
Safe At Any Speed: A Simulation-Based Test
Harness for Autonomous Vehicles

Abstract—The testing of Autonomous Vehicles (AVs) requires
driving the AV billions of miles under varied scenarios in order
to find bugs, accidents and otherwise inappropriate behavior.
Because driving a real AV that many miles is too slow and
costly, this motivates the use of sophisticated ‘world simulators’,
which present the AV’s perception pipeline with realistic input
scenes, and present the AV’s control stack with realistic traffic
and physics to which to react. Thus the simulator is a crucial piece
of any CAD toolchain for AV testing. In this work, we build a test
harness for driving an arbitrary AV’s code in a simulated world.
We demonstrate this harness by using the game Grand Theft
Auto V (GTA) as world simulator for AV testing. Namely, our
AV code, for both perception and control, interacts in real-time
with the game engine to drive our AV in the GTA world, and we
search for weather conditions and AV operating conditions that
lead to dangerous situations. This goes beyond the current state-
of-the-art where AVs are tested under ideal weather conditions,
and lays the ground work for a more comprehensive testing effort.
We also propose and demonstrate necessary analyzes to validate
the simulation results relative to the real world. The results of
such analyses allow the designers and verification engineers to
weigh the results of simulation-based testing.

I. INTRODUCTION: TESTING AVS IN SIMULATED WORLDS

The development of Autonomous Vehicles (AVs) has seen
a remarkable acceleration in the last decade, as technological
advances like Deep Learning have allowed breakthroughs in
processing visual information, and regulators have come to
appreciate the potential of AVs to reduce accidents. While
the first wave of AV development focused on improving the
performance of individual components, like the Computer
Vision (CV) pipeline or the behavioral controller, there is a
growing need for whole-AV testing. This is testing of the
integrated AV as a whole, where perception, control and
environment conditions interact in unforeseen and complicated
ways. This is an essential step towards building technical,
regulatory, and public confidence in AVs as the solution to
some of our transportation problems.

Testing the real AV on real roads is a necessary part of this
effort, but is woefully insufficient: a recent statistical study
by the RAND Corporation (a U.S.-based policy think tank)
found that AVs would have to drive “hundreds of millions of
miles and, under some scenarios, hundreds of billions of miles
to create enough data to clearly demonstrate their safety”.
According to the same report, “it would take existing fleets of
autonomous vehicles tens and even hundreds of years to log
sufficient miles” to demonstrate their safety when compared to
human-driven vehicles. This constitutes a definitive argument
for building world simulators, that the AV can be driven in.
A world simulator provides the AV with perceptual inputs
(like video and range data), traffic conditions (like other cars
and pedestrians), varied weather conditions, and moves the

AV in the simulated world in response to the AV’s computed
actuation commands. Simulation is many orders of magnitude
cheaper and faster than real-world testing.

This paper fills a gap in this regard: it demonstrates a
simulation-based test harness for AVs, illustrates it use to auto-
matically find dangerous situations, and clarifies the questions
that must be answered when using simulation-based results
for debugging real AV code. A number of companies and
startups have released open-source AV code and platforms,
such as Baidu’s Apollo [1] and Autoware [2], to cite a few.
However, the open-source community still lacks a simulator
in which to test the whole AV in a wide range of driving
scenarios, and a corresponding automatic testing tool that can
search for dangerous scenarios. To illustrate our test harness,
we use the GTA V game engine as world simulator. Recent
work in the deep learning community uses synthetic scenes
from GTA to train a neural network to perform a CV task
like object detection [3] or image segmentation [4] or depth
estimation [5]. By contrast, in this paper, we explore the
use of synthetic scenes to test a given pre-trained algorithm
(like an object detector), as part of an overall AV testing
effort. Research that tries to find the most dangerous instances
of human driving by analyzing millions of human-driven
miles [6] is complementary to what can be accomplished using
our test harness. That research highlights what miles must
be driven by the AV to make sure it doesn’t repeat human
errors; our harness allows the driving of any kinds of miles
at little cost, and we search specifically autonomous miles for
dangerous behavior.

Fig. 1 gives an overview of the test harness and the questions
we answer in this paper, and which are detailed in the
following sections. Briefly, the test harness consists of a real-
time communication architecture that allows connecting an
arbitary AV code to a world simulator, like GTA. The simulator
feeds the AV information about the state of the simulation. The
AV processes this information and computes the next control
inputs, which are sent back to the simulator to advance the
simulation by one clock tick. The harness also includes a
testbench: the latter computes a measure of how dangerous
was the last simulation. E.g., the simplest measure of danger,
which we implement, is the minimum distance between the AV
and other traffic participants. Based on this value, the testbench
decides on how to initialize the next simulation, including at
what time of day it should take place. The ability to control the
time of day, and thus the lighting conditions, in a simulator
is a very powerful feature, since it allows us to stress the
perception algorithms and the speed of reaction of the AV.
Section II describes sample testing results that we obtain.

THIRD PARTY
AUTONOMOUS VEHICLE CODE

BLACK BOX

(here, object detector, navigation
logic for city intersections, and

GTA trajectory tracker)

ZMQ-
BASED
INTERF

ACE

ACTUATION
(here, steering

and acceleration)

FRAMES and
VEHICLE STATE

TESTBENCH: AUTOMATIC SEARCH FOR
DANGEROUS DRIVING SITUATIONS

WORLD SIMULATOR (Here, GTA)

TRAJECTORIES OF ALL
TRAFFIC PARTICIPANTS

NEXT INITIALIZATION xk

FRAME SEQUENCES FROM
SIMULATOR

CV ALGORITHM (here, YOLO
object detector)

GROUND TRUTH

COMPUTE CV PERFORMANCE
(here, ROCs)

DETECTION
RESULTS

CV ALGORITHM

GROUND TRUTH

COMPUTE CV PERFORMANCE

DETECTION
RESULTS

PERFORMANCE COMPARISONS
(here, compare ROCs)

FRAME SEQUENCES FROM
RELEVANT NATURAL DATASETS

(here, KITTI and Udacity)

FRAME SEQUENCES FROM
SIMULATOR

FEATURE CALCULATIONS
(here, Structural Information

and Colorfullness)

FEATURE CALCULATIONS

FRAME SEQUENCES FROM
RELEVANT NATURAL DATASETS

(here, KITTI and Udacity)

0 50 100 150 200

Spatial Information

-20

0

20

40

60

80

100

120

C
ol

or
fu

ln
es

s

DARMSTADT 19960 images

UDACITY 12000 images

COMPARE COMPLEXITIES

TEST HARNESS: SIMULATOR, AV CODE and TESTBENCH
(Section II)

APPLICATION-SPECIFIC STUDY OF SIMULATION VALIDITY
(Section III.A)

GENERAL STUDY OF SIMULATED DATA VALIDITY
(Section III.B)

Fig. 1. The test harness.

Using a simulator to test the AV raises questions on the
applicability of the results to the real world. This can be broken
down into two questions: the relation between the perception
algorithms’ performance in the simulated vs. the real world,
and the validity of the simulated AV dynamical model vs. the
real dynamics of the vehicle. In Section III of this paper, we
explain the types of analyzes that are needed to answer the first
of these two questions, and which are implemented by the test
harness, as shown in Fig. 1. Briefly, they are statistical analysis
of the performance of specific algorithms (Section III-A) and
a more general study of the visual complexity of scenes in
the simulator vs. in the real world (Section III-B). Section IV
concludes the paper.

II. SEARCHING THE WORLD FOR NON-ROBUST BEHAVIOR

A world simulator for testing AVs must have at least the
following features:

• it must provide sufficiently realistic graphics so the per-
ception pipeline is adequately tested.

• it must provide sufficiently realistic dynamics for the AV
and other cars so that the AV controller’s commands are
implemented appropriately, and the other cars’ reactions
are realistic.

• it must create a variety of short-term traffic conditions
for the AV to navigate (e.g., traffic at a T-junction).

• it must vary the weather conditions, since it is known
that the environmental conditions can affect perception
algorithms like objet detectors and image segmentors.

The test harness, which connects the AV to this simulated
world, must have the following features:

• it must allow us to plug-in third-party AV code (both the
perception and control components), so the AV can drive
in this simulated world, and to collect all relevant data
from an execution, like distance to obstacles and time-to-
collision.

• it must support the plugging of general-purpose opti-
mization algorithms, that can then be used to search for
dangerous driving situations.

• it must support real-time simulation or faster.

• it must support replay of particular driving scenarios so
the designers can debug the dangerous scenarios and
improve the design.

We have developed a test harness that allows us to drive
an AV in a simulated world, and which possesses the features
described above. The harness, and the analyses it provides, are
illustrated in Fig. 1, and described in the following sections.
As a particular example of using this harness, we use GTA
as a world simulator. We should stress that the harness can be
used with any specialized simulator that supports the required,
generic interface described in the next section.

A. Game-in-the-loop test harness

Fig. 1 shows the architecture of the software used to test
our AV code inside GTA. Most AVs use machine learning
algorithms in their perception pipeline, typically some form
of deep neural network which performs inference on images
obtained by the vehicle’s cameras. In the AV domain timing
is critical: for many perception tasks, an algorithm that takes
more than 100 ms to execute is practically useless because
both the AV’s and the environment’s state may change sig-
nificantly in that time. As a result, most machine learning
frameworks utilize GPUs in order to perform perception tasks
quickly enough; the majority of such frameworks are compiled
for UNIX machines. Thus, it is important that the AV code
must run on a Linux machine even if the game engine does not.
Moreover, separating the computational hosts enables modu-
larity: an updated AV software stack or improved simulation
engine can be swapped during the design cycle. This enables
continuous comparison of software releases without changing
the internal workings of the simulation engine.

Most game engines (including ours), on the other hand, must
run on a Windows machine due to their reliance on the Direct
X framework. As a result, we have developed a solution to
communicate between simulation and AV hardware/software
in real-time. The communication between the world simulator
(on Windows) and the AV (on Linux) happens through ZMQ.
ZMQ is an asynchronous messaging library aimed at use
in distributed or concurrent applications [7]. ZMQ enables

communication with little overhead and interoperability be-
tween the different programming languages (Python and C++)
utilized in our case study.

A typical simulation runs as follows: The test harness,
which runs on the Linux machine, selects an initial state
of the AV (e.g., initial position, velocity, jitter, etc). It also
selects initial environment conditions: number of cars, their
initial positions and velocities, and time of day. The time of
day is a way to control the lighting conditions: from bright
and clear skies in the morning, to dark and cloudy skies
later in the day. As explained in the Introduction, this is
particularly important for stressing the perception pipeline.
This initalization is then sent to the Windows machine, where
a simulation starts. The testbench samples the simulation once
every second: every second, the simulator sends back to the
testbench the current states of all traffic participants, including
the AV, and the current ”video” frame. The testbench stores
the state for later computation of performance objectives, and
passes it, along with the frame, to the AV code. The perception
pipeline processes the frame (e.g., to detect objects), and the
controller then computes the next actuation (steering angle and
acceleration). The control commands are passed back to the
simulator, and this loop continues until the end of simulation.

Our test harness allows this to run in real-time (so 10s of
simulated time require about 10s of wallclock time). Given
that we visualize the simulation as it runs, faster than real-
time is not possible. Another simulator, that can run without
the graphics, could run faster than real-time. The bottleneck
of the current setup is the GTA simulator, not the testbench.

The need to run the world simulator on a Windows machine
is peculiar to GTA. However, the ZMQ-based communication
architecture we have developed has a wide range of applica-
tions: namely, it is possible to spawn multiple instances of
the simulator on multiple remote machines, and have them
controlled from the same terminal that runs the AV code. This
parallelization allows us to cover proportionally more driving
miles in a given amount of time.

B. Search algorithm
The test harness can be used to test the AV code as

follows. First, pick a location in GTA’s San Andreas map.
Next, define the AV state vector x ∈ R5, consisting of AV 2D
position, 2D velocity and longitudinal jitter (second derivative
of longitudinal velocity). The AV state can be initialized, in
a given simlation, to any value in a pre-determined set X ,
e.g. X = [−1, 1]2 × [5, 15]2 × [−5, 5]. We also define a time-
of-day variable tod, measured in minutes, and which can be
initialized to D = {0, 1, . . . , 60×24}. E.g. tod = 0 is midnight
and tod = 60× 8 is 8 a.m. Finally, we define an environment
vector y ∈ R4N , consisting of the positions and velocities of
N other traffic participants. This can also be initialized to a set
Y . Collectively, we refer to z = (x, tod, y) as the world state,
and it can be initialized to Z = X ×D × Y . If the testbench
initializes the test harness with a given z ∈ Z, the harness
will simulate the resulting driving situation as explained in
Section II-A. The objective of the search is to find a value of
z in Z such that the resulting simulation exposes dangerous
driving situations, be they due to the AV’s errors of control

or perception, or because of unfortunate circumstances that
might not have occurred to the AV designers. Indeed, even
accidents that are not due to the AV’s fault are informative,
as they might cause the designers to equip the AV with better
sensors or make it more conservative.

For illustration purposes in this paper, we define a ‘dan-
gerous driving situation’ to be a state where the minimum
distance between the AV and other cars or pedestrians is
smaller than a nominal value. Therefore, we can now run
an optimization: the objective function is f : Z → [0,∞)
where f(z) is the minimum distance between the AV and other
cars or pedestrians, in the simulation initialized at z. Our goal
is to minimize f over Z: find the most dangerous situation,
where the AV gets closest to moving obstacles. Of course,
if f(z∗) = 0, then z∗ actually witnesses an accident. All
dangerous situations are then returned to designers to examine:
did the object detector miss the obstacle? Did it detect it
but too late? Did the obstacle come from behind a blind
corner, if so, do we need to annotate the AV map with blind
intersections? Or was the controller tuned too aggressively and
an accident followed?

The AV code and simulator are treated as black boxes both
due to their complexity and in order to provide a method-
ology which works to examine proprietary software without
jeopardizing trade secrets or IP. Therefore we need to use
a gradient-free optimizatoin heuristic. In the experiments we
use Simulated Annealing [8], a popular optimization algorithm
that offers asymptotic guarantees (namely, as the number of
simulations goes to infinity, the probability of missing the
global minimum goes to 0). Simulated Annealing and its
variations have been successfully used in a very wide array
of applications in the last 60 years. The next section presents
some illustrative results obtained by this test harness.

C. Optimization results
We selected a T-junction in Los Santos, the fictional city

that is the setting for GTA. The objective of the AV is to
make a safe right turn, and obey the Stop Sign. The simulation
continues until either the objective is achieved, or a timeout
(set to 20s) occurs.

The search automatically found an accident between the AV
and another car in under 100 simulations. We can examine the
exact conditions that led to the accident to understand what
happened. First, let’s describe the accident: the AV approaches
the T-junction, and starts the right turn. Another car approaches
from the left. Neither car is able to stop on time, even though
they both eventually ‘saw’ each other. In this case, two factors
contributed to the accident: first, the scenario takes place at
twilight. While the YOLO object detector correctly classified
the stop sign there is some delay. This delay was nevertheless
enough to allow the AV to edge further into the intersection
before stopping. Secondly, the other car was traveling at a
speed similar to the AV’s. Any faster, and it would’ve passed
the AV before it started the right turn. Any slower, and the
ego-vehicle would’ve been able to stop on time. In addition,
the other vehicle is initially occluded and subsequently missed
in several frames just as the ego vehicle makes a decision to
turn.

This is an example of a non-trivial accident, where just
the right conditions of timing and vechicle behavior must be
present to cause the accident.

The automatic search enabled by our harness thus found
environment conditions (lighting) and traffic conditions (speed
of one other car) that produced an accident. Another accident,
captured from 3 different camera angles, can be found at this
anonymous Dropbox link: http://bit.ly/2fe2tZq

III. FAKE WORLD, REAL NEWS: ON THE VALIDITY OF
USING SYNTHETIC ENVIRONMENTS FOR TESTING AVS

The described test harness allows us to test orders of
magnitude more scenarios than we could in the real world,
and dangerous situations (so-called ‘counter-examples’) that
are exposed in simulation can help improve the design and
flush out bugs. The natural question we need to answer is:
do accidents discovered in simulation tell us something about
real-world accidents? Without actually running the AV in the
real world and correlating real-world results to the simulated
results, it is impossible to obtain a direct empirical answer
to this question. However, there are two ‘big’ questions that
one can answer instead, and which go a long way toward
establishing confidence in the simulated results. They are:

1) What is the relation between the perception algorithms’
performance on synthetic driving scenes rendered by the
graphics engine and their performance on natural (‘real’)
driving scenes?

2) What is the relation between the effect of AV controller’s
actions in the simulator and their effect in the real world?

If we have confidence in our answers to these two questions,
then we have more confidence that the whole-AV test enabled
by our test harness is useful.

In this paper, we study the first question above. For the
second question, it suffices to note that any dynamical model
used in the automotive industry will be thouroughly validated
by the automotive engineers, and the test harness we propose
can accommodate any world simulator as explained earlier.

We answer the first question on two levels: first, in Sec-
tion III-A, we do a direct comparison between the performance
of a perception algorithm (e.g., object detection) on synthetic
and natural scenes. This gives an application-specific evalu-
ation of the suitability of synthetic scenes for our purposes.
The same study can be done on any CV algorithm. Secondly,
in Section III-B, we study the visual complexity of synthetic
and natural scenes. Such a study is application-independent,
and gives us a broader understanding of the differences and
similarities between synthetic and natural scenes. While such
a broader understanding is, at first, harder to apply than an
application-specific comparison, it has a benefit: by under-
standing the ways in which synthetic scenes (as an ensemble)
differ from natural scenes, we can better weigh the results
of simulation-based testing and their relevance to real-world
testing, accross a range of peception algorithms. E.g., visual
complexity plays an important role in many computer vision
algorithms, like edge detection and motion from structure. If
the complexity of synthetic scenes is, say, poorer than that

(a) KITTI (b) Udacity

(c) Darmstadt (d) Michigan
Fig. 2. Examples of images from the datasets.

of natural scenes, we know that these algorithms will perform
better on them, which allows us to weigh the evidence obtained
from simulations.

Note that these questions are not only relevant for the
case where the world simulator uses synthetic scenes, such
as GTA. They apply equally to the case where natural scenes
are used (e.g., when driving through Google Street View): as
we show, the dataset of images encountered by the AV does
have an effect on its performance, and any simulation-based
testing must first evaluate the validity of test environment using
multiple measures.

The datasets. We use the KITTI [9] and Udacity
datasets [10] as sources of natural scenes. KITTI is exten-
sively used in the Computer Vision and Image Processing
communities to test their algorithms. We use its test set of 7481
images of urban and rural driving in and around a mid-size
German city (Karlsruhe). Udacity is made of 15,000 images
obtained by driving over Highway 92 in California during
daylight conditions. For synthetic scenes, we use two sets of
frames obtained from GTA: the Darmstadt [11] set of 25,000
frames and the Michigan set of 15,000 frames [3]. They were
collected from the game using two plugins, Script Hook V and
Script Hook V.NET [12]. The images in the datasets are highly
variable in their content and layout. A range of different times
of day and weather typees are captured: day, night, morning
and dusk, and sun, fog, rain and haze. The Michigan dataset
is annotated with the true bounding boxes for the objects in it
and so can be used for profiling object detection algorithms.
See Fig. 2 for example frames from these 4 datasets.

A. Object detection on synthetic and natural scenes
An object detection algorithm takes in an image and returns

a set of bounding boxes, one box around each object it has
detected in the image. See Fig. 3. It also returns the type of
each detected object, e.g., ‘car’, ‘person’, or ‘stop sign’. In
order to evaluate the performance of a given object detection
algorithm, we use the three following standard metrics [13]:
precision, recall and false alarm rate (FAR). These three
measures belong to the interval [0, 1] and are calculated

200 400 600 800 1000 1200 1400 1600 1800

100

200

300

400

500

600

700

800

900

1000

Fig. 3. GTA frame with red bounding boxes around cars detected by YOLO,
and green boxes around true cars. Note the red box around the bush on the
left, indicating a YOLO false positive, and the lack of red box around the
farawary car on the right, indicating a YOLO false negative. The red box in
the middle is a true positive.

using the number #TP of true positives, number #FN of
false negatives FN , and the number #FP of false positives
over the given data set. A true positive (TP) is a detected
object that is indeed in the image. A false positive (FP) is a
detected object that isn’t in the image, i.e. a mis-detection.
A false negative (FN) is an object in the image that was not
detected by the algorithm. A threshold α ∈ (0, 1) is used
to compute #TP,#FP and #FN . Roughly, if a detected
object’s bounding box overlaps with the bounding box of a
true object (of the same object type) by more than α, then
this is considered to be a TP, otherwise, it’s a FP.

We can now define the detection performance metrics:
precision measures the fraction of detected objects that are
correct: Precision := #TP/(#TP +#FP). A higher preci-
sion is better. Recall measures the fraction of true objects that
were correctly detected: Recall := #TP/(#TP + #FN).
Higher recall is better. The False Alarm Rate (FAR) mea-
sures the fraction of all detected objects that are not correct:
FAR := #FP/(#FP + #TP). Lower FAR is better. Note
that Precision, Recall and FAR are all in the range [0, 1].

Results. We measured the performance of YOLO9000 [14],
[15], a popular real-time object detection algorithm, on the
KITTI, Udacity and Michigan datasets, for which we have
ground truth data, i.e., the bounding boxes of true objects. (We
don’t have ground truth for Darmstadt). Because the values
of Precision, Recall and FAR depend on the threshold α, the
appropriate way to compare YOLO’s performance on different
datasets is to vary the threshold and plot Receiver Operating
Curves (ROCs). To avoid bias due to the content of the images
(‘content bias’), we performed this analysis on 50 randomly
selected subsets of the data, each subset containing 80% of the
images in the dataset. The ROCs and conclusions presented
below hold accross the random selections.

Fig. 4 shows the results. The three performance measures
are plotted against each other, two at a time. It can be seen that
there is a measurable difference between YOLO on synthetic
scenes (Michigan dataset) and real scenes. Indeed, there is a
measurable difference between natural datasets. Both of these
are confirmed by 2-sample Kolmogorov-Smirnov tests, which
confirm that the performance numbers of different datasets

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
e

c
a

ll

0.1

0.15

0.2

0.25

0.3

0.350.40.450.5
0.55

0.6
0.65

0.7

0.1

0.15

0.2

0.25

0.3

0.35
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.1

0.15

0.2

0.25

0.3

0.35
0.4

0.45

0.5

0.55

0.6

0.65

0.7

GTA

KITTI

UDACITY

(a) Precision-Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

FAR

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
e
c
a
ll

0.1

0.15

0.2

0.25

0.3

0.350.40.450.5
0.55

0.6
0.65

0.7

0.1

0.15

0.2

0.25

0.3

0.35
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.1

0.15

0.2

0.25

0.3

0.35
0.4

0.45

0.5

0.55

0.6

0.65

0.7

GTA

KITTI

UDACITY

(b) FAR-Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

FAR

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

0.1

0.15

0.2

0.25

0.3

0.350.4
0.45

0.5

0.55

0.6

0.65

0.7

0.1

0.15

0.2

0.25

0.3

0.35
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.1

0.15

0.2

0.25

0.3

0.35
0.4

0.45

0.5

0.55

0.6

0.65

0.7

GTA

KITTI

UDACITY

(c) FAR-Precision
Fig. 4. YOLO ROCs for three performance measures, plotted pair-wise, for 3
datasets. Every ROC contains 13 points, one per value of the overlap threshold
α. The α value is indicated next to the point.

come from different distributions. Thus, even if the world
simulator used only natural scenes (e.g. if Google Street View
is used to provide the visual input), the question of how
applicable testing results are must still be answered.

The way to interpret and make use of these ROCs is as
follows: suppose we will enforce a Precision of 0.7 during
real AV operation (by selecting the right α). The Precision-
Recall curve (Fig. 4a) tells us that at Precision = 0.7, GTA
YOLO performance is a lower bound on YOLO performance
in the real world (i.e., on natural images). That is, the KITTI
and Udacity Recall values, for a Precision of 0.7, are both
higher than the Michigan Recall value. Thus, simulation results
cannot mislead us, since they are conservative. Similarly, if
we enforce a FAR of 0.3 in the real world, then again GTA
YOLO Recall results are a conservative lower bound on real-
scenes Recall values (Fig. 4b). We will have more to say
on this in the next section. Finally, the FAR-Precision ROC
(Fig. 4c) reveals the noteworthy fact that the performance of
YOLO on synthetic and natural scenes are nearly identical.
Thus if Precision and FAR are the more important aspects of
YOLO performance, simulations give a very good idea of real-
world performance. Thus a complex picture emerges, where the
relation between performance in the simulator and in the real
world depends on multiple factors, including on the trade-offs
that the AV designers are willing to make between different
performance measures. The test harness we are presenting in
this paper serves to analyze these trade-offs.

B. The complexity of synthetic and natural scenes
The results of the previous section might be surprising at

first: after all, synthetic scenes are generally thought to be
somewhat simpler, informally speaking, than natural scenes,
because the latter have a greater variety of detail, texture,

0 20 40 60 80 100 120 140 160 180 200

Spatial Information

-20

0

20

40

60

80

100

120

C
o

lo
rf

u
ln

e
s
s

GTA 19960 images

KITTI 5985 images

UDACITY 12000 images

MICHIGAN 8000 images

KITTI

DARMSTADT

UDACITY MICHIGAN

Fig. 5. Complexity of datasets. Diamonds show the centroids of the clusters.
Red: KITTI, Black: Udacity (both natural) Blue: Darmstadt, Green: Michigan
(both synthetic from GTA). Colors in digital version of paper.

lighting changes, distortion and compression effects, etc. This
is indirectly confirmed by studies such as [3] where, for the
purposes of training an objet detection neural network, many
more synthetic images are needed than natural images. Thus
it might be expected that an object detector would perform
better on synthetic scenes than on natural scenes. However, let
us first note that we used YOLO that was trained on natural
scenes - which is what the real AV would use in the real world.
This should temper the surprise, since YOLO is performing
better on those scenes that are more ‘similar’ to the ones it
was trained on. Secondly, in this section, we make a more
rigorous study of the difference in complexity between natural
and synthetic scenes.

An important property of a scene is its visual complexity,
in terms of the density and distribution of edges, textures,
colorfullness and contrast variations accross the image. A more
complex scene, a priori, presents a greater challenge to any
Computer Vision (CV) algorithm, because it makes it harder
to extract features. E.g., a texture-rich image presents serious
difficulties to an edge detector since textures can be confused
for edges. In this section, we characterize the complexity of the
datasets using the two complexity measures proposed in [16]:
Spatial information (SI) and Colorfullness (CF). These are
established measures of complexity in the Image Processing
community (e.g., see their use in [17]) and they are simple
to compute. Due to lack of space, we refer the reader to [16]
for their mathematical definitions. Here, we mention that SI
measures the strength and amount of edges in an image;
edges are a crucial element of information for many image
processing algorithms. CF measures the variation and intensity
of colors in the image.

Results. To avoid content bias, we measured SI and CF
on 50 randomly selected subsets of the four datasets, each
selection containing 80% of the images. The results and
conclusions presented below hold accross the random selec-
tions. Fig. 5 shows the scatterplots of complexities from one
such selection. There are clear differences between synthetic
and real, but also between synthetic datasets, and between
real datasets. The first, striking feature is that the Darmstadt

(GTA) dataset complexity lies between the complexities of
Kitti and Udacity (both real). Thus saying that ‘synthetic is
less complex’ is too simplistic. The second feature we note
is that there is a large degree of overlap between Udacity
and Michigan datasets. Both have a wide range of SI, and
comparatively small range of CF, which is the opposite of
KITTI and Darmstadt. The complexity results suggest that
using a simulated world is a reasonable means to test an
AV, given the intermediate complexity of synthetic scenes,
and the overlap between synthetic and some real scenes.
Computer vision algorithms that are affected by the complexity
of the images, like object tracking, can thus be tested in this
simulated world with relevance to the real world.

IV. CONCLUSION

The test harness we have presented allows automatic testing
of AV code in simulated worlds, and implements necessary
analyses for understanding the similarities and differences
between the simulated data and representative real-world data.
The next step is to implement a more advanced notion of AV
safety, which takes into account the driving context, and to
automate the debugging process for the accidents we find.

REFERENCES

[1] Baidu, “Apollo platform,” September 2017. [Online]. Available:
apollo.auto

[2] Kato, Shinpei, “Autoware,” September 2017. [Online]. Available:
https://github.com/CPFL/Autoware

[3] M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar, K. Rosaen,
and R. Vasudevan, “Driving in the matrix: Can virtual worlds replace
human-generated annotations for real world tasks?” in ICRA, May 2017.

[4] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for data:
Ground truth from computer games,” in European Conference on
Computer Vision (ECCV), ser. LNCS, B. Leibe, J. Matas, N. Sebe, and
M. Welling, Eds., vol. 9906. Springer International Publishing, 2016,
pp. 102–118.

[5] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in International
Conference on Computer Vision, 2015.

[6] Zhao, Ding and Peng, Huei, “From the lab to the street,” May 2017,
m-City White Paper.

[7] P. Hintjens, ZeroMQ: messaging for many applications. ”O’Reilly
Media, Inc.”, 2013.

[8] S. Chib and E. Greenberg, “Understanding the Metropolis-Hastings
algorithm,” The American Statistician, vol. 49, no. 4, pp. 327–335, Nov
1995.

[9] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[10] A. R. Udacity, “Udacity self-driving car dataset 2-2,” 2017. [Online].
Available: http://bit.ly/udacity-annotations-autti

[11] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for data:
Ground truth from computer games,” in European Conference on
Computer Vision. Springer, 2016, pp. 102–118.

[12] A. S. D. Alexander Blade, “Script hook v .net,” Sept 2017. [Online].
Available: https://github.com/crosire/scripthookvdotnet

[13] Afzal A. Godil et al., “Performance metrics for evaluating object
and human detection and tracking systems,” July 2014, nIST Intera-
gency/Internal Report (NISTIR) - 7972.

[14] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Conference on Computer
Vision and Pattern Recognition, 2016.

[15] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger.”
[Online]. Available: https://arxiv.org/abs/1612.08242

[16] S. Winkler, “Analysis of public image and video databases for quality
assessment,” IEEE Journal of Selected Topics in Signal Processing,
vol. 6, no. 6, pp. 616–625, Oct 2012.

[17] Kundu, Debarati, “Subjective and objective quality evaluation of syn-
thetic and high dynamic range images,” May 2016, phD Dissertation.

