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ABSTRACT
Conference calls are an important tool for today’s global
businesses. The use of this technology is however plagued by
a number of social problems that impact meeting effective-
ness, which can be attributed to the missing visual channel
and low bandwidth for non-verbal signals that people use
to moderate their behavior. This paper presents a system
capable of providing timely aural feedback enabling meet-
ing participants to check themselves. The system is able to
sense and recognize problems, reason about them, and make
decisions on how and when to provide feedback based on an
interaction policy. While a hand-crafted policy based on ex-
pert insight can be used, it is non-optimal and can be brittle.
Instead, we use reinforcement learning to build a system that
can adapt to users by interacting with them. To evaluate
the system, we first conduct a user study and demonstrate
its utility in getting meeting participants to contribute more
equally. We then validate the adaptive feedback policy by
demonstrating the agent’s ability to adapt its actions choices
to different types of users.

1. INTRODUCTION
Globalization and technology have brought radical changes
to business practices, and meetings in particular. With in-
creasing frequency, teams are being composed of members
from geographically different locations so that they can bring
to bear their expertise on pressing problems, without the
travel and associated costs. These distributed teams col-
laborate by holding meetings on conference calls and other
networking solutions. By the very nature of the distributed
setting, a host of technical, organizational and social chal-
lenges are introduced into these meetings that have been
well documented, like dominant participants and loud ex-
traneous noises [8].

It has been shown that providing feedback to participants
helps them modify their behaviors and address some of the
problems that occur in distributed meetings [2, 4, 8]. Feed-
back can be about a participant expressing their desire to
talk, low microphone volume, etc., and is usually provided
on an alternate channel (or medium) that runs parallel to
the meeting, without disrupting it. In particular, a system
that analyzed participant contribution and provided auto-
mated visual feedback, succeeded in getting the participants
to contribute more equally to the meeting [4].

In this work, we explore the idea of a system providing feed-
back to meeting participants, specifically for audio telecon-
ferences. This introduces the constraint that the agent has
to share the same audio channel that is being used for the
meeting. The agent has to be able to interject the commu-
nication channel, and provide timely feedback using speech
or other audio signals, i.e. aural feedback. This approach
opens up a number of issues on how and when to give feed-
back. While hand-crafted interaction policies can be used,
it is not possible to design a policy for every situation that
might arise. Also, not all users will respond to feedback the

same way. To circumvent these issues, we model the agent’s
interaction with the user as a Markov decision process and
investigate if an agent can adapt its behavior to different
users using reinforcement learning techniques.

This paper is organized as follows: after a survey of related
work, we describe the design and architecture of a testbed
system that facilitates audio conference calls between two or
more people. We then describe the modeling of the interac-
tion between the user and the agent so as to allow the agent
to learn an optimal feedback policy for each user. Next,
we present a series of evaluations: (i) the system is evalu-
ated on real users using a hand-crafted policy to validate
the utility of aural feedback. We demonstrate the resolution
of conversational dominance, a common social problems in
meetings. (ii) we validate the agent’s capacity to adapt to
different users by modeling their responsiveness to feedback,
irritability, and ability to self-moderate their own behavior.
We conclude by identifying directions for future work.

2. RELATED WORK
Many researchers have tried to overcome the shortcomings
of distributed collaboration. Erickson and Kellogg formu-
lated the concept of social translucence [2] to facilitate fluid
and productive online group interactions. Their ideas were
employed by Yankelovich, et al., in the design of the Meeting
Central system to address the problems with audio confer-
encing which were documented in a series of studies [8]. The
problems were grouped into three categories: audio, behav-
ioral, and technical. More interestingly, the authors note
that “most audio problems are, in fact, behavioral. They
are compounded by the difficulty remote participants have,
both technically and socially, in interrupting to indicate that
the problem exist” [8].

The idea of using feedback to influence group dynamics and
behavior in distributed meetings was further explored by
Kim et al. in Meeting Mediator [4]. They focussed primarily
on the effects of feedback on dominant meeting participants.
Their Meeting Mediator system computes group interactiv-
ity and speaker participation levels, and uses a visualization
to provide feedback to the participants on their personal
mobile devices.

The work discussed so far uses GUIs and visualizations of
a reactive and peripheral nature. The question arises as
to how facilitation can be done when there are no displays
available like on a telephone conference call, or when the
display is being used to view shared artifacts. Also, since
spoken communications are so dynamic how can facilitation
be achieved at the turn-taking level, to manage interrupts
or overlaps for example. One solution is to build proactive
agents that provide timely aural feedback. In the next sec-
tion, we describe the design and architecture of the testbed
system we built to facilitate audio conference calls.



3. AUDIO CONFERENCE SYSTEM
To be capable of facilitating a conference call, the system
needs to analyze the separate audio streams from the par-
ticipants of the meeting and sense if they are speaking or
not, how loudly they are speaking, and whether there is
noise on the channel. It then has to analyze the interaction
between the participants of the meeting, and recognize so-
cial problems when they occur. This is done by computing
non-verbal social activity metrics like turn-taking and inter-
ruptions, etc. Finally, the system needs to make decisions
on when and how to provide aural feedback to mediate the
conference call.

3.1 Reasoning Architecture
In its current implementation, the system uses a blackboard
architectural model to prioritize and schedule how it re-
sponds in a meeting. It consists of Channelizer and Global-
izer blackboards. The Channelizer represents a participant
and hence is local in its scope. The issues of an individual
participant are resolved here. The Globalizer represents the
meeting. It interprets the different dynamics of the meeting
and organizes the agent’s feedback actions.

3.1.1 Channelizer
The system maintains a Channelizer blackboard for each
participant, which consist of Knowledge Sources (KS) that
keep track of participant activity:

The first KS classifies microphone input audio as speech
or non-speech. The audio is sampled at 16kHz each, with
64 samples per frame. A frame admission process is em-
ployed using root-mean-square (RMS) threshold to ignore
low-volume events; unless they contain high information,
which is determined using a spectral entropy threshold. A
frame with high information content (like speech) has a lower
spectral entropy than a frame with low information frame
(like noise). Spectral entropy is calculated by (i) taking the
Fast Fourier Transform (FFT) of a frame; (ii) normalizing
it, so as to treat it like a probability mass function (PMF);
(iii) and, obtaining the spectral entropy, Hf , by

Hf = −
n∑

i=1

pi log pi

Admitted frames are further processed to extract Mel Fre-
quency Cepstrum Coefficients (MFCC), features that are
normally used in speech recognition systems. The MFCC
features from a frame are pushed into a sliding window that
is 30 frames long. The window step size is of one buffer, i.e.
there is no overlap. The window is then classified into speech
and non-speech using a Gaussian Mixture Model (GMM)
classifier trained using the Expectation-Maximization (EM)
algorithm.

The second KS calculates signal-to-noise ratios which are
used to detect extraneous noise, and to determine if a par-
ticipant is speaking too loudly or softly. Speech buffers are
used to determine signal values, while non-speech buffers are
used to determine noise floor values.

3.1.2 Globalizer
The Channelizers feeds into the Globalizer which is where
the agent makes decisions on when and how to provide feed-
back to the participants. The Globalizer currently includes
three knowledge sources.

The first KS aggregates several audio cues that are non-
verbal, and have proven to be effective in distinguishing a
speaker’s social activity during a meeting [3]. These include:
Total Speaking Length (TSL); Total Speaking Turns (TST);
Total Speaking Turns without Short Utterances (TSTwSU);
Total Successful Interruptions (TSI). Jayagopi showed that
using a combination of these cues to classify conversational
dominance yielded an 88% accuracy on a fairly typical meet-
ing corpus [3], which is why we chose the above metrics in
our evaluation process.

The second KS determines each speaker’s dominance by cal-
culating how active each person is relative to the activity
level of the other participants. The Globalizer calculates
each participant’s dominance as their contribution to the
sum of all participants, where TSL is the Total Speaking
Length of a particular participant:

Dominance(Px) =
TSL(Px)∑n
i=1 TSL(Pi)

The third KS detects and resolves any conversational col-
lisions, or interruptions. In collaborative problem-solving
meetings, for example, if the agent detects that a partici-
pant with high dominance is interrupting a participant with
low dominance, it will set a flag indicating the need for the
agent to provide feedback to the participant with high dom-
inance.

The Globalizer maintains an internal queue of problems rec-
ognized by the KSs (e.g. dominance, loud noise). It reorders
or delays messages based on their importance, the time since
the last alert and the number of alerts. It combines similar
messages that occur consecutively. Finally, based on its in-
teraction policy, the agent decides whether, when and how
to prompt the user with feedback to address the problems.

3.2 Adaptive Feedback Policy
Once the agent recognizes the existence of a social problem it
attempts to provide feedback based on its interaction policy.
The feedback can be parametrized in a number of ways, in-
cluding its timing, frequency, tone, volume, translucence [2],
etc. Hand-crafted feedback policies can be designed based on
psychological insights, but these are often non-optimal and
brittle — different users might react differently to these pa-
rameters, and even an individual user’s response will change
over time depending on the situation. The feedback needs
to be personalized to the user, and must be able to adapt to
the situation. A similar problem for cognitive orthotics was
addressed using reinforcement learning techniques [6].

3.2.1 Learning Algorithm
Reinforcement Learning is an approach to induce optimal
feedback policies (π∗ : S → A) as a function of the current
state s ∈ S (e.g. duration of the meeting, detected social
problems, timing and nature of previous feedback, user’s
mood) and feedback actions available to the agent a ∈ A,
including what type of feedback to give, if any. An agent’s
action yields some reward r ∈ R(s, a) and leads to a new
state s′ ∈ S. In some cases, the desired state in meetings
(e.g. non-dominant participants) might occur as a result of
several interactions. Such interaction with delayed rewards
are well modeled as Markov Decision Processes (MDP).

Solving an MDP, however, requires knowledge of all the pos-
sible state transition probabilities (interaction model), which
is not known in advance for each meeting/user. One way to



approach the problem is to use a model-free class of algo-
rithms known as temporal difference methods. In particular,
we use the Q-learning algorithm [7] which is typically eas-
ier to implement, where we define Q∗(s, a) as the expected
discounted reinforcement for taking action a in state s, then
continuing by choosing actions optimally. The Q-learning
rule is

Q(s, a) := Q(s, a) + α(r + γmax
a′

Q(s′, a′)−Q(s, a)),

where α is the learning rate, and γ is the discount factor.
< s, a, r, s′ > is an experience tuple, as described above. If
each action is executed in each state an infinite number of
times on an infinite run and α is decayed appropriately, the
Q values will converge with probability 1 to Q∗ [7]. The
optimal policy then becomes π∗(s) = arg maxaQ

∗(s, a).

3.2.2 Payoff Function
In this work, we focus on three binary state features,
which are (i) is the participant dominant?, (ii) have they
received feedback?, (iii) are they annoyed?. This gives a
total of 8 states that the user can be in. The agent has a
choice of three actions to get a dominant user to reduce
their dominant behavior: No Action, Advisory, Assistive.
Advisory is when the agent provides aural feedback to the
user that they are being dominant. Assistive is when the
agent autonomously reduces the volume of a dominant per-
son, or mutes them when they interrupt a less dominant
participant. It is preferred that the agent chooses (a) no ac-
tion unless necessary, and (b) advisory over assistive actions.
For this reason, the assistive and advisory actions have an
associated cost of -5 and -1, respectively. Also, if the user
gets annoyed (with consecutive feedback actions), the agent
incurs a cost of -10. Finally, if the agent is able to get a
dominant user to change their behavior, without annoying
them, it gets a reward of +50.

4. EVALUATIONS
This section presents a series of evaluations. Firstly, the au-
dio conference system is evaluated to demonstrate the utility
of aural feedback in a real meeting [5]. Secondly, we demon-
strate how the Q-learning algorithm can be used to learn
optimal feedback policies that adapt to different users.

4.1 Aural Feedback
We evaluated aural feedback by having the agent reduce
the variance in dominance among participants. Higher vari-
ations in dominance between team members leads to less
constructive and more passive/defensive interaction styles
within teams [1]. To encourage more extraversion, the agent
keeps track of participant contributions. During turn-taking
conflicts, the agent uses its advisory approach to remind
the dominant participant to share the floor by saying “turn-
taking?” on that users channel. Similarly if someone is being
dormant, the agent will say “any thoughts?” to encourage
their participation.

4.1.1 Results
Twelve groups of three participants were tasked with re-
motely collaborating for 5 minutes to solve hangman puz-
zles. We showed that with the agent facilitating, the stan-
dard deviation in dominance among members of a group
reduced with statistical significance (Standard deviation in
Dominance1, N=12, p<0.01, 1-tailed t-test, Figure 1).

1In a three-person meeting, the ideal contribution is 33.3%,
which is also always the average. The standard deviation
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Figure 1: The results of the aural feedback experiment
across twelve groups. They demonstrate a reduction in stan-
dard deviation of dominance among members of a group,
when aural feedback was provided.

4.2 Adaptive Feedback Policy
The applicability of the Q-learning algorithm to enable an
agent to adapt its feedback policy and learn an optimal pol-
icy for different users was validated by conducting a set of
experiments with a simulated user and environment. The
experiments are conducted episodically. To start an episode,
the environment is initialized to a random state where the
user is dominant. The episode ends when the user is in the
goal state, i.e. they are not dominant or annoyed. Thus,
there is a tradeoff when providing feedback between getting
the user to be non-dominant and making sure not to annoy
the user. Reliance on simulated users is highly imperfect,
and to truly validate our results we will need to run exper-
iments with real users. However, it was necessary to first
demonstrate the feasibility of our approach in principle.

4.2.1 User Model
We attempted to build a realistic model of potential users
by focussing on three key relevant aspects of their behavior:
how they respond to advisory actions (RAd), how likely they
are to get annoyed (Uan), and how well they are able to self-
regulate their behavior without feedback (Usr). Regardless
of any of these aspects we would expect that the optimal
policy is that the agent does No Action when the user is not
dominant or when they are annoyed. This was the case in
all the optimal policies that were learnt. Thus, we are left
with two states, i.e., (i) SDF̄ : user is dominant and has not
gotten any feedback, and (ii) SDF : user is dominant and has
received feedback, where the agent learns different policies.

4.2.2 Results
For the following experiments, an agent is trained using a
series of learning experiences. A learning experience can con-
sist of an episode or a batch of episodes. During the learning
experience the agent uses an ε-greedy explorer to choose an
action. An ε-greedy explorer choses a random action with
ε probability, and choose an action using the learnt policy
with 1-ε probability. After each learning experience, the
newly learnt policy is tested over 10 test episodes. During
the test episodes, the agent always chooses an action based
on the learnt policy. The rewards the agent receives over
the 10 test episodes is averaged and plotted in Figure 2.

gives us a measure of how close to ideal participant contri-
butions are in each condition. A standard deviation of 0
implies that all the participants contributed equally.
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Figure 2: The results of the adaptive feedback policy experiments. Each figure shows results with (95% confidence interval)
error bars averaged over 10 test episodes, for every learning experience. In all cases, the agent learns an optimal policy in
under 10 learning experiences.

Responsiveness to Feedback
Two types of users were simulated with different responsive-
ness to advisory feedback, i.e. the probability with which
a dominant user will become non-dominant when they get
advisory feedback: RAd = {95%, 35%}. The user always
responds to assistive feedback with a probability of 95%.
Furthermore, if the user has been provided feedback, the
likelihood of them responding to advisory feedback drops
by 10% in the next attempt. The optimal policy that was
learnt was to provide advisory actions in SDF̄ and SDF when
RAd = 95%, i.e. the agent learns that the user is likely to
respond to advisory feedback. When RAd = 35%, the agent
chose assistive actions in both states, because it learns that
the user is unlikely to respond to advisory feedback, and
that it has to pursue the less desirable (more costly) assis-
tive actions.

Figure 2a plots the rewards and the number of actions the
agent took as it learnt an optimal policy for RAd = 95% &
RAd = 35%. These results are averaged over 10 test episodes
after every learning experience.

Ability to Self-Regulate
Next, we model a user who is dominant only for short peri-
ods of time, i.e. they can regulate their behavior without
feedback. In this case, we include a likelihood that the
user becomes non-dominant when the agent takes no ac-
tion (Usr) to the existing (RAd = 35% + Uan) user model.
The agent was trained for two cases: Usr = {10%, 90%}.
When Usr = 10%, the agent learns the same policy as the
RAd = 35% model, since the user does not self-regulate and
needs to receive assistive feedback to become non-dominant.
When Usr = 90%, the agent choses to do no action in every
state because it learns that the user is likely to self-regulate,
and does not need feedback.

Figure 2b plots the rewards earned as the agent learns an
optimal policy for Usr = 90% and Usr = 10%. The higher
rewards for Usr = 90% are indicative of the agent choosing
no action (no cost), while the lower rewards for Usr = 10%
indicate the agent choosing assistive actions (-5 cost).

Short-term Adaptation to User Annoyance
In this experiment, we also test the agents short-term adap-
tation to new information once it has already learnt an op-
timal policy. We add to an existing user model (RAd =
35%) the likelihood of them getting annoyed with consecu-
tive feedback (Uan). In state SDF , the agent should learn
to take no action instead of providing assistive feedback.

Figure 2c plots the results as the agent learns an optimal pol-
icy for RAd = 35%. After the 25th learning experience, the
user begins to get annoyed with consecutive feedback (Uan).
The plot shows how the agent is punished for following the
optimal policy when this happens, and how it adapts after
3 to 4 learning experiences to learn a new optimal policy for
{RAd = 35%, Uan}.

5. CONCLUSION & FUTURE WORK
This work addresses the social problems that occur on con-
ference calls through a mediating agent that provides aural
feedback. This approach was evaluated in a user study and
shown to be effective in reducing dominance with statisti-
cal significance. Since the communication channel is shared
between the participants and the system, however, a dif-
ferent set of problems has to be addressed, as to how and
when feedback should be provided. An adaptive interaction
policy was implemented using reinforcement learning tech-
niques, and validated using a simulated user and meeting en-
vironment. In future work, we will implement a larger state
space for reinforcement learning that can take into account
other factors like the length of the meeting, and its differ-
ent phases. Lastly, we would want to evaluate the adaptive
feedback policy on users in real meetings.
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