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Abstract— The scenario-based testing of operational vehicle
safety presents a set of principal other vehicle (POV) tra-
jectories that seek to force the subject vehicle (SV) into a
certain safety-critical situation. Current scenarios are mostly
(i) statistics-driven: inspired by human driver crash data, (ii)
deterministic: POV trajectories are pre-determined and are
independent of SV responses, and (iii) overly simplified: defined
over a finite set of actions performed at the abstracted motion
planning level. Such scenario-based testing (i) lacks severity
guarantees, (ii) has predefined maneuvers making it easy for
an SV with intelligent driving policies to game the test, and
(iii) is inefficient in producing safety-critical instances with
limited and expensive testing effort. We propose a model-
driven online feedback control policy for multiple POVs which
propagates efficient adversarial trajectories while respecting
traffic rules and other concerns formulated as an admissible
state-action space. The approach is formulated in an anchor-
template hierarchy structure, with the template model planning
inducing a theoretical SV capturing guarantee under standard
assumptions. The planned adversarial trajectory is then tracked
by a lower-level controller applied to the full-system or the an-
chor model. The effectiveness of the methodology is illustrated
through various simulated examples with the SV controlled by
either parameterized self-driving policies or human drivers.

I. INTRODUCTION

A scenario-based evaluation method ”attacks” the test
subject through enforcing it into a safety-critical situation
and observes the subject response and testing outcomes. For
operational vehicle safety evaluation, especially concerning
Advanced Driver Assistance System (ADAS) [1] and Auto-
mated Driving Systems (ADS) [2], the design and execution
of test scenarios have raised wide attention from the research
community [3], automotive industry, and government sectors
for policy making [2], [4], [5]. Typically, one first extracts
initialization conditions and vehicle maneuvers inspired by
the statistical observation of human driver crash data. The
scenario is then specified with a given initialization state for
all vehicles and a set of pre-determined principle other vehi-
cle (POV) trajectories. Note that the POV trajectory is gener-
ated through a series of high-level planning commands and is
often independent of the subject vehicle (SV) response. For
example, one can refer to Fig. 1a that shows a Lead Vehicle
Lane Change and Braking (LVLCB) scenario [4] for ADAS
safety evaluation.

The problems of the aforementioned scenario designs are
threefold. First, the current scenarios lack severity guaran-
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(a) A standard Lead Vehicle Lane
Change and Braking (LVLCB)
test scenario.

(b) Two example trajectories of
SV maneuvers that would ”hack”
the standard LVLCB test.

(c) An adversarial POV will re-
strict the scenario propagation in
a safety-critical status and force
the SV into collisions if it is not
responding appropriately.

(d) One option for the SV to
avoid collisions is to perform
extreme evasive maneuvers that
are beyond the expectation of the
formulation.

Fig. 1: Various manuevers inspired by the standard LVLCB
scenario [4]: inspired by a commonly observed cause of
rear-end accident from human driver crash data, the POV
performs a single lane-change to get in front of the SV,
followed by an immediate braking maneuver.

tees. The assumption that a scenario extracted as described
above and brought to a test track will generate similar
SV responses, similar safety-critical situations, and simi-
lar outcomes ignores the significant differences in sensing,
control algorithms, control authority and implementation on
the different SVs being tested. Second, with pre-determined
POV trajectories defined over a simplified action space it
is easy for the SV to game the test, especially given that
the SV is operating with intelligent decision making both
longitudinally and laterally (e.g., Fig. 1b). Finally, the current
approach does not create sufficient safety-critical instances
within the limited and expensive real-world testing effort.
While virtual simulations have provided the opportunity
to enhance autonomous vehicle testing efficiency, the sim-
to-real gap remains a challenge in general. Furthermore,
the simplified action space is incapable of creating agile,
dynamic maneuvers, which confines the scenario propagation
to relatively simple configurations. This also limits the testing
efficiency in both real-world tests and simulations.

Inspired by the problems mentioned above, the adversarial
adaptive testing scheme has become a natural alternative.
Existing approaches mostly focus on learning inspired meth-
ods [6], [7], [8], which typically require the algorithm
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to interact with a fixed SV driving algorithm for many
iterations. These are sampling inefficient and would only be
applicable in virtual simulations. Some also seek for guided
sampling from an offline-built scenario library [3]. While
this approach resolves the traditional scenario-based testing
approach’s problem by making it more difficult for the SV
to game the test, the other two problems mentioned above
remain valid.

To address the aforementioned problems of both the
traditional scenario-based testing methods and the adaptive
adversarial testing approaches, the proposed methodology is
inspired by investigating the following two questions.
• Q1: If we can predict the SV motion trajectory with
sufficient accuracy, can we design the POV motion to reach
a safety-critical scenario?

In general, if the infinite-time future planning of the SV is
perfectly known and the POV is sufficiently capable in terms
of its admissible space for control, the POV is guaranteed to
at least asymptotically capture the SV, i.e. create conditions
that lead to inevitable collisions between the POV and the SV.
This is achieved by taking the known SV motion trajectory
as a motion tracking reference for the POV, which naturally
leads to a minimization problem closely related to the Model
Predictive Control (MPC) formulation [9].
• Q2: If the SV motion trajectory is unknown or difficult
to predict, can we design the POV motion to arrive at a
safety-critical scenario?

The reachability analysis from differential games [10] and
optimal control has answered the above question analytically.
In general, the capture of the SV cannot be guaranteed if the
SV’s policy is unknown. However, suppose the SV and POV
are sufficiently close such that the relative state belongs to the
maximal backward reachable set (see equation (6) in [11]).
In that case, there exists a feedback control policy for the
POV such that for all possible motion trajectories of the SV,
the policy renders a motion trajectory that guarantees the
capturing of the SV. By assigning such a worst-case policy
to the POV, one can ensure the generation of a safety-critical
scenario.

In practice, one should also factorize the admissible action
constraints, the operable domain allowed by traffic rules,
and other concerns to propagate a ”reasonable” dangerous
scenario. Combining the solutions for the above questions,
we propose an online feedback control policy for POVs that
allows rendering adversarial paths without breaking traffic
rules or the conventions of traffic accident fault or liability.
The contribution of this work is threefold:

a) A Modeled Approach: The proposed framework is
model-driven and induces theoretical guarantees for a certain
safety-critical level of the derived scenario under standard
assumptions.

b) Adaptive Scenarios: The derived motion trajectory
of each POV varies adaptively based on the SV response
throughout the propagation of a testing scenario. This creates
more challenging testing instances with the same amount of
testing effort as many of the current ADS testing scenario
designs [5], [4] where the POV actions are independent

of the SV behavior. The proposed adaptive framework acts
on the POV control level, which also creates agile motion
trajectories that make it more difficult for the SV to game
the scenario.

c) Online Execution: The proposed method formulates
an anchor-template hierarchy control structure [12], with the
simplified template planning naturally leading to a series
of quadratic programming problems with computationally
tractable solutions. This is, to the best of our knowledge,
the first introduction of an online path planning algorithm
for POVs which constructs adversarial testing scenarios.

Furthermore, we extensively evaluate the proposed frame-
work’s performance in a multi-lane straight-segment envi-
ronment with parameterized SV driving policies and human
drivers of various levels of aggressiveness. We observe that
the adaptive framework enforces the SV into various safety-
critical situations. One particularly interesting observation is
that the SV typically remains collision-free if (i) the driving
policy is conservatively safe, or (ii) the SV is willing to take
extreme evasive maneuvers that are beyond the expectation
of the modeled formulation (see Fig. 1d).

The remainder of this paper is organized as follows.
Section II introduces the background setting of this work,
including the problem formulation. Section III presents
details on the proposed method. Section IV explains the
experimental settings and the results analysis and finally,
section V presents conclusions and future work.

II. PRELIMINARIES

We present the problem formulation of operational vehicle
safety evaluation through the scenario-based test. We also
revisit the basics of the anchor-template hierarchy control.

A. Problem formulation

Consider a heterogeneous multi-vehicle system of one sub-
ject vehicle (SV) and k principal other vehicles (POVs). Each
vehicle’s motion is subject to a certain ordinary differential
equation in general. Without loss of generality, for the i-th
individual agent (i ∈ {0, . . . , k}),

ṡi = fi(si,ui, t), si ∈ Si ⊂ Rn,ui ∈ Ui ⊂ Rm. (1)

For the remainder of this section, the subscript i is omitted
for general discussions of vehicle motion. We consider that
the map f : S × U → S is uniformly continuous, bounded
and Lipschitz continuous in s for fixed control u. Hence,
given a measurable control action u, there exists a unique
trajectory solving (1) for a given u ∈ U .

Let a snapshot σ ∈ Sk+1 be the combined states of all
vehicles at a time instance [13]. For example, the snapshot
or state space of a test that involves two vehicles on straight
segments would consist of the initial velocity of both vehicles
and the relative position between them.

We then have the following definition of a testing scenario
for k + 1 participants:

Definition 1. A scenario is a automaton denoted by a tuple
of 〈Σ,Π, f, σ0,Λ〉, where
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• Σ = Sk+1 is the set of snapshots, with each snapshot
containing one SV and k POVs as specified above.

• Π is the ”alphabet” of the automaton, in particular, the
control action space of all vehicular participants in the
scenario, i.e., Π = Uk+1.

• f is the motion transition function as defined in (1).
• σ0 specifies the initial condition, i.e. the arbitrary given

snapshot.
• Λ is the subset of Σ deemed acceptable.

We define the acceptable set of snapshots Λ, containing
all the snapshots that comply with the safety requirement, as

Λ = {σ ∈ Σ | ‖p0 − pj‖2 ≥ c, ∀j ∈ {1, . . . , k}}, (2)

where p ∈ R2 denotes the position states and c is referred to
as the capture diameter. Note that only the safety of the SV
is of interest here. Correspondingly, the unsafe set of states
is Ω = Σ \ Λ. (3)

Given a string of control inputs, we designate the run of
a scenario be a chronological sequence of snapshots R =
{σi}i=0,..,T from initial to final time T .

Most of the elements that define a scenario are given, with
only the initial condition σ0 and the automaton alphabet Π
subject to various possibilities of configurations. Given that
SV control is one of the subjects of the test, only the POV
control actions are of interest for scenario designs. Intuitively,
one seeks to derive a feedback control policy

π : Σ× Uk → Σ (4)

for the group of POVs such that the SV is forced into a
sufficiently dangerous situation. Although the POV control
is specified through a general class of functions that could be
state-dependent and time-variant, it is worth emphasizing that
the typical implementation of the POV control in practice
remains fairly simple. POV action trajectories are mostly
independent of state propagation, as shown in Fig. 1a.

In general, the multi-vehicle system is subject to highly
nonlinear motion dynamics and complex state-action con-
straints. From the model point of view, it remains a challenge
to derive agile motion planning algorithms for multiple POVs
to cooperate in forcing the SV into dangerous situations. In
this paper, we consider an anchor-template framework, as
introduced in the following section.

B. Anchor-template framework for vehicle motion planning
When a full system model or anchor model is too complex

to permit the design an appropriate controller, it is possible
to use a simplification or template model that still captures
the anchor model’s essential characteristics and properties.
Such a framework has been widely adopted in bipedal
locomotion [14] and vehicle control [15].

A typical template model captures the motion features of
the anchor model with lower dimensional state space and
simplified dynamics. In this paper, the complex anchor model
state is replaced with the simpler template state of discrete-
time locally linearized motion equation formulated as

s(t+ ∆) = As(t) + Bu(t), (5)

Fig. 2: Proposed method flowchart under the pairwise inter-
active setting with one POV and one SV.

with time-step ∆ and system matrices

A =


1 0 ∆ 0
0 1 0 ṽ∆
0 0 1 0
0 0 0 1

 , B =


0 0
0 0
∆ 0
0 ∆

ṽ

 . (6)

The state vector s ∈ R4 for each vehicle consists of the
Cartesian coordinates of its position p = [x, y], speed v and
heading angle φ. For the linearization, a constant speed ṽ
is also used. The control action includes longitudinal and
lateral accelerations u =

[
ax, ay

]T
.

The model above is adapted from [16] and [13] assuming
small local course angles (i.e. the angular difference between
the combined velocity vector and the vehicle’s running
direction) and small changes in speed for local linearization.
Theoretically, the control input u is subject to the Kamm’s
circle [17] induced bounds. The state constraints are typically
determined by speed limits, road topology, and other con-
cerns regarding the admissible operable domain of vehicles.
In this paper, we approximate the state-action constraints
with a linear architecture in the form of Guu ≤ hu and
Gss ≤ hs.

III. METHOD

Fig. 2 presents a general overview of the proposed frame-
work. The adversarial scenario propagation starts with an
initial snapshot of the system σ0. The test ends if a certain
termination condition is satisfied (e.g., encountering a colli-
sion); otherwise, one executes the template-based planning
stage. For adversarial motion planning, one first seeks to
create safety-critical scenarios assuming the SV policy is
unknown. If the POV-to-SV distances are not sufficiently
small, such a worst-case planning algorithm may not be
applicable. One then moves on to the predictive planning
stage, where the POV’s adversarial policy is derived based on
a certain assumed predicted behavior of the SV. The planned
reference trajectory is then tracked by a lower-level controller
such as MPC.

For the remainder of this section, we introduce the worst-
case planning and predictive planning in a pairwise manner
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with one POV and one SV. Without loss of generality, let the
subscript 1 denote the adversarial POV and 0 the SV. Finally,
we will extend the idea to multiple cooperative POVs.

A. Worst-case planning

Intuitively, the worst-case planning stage seeks to derive
the POV adversarial trajectory without knowing the SV in-
tentions. By the definition of unsafe snapshots Ω as specified
in (3), starting from a safe initial condition σ0 ∈ Σ at time
0, if the pair of control strategies (π0(σ), π1(σ)) renders the
trajectory converging to Ω at some finite time, we denote
such a capture time as T (π0(σ), π1(σ), σ0). The pairwise
SV and POV form a zero-sum game, wherein the SV seeks
to maximize T (·) and the POV seeks to minimize T (·).
Correspondingly, we have the minimax optimal feedback
strategy π∗

0(σ) and π∗
1(σ) satisfying the saddle condition as

T (π0(σ), π∗
1(σ), σ0) ≤ T ∗ ≤ T (π∗

0(σ), π1(σ), σ0), (7)

with T ∗ = T (π∗
0(σ), π∗

1(σ), σ0) referred to as the minimal
capture time. Theoretically, T ∗ exists if and only if the
initialization condition σ0 is inside the maximal backward
reachable set [11], i.e., there exists a POV control strategy
such that regardless of the SV responses, one can ensure
the capturing of the SV. This is guaranteed when the POV
has moved to the reachable area of the SV, in this case, the
inevitable collision zone. In practice, for a general nonlinear
system, T ∗ can be obtained through a discrete approximation
of the Hamilton-Jacobian-Bellman partially differential equa-
tion (HJB-PDE) [18]. In this paper, we seek to derive the T ∗,
if applicable, within a local look-ahead time horizon up to
T̄ seconds. With the simplified template dynamics, one can
approximate T ∗ by iteratively solving a series of minimax
quadratic programming problems as discussed in [13]. One
can also derive the function of mapping a snapshot to the
corresponding T ∗ offline. Given the minimal capture time
T ∗, we can then formulate the optimal feedback policy for
the POV as

û∗
1 =argmin

û1

max
û0

‖p0(T ∗)− p1(T ∗)‖2 (8a)

s.t. si(t+ ∆) = Asi(t) + Bui(t),∀i ∈ {0, 1}, (8b)
Gssi(t) ≤ hs,∀t ∈ {0, . . . , T ∗ −∆}, (8c)
Guui(t) ≤ hu,∀t ∈ {0, . . . , T ∗ −∆}, (8d)
σ(0) = σ0. (8e)

In practice, the above optimization is solved at each planning
stage presenting the current snapshot as the initialization
condition. The instantaneous reference motion trajectory ŝ1

is then obtained by propagating the template-model motion
for T ∗ seconds with the sequence of optimal actions û∗

1.
Note that the capturing guarantee at the template-model

level is subject to some assumed state constraints (8c) and
action constraints (8d) of the SV. That is, the capturing will
undoubtedly fail if the SV is willing to perform extreme
evasive maneuvers that are beyond its assumed capability.
While such an outcome may be deemed aggressive in terms
of passenger comfort and vehicle dynamic stability, it is

still technically a safe choice of action from the operational
safety perspective. Furthermore, consider that the definition
of safety is induced by the l2-norm distance between vehicles
as indicated by (2), which is not necessarily equivalent to
vehicle-to-vehicle collisions in real-world driving. This leads
to a trade-off phenomenon when determining the capture
diameter c. A larger choice of c results in a larger maximal
BRS and hence increases the likelihood of deriving a min-
imal capture time T ∗. However, this also makes it difficult
for a real vehicle-to-vehicle collision to occur, leading to
snapshots that are not sufficiently safety-critical. A more
detailed comparison regarding this trade-off will be presented
in Section IV between Fig. 5 and Fig. 6.
B. Predictive planning

If the worst-case planning is not applicable (i.e., one
cannot find a qualified minimal capture time T ∗ ≤ T̄ ), this
implies the current snapshot is not severe enough to enable a
guaranteed capturing. We propose to consider an alternative
based on the assumed predictive motion of the SV.

Historically, vehicle motion prediction has been stud-
ied extensively [19], [20]. The various self-driving algo-
rithms that are model-based [21], [22], [23] and learning-
inspired [24], [25] are also applicable to serve as the SV
motion predictor. In this paper, we predict the SV motion
based on the steady-state assumption. The traditional steady-
state assumption assumes fixed velocity and heading (i.e.
control u = 0). It is also the fundamental assumption
for various vehicle safety related methodologies including
Time-to-Collision [26] for safety analysis and human driver
behavior characterization such as gap acceptance [27] and
lead-vehicle following distance [28]. In most of the examples
presented in the Section IV, we adopt a modified steady-state
assumption which assumes that the SV is maintaining the
current control action up to the assigned time horizon. Let
such a predictive policy for the SV be π̂0, one can then take
the predicted motion of the SV as the tracking reference
for the POV. With the running cost and termination cost
determined by Qr ∈ R4×4 and Qf ∈ R4×4 respectively,
and considering s̃(t) = s1(t)− s0(t), we have the following
optimization problem for the predictive planning:

û∗
1 =argmin

û1

T̄−∆∑
t=0

(s̃(t)TQr s̃(t)) + s̃(T̄ )TQf s̃(T̄ ) (9a)

s.t. s1(t+ ∆) = As1(t) + Bu1(t), (9b)
s0(t+ ∆) = As0(t) + Bπ̂0(s0(t)), (9c)
Gssi(t) ≤ hs,∀t ∈ {0, . . . , T ∗ −∆}, (9d)
Guui(t) ≤ hu,∀t ∈ {0, . . . , T ∗ −∆}, (9e)
σ(0) = σ0. (9f)

The reference trajectory for the POV is generated by a similar
procedure as that shown in the worst-case planning section.

Finally, an MPC is used as the navigation controller that
allows the POV to follow the reference path obtained from
the planning stage. It is worth emphasizing that although
both MPC for vehicle motion tracking and the template-
model based planning rely on a certain linearized motion
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equation, the two formulations are not necessarily the same.
In our case, the template-model adopts the formulation
in (6) with the control action specified as accelerations,
which are easier to identify through perceivable states with
quantifiable constraints. On the other hand, the MPC adopts
the formulation from [15] with the control action defined as
acceleration a and steering wheel angle ω, which is easier to
implement for direct vehicle control tasks. The various state-
action constraints deployed in the planning stage as specified
in (8a) and (9a) are also included in the MPC formulation.
Therefore, even if mild discrepancies may occur between
the template-model used for planning and the anchor-model
adopted for motion tracking, the constraints remain valid.
C. Multi-POVs

With the adversarial pairwise interactive scenario pre-
sented above, we are now ready to extend the framework
to work with multiple POVs. In practice, it is overly aggres-
sive to assume that all POVs present in the snapshot will
cooperatively attack the SV. The absolute cooperative POV
planning also poses an extra challenge to the scenario design
given none of the POVs are supposed to crash into each other
during the scenario propagation. On the other hand, some
existing work [13] considers a partially non-cooperative as-
sumption allowing at most one adversarial POV with the rest
of the POVs complying with the SV for collision avoidance.
Although this assumption simplifies the analysis significantly
and enables a pairwise study between the SV and each POV,
the partial non-cooperativeness remains conservative.

In this work, we propose a multi-POV scenario generation
scheme which allows multiple POVs propagating cooperative
safety-critical scenarios in a controlled manner. This is
done by assigning each POV a dedicated set of state-action
constraints which ensures the non-interactive motion between
POVs. Section IV will present more detailed examples for
multi-POV adversarial scenarios propagated with the pro-
posed method.

IV. EXPERIMENTAL RESULTS

We illustrate the performance of the proposed approach
with two types of simulations. We first demonstrate the
adversarial testing scheme against a series of parameterized
self-driving policies in a customized simulation environment
with the nonholonomic bicycle model of vehicle dynamics.
We then expand the test to human-driven SVs performed
in the CARLA simulator [29]. Throughout all simulations,
we have T̄ = 2 for the planning and MPC horizon limit.
We also assume an identical admissible action space for all
POVs and the SV with amax

x = 0.67, amin
x = −1.7, amax

y =
1, amin

y = −1. Considering the straight-segment environment
we are studying, the cost matrices in (9a) are defined to
emphasize the lateral tracking accuracy satisfying Qr =
Qf = diag(1, 100, 0.1, 0.1).

A. Testing parameterized self-driving policies

The parameterized self-driving policy is a combination of
the Intelligent Driving Model (IDM) and a set of customized
lane-change heuristics. The IDM formulation is adapted

from [30]. The lane change heuristics consist of two stages,
decision making and lane-change execution. The lane-change
decision is determined by the current SV velocity and
the lead-lag gap acceptance with parameters adopted from
the naturalistic behavioral study of [27]. The lane-change
execution is divided into two parts. The longitudinal velocity
is adapted from the IDM model. The lateral motion is
controlled by a parameterized PD controller subject to yaw-
rate constraints. We first present a set of pairwise interactive
scenarios with one POV and one SV. We then extend to the
multi-POV settings.

1) Pairwise Interactions: Throughout the pairwise inter-
active scenarios presented in this section, we consider the
same initialization condition σ0 inspired by the standard
Crash Imminent Brake (CIB) system test as shown in Fig. 3.
Both SV and POV are confined to the three-lane operable
domain, with extra state constraints for restricting the POV
to initiate a rear-end collision against the SV within the
same lane. The admissible velocity range is confined to
v ∈ [5, 45](m/s). Vehicles are assumed identical with a
length of 5m and a width of 2m. Lane width is set to 3.7m.
The adversarial planning algorithm and all vehicle motion
controllers are executed at 10 Hz. A scenario terminates at
50 seconds after the initialization, or earlier if a vehicle-
to-vehicle collision is detected. Unless stated otherwise, the
mentioned configurations remain the same for all other ex-
amples. Simulation results with various self-driving policies
of different hyper-parameters are shown in Fig. 4, Fig. 5,
and Fig. 6. Here it is worth emphasizing the performance
comparison between Fig. 5 and Fig. 6. The SV policy,
initialization conditions and state-action constraints are all
set identically in both tests with the only difference lying
in the choice of the capture diameter c. In Fig. 5 we use
a smaller value of c = 7. The POV switches from the
predictive planning mode to worst-case planning mode about
10 seconds after the test initialization and the collision occurs
2.1 seconds later. On the other hand, in Fig. 6 we take a
larger value of c = 12, which makes it easier to initiate the
worst-case planning mode (2 seconds earlier than the case
in Fig. 5). However, the relatively large capture space makes
the scenario run less severe than the example in Fig. 5 and
fails to force a vehicle-to-vehicle collision. Furthermore, note
that the SV performs an abrupt acceleration of 2.6m/s2 at
t = 14.2s during a single lane-change stage to its left. This
behavior is significantly outside the expectation as the worst-
case planning algorithm assumes the maximum longitudinal

Fig. 3: The standard Crash Imminent Brake (CIB) system
testing procedure [5]: the lead-POV brakes and expects the
SV to also brake for collision avoidance: both vehicles start
within the same lane with an initial velocity of 18m/s.
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(a) Vehicle position trajectories.

(b) Vehicle velocity (top left), heading angle (top bot-
tom), acceleration control (top right), and steering angle
control (bottom right).

Fig. 4: An adversarial POV persistently blocks an SV fol-
lower with a conservative parameterization.

(a) Vehicle position trajectories.

(b) Vehicle velocity (top left), heading angle (top bot-
tom), acceleration control (top right), and steering angle
control (bottom right).

Fig. 5: An adversarial POV crashes the SV follower with the
capture diameter set to c = 7.

acceleration of the SV is only 0.67m/s2. As we have
mentioned in Section III, although such an extreme evasive
maneuver is deemed aggressive by common sense, it leads
the SV to a lower-risk driving status in terms of collision
avoidance. Hence, the proposed online adversarial framework
succeeds in creating a sufficiently dangerous scenario such
that the proper response of the SV can be tested.

2) Multi-POV scenario: We further present a multi-POV
scenario as shown in Fig. 7. Each POV is assigned a unique
operable space that does not overlap with other POVs. The
capture diameter is set to c = 7. Admissible velocity range
is modified to v ∈ [12, 45](m/s). The assumed admissible
action space for the SV and all POVs are identical during
the adversarial trajectory planning stage, but in practice, the
SV is often more capable than a POV both longitudinally
and laterally. This is particularly obvious in Fig. 7 where
the worst-case planning transits back to the predictive plan-
ning stage 7 times for POV1 before the SV collides with
POV2 from the rear side. Some extended examples with the
cooperative multi-POV configuration are included in [31].

(a) Vehicle position trajectories.

(b) Vehicle velocity (top left), heading angle (top bot-
tom), acceleration control (top right), and steering angle
control (bottom right).

Fig. 6: An adversarial POV fails to force the SV follower
into a crash with the capture diameter set to c = 12.

(a) A conceptional plot of the scenario configuration.

(b) Vehicle position trajectories.

(c) Acceleration control (top row), and steering angle
control (bottom row) of the SV and each adversarial
POV.

Fig. 7: Two cooperative lead-POVs interact with the SV
follower: SV ends up with a rear-end collision against POV2
due to the aggressive choice of lead gap acceptance during
the single lane-change stage.

B. Testing human drivers

The proposed method is also implemented in the CARLA
simulator. We replicate several of the initial test runs in the
previous subsection with similar parameters. Fig. 8 shows a
top view in the simulator from the initial condition shown in
Fig. 3, where the trajectory followed by both the SV (blue)
and the POV (red) is shown on-screen. The waypoints from
both vehicles for a time horizon of 2 seconds are also drawn.
Additionally, this implementation allows a human driver to
take over the SV control while the POV is dynamically
reacting to the SV’s actions. It is shown that the predictive
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Fig. 8: Top view of a pairwise interactive scenario in
CARLA, the POV is red and the SV is blue.

planning has allowed the POV to react appropriately to
provoke near-collision situations even when the SV’s policy
is completely unexpected (human driver).

V. CONCLUSIONS

This paper presents an online adversarial framework for
the scenario-based testing of operational vehicle safety. The
proposed method generates sufficiently dangerous testing
scenarios in an efficient and controlled manner. It is applica-
ble for the safety evaluation of human-driven, as well as ADS
and ADAS equipped, vehicles. Various simulated examples
are also presented to show the empirical effectiveness. It is
of future interest to extend the method to different environ-
ment configurations such as intersections, roundabout, and
parking-lot. We will also improve the methodology with real-
world experiments in proving ground tests.
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