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The Problem 
 

Deteriorating road network and increasing travel demands for transportation facilities bring 

increasing construction activities and consequently a large number of work zones (Yang et al., 

2014). There are several safety issues associated with construction in work zones where active 

traffic exists nearby. According to Federal Highway Administration (FHWA), a work zone crash 

occurred once every 5.4 minutes in the U.S., and 96,626 accidents took place in work zones in 

2015, an increase of 7.8% over 2014 (FHWA, 2017).  It is important to investigate the relationships 

between work zones and crash frequency and severity (i.e. crash metrics) and understand what 

aspects of a work zone impact possibility and severity of crashes.  Despite many research studies 

on work zone related crash analysis (Garber and Woo, 1990; Hall and Lorenz, 1989; Jin et al., 

2008; O Ozturk et al., 2014; Theofilatos et al., 2017), a thorough investigation of possible 

relationships between work zone characteristics and crash severity and frequency is still lacking. 

There are three main challenges in exploring crash causality of work zone. Difference on roadway 

characteristics will bring pre-selection bias on work zones’ crash causality effect, and usually 

these roadway characteristics are hard to quantify and control (such as the sight range of the 

road segment) (Abdel-Aty and Pemmanaboina, 2006). Dynamic traffic flow can also affect the 

crash rates, so there is a need to control this factor when researching the work zone’s crash 

causality using a high-temporal-resolution traffic flow data (Theofilatos and Yannis, 2014). 

Various work zone settings (like closure setting, total length, etc. ) have different effects on work 

zone’s crash causality, so it is necessary to consider different work zone settings separately 

(Theofilatos et al., 2017). Failing to consider these three aspects will result in biased estimation 

on work zone’s crash causality, and the results to be obtained will lack robustness. Here, 

robustness refers to the estimated effect on work zones being significantly different from 

temporal neighboring events and spatial neighboring places. In this study, we discussed ways to 

address these challenges in the developed analysis framework. This framework is designed to 

quantify work zone crash causality in a rigorous way, and check the robustness of the causality 

effect.  

The first challenge is the pre-selection bias brought by unobserved roadway characteristics. Road 

segments selected for work zones usually have different characteristics compared with other 

road segments. For example, if a road segment is deteriorated and lack of maintenance, it may 

induce more crashes, while it has a higher possibility to be selected for retrofitting than other 

well-maintained roads(Anastasopoulos and Mannering, 2009). Hence, we may observe more 

collisions during roadway maintenance on this type of road segments compared with other road 

segments, but this may be in part due to road characteristics, not necessarily work zones. These 

pre-selection bias may lead to estimation bias of work zone effects.  To consider this effect, there 

is a need for a larger sample set of work zones. Through examining crash data within a relatively 

small work zone sample size (such as focus on only 60 work zones), it is not possible to identify 

whether crashes are caused by work zones or characteristics of the roadway specified by our 

sample size (Chen and Tarko, 2014; Ozgur Ozturk et al., 2014). In this research, we processed far 
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more work zone cases compared with the previous study (i.e. 10k vs. 60) and developed a 

Regression Discontinuity (RD) method to quantify the causality effect. 

In addition to roadway characteristics, dynamic traffic flow can also affect work zone safety, such 

as traffic speed. Those factors may be coupled with the presence of work zones to induce crashes, 

which can be challenging to separate respective effects if crash data are not carefully examined. 

For example, roadway construction projects may perform during daytime, when the traffic going 

on the work zone segment is more than what it would be during night time. To consider this 

effect, high-temporal-resolution traffic flow data is needed to yield the requirement of “dynamic”. 

If only provided aggregated speed information (such as daily traffic volume), it could be 

challenging to identify whether the crashes with the presence of a work zone is caused by the 

work zone or high traffic volume. Hence, actual time-varying observation speed is needed to 

perform this analysis. From the view of method, high-traffic-speed zones usually bring the 

unbalanced possibility of scheduled work zones (higher speed limit represents higher road class), 

and this high-traffic-speed also contributes to higher crash occurrence possibility (Theofilatos and 

Yannis, 2014). To exclude the effect of high-traffic speed when testing the effect of work zones 

on crash frequency or severity, it is necessary to limit the traffic speed into a homogeneous group 

so that the consequences of crash frequency or crash severity in this subgroup would get rid of 

the influence of traffic speed. By this way, we can exclude the confounding effect of traffic speed 

and get a pure causality effect of work zone on crash metrics. 

Except for the stable road characteristics and the dynamic outside environment, the third part 

that could affect the work zone effect is the settings of the work zone. Previous researchers have 

done abundant exploration on building a statistical model of crash frequency or severity in the 

work zone (Theofilatos et al., 2017). However, only a few of them focused on comparing no-work-

zone conditions and with-work-zone conditions. Ozturk et al. (2014) realized this research gap 

and compared the number of crashes between pre-work zone and during-work zone crashes. 

Their assumption was that the pre-work zone conditions should be similar to the during-work 

zone condition, and the crash numbers should be unchanged. We relaxed their assumption to 

continuous temporal trend of road conditions and crash metrics by using a time-series-

observations and Regression Discontinuity (RD) analysis. Then, we discussed the crash causalities 

of different work zones under this analysis framework.  

Our approach 
 

Data Preprocessing As illustrated in the first section, one of the challenges that previous 

researchers did not fully incorporate is utilizing multiple-source, high-resolution databases to 

infer the crash causality of work zones. In this research, we used PennDOT open source roadway 

network (Pennshare, 2018) as the most-up-to-date roadway data. The crash data (crashes 

occurred and reported in Pennsylvania in 2013) is obtained from PennDOT(PennDOT, 2018).  

Crash occurrence time, severity (fatal/non-fatal) and the weather information when the crash 

occurred are extracted from this database. PennDOT provides Road Condition Reporting System 
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(RCRS) data to the public (Commonwealth Pennsylvania, 2018). Real-time information for traffic 

incidents, roadwork, and other events are provided in this database. We selected the road events, 

which is labeled as “roadwork”, as work zone events. This database provided us the start time 

and end time of each incident, the position of the start point and end point, and the closure 

situation in each roadway activities. INRIX company released real-time monitored speed 

information for major roads in Pennsylvania (Kim and Coifman, 2014). The data is reported every 

5 min on major roadways. They provide actual observed historical speed (real-time speed), 

historical mean speed and free flow speed. We use MultiNet to geocode the speed information 

to the base map, PennShare Roads. MultiNet is a highly accurate map provided by TomTom 

company (TomTom, n.d.). They marked the road segments with INRIX code, which produced high 

accuracy to geocode INRIX speed data onto real road networks. The MultiNet road segments with 

INRIX speed code are subsets of the PennShare Roads data. Also, the two road networks could 

be joined to match the speed data with work zones.  A summary of utilized data sources is shown 

in Table 1, a map of the work zones and the roadway network is displayed in Figure 1. 

Table 1 Data source 

Code Full name Role Provided information 

PennShare 
Roads 

PennDOT open source 
roadway network (Pennshare, 
2018) 

Base map AADT, number of intersections 
( 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑖 ), number of ramps 
( 𝑅𝑎𝑚𝑝𝑠𝑖 ), road class ( 𝑅𝑜𝐶𝑖 ), and total 
number of lanes (𝐿𝑎𝑛𝑒𝑖). 

PennCrash PennDOT Crash Data 
(PennDOT, 2018) 

Crash 
source 

crash occurrence time, severity (fatal/non-
fatal) and the weather information when the 
crash occurred 

RCRS Road Condition Reporting 
System (Commonwealth 
Pennsylvania, 2018) 

Work zones start time and end time of each event, the 
position of start point and end point, and the 
closure situation in each roadway activities 

INRIX INRIX speed (Kim and 
Coifman, 2014) 

Speed 
source 

grounded-truth historical speed (real-time 
speed), historical mean speed and free flow 
speed 

MultiNet TomTom MultiNet  (TomTom, 
n.d.) 

Speed 
marker 

Geocode INRIX speed data onto PennShare 
Roads 

Milepost NHS Milepost (Federal 
Highway Administration, 
2017) 

Validation Used to validate work zone length 
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An overview of data processing utilized in this research is shown in Figure 2. The main steps are 

extracting dependent variables, explanatory variables, and built an observation panel. As J. Dan 

Turner (2017) pointed out, work zone related crashes includes accidents occurred at the 

approach or exit of a work zone. However, the crash database may have under-reporting crashes 

due to many factors, like less severe crashes may not be reported as work zone related (Lord and 

Mannering, 2010). To eliminate these pre-selective biases, we identified the crashes occurred 

related with work zone by utilizing spatial-temporal relationships between them.  More 

specifically, through spatiotemporal reasoning, we identified crashes that occurred within a work 

zone and during a roadway project. The way to identify the upstream/downstream section is 

based on a tracing algorithm developed based on the NetworkX python package 

(https://networkx.github.io/). The roadway network is converted to a node-edge based abstract 

network. For the upstream section, we traced the predecessors of the node in the work zone. 

For the downstream section, we traced the successors of the node in the work zone. By using this 

node-edge based network, the accuracy is improved as the road vertices. 

The explanatory variables include two parts; inventory controls, and dynamic controls. The 

inventory controls are variables that are related to work zone position, while the dynamic 

controls are related to observations at different times. The inventory controls include number of 

ramps, intersections, total lanes count, and road class. The dynamic controls include the historical 

Figure 1 Map of work zones in PA, 2013 

https://networkx.github.io/


6 
 

ground truth information about traffic. In the crash likelihood study, the work zone information 

is mainly extracted from base map, such as lane counts, road classes and lane closures. Number 

of intersections and ramps are geometrically calculated from base map. The number of 

intersections is calculated by number of intersected roads within a work zone. The number of 

ramps is calculated by the number of intersected roads whose road name contains “ramp”. Speed 

information is extracted from INRIX speed database. In the crash level crash severity study, the 

crash database provides well-format control variables. Lane counts, road class, and weather 

information are provided at the PennCrash database. Speed information is similarly extracted 

from INRIX database. 

The observations are obtained by the same time window between 6 weeks before the work zones 

to the date that roadway activities performed, and 6 weeks after the roadway activities. We 

divided the work zones into two groups; one is the short-duration work zones (shorter than 𝛥𝑡 =

0.5 ℎ), the other is the long-duration work zones (longer than 𝛥𝑡 = 0.5 ℎ). The long-duration 

work zones are divided as time slots with a duration equal to 𝛥𝑡 = 0.5 ℎ. The last time slots may 

be shorter than 𝛥𝑡 = 0.5 ℎ. Each time slot will be a new observation. 

 

 

Figure 2 Data processing summary 
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Regression Discontinuity Design. The core analysis method in this study is Regression 

Discontinuity (RD) design. For the work zone related crash study, as far as the authors reviewed, 

none of the current research has tried using this matched-case control design. Regression 

Discontinuity is a conventional research design when investigating a temporal shock on time 

series data. In this study, we assumed the roadway characteristics before work zone and after 

work zone to be similar.  Hence, the temporal trend of the number of crashes should change 

smoothly during the observation period. With this assumption, by extracting crashes occurred at 

the same location and including a time period six weeks before and six weeks after the roadway 

projects, the only time-varying “shock” is a roadway project during the work zone period. Thus, 

we created a counterfactual observation of “there were no roadway projects” on the work zone 

position. Comparing the counterfactual observation and the actual occurred crashes at the work 

zone position, we could conclude the causality of roadway projects on traffic safety.  

Many social studies faced with the same problem as work zone crash studies, which is the fact 

that it is not possible to perform experiments with control of the independent variables. Hence, 

economists provided such methods like Regression discontinuity (RD) and Difference in 

Difference (DD) to perform the causal inference. Besides RD, Difference in Difference is another 

possible way to investigate the causality of the work zone on crash metrics. However, to perform 

DD, researchers need to find control road segments whether there is no roadway project 

performed while the experimental group is experiencing roadway project. Besides, the control 

group needs to have the same trend of all factors that affect crash metrics compared with the 

experimental group. The second assumption is too strong to satisfy in the work zone safety. If 

the control group is too far away from the experimental group in terms of spatial distance, we 

cannot make sure that they are experiencing the same trend of related factors.  For example,  if 

a control group and experimental group are located too close to each other,   they will be affected 

by similar traffic flow. So, this method is not suitable for our work zone crash study. Looking back 

to the RD method, it assumes the temporal trend of the studied road segments is stable or is 

linear with time. This assumption is satisfied when the temporal trend is continuous. Our linear 

model serves as a Taylor approximation for any forms of the continuous trend. We do not need 

to consider special events (like big sports games), because we are using the crash sample that 

distributed all over the state and all over the year relatively randomly. Thus the effect of special 

events is diluted by random assignments. 

Analysis under small temporal scale. The temporal scale of crash analysis determines the 

variable scale, the model choice, and the analysis method. In a long observation period (e.g. 

weekly), there tend to be more crashes, so people use crash counts to describe crash frequency 

(Lord and Mannering, 2010), while in a shorter period (e.g. hourly), crash likelihood (i.e., whether 

there is a crash occurrence) is more suitable for describing the crash frequency(Xu et al., 2013). 

In this paper, the crash likelihood is used to represent the crash frequency in a short observation 

period.  

In a long observation period (e.g. weekly), crash counts are usually over-desperation (i.e., the 

variance is more significant than the mean of crash counts). When modeling the crash frequency 
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data, previous studies found common Poisson regression model may induce biased and 

inconsistent estimation because the over-desperation data violated the assumption of Poisson 

distribution(Lord and Mannering, 2010). Therefore, previous researchers modified and 

developed a series of model forms like Negative binomial(Srinivasan et al., 2011), Poisson-

gamma(Lord, 2006), and Poisson-lognormal(Lord and Miranda-Moreno, 2008). However, these 

models suffered from problems like low sample-mean and small sample size, which reduce the 

model reliability(Lord and Mannering, 2010). In this paper, we divided the roadway project 

period into small time intervals to decay the crash counts over a more extended period into crash 

likelihood in a shorter period. With that, it is possible to model it as a classification problem, 

which can be solved by conventional classification algorithm like logistics regression without 

losing useful information. Then, the problem collapsed as a classification problem, thus will not 

suffer from the count variable problems. 

When using the time-varying speed information, we noticed that the work zone treatment is 

highly related with speed on the roadway. This indicates an association between the work zone 

and high-speed. As we illustrated above, it is a confounding problem (Jager et al., 2008). Usually, 

researchers could use methods like randomization, restriction, matching, and stratification to 

solve the confounding problem. Here, since we cannot directly perform the experiment, and 

speed is not a category variable, we cannot use randomization or matching method. But, 

restriction or stratification is suitable for our study. Here, we restricted the high speed as a 

subgroup in our analysis. The criteria are illustrated in the finding section. By analyzing this 

subgroup, we made sure the estimated power is pure and robust. 

Findings 
 

Effects of work zone on crash likelihood. Using 𝑖 to denote the list of positions, using 𝑡 to denote 

the time of each observation, the regression model used in shown in Equation ⑴. The explained 

variable is the crash likelihood (𝐿𝐿) per time slot (1=crash occurrences; 0 = crash does not occur). 

𝐿𝐿𝑠𝑖,𝑡~ 𝑊𝑍𝑖,𝑡 + 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖,𝑡 + 𝑇𝑜𝐷𝑖 + 𝑇𝑜𝑊𝑖 + 𝑅𝑜𝐶𝑖 +  𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑖 + 𝑅𝑎𝑚𝑝𝑠𝑖 + 𝐿𝑎𝑛𝑒𝐶𝑜𝑢𝑛𝑡𝑠𝑖

+ 𝑆𝑜𝑃𝑖,𝑡 + (𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑀𝑒𝑎𝑛 𝑆𝑝𝑒𝑒𝑑𝑖,𝑡) + 𝑒𝑖,𝑡    ⑴. 

Where 𝑊𝑍𝑖,𝑡(𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) denotes whether there is a roadway project performed at the studied 

position during the studied period. 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖,𝑡 represents time series indicator of each 

observation ().  𝑇𝑜𝐷𝑖  denotes dummies of time of day (6AM to 6PM as day time, other time as 

night time). 𝑇𝑜𝑊𝑖  denotes a dummy of weekday indicator (𝑇𝑜𝑊𝑖 = 1  when it is weekdays, 

𝑇𝑜𝑊𝑖 = 0 when it is weekends).  𝑅𝑜𝐶𝑖(𝑁𝐻𝑆_𝐼𝑁𝐷_𝑌) denotes road class (𝑅𝑜𝐶𝑖 = 1 when the 

road is National Highway System recognized roads, otherwise 𝑅𝑜𝐶𝑖 = 0). 

The results of work zone causality on crash likelihood are shown in Table 2. The first model is a 

univariate model only focuses on the treatment (roadway project) variable, reporting crash 

occurrence odds ratio with work zone is related to 𝑒𝑥𝑝(0.313) = 1.368 times higher compared 

to crash occurrence odds ratio without work zone. The second model assumes that there exists 
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a linear time trend from the six weeks before the work zone to the six weeks after the work zone. 

The third model introduces some control variables as illustrated in the method section. The 

fourth model adds the historical mean speed into the model, which makes the coefficient of 

treatment change to insignificant. In the fifth and sixth model, we restricted the historical mean 

speed to larger than 53 km/h. The threshold is picked by checking when the effect of high speed 

is diluted by the work zone treatment. Note that this number is not exact  and numbers around 

this threshold can also cause similar effects 

Using this stratification method, we found a positive causality effect of work zone on crash 

likelihood.  In the road segments whose historic mean speed is high, work zone has a positive 

effect on crash likelihood. The average crash occurrence odds ratio with work zone is related to 

 𝑒𝑥𝑝(0.544) = 1.723 times higher compared with crash occurrence odds ratio without work 

zone. 

 

Table 2 Effects of work zone on crash likelihood 

 (1) (2) (3) (4) (5) (6) 
VARIABLES No time 

changes 
Linear 
time 
changes 

Add 
controls 

Add speed 
reference 

Speed 
stratification 

Speed 
stratification 
& controls 

       
treatment 0.313*** 0.314*** 0.365*** -0.159 1.764*** 0.544*** 
 (0.0963) (0.0964) (0.0906) (0.199) (0.645) (0.105) 
Control  0.0219* 0.0214* -0.00427 -0.197** 0.0293** 
  (0.0114) (0.0114) (0.0216) (0.0997) (0.0133) 
log_netlength   0.333*** 0.424*** 0.166 0.266*** 
   (0.0599) (0.0988) (0.759) (0.0700) 
LANE_COUNT_1   0.796*** -1.529  1.068*** 
   (0.175) (0.977)  (0.193) 
log_duration   -0.102* -0.171 -0.632** -0.112* 
   (0.0602) (0.143) (0.280) (0.0656) 
log_numinters   0.435*** 0.241** -2.988*** 0.482*** 
   (0.0624) (0.122) (0.723) (0.0745) 
log_numramps   -0.00566 0.148 4.311*** -0.0341 
   (0.0606) (0.121) (0.934) (0.0769) 
DaytimeofDay   0.871*** 1.036***  0.833*** 
   (0.108) (0.201)  (0.128) 
WeekdayofWeek   0.274* 0.957*** 1.762 0.0363 
   (0.163) (0.228) (1.238) (0.205) 
NHS_IND_Y   0.661*** 0.756***  0.690*** 
   (0.118) (0.262)  (0.138) 
Sequence_0   0.283** 0.0341 -0.567 0.350** 
   (0.130) (0.218) (0.766) (0.156) 
speeds_in_historical_mean    -0.0348*** -0.127  
    (0.0105) (0.0867)  
Constant -8.676*** -8.680*** -12.15*** -10.51*** 1.616 -11.64*** 
 (0.0557) (0.0560) (0.763) (1.718) (4.893) (0.827) 
       
Observations 2,846,337 2,846,337 2,846,337 870,532 39,955 2,075,541 
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Speed range     >53 >53 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

Effects of the work zone on crash severity. The model used in the crash severity analysis is similar 

to the model used in the crash likelihood analysis. The difference is that the dependent variable 

now is the likelihood of crashes that are labeled as “Fatal or major injury” in PennCrash database. 

𝐿𝐿 𝑜𝑓 𝑆𝑒𝑣𝑒𝑟𝑒 𝐶𝑟𝑎𝑠ℎ𝑒𝑠𝑖,𝑡~ 𝑊𝑍𝑖,t + 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖,𝑡 + 𝑇𝑜𝐷𝑖 + 𝑇𝑜𝑊𝑖 + 𝑅𝑜𝐶𝑖 + + 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑖 + 𝑅𝑎𝑚𝑝𝑠𝑖

+ 𝐿𝑎𝑛𝑒𝐶𝑜𝑢𝑛𝑡𝑠𝑖 + 𝑆𝑜𝑃𝑖,𝑡 + (𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑀𝑒𝑎𝑛 𝑆𝑝𝑒𝑒𝑑𝑖,t) + 𝑒𝑖,𝑡     ⑵. 

Using this model, we did not find significant effects (𝑝 < 0.05) of the work zone on severe crash 

likelihood. When we tried using the same speed stratification setting as in the crash likelihood 

analysis, the model failed to run because of singular problem. So, we concluded that the 

occurrence likelihood of severe crash during roadway projects did not change. 

 

Table 3 Crash severity analysis: work zone level analysis 

 (1) (2) (3) (4) (5) 
VARIABLES No time 

changes 
Linear time 
changes 

Add 
controls 

Add speed 
reference 

Speed stratification & 
controls 

      
treatment -1.241* -1.241* -1.282* 0.170  
 (0.748) (0.747) (0.750) (0.918)  
Control  -0.0102 -0.00953 -0.122 0.0594 
  (0.0649) (0.0648) (0.0882) (0.0920) 
log_netlength   0.199 0.549 -0.0754 
   (0.326) (0.543) (0.305) 
log_duration   -0.554*** -0.747*** -0.509*** 
   (0.0982) (0.162) (0.175) 
log_numinters   -0.158 -1.547*** 0.543* 
   (0.344) (0.469) (0.296) 
log_numramps   0.530 0.921** 0.471 
   (0.428) (0.451) (0.503) 
DaytimeofDay   -0.872* -2.354** -0.119 
   (0.525) (0.948) (0.683) 
NHS_IND_Y   0.160 -0.120 0.193 
   (0.553) (0.968) (0.686) 
Sequence_0   -1.113** -1.627* -0.981 
   (0.484) (0.832) (0.608) 
speeds_in_historical_mean    -0.128**  
    (0.0591)  
Constant -11.69*** -11.69*** -6.549*** 0.0446 -6.363*** 
 (0.242) (0.242) (2.286) (4.078) (2.126) 
      
Observations 2,846,337 2,846,337 2,498,808 743,457 1,287,669 
Speed range     >53 

Robust standard errors in parentheses 
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*** p<0.01, ** p<0.05, * p<0.1 

 

Placebo tests. For the crash severity analysis, we performed a placebo test analyzing whether 

the severe possibilities are different between crashes occurred in a work zone or out of the work 

zone. The results indicated that there is no significant difference. This conclusion solidified our 

finding that work zone did not bring much difference on the crash severity.  

For the crash likelihood analysis, we performed a temporal test analyzing whether the crash 

likelihood changed before and after the roadway project. The result indicates that there are no 

changes during the preceding and succeeding weeks. Another spatial test includes analyzing 

whether the crash likelihood changed near the work zone. The results indicated that there are 

no changes at the neighborhood area and that work zone area is temporally and spatially 

different on the crash likelihood compared with the spatial neighboring road segments and 

temporal neighboring observation windows.  

Role of work zone characteristics. We also analyzed the effects of work zone settings based on 

Equation ⑴. We tested the interaction term and the stratum of different work zone settings. The 

log odds-ratio of crash occurrence likelihood during “shoulder closed” crash is 1.167 larger than 

no work zones, and 0.708 larger than other kinds of work zones. Closure situation “lane 

restriction” has no significant (p>0.05) smaller positive effect on crash likelihood. Besides, more 

extended work zone (i.e. > 600meter) has larger crash occurrence likelihood. The log odds ratio 

of crash occurrence likelihood could increase 0.452. The longer duration of the work zone, the 

less crash occurrence likelihood in each 0.5-hour observation. The log odds ratio of crash 

occurred in work zones longer than 6 hours is 0.324 smaller than that of work zones shorter than 

6 hours. 

 

Conclusions 
 

The deteriorating transportation infrastructure systems maintained with work zones unavoidably 

brought safety issue attracting people’s concern. In this paper, we investigated the causality of 

work zones on crash frequency and severity. In addition, we studied possible relationships 

between work zone characteristics and crash safety metrics.  

Compared with previous studies, this study built an analysis framework employing a causality 

inference method to quantify the causal effect of work zone on crash likelihood and severity. We 

solved three problems in this framework. To solve the road inherent characteristics issues, we 

performed a Regression Discontinuity analysis to enhance the what-if counter-factual analysis. 

To perform the analysis in a high temporal-spatial resolution, we emphasized the significance of 

data source and hence the modeling method. Besides, confounding problems are discussed with 

the method of stratification and restriction. The detailed placebo tests also enhance the 

robustness of the model conclusions. 
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In summary, the results indicated the crash likelihood would increase 72.3% for high-historical-

mean speed road segments related with roadway projects, while the crash severity will not 

significantly change. Work zone characteristics like shorter work zone duration, longer work zone 

length, and “shoulder closure” will bring more risk for the crash occurrence. 

This study only focused on the crashes in 2013. Future research could target performing a time-

series analysis with different years’ data. Besides, the development of Intelligent Transportation 

System (ITS) provides abundant high-temporal-resolution and high-spatial-resolution data. The 

conclusion drew from the high-temporal-resolution and high-spatial-resolution data may 

challenge those drew by previous research methods based on aggregated data. Similar to our 

research framework, researchers could perform causality studies on more high-resolution and 

large-scale data as well as carefully robustness check to get a more rigorous understanding of the 

activities on transportation infrastructure. Such as snowy weather, traffic jams, etc. With these 

understanding, researchers and policymakers could take more pertinent approaches to improve 

traffic safety. 
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