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Abstract. In this study, we explore the biologically-inspired Learn-On-The-Fly 
(LOTF) method that actively learns and discovers patterns with improvisation 
and sensory intelligence, including pheromone trails, structure from motion, 
sensory fusion, sensory inhibition, and spontaneous alternation. LOTF is related 
to classic online modeling and adaptive modeling methods. However, the aim is 
to solve more comprehensive, ill-structured problems such as human activity 
recognition from a drone video in a disaster recovery environment. It helps to 
build explainable AI models that enable human-machine teaming with visual 
representation, visual reasoning, and machine vision. It is anticipated that LOTF 
would have an impact on Artificial Intelligence, video analytics for searching and 
tracking survivors’ activities for humanitarian assistance and disaster relief 
(HADR), field augmented reality, and field robotic swarms. 
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1. Introduction 
 
We often do things “on the fly” in everyday life. We gain experience without 
preparation, responding to events as they happen [1]. We often learn new things in that 
way. For example, children learn to walk, talk, and ride a bike on the fly. Historical 
examples include Neil Armstrong landing the lunar module on the moon. Apollo 13 
crews managed to return to Earth after an explosion. Network administrators responded 
to the first computer worm created by Robert Morris. More recently, epidemiologists 
have been fighting the COVID-19 coronavirus outbreak based on live data.    
  Learn-on-the-fly (LOTF) is a way of active learning by improvisation under pressure. 
It is an active learning method to learn quickly in challenging situations of mobility, 
remote operation, and uncertainty, where other data-centric passive learning methods 
often fail. LOTF is related to classic “online modeling” or “adaptive modeling” 
methods such as Kalman Filter, Particle Filter, Recursive Time Sequence Models, and 
System Identification, which adapt to dynamic environments. However, LOTF aims to 
tackle more robust, complex problems such as human activity recognition from a drone 
video in a disaster recovery environment, in which small unmanned vehicles are sent 
out to scale recovery operations.  
   With LOTF we aim to build explainable AI models that enable human-machine 
teaming (including visual representation and visual reasoning) where humans and 
machines interact visually. LOTF can also incorporate lightweight machine learning 
algorithms such as Bayesian networks, which support low size, weight and power 
(SWAP) requirements. In this paper, the author overviews biologically-inspired LOTF 
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algorithms in non-technical terms, including pheromone trails, structure from motion, 
sensory fusion, sensory inhibition, and spontaneous alternation. It is anticipated that 
LOTF will have an impact on artificial intelligence (AI), in particular, video analytics 
for searching and tracking survivors’ activities for humanitarian assistance and disaster 
relief (HADR), augmented reality, and robotic swarms. 
 
2. Pheromone Trails 
 
It has long been known that social insects such as ants use pheromones to leave 
information on their trails for foraging food, leaving instructions for efficient routes, 
for searching, and for making recommendations. Similarly, Amazon’s retail website 
suggests similar products based on the items in a user’s online shopping cart. In 
practice, the term “pheromone” proves useful in describing behaviors such as trail 
formation in a sequence of spatial and temporal data. 
   The generalized pheromone update model can help us to discover motion patterns in 
videos, which transforms invisible patterns of moving objects into visible trails that 
accumulate or decay over time, much like a scent. Pheromones decay at a certain rate, 
thereby reducing the risk of repeating the same route. It also helps prevent from reacting 
to a rapidly changing single event. Here, we generalize pheromone deposits and decay 
at the pixel level in two-dimension, where a “deposit” function is to add a unit of digital 
pheromone (in color) each time an object passes that pixel location until the value 
reaches its maximum. The “decay” function is to remove a unit of pheromone at a 
certain rate until the existing pheromone at the pixel location reaches zero. Figure 1 
shows an example of traffic patterns over time from an aerial video. The heat map 
shows that the center lane has the heaviest traffic. In a disaster scenario, motion patterns 
derived from pheromone models could help identify passable routes and survivor 
movement, helping aid agencies to understand where survivors are headed to allocate 
supplies accordingly. In the COVID-19 scenario, pheromone trails can reveal traffic 
patterns in public spaces and can help to assess quarantine situations.    
 

 
Fig. 1. The digital pheromones show the traffic flow over time from an aerial video 

 
3. Structure from Motion 
 
Motion perception is part of our instinct for survival. It is a vital channel for us to map 
our world and allocate attention to changes. To extract the motion features, we can use 
Optical Flow [10] to describe motion, direction, and strength in terms of motion vectors. 
Optical Flow assumes the brightness distribution on moving objects in a sequence of 
images is consistent, which is referred to as “brightness constancy.” We use the Horn-



3 

Schunck algorithm to minimize the global energy over the image. This algorithm 
generates a high-density of global optical flow vectors, which is useful for measurement 
purposes. We then use grid density to define the number of motion vectors in a frame. 
For example, we can plot a motion vector for every 10 pixels horizontally and vertically 
respectively.  
   Dynamic visualization of the field of optical flow is a critical component to reveal the 
changes of flow patterns over time. This is called a flow map. In addition to the flow 
map, we can visualize the motion vector in the color space of hue, saturation, and value 
(HSV), wherein hue represents the angle of the vector, and value represents the 
magnitude of length of the vector. The optical flow vector angle can be naturally 
mapped to hue in the HSV color system, both in range between 0 and 360 degrees. The 
magnitude of the vector can be mapped to a value between 0 and 1. Saturation value 
for this visualization is constant, so we can set it as 1 - the highest value by default. We 
chose the HSV color space for mapping the two parameters because of its simplicity. 
Figure 2 shows that the optical flow heat map visualizes the slow-moving utility truck 
in the wrong direction. This method is based on the assumption that the video is from 
a stationary camera. The heuristic algorithm for segmentation from a moving camera is 
in reference [9]. 
 

 
Fig. 2. The optical flow map visualizes the slow-moving utility truck in the wrong direction 

 
Motion creates depth perception that can be used for reconstructing three-dimensional 
objects, which is beneficial for disaster recovery, for example, assessing the fire 
damage of Notre-Dame de Paris. Given a 2D video from a drone camera, we use Stereo- 
photogrammetry [11] to extract the 3D measurements. By analyzing the motion field 
between frames, the algorithm is designed to find corresponding points shared between 
frames, allowing for reconstruction of 3D structural coordinates from a single camera. 
The key assumptions of this method are: the video contains enough high-contrast 
corner-like feature points, which are used for matching the corresponding structural 
features; and the geometric transformation caused by the motion is Homographic 
Transformation [12]. Note that stereo-photogrammetry is computationally intensive. 
We must down-scale the 4K video to a manageable size in order to achieve a reasonable 
computation time. Figure 3 shows the results of a 3D reconstructed archeological site 
in Paspardo in the Italian Alps. 
  For the last two decades, Structure-from-Motion (SfM) has been evolved into a 
popular technology for 3D imaging with an affordable single camera, a pair of stereo 
cameras, or multiple cameras [13]. The RGB camera-based SfM methods commonly 
need structural features such as Difference of Gaussian (DoG) SIFT features [14-15] or 
FAST corner features [16] to match the structural features between frames in the video, 
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and to calculate the homographic transformation matrix accordingly for Simultaneous 
Localization and Mapping (SLAM) [17]. Similar to stereo-photogrammetry, the 
matching algorithm requires a minimal number of features in consecutive frames of the 
video. Unfortunately, in many cases, there are not enough matching features between 
frames, due to “featureless” smooth walls, blurry images, or rapid movement of the 
camera. Figure 4 shows results of the SLAM of the floor of an office building with a 
stereo camera, where the green dots represent the camera’s motion path, and the other 
color dots represent the walls and the floor. The point cloud of the ceiling has been cut 
away to increase visibility. 

 
Fig. 3. The archeological site is 3D reconstructed from a drone video with an RGB camera 

 

 
Fig. 4. The SLAM results of a floor plan and path in a building from a stereo camera 

 
4. Sensory Fusion 
 
The LOTF approach with the most potential for disaster recovery applications is 
sensory fusion. Modern electronic systems such as drones and mobile phones carry 
many sensors: cameras, microphones, motion sensors, magnetic field sensors, GPS, 
WiFi, Bluetooth, cellular data, proxy distance sensors, near infrared sensors, and so on. 
In contrast with prevailing machine learning methods such as Convolutional Neural 
Networks (CNN), which require massive historical training data, learn-on-the-fly 
focuses on real-time lateral sensory data fusion to reveal patterns. For example, fusing 
laser distance sensor data with inertial motion unit (IMU) sensor data can enable 
activity recognition of firefighters with a Decision Tree [18]. Adding more sensory 
dimensions increases the confidence of pattern recognition. It also improves human-
machine teaming in the field of humanitarian assistance and disaster relief (HADR) 
tasks. For example, thermal imaging helps to detect humans and vehicles, but it has 
relatively low resolution compared to the visible channel. Superimposing edges on 
objects would assist humans and machines to identify and track the objects. Figure 5 
shows screenshots of a drone video and the thermal image with edge enhancement from 
the visible channel. 
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Fig. 5. The drone image (left) and thermal image (right) of Paspardo with edge enhancement 
 
5. Sensory Inhibition  
 
In contrast to sensory fusion, sensory inhibition prioritizes the sensory channels in order 
to reduce the computational burden [6]. Sensory inhibition is also referred to as “lateral 
inhibition [19],” which is common in nature. For example, in neurobiology, lateral 
inhibition disables the spreading of action potentials from excited neurons to 
neighboring neurons in the lateral direction in order to create a contrast in stimulation. 
This happens to visual, tactile, auditory, and olfactory processing as well. For example, 
we do not taste our own saliva and we do not hear the sound of our jaw moving while 
eating. Artificial lateral inhibition has been incorporated into vision chips, hearing aids, 
and optical mice. Typical sensory inhibition is implemented by methods of 
thresholding, delaying, and adapting. In our case, given multiple sensory channels, we 
find the channel that has the most contrast with the minimal processing load. Figure 6 
shows a depth map and thermal image of two men laying on the floor. The thermal 
image shows more temperature contrast than the depth map shows distance. Therefore, 
to detect the human body in this case, thermal imaging would be easier. However, this 
imaging preference is relative and dynamic. If the person were to stand up, or if the 
floor temperature were as warm as the human body, then the figure-background 
contrast relationship would change. Figure 7 shows a color image and a depth map of 
two men on stairs. The depth map appears to have advantages in human detection, 
gesture recognition, and spatial relationship estimation when compared to a color 
image. Adaptation is a form of inhibition. 

Fig. 6. The depth map (left) and thermal image (right) of men laid on the floor 
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Fig. 7. The aerial color image (left) and depth map (right) of men on stairs  

 
6. Spontaneous Alternation Behavior (SAB) 
  
Creatures in nature commonly learn on-the-fly to adapt to changing environments. One 
instinctual behavior is randomization in order to search for alternative foraging paths 
or to avoid collision situations. When an ant gets lost, it will randomly wander until it 
hits a trail marked with pheromones. This pattern occurs in tests with many different 
animals. It is called spontaneous alternation behavior (SAB) [7].    Spontaneous 
alternation of paths for an autonomous robot, a search engine, or a problem-solving 
algorithm can help to explore new areas and avoid deadlock situations. Spontaneous 
alternation is also a primitive strategy for collision recovery. Collisions can be found in 
many modern electronic systems in various fields, from autonomous driving vehicles 
to data communication protocols. There is a variation of the SAB strategy for collision 
recovery. When a collision occurs, the system spontaneously switches to different 
sensors or channels, or the system waits for random intervals and reconnects. The “back 
down” and reconnect process is similar to SAB, which solves the problem of deadlock. 
SAB is necessary for missions involving the search for and tracking of survivors for 
humanitarian assistance and disaster relief (HADR) when existing maps of the 
environment are inaccurate due to changes that occurred during a disaster such as fallen 
trees or collapsed buildings. This is true especially in cases where communication 
breaks down, the system collapses or runs into a deadlock, or when deep, extended 
searches for victims in missing spots is required.  
 
7. Summary 
    
In this study, we explore the biologically-inspired Learn-On-The-Fly (LOTF) method 
that actively learns and discovers patterns with improvisation and sensory intelligence, 
including pheromone trails, structure from motion, sensory fusion, sensory inhibition, 
and spontaneous alternation. LOTF is related to classic “online modeling” or “adaptive 
modeling” methods. However, it aims to solve more comprehensive, ill-structured 
problems such as human activity recognition from a drone video in a disaster scenario. 
LOTF helps to build explainable AI models that enable human-machine teaming, 
including visual representations and visual reasoning, toward machine vision. It is 
anticipated that LOTF will have an impact on Artificial Intelligence, video analytics for 
searching and tracking survivors’ activities for humanitarian assistance and disaster 
relief (HADR), field augmented reality, and field robotic swarms. 
   LOTF is an evolving approach that moves away from data-centric to sensor-centric, 
from rigid to adaptive, from unexplainable to explainable, from numeric to intuitive, 
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and from curve-fitting to semantic reasoning. Our challenges include how we can scale 
up the system, how we will implement sensory adaptation as inhibition and, finally, 
how we achieve a balance between the flexibility and efficiency of the algorithms. We 
intend to address these challenges in a disaster recovery scenario. 
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