary to such detectors, as long as their

constraint is satisfied.

However, real-time detectors (termed as “fast” strategy) might be suboptimal [29].

Satisfying the real-time detector constraint may not be optimal for every hardware

platform, specially on slower edge devices. Such methods [61] are not hardware-

agnostic, and model architecture choices are optimized for specific hardware (in their

case, for a V100 GPU). On Titan X (See Table 3.6), their streaming performance

(which is hardware dependent) is worse.

3.8 Tracking Smaller Objects for Longer

We provide an analysis of our approach observing how it improves object tracking. We

wish to observe if the gains from our method translates to detecting far-away objects

for longer period of time. We employ Argoverse-HD dataset for our experiments

which have ground truth object IDs.

26



3. Experiments and Results of Two-Plane Perspective Prior

Method MOTA ↑ MOTP ↑ MT% ↑ ML% ↓ MOS ↓ ALE% ↑

Faster RCNN 39.8 82.3 30.7 35.6 37.1 59.3 %
Fovea (SD) [55] 43.9 81.9 34.1 31.9 34.8 +5.4 %
Fovea (SI) [55] 44.3 81.8 36.7 28.4 33.8 +8.4 %

Two-Plane Prior 44.6 83.0 38.3 28.9 31.6 +9.9 %

Table 3.8: Tracking Improvements: We setup a tracking by detection pipeline and
replace the underlying detection method and observe improvements if any. All the
detectors employ the Faster R-CNN architecture and are executed at 0.5x scale. We
observe improvements in tracking metrics due to Two-Plane Prior.

Figure 3.3: Tracking Visualization: To visualize the impact of our two-plane prior,
we visualize tracks of length greater than 150 frames tracked by both the methods
for a given sequence. We plot object size w.r.t frame numbers (which denotes length).
We can observe that some objects are detected earlier and are tracked for a longer
time.

Setup: We employ a Faster R-CNN as our baseline and the tracker is fixed to IOU

Tracker [2]. We additionally pair the priors proposed by Fovea [55] for comparison.

All the detectors are executed at 0.5x scale for fair comparison.

Tracking Improvements on Traditional Metrics: We follow tracking-by-detection

and pair IOUTracker [2] with detectors on Argoverse-HD dataset. MOTA and MOTP

evaluate overall tracking performance. From Table 3.8, Our method improves over

baseline by +4.8% and +0.7%. We also focus on tracking quality metrics, Mostly

Tracked % (MT%) evaluates the percentage of objects tracked for atleast 80% of

their lifespan while Mostly Lost % (ML%) evaluates percentage of objects for less
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3. Experiments and Results of Two-Plane Perspective Prior

Figure 3.4: Tracking Visualization: To visualize the impact of our two-plane prior,
we visualize tracks of length greater than 150 frames tracked by both the methods
for a given sequence. We plot object size w.r.t frame numbers (which denotes length).
The severe drops of the object sizes for some tracks correspond to nearby object
overtaken by our vehicle. We can observe that some objects are detected earlier and
are tracked for a longer time.

than 20% of their lifespan. In both these cases, our approach improves upon the

baseline by +7.6% and -6.7% respectively.

Tracking Visualizations: We present some tracking visualization in Figures 3.3

and 3.4. These visualizations motivate us to define the following metrics.

Detecting and Tracking for Longer: We wish to understand if Two-Plane Prior

is able to detect an object for a longer lifespan. This is important in autonomous

driving situations, wherein we want to detect far-away objects as quickly as possible

or any object moving away from us.

Prior tracking quality metrics such as MT% and ML% check the ratio of tracks

that are mostly tracked or mostly lost. However, this does not capture the track

length improvements. We propose to compare the average extension of a track (ATE)

compared to the baseline detection method. Given a track τ , Eτ can be positive or

negative, and is given by,

Eτ (m, b, gt) = (Lm − Lb)/Lgt (3.1)

where m is the method, b is baseline and gt is the ground truth track, while L

denotes track length. ATE is the average over tracks across all sequences. However,
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3. Experiments and Results of Two-Plane Perspective Prior

as the metric weighs all tracks equally, which is unfair for extremely small track

lengths, thus, we only consider ground truth tracks which are atleast 5 seconds or

150 frames long.

Detecting and Tracking Smaller Objects: Given a track, we wish to observe

if Two-Plane Prior is able to detect an object when it’s “smaller” compared to

other methods. This is important in autonomous driving situations, wherein we

would like to detect further away objects, which would appear smaller. We wish to

compute the minimum object size tracked (MOS). We employ a proxy for object

size, size(x) = log(area(x)) where x denotes an object bounding box, as the area

quadratically increases. For a given ground truth track τ , let oτ denote minimum

object size of an object, while Oτ denotes maximum object size. Let cτ denote the

minimum object size in the predicted track currently considered. We can write,

Mτ =
cτ − oτ
Oτ − oτ

(3.2)

Mτ is averaged over all tracks across all sequences to obtain MOS.

3.8.1 Ablation Studies

We discuss some of the considerations of our approach through experiments on the

Argoverse-HD dataset.

Ground Plane vs Two-Plane Prior: We discussed the rationale of employing

multiple planes in Fig 2.2, and our results are consistent. From Table 3.9, Two-Plane

Prior outperforms Ground Plane prior considerably (+1.8 AP ). Ground Plane Prior

outperforms Two-Plane Prior on small objects by +1 APS but is heavily penalized

on medium (-4.1 APM) and large objects (-4.6 APL). This is attributed to heavy

distortion of tall and nearby objects, and objects that are not on the plane (Figure 2.2).

Lastly, this prior was difficult to learn, the parameter space severely distorted the

images (we tuned initialization and learning rate). Thus we did not consider this

prior further. The second plane acts as a counter-balance and that warping space is

learnable.

Vanishing Point Estimate Dependence: From Table 3.9, dominant vanishing

point in autonomous navigation is highly local in nature, and estimating VP improves

the result by +1.2 AP. Estimating the vanishing point is a design choice, it’s
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3. Experiments and Results of Two-Plane Perspective Prior

Method Scale AP APS APM APL

Ground Plane Prior 0.5x 29.1 15.5 27.5 48.3
Two-Plane Prior (Psuedo.) 0.5x 27.1 9.8 28.9 50.2
Two-Plane Prior (Avg VP) 0.5x 29.6 12.7 30.7 52.7
Two-Plane Prior 0.5x 30.8 14.5 31.6 52.9

Table 3.9: Ablation Study on Argoverse-HD to justify our design choice of using
two planes, dependence on accurate vanishing point detection and choice of pseudo
labels vs ground truth.

important for safety critical applications like autonomous navigation (performance

while navigating turns) however might be omitted for sensing applications.

Using Pseudo Labels vs Ground Truth: Table 3.9 shows there is still considerable

gap (-3.7 AP ) between the Two-Plane Prior trained from pseudo labels and ground

truth. We observe that the model under-performs on stopsign, bike and truck classes,

which are under-represented in the COCO dataset [31] compared to person and car

classes. Performance of the pre-trained model on these classes is low even at 1x scale.

Hence, we believe that the performance difference is an artifact of this domain gap.

3.9 Qualitative Results

We present the variations of our proposed Two-Plane Perspective Prior across different

datasets and scenarios in Figure 3.5. We also show case of the major failure mode

of just employing Ground Plane Prior in Figure 3.6. We also show a qualitative

comparison with prior work in Figures 3.7, 3.8 and 3.9. Lastly, we take a closer look

at some of the far away objects that were detected in Figures 3.10 and 3.11. The

accompanying website further illustrates some of the aspects of our method.
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3. Experiments and Results of Two-Plane Perspective Prior

Input Image Warped Image Two-Plane Saliency
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Figure 3.5: Two-Plane Prior Based Warping: Two-Plane Prior is defined by a
few parameters that describe two planar regions in the direction of the vanishing point
in the 3D scene (See Section 3.1 and 3.2 in manuscript). Firstly, we can observe the
Two-Plane Prior’s explicit dependence on the vanishing point v in the saliency maps.
Next, as we can observe from grid lines (equidistant in the original image) overlaid on
top of the warped images, the extent of spatial warping varies across datasets (WALT,
Argoverse-HD and Commuter Bus), showing us the need for learnable parameter
ν over prior work which do not directly model this relationship. Lastly, notice the
second plane’s effect in sampling. The second plane acts as a ”counter-balance” to
reduce distortion, and the plane is faintly observable (contrast adjusted for better
visibility).
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Figure 3.6: Ground Plane Prior vs Two-Plane Prior: This figure demonstrates
how crucial it is to model the second plane. Learning is difficult with Ground Plane
Prior (Section 5.1 in the manuscript) and causes heavy distortion of non-ground-plane
regions.
Scene 1: Detector with Ground Plane Prior misses nearby tall objects because of
heavy distortion. Turquoise colored bus on the right (blue box) is detected when
Two-Plane prior is used and missed with Ground Plane prior.
Scene 2: Objects not on the ground plane are missed as they are squished by the
Ground Plane Prior. Yellow boxes denote the traffic lights. All 6 traffic lights in the
scene were detected when Two-Plane prior is used while Ground Plane prior missed
4 traffic lights.
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3. Experiments and Results of Two-Plane Perspective Prior

Input Image FOVEA (SD)

FOVEA (SI) Two-Plane Prior

Figure 3.7: Qualitative Comparison with Fovea Warps on Argoverse-HD:
We observe that the reliance on the vanishing point v allows the warp to sample
in the direction of the road even while making turns. Far ahead on the road, a
truck (dark-blue) is not detected by Fovea (SD or SI), but correctly detected by our
approach.
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Input Image FOVEA (SD)

FOVEA (SI) Two-Plane Prior

Figure 3.8: Qualitative Comparison with Fovea Warps on Argoverse-HD:
We observe that scale factor ν models the extent of sampling better. Fovea (SD or
SI) misses the stop − sign (a magenta box in the middle of the image) which our
method is able to detect (as it’s larger in the warped image). Fovea (SI) notes that in
their method, regions immediately adjacent to magnified regions are often contracted
which is noticed in this case.
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Input Image FOVEA (SD)

FOVEA (SI) Two-Plane Prior

Figure 3.9: Qualitative Comparison with Fovea Warps on Argoverse-HD:
Failure Case: The model has misclassified a pedestrian as car in the image warped
by the Two-Plane Prior while correctly classified by Fovea (SD or SI) (red), likely
due to the presence of bicycle and heavier distortion.
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(b) (c)

(a)

Figure 3.10: Detection of Far Away Objects: Our Two-Plane Prior boosts
the detection of small far-away objects at lower resolutions (depicted image from
Argoverse-HD dataset). The cropped green region in the (a) original image is (c)
zoomed in while (b) shows all the detections in the warped image. Our method
detects far-away pedestrian and car.

(a)

(c)(b)

Figure 3.11: Detection of Far Away Objects: Our Two-Plane Prior boosts
the detection of small far-away objects at lower resolutions (depicted image from
Argoverse-HD dataset). The cropped green region in the (a) original image is (c)
zoomed in while (b) shows all the detections in the warped image. Our method is
able to detect the occluded car.
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Chapter 4

Detecting Vulnerable Users On The

BusEdge

4.1 BusEdge System

We work with the BusEdge system [62] which is an edge enabled bus platform for

city-scale sensing. The bus is generally equipped with cameras, GPS and IMU whose

live streams can be analyzed for a resilient and intelligent transportation system.

However, it’s a difficult task to analyze this bus data in real-time. A big challenge in

this scenario is to perform efficient detection on the bus hardware itself.

The bus is equipped with a Jetson AGX edge device. The edge device communicates

with a modified onboard-NVR recording bus data from 7 cameras, two inside the

bus and five on the outside of the bus. The cameras record data at 5FPS at 720P

resolution for 8 working hours of the bus, totalling 1.08 million frames everyday. It is

not feasible to transmit and process this data on the cloud due to bandwidth and

compute limitations, and privacy concerns. Thus, the edge device and the NVR are

part of a distributed edge-cloud infrastructure wherein the edge device is employed

to process these simultaneous streams, only relevant frames are transmitted to cloud

machines where we do further offline analysis.

We analyze bus streams to build an actionable map of public infrastructure, for

instance, which areas need a trash pickup or where does snow needs to be shovelled.
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4. Detecting Vulnerable Users On The BusEdge

Method Scale AP50 AR ARS ARM ARL Latency (ms)

Faster R-CNN 0.5x 45.0 31.7 0.5 37.3 46.9 154± 8.5
Two-Plane Prior 0.5x 77.2 61.7 16.4 69.9 68.7 158± 7.5

Faster R-CNN 0.75x 58.6 41.1 10.5 45.3 54.7 240± 8.5
Two-Plane Prior 0.75x 84.5 68.3 38.8 72.9 73.3 245± 10

Baseline at higher scales

Faster R-CNN 1x 68.2 41.5 16.9 47.5 57.1 350± 15

Table 4.1: Rare Object Detection on the Commuter Bus: We compare
our approach with a baseline Faster R-CNN. We observe improved precision and
recall over the baseline, specially for small and medium sized objects. Do note,
for ≈1FPS throughput over five simultaneous streams, average latency of 200ms
should be achieved (however, this is not an enforced latency budget for streaming
perception [29]).

We also provide real-time feedback to the bus driver, informing them of people who

may need assistance (say, on wheelchairs, or with a stroller or service animal) getting

on the bus. Thus we employ an object detector to detect trash cans, garbage bags

and people with an assistive device. Our system has to operate at near real-time on

all streams simultaneously, rendering cloud-transmission-turn-around infeasible.

As we employ the edge device to filter out relevant frames, detecting all the objects

in the scene is more important than the precision and localization accuracy (a frame

once, marked “relevant”, is sent to cloud where we employ larger models at higher

resolutions without constraints).

4.2 Dataset Acquisition

For research purposes, we do record all the data1, which is humongous (≈30 Terabytes

till now) and the instances are rare, we were able to identify 3.5K such frames

(temporally subsampled to 750) through a semi-automatic method. Firstly, we only

sampled frames from the camera that is facing the sidewalk (people entering the

bus are visible). We then geo-fenced images from bus-stop locations and major

intersections on the bus route reducing the set to 780K images. Then, we employ off-

the-shelf Detic Swin-B Large Faster R-CNN with CLIP (for custom vocabulary) [65]

1Transmission is infeasible, HDD’s swapped physically. (Sneakernet)
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Figure 4.1: Commuter Bus Dataset: The captured data has a unique viewpoint,
the average size of objects is small and captured under a wide variety of lighting
conditions. Top-left and bottom-right images depict the same bus-stop and trashcan
at different time of day and season.

and find images with ”wheelchair”, ”stroller”, ”walker”, ”crutches”, ”cane”, ”dog”,

”animal”, ”trolley”, ”cart”, ”trash can”, ”garbage bin”, ”garbage”, ”garbage bag”

categories with a confidence threshold of 0.25. This model has a high false positive

rate for these rare classes, and we were able to automatically filter a set of 21K images,

and manually filtered these to yield 3.5K images. As many of these images were part

of dense temporal sequences, we further sub-sampled temporally within each sequence

yielding 750 samples. We manually annotated these images with object bounding

boxes and categories (”trash-can”, ”garbage-bag” and ”person-requiring-assistance”;

labels from Detic [65] were not accurate). As the data is recorded over the course of

a year, we split the train and test test (70% - 30%) using the date stamp (images

taken on the same day are in the same split) so that the model doesn’t overfit.
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4.3 Commuter Bus Dataset

We curated this dataset from a commuter bus running on an urban route. The

720p camera of interest has a unique viewpoint and scene geometry (See Figure 4.1).

Annotated categories are trashcans and garbage bags (to help inform public services)

and people with special needs (using wheelchairs or strollers), which are a rare

occurrence. The dataset size is small with only 750 annotated images (split into 70%

training and 30% testing). This is an extremely challenging dataset due to it’s unique

viewpoint, small object size, rare categories, along with variations in lighting and

seasons.

4.4 Hardware Platform Evaluation

We set the Jetson AGX to consume 30+ Watts (MAXN configuration; no power

budget). Memory is measured using the tegrastats utility, while we use Jetpack

4.6.1 and pytorch 1.6, mmdetection 2.7 (+ mmcv 1.15) compiled for Jetson AGX to

measure latency consistently across methods (models can be compiled with TensorRT

and trained with mixed precision for additional orthogonal improvements).

4.5 Results

In this case, just like autonomous driving, we observe that the vanishing point is highly

local. Due to overheads of vanishing point estimate on our edge device, we instead

employ the average vanishing point, and cache saliency S, considerably reducing

our approach’s latency and memory while maximizing accuracy. From Table 4.1,

we observe AR and mAP50 for the baseline (Faster R-CNN) and our approach at

0.5x and 0.75x scales. Our method consistently outperforms the baseline method at

the same scale, showing both better precision and recall while incurring only 4ms

additional latency and 22 MB memory overheads.
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4.6 Summary

We detect objects on Commuter Bus equipped with a Jetson AGX. Identifying (Recall)

relevant frames is key on the edge. Recall of Faster R-CNN with at 1x scale is 43.3AR

(16.9ARS) (Latency: 350ms; infeasible for real-time execution) but drops to 31.7AR

(0.5ARS) at 0.5x scale when naively down-sampled (Latency: 154ms). Whereas our

approach at 0.5x scale improves recall by 42% over full resolution execution to 61.7

AR (16.4 ARS) with latency of 158 ms (+4 ms).
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Chapter 5

Conclusions

In this work, we proposed a learned two-plane perspective prior which incorporates

rough geometric constraints from 3D scene interpretations of 2D images to improve

object detection. We demonstrated that (a) Geometrically defined spatial sampling

prior significantly improves detection performance over multiple axes (accuracy,

latency and memory) in terms of both single-frame accuracy and accuracy with real-

time constraints over other methods. (b) Not only is our approach is more accurate

when adaptively down-sampling at all scales, it degrades much more gracefully for

small objects, resulting in latency and memory savings. (c) As our prior is learned

end-to-end, we can improve a detector’s performance at lower scales for “free”. (d)

Our approach generalizes better to new camera viewpoints and enables efficient

city-scale sensing applications. Vanishing point estimation is the bottleneck of our

approach [12, 34, 35, 66] for general scenes, and increasing efficiency of its computation

we will see substantial improvements. Investigating geometric constraints to improve

other aspects of real-time perception systems as future work, like object tracking and

trajectory understanding and forecasting, is promising.

Societal Impact Our approach has strong implications for autonomous-driving and

city-scale sensing for smart city applications, wherein efficient data processing would

lead to more data-driven decision-making and public policies. However, privacy is

a concern, and we shall release the datasets after anonymizing people and license

plates.
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49

https://www.bts.gov/content/bus-profile


Bibliography

Misra. Detecting twenty-thousand classes using image-level supervision. In
ECCV, 2022. 4.2

[66] Yichao Zhou, Haozhi Qi, Jingwei Huang, and Yi Ma. Neurvps: Neural vanishing
point scanning via conic convolution. NeurIPS, 2019. 2.6, 2.7, 3.3, 3.5, 5

[67] Zihan Zhou, Farshid Farhat, and James Z Wang. Detecting dominant vanishing
points in natural scenes with application to composition-sensitive image retrieval.
Transactions on Multimedia, 2017. 3.4

50


	1 Introduction
	1.1 Background and Related Work
	1.1.1 Vision Meets Geometry
	1.1.2 Learning Based Detection
	1.1.3 Efficient Detection with Priors


	2 Two-Plane Perspective Prior based Image Resampling for Efficient Object Detection
	2.1 Overview
	2.2 3D Plane parameterization from 2D images
	2.3 From Planes to Saliency
	2.4 Two-Plane Perspective Prior
	2.5 Additional Considerations
	2.6 Obtaining the Vanishing Point
	2.7 Multiple Vanishing Points
	2.8 Learning Geometric Prior from Pseudo-Labels

	3 Experiments and Results of Two-Plane Perspective Prior
	3.1 Datasets
	3.2 Evaluation Details
	3.2.1 Data
	3.2.2 Detection Model Choice
	3.2.3 Latency
	3.2.4 Scale
	3.2.5 Real-Time Evaluation

	3.3 Implementation Details
	3.3.1 Parameter Initialization

	3.4 Training Details
	3.5 Results and Discussions
	3.6 Results on Another Detector
	3.7 Additional Results on Autonomous Driving
	3.8 Tracking Smaller Objects for Longer
	3.8.1 Ablation Studies

	3.9 Qualitative Results

	4 Detecting Vulnerable Users On The BusEdge
	4.1 BusEdge System
	4.2 Dataset Acquisition
	4.3 Commuter Bus Dataset
	4.4 Hardware Platform Evaluation
	4.5 Results
	4.6 Summary

	5 Conclusions
	Bibliography

