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This paper focuses on the synthetic generation of human mobility data in urban areas. We present a novel
application of Generative Adversarial Networks (GANs) for modeling and generating human mobility data.
We leverage actual ride requests from ride sharing/hailing services from four major cities to train our GANs
model. Our model captures the spatial and temporal variability of the ride-request patterns observed for all
four cities over a typical week. Previous works have characterized the spatial and temporal properties of
human mobility data sets using the fractal dimensionality and the densification power law, respectively, which
we utilize to validate our GANs-generated synthetic data sets. We also validate the synthetic data sets using a
dynamic vehicle placement application. Such synthetic data sets can avoid privacy concerns and be extremely
useful for researchers and policy makers on urban mobility.

CCS Concepts: • Computing methodologies → Machine learning algorithms; Model verification and
validation; Parallel computing methodologies; • Security and privacy → Human and societal aspects of
security and privacy.

Additional Key Words and Phrases: ride-sharing, human mobility, datasets, real-time learning, spatial comput-
ing

1 INTRODUCTION
Ride sharing or hailing services have disrupted urban transportation in hundreds of cities around
the globe [4, 34]. In United States, it has been estimated that between 24% to 43% of the population
have used ride-sharing services in 2018 [27]. Uber alone operates in more than 600 cities around
the globe [28]. Ride sharing services have turned urban transportation into a convenient utility
(available any place at any time), and become an important part of the economy in large urban
areas [11].
Ride request data from ride sharing services can potentially be of great value. Data gathered

from ride sharing services could be used to provide insights about traffic and human mobility
patterns which are essential for intelligent transportation systems [32]. Ride requests in major
cities with high penetration by such services exhibit spatial and temporal variability. Modeling
of such variability is a challenging problem for researchers although there is existing work to
predict human mobility patterns at coarser-grained geographical locations [15]. Our work aims
to model both spatially and temporally granular human mobility patterns. Such granularity of
data can help with unresolved challenges related to intelligent transportation, such as: optimal
algorithms for dynamic pooling of ride requests [3], real-time pre-placement of vehicles [17, 26],
and city scale traffic congestion prediction [22] and avoidance [2, 33]. Access to large amount of
actual ride request data is essential to understanding and addressing these challenges.

Data from ride sharing services have been used for real-time sensing and analytics to yield insights
on human mobility patterns [16, 31]. Each city exhibits a different pattern of urban mobility – there
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could be cultural or economical factors governing these patterns. If ride sharing services constitute
a significant percentage of the riders in a city, can we build models from ride request data to model
urban mobility for the whole city and provide societal benefit without compromising personal
privacy? This question motivates us to explore the potential of using Generative Adversarial
Networks (GANs) to generate synthetic ride request data sets that exhibit very similar attributes as
the actual ride request data sets.

Synthetic data can be very useful in multiple applications to train, test, or inform algorithms. It
is widely used to train anomaly detection systems, but also in microsimulation models1 to inform
policy intervention, planning, sensor network deployment, and much more. Some general purpose
synthetic data generation methods also utilize ways of describing the data to be generated [12],
while others are designed to generate very specific types of data in a rather unstructured way. In
this paper, we focus on synthetic data sampling methods that preserve privacy and the correlation
between geographical locations in urban cities while incorporating constraints on time for which
the data is generated.

This work proposes a novel approach of generating synthetic ride request data sets using GANs.
This approach involves viewing ride requests as a (temporal) sequence of (spatial) images of ride
request locations. The approach uses GANs to match the properties of the synthetic data sets
with that of real ride request data sets. Many recent works using neural networks have looked at
demand prediction [37, 38] and traffic prediction at intersections [36]. In our work, we are looking
at generating actual ride requests for both spatially and temporally granular intervals. Also, we
compare and validate the spatial and temporal variations of the synthetic data sets with the real
data sets. For evaluation, we also perform experiments for the vehicle placement problem [17], and
compare the results from real and synthetic data sets. In dealing with large amount of data for
many cities and long training times for GANs, we develop effective ways to parallelize and scale
our GANs training runs using large CPU clusters on AWS. We present our GANs scaling approach
and experimental results, and show that significant reduction in training times can be achieved.

To the best of our knowledge, no prior work has looked at generating complete ride requests i.e.
source and destination points at fine granularity of time and geographical space for multiple cities.
Moreover, we focus on a modeling approach which is computationally efficient for easy adoption
in industry and academia.

2 DATA SETS FROM RIDE SHARING SERVICES
In this section, we introduce the actual (real) ride request data sets used for our GANs training and
evaluation. We use the real data sets to compare with and validate the GANs generated synthetic
data sets.

Our real ride request data sets consist of all the ride requests for an entire week for the four cities.
There is a strong repeating pattern from week to week as shown in Figure 2 capturing workdays
and weekends. Hence the week-long data should be quite representative. For all four cities, the
ride sharing services have significant penetration. Hence we believe the ride request data sets also
reflect the overall urban mobility patterns for these cities.

2.1 Ride Requests
Our data sets are real ride requests for four cities over one week period from ride sharing services
operating in the United States. Each ride request in the data set includes: request time and pickup
location (latitude & longitude), and drop-off time and location (latitude & longitude). For this work
we focus on ride request time and pickup location for generating pickup locations; and ride request

1https://github.com/citybound/citybound
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time and drop-off location to generate drop-off locations. After training independent GANs models
for pickup and drop-off locations, we generate synthetic locations using GANs and leverage graph
generator approach [6, 16] to pair all pickup and drop-off locations to obtain synthetic ride requests.
The trajectory or optimal route for a ride is not within the scope of this work.

For the rest of the paper, we will use the term ride-locations to refer to both pickup and drop-off
locations wherever they can be used interchangeably.
We do temporal and spatial quantization of the raw ride request data. We partition the entire

week into 2016 time intervals of 5 minutes each, and lump together all the ride requests within
each interval. We partition spatially the area of the entire city into small squares with side length, ϵ ,
of 50meters, and lump together all the ride-locations occurring within the same square area. Lower
values of ϵ can be considered with added computational costs of model training; higher values of
ϵ (> 100 meters) may hide some of variational properties of ride requests in densely populated
cities. Each square area is then represented by a single pixel in a 2-D image with the gray scale
intensity of the pixel reflecting the number of ride-locations in that square area (in a time interval).
Occurrence of no ride-locations in an area is denoted by zero pixel intensity; positive integers
(1, 2, 3, . . .) as pixel intensity denote the number of ride-locations in the square area.

Combining the temporal and spatial quantizations, the real ride request data set for each city
becomes a time sequence of images with each image spatially capturing all the ride requests
occurring in a particular 5-min interval.

2.2 Spatial and Temporal Patterns
The actual ride requests in every city exhibit distinct patterns of variability in both the spatial
dimension (over geographical area of the city) and the temporal dimension (over each day and over
each week). In Figure 1, this variability is illustrated. The ride request density is at its highest at
6pm, and continually decreases over time till 3am. Spatially there are dense patches of ride requests
and these dense patches can shift with time, reflecting shifting concentrations of commuters in
different areas at different times of day. We observe similar repeating patterns of temporal and
spatial variability for all four cities.

Densification Power Law: A graph can be used to model the ride requests within a 5-min
interval, with nodes 2 representing both pickup and drop off locations; a directed edge connecting
the pickup node and the drop-off node. It was shown in [16] that the size and density of this Ride
Request Graph (RRG) evolves in time in response to the fluctuation of ride requests during each
day and through out each week.
It was observed that these ride request graphs exhibit and obey the Densification Power Law

(DPL) property, similar to other graphs modeling human behaviors such as social networking
graphs and publication citation graphs [21]. It was further observed that the ride request graphs
for each city exhibit a distinct degree or exponent of the DPL, and that this DPL Exponent (α ) can
be viewed as a very succinct quantitative characterization of the temporal variability of the ride
request patterns for that city. For any time snapshot t :

e(t ) ∝ n(t )α (1)

where e(t ) and n(t ) are the number of edges and number of nodes respectively, formed by all ride
requests occurring in the time interval t . Edge weight denote the number of requests from the same
source (pickup) to destination (drop-off) nodes in time snapshot t . The number of edges grows
according to a specific exponential power (α ) of the number of nodes.

2Each node covers a geographical region of a square of length ϵ . Nodes within which no ride requests occur are not
considered in the graph.
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(a) 6pm (b) 9pm

(c) 12am (d) 3am

Fig. 1. Ride requests for a small region of downtown San Francisco for a typical week day. Each figure shows
the aggregated ride-locations (red dots) over a period of an hour. Each red dot may represent one or more
ride-locations. Ride density varies spatially and temporally.

(a) San Francisco (b) Los Angeles

Fig. 2. Pattern depicting similarity in ridership for two consecutive weeks.
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Correlation Fractal Dimension: There is also a comparable quantitative characterization of the
spatial variability of the ride request patterns for each city. The actual geographical locations of the
nodes of the ride request graphs is not explicitly represented and therefore another characterization
is needed. Correlation Fractal Dimension [1, 30] provides a succinct description of a k-dimensional
point-set to provide statistics about the distribution of points; it provides a quantitative measure of
self-similarity. Fractal dimension has been used to understand and authenticate major works of
art [7]. The spatial distribution of ride requests in each time interval can be viewed as a point-set
image. We can measure the Correlation Fractal Dimension (D2) as described in [17]. Values for
correlation fractal dimension computed for each time snapshot t fall within a range for each city
indicating the degree of self-similarity, and the consistent weekly pattern. For our 2-dimenional
space, we impose a 2D-grid with square of side ϵ 3. For the i-th square, let Cϵ,i be the count of
requests in each square. The correlation fractal dimension is defined as:

D2 ≡
∂ log∑i C

2
ϵ,i

∂ log ϵ
= constant ϵ ∈ (ϵ1, ϵ2) (2)

For self-similar data sets, we expect the derivative to be constant for a certain range of ϵ [35].
We observe that this range varies for our four cities, and each city exhibits a distinct value range
for its correlation fractal dimension (D2).
We use the Densification Power Law Exponent (α ) and the Correlation Fractal Dimension (D2)

to capture and characterize the temporal and spatial variability, respectively, for the ride request
patterns for each city. RRG created for every time snapshot captures ridership fluctuations over
time; nodes in a RRG do not encode any spatial information. Therefore, we compute Correlation
Fractal Dimension for each time snapshot to capture the spatial distribution of both pickup and
drop-off locations. The temporal evolution, and spatial distribution at any give time snapshot
capture the dynamics of ride requests. We use these two parameters independently to confirm the
similarity between the real data sets and the GANs generated synthetic data sets. We can claim
strong similarity if the values of these two parameters (α and D2) of the synthetic data sets match
closely the values of the same two parameters of the real data sets.

3 GENERATING RIDE REQUESTS USING GANS
3.1 Image generating using GANs
Generative Adversarial Networks learn to generate high quality samples [10] i.e. sample from the
data distribution p(x ). Previous works by [5, 19] synthesized images of a higher quality using GANs
which were hard for humans to distinguish from real images. Conditional GANs are an extension
of GANs to sample from a conditional distribution given each image has an associated label which
is true for our case of ride requests.
In our framework, we would apply conditional GANs using ride request data in the form of

images; similar to as shown in Figure 1 but without the base map shown in color.

3.2 Using GANs for ride request generation
GANs learn a mapping from a random noise vector z to output image x . Conditional GANs learn a
mapping from noise vector z and a label y to x [8, 23]. The additional variable in the model allows
to generate and discriminate samples conditioned on y. The generator accepts noise data z along
with y to produce an image. The discriminator accepts an image x and condition y to predict the
probability under condition y that x came from the empirical data distribution rather than from

3ϵ parameter is equivalent to the square length for representing a node in the Ride Request Graph.
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Fig. 3. An illustration of how the geographical region of each city is divided into smaller blocks of equal size
and trained independently. Note: image above is not drawn to scale.

the generative model. The objective function can be expressed as:
(3)E

x,y ∼pdata (x,y)
[loдD(x ,y)] + E

z ∼p(z),y∼py
[loд(1 − D(G(z,y),y))]

whereG tries to minimize to this objective function against an adversarial D that tries to maximize
it.

3.3 Training Process & Architecture
Every image is assigned a label from the set {0, 1, 2, ..., 23} representing the hour of a day. All
twelve instances of five minute snapshots within an hour are assigned the same hour label 4. To
accelerate our training using multiple machines, we exploit spatial parallelism by dividing the
entire geographical region of a city into an array of blocks. Figure 3 illustrates the division of San
Francisco downtown into nine blocks. Keeping our image size similar to MNIST [29], each block is
set to represent an image of size 24 × 24 pixels, with each pixel representing one 50m × 50m square
area. Hence, each block covers an area of 1200m × 1200m.
Each block, representing a grey scale image of 24 × 24 pixels, depicts all the ride-locations in

that block. Separate images are formed for pickup and drop-off locations; models trained are also
separate for pickup and drop-off locations. Each image of a block is labeled with a time interval
(for our experiments, the hour in a day) which is similar for both images created from pickup and
drop-off locations. The synthetically generated images from an array of blocks with the same time
interval label are combined by stitching together all the processed blocks of a city.
The generator network takes an input of a 100-dimensional Gaussian noise sample as well as

a one-hot vector encoding of the time snapshot to be generated. It has a single, fully-connected
hidden layer without any convolution [9] consisting of 128 ReLU-activated neurons which then
passes to a sigmoid activated output layer with the same number of output neurons as the total
number of pixels in each block.

The discriminator network has a single hidden layer of 128 ReLU-activated neurons with a single
sigmoid activated output neuron. We find that small networks are appropriate for the training
data and allow for a quick and stable convergence to be achieved between the discriminator and
the generator. Using relatively simple network architectures makes it possible to ensure that the

4One could easily extend this approach to a label within the set {0, 1, ..., 287} if looking at labels associated with any five
minute slots of a day or the set {0, 1, ..., 2015} if looking at labels associated with any five minutes slots of a week.
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discriminator and generator are evenly matched such that the loss for either network does not
saturate early in the training process.
In addition to the standard GANs architecture of generator and discriminator, an additional

network is introduced which is referred to as the classifier [20]; it is pre-trained on the training
data with the five minute label of the data serving as the classification target. In this way the time
information that is encoded into the synthetic data by the generator network is then decoded by
the classifier network. The generator is then trained on a weighted sum of the loss from both the
classifier and discriminator networks as shown in the following equation:

β logD(G(z,y)) + (1 − β) logC(G(z,y)) (4)

where β is a tune-able hyper-parameter.
This allows for more explicit loss attribution such that the generator receives two different

error signals; one indicating the realism of the synthetic data and the other indicating accuracy
relative to the conditioning values. By experiments using MNIST data and [20], we found adding a
classifier increases the efficiency of the training process and results in higher quality synthetic data
while incurring considerably less training time than other conditional GANs architectures we have
experimented.

4 EXPERIMENTAL RESULTS
In this section, we present the cloud infrastructure used for running our experiments. We also
present performance results on scaling our GANs workloads on the cloud infrastructure.

4.1 Running GANs on AWS
All experiments are conducted on Amazon Web Services (AWS) using c5.18x instances with each
instance containing an Intel Xeon Scalable Processor with 72 virtual cores (vCores) running at
3.0GHz and 144 GB of RAM. We use AWS for easier reproducibility and its large adoption by
academia and industry for large scale distributed processing.

In this work we set the block size for each of the four cities to be 1200 × 1200 meters; each block
is trained separately. Enlarging the block size will increase the computational time for training; and
the complexity of the model can potentially impact scalability. The total number of blocks for each
city are shown in Table 1. The number of blocks are mainly determined by the size of the greater
metropolitan area of each city.
To help enhance the scalability of our GANs workload across multiple nodes we make use of

Ray [24] from Berkeley, a distributed framework for AI Applications, to efficiently parallelize our
workload across cluster of CPU nodes on AWS. Ray provides a convenient API in Python to scale
deep learning workloads for numerous libraries, and support for heterogeneous resources like
CPUs and GPUs. We also make use of Intel’s Math Kernel Library [14] (MKL) which provides
machine learning libraries for supporting operations like activation (ReLU), inner product, and
other useful functions [13].

4.2 Training Time
Using Ray we scale our training runs by using from 2 to 8 c5.18x instances (containing from 144
cores to 576 cores) on AWS. The scalability results are shown in Figure 4. As can be seen increasing
the number of c5.18X Xeon CPU instances can significantly reduce the GANs training time up to
8 c5.18x instances. For the city of Los Angeles, the training time can be reduced from over one
hour to less than 20 minutes. For New York City the training time can be reduced to just minutes.
Running times for sampling ride requests from the trained models and stitching the images of all
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City Number of Blocks
San Francisco 1402
Los Angeles 1978
New York 765
Chicago 1155

Table 1. Training Workload for Different Cities. Each block is trained independently. Doubling the value
provided in the table for each city, would give the approximate number of models trained because we have
pickup and drop-off locations trained and generated separately.

Fig. 4. Training Time Performance Results for training our GANs for pickup locations on AWS with c5.18xlarge
Xeon CPU instances. Results for training using drop-off locations show a similar trend.

the blocks together are significantly less than the training times, and are not included in these
results.
We also conduct our GANs scaling experiments using GPU instances on AWS. In our initial

experiments we observe no real performance improvements using GPUs. Training time using GPUs
on AWS was observed to be 5.93 hours on a p3.8xlarge instance using NVIDIA’s Multi-Process
Service (MPS) [25]. With MPS, the GPU utilization is close to maximum by running multiple of
our small GANs training jobs in parallel on a single GPU. Although, the number of jobs which
could be executed in parallel on a GPU are not that many in comparison to Xeons. Scaling on GPUs
requires more investigation. In this work, we show that it is possible to achieve very nice scalability
of our GANs workload using only CPU cores supported by Intel’s MKL library and Berkeley’s Ray
framework.

5 VALIDATION OF SYNTHETIC DATA SETS
We use our trained models to generate synthetic data for a day and validate it using real data by
computing metrics for spatial & temporal variations.

5.1 Spatial Variation
The correlation fractal dimension (D2) gives a bound on the number of ride requests within a
geographical region. This is an essential characteristic to match for the data set we are generating
using GANs. In Tables 2 & 3, we provide the fractal range (in meters) for each city within which
the fractal dimension remains constant. The fractal dimension is computed for every fractal range
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City Fractal Range (m.) Real Data Sets Synthetic Data Sets
D2 min. D2 max. D2 mean D2 min. D2 max. D2 mean

New York (450, 2500) 1.441 1.753 1.647 1.415 1.663 1.541
Chicago (600, 3000) 1.139 1.558 1.384 1.188 1.567 1.435

San Francisco (450, 2500) 1.283 1.731 1.548 1.242 1.65 1.426
Los Angeles (1500, 4000) 0.962 1.638 1.355 1.048 1.489 1.314

Table 2. Summary of measured correlation fractal dimensions (D2) for four cities; computed over a day for
every hour using pickup locations of real and synthetic data sets.

City Fractal Range (m.) Real Data Sets Synthetic Data Sets
D2 min. D2 max. D2 mean D2 min. D2 max. D2 mean

New York (450, 2500) 0.613 1.718 1.498 0.914 1.595 1.414
Chicago (600, 3000) 0.315 1.47 1.216 0.378 1.539 1.234

San Francisco (450, 2500) 0.499 1.689 1.363 0.570 1.685 1.335
Los Angeles (1500, 4000) 0.123 1.487 1.036 0.214 1.456 1.042

Table 3. Summary of measured correlation fractal dimensions (D2) for four cities; computed over a day for
every hour using drop-off locations of real and synthetic data sets.

increment of 100 meters. It is important to note that the fractal range for each city differs [17]. The
fractal range provides the ϵ range for which the data exhibits statistical self-similarity [1]. The
variation in the fractal ranges for the different cities can be attributed to the geographical shape
of the city for which the ride requests are generated. We hypothesize that due to Los Angeles’s
sprawling nature, a larger ϵ is needed to observe self-similar patterns in comparison to the other
three cities, which have a more corridor-like geographical region.

One may also interpret D2 as a way to measure the fidelity of generated images to that from real
data. Comparison of the ranges of values of D2, in terms of min, max, and mean values, for the
real and the synthetic data sets are fairly close although not identical. In most instances the mean
value for D2 is lower for the synthetic data sets in comparison to the real data sets. We believe this
discrepancy in the values of D2 is due to the weakness of the model to capture geographical areas
with low frequency of ride requests. Recent works to improve capture learning of high-resolution
details of an image [18] can potentially benefit the learning for our ride request images.

5.2 Temporal Variation
DPL provides a characterization of the temporal evolution of ride requests. In the top row of Figure 5
we observe the plot of the DPL exponents α (slop of the line) based on the temporal patterns of the
real data sets. For the ride request graph to obey DPL properties, we use graph generator proposed
by [16] to connect source and destination locations. In the bottom row of Figure 5 we see the same
results based on the synthetic data sets. We can see that the DPL exponent values α correlated
quite nicely with that from the real data sets for New York, Chicago, and San Francisco. For Los
Angeles, the synthetic exponent is higher than the real observed value; the geographical region
for LA is much larger and due to many prominent regions of high request density, the model may
likely suffer from bias towards generating more requests in prominent regions leading to a faster
increase of the number of edges connecting nodes present in high density regions.
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New York Chicago San Francisco Los Angeles

Fig. 5. DPL plots from real data (top row) and synthetic data (bottom row) for four cities. The red line is the
least square fit of the form y = Cxα , where y and x are number of edges and nodes respectively. R2 ≈ 1.00 for

all of them.

Another validation of our GANs approach is provided in Figure 6. Here we observe temporal
variation of ride requests in terms of the volume of ride requests generated for each hour of a
typical weekday. We see that for all four cities, the temporal variation of the synthetic data sets
match quite well the temporal variation exhibited by the actual data set. Our model for Los Angeles
captures the total volume of ride requests over time intervals correctly but it may not necessarily
imply that the model also captures geographical spread of requests within each time interval. For
this reason we observe a high α for synthetic data generated in Figure 5; it is important to have
multiple metrics for a model to capture human mobility.

6 DYNAMIC VEHICLE PLACEMENT PROBLEM
One practical way to assess the validity of the synthetic data set is to use a specific application and
compare the results from the two data sets.
The dynamic vehicle placement problem [17] deals with placing idling vehicles, in real time,

to be near future pick-up locations. For every drop-off by a vehicle at time t − 1 at cell (i, j), its
placement at t may be either (i, j) itself or one of the neighbouring cells. This constraint is shown
by the bolded cell outlines in Figure 7. The number of neighbouring cells at which the vehicle can
be placed is determined by the vehicle’s ability to travel to the neighbouring cell within the time
snapshot interval.
The goal of dynamic vehicle placement is to choose an adjacent cell for vehicle placement so

as to maximize the chance of landing on a new cell which has a pick up request in the next time
interval. Reward for time interval t is given by the number of pickups which happen on cells where
vehicles are placed after drop-off at (t − 1). This vehicle placement algorithm is run continuously in
moving idling vehicles towards future pick-up locations.

10



Fig. 6. Plots for four cities highlighting the temporal variability of ride requests visible in both real and our
model (predicted) for ride request generation. The pattern is representative of any typical day of week.

d1

d2

Fig. 7. Geographical space discretized into cells. For example, each drop-off di has 9 possible cell placements
highlighted by a thick border.

6.1 Dynamic Vehicle Placement Results
For comparison, we used the best performing algorithm in [17], Follow the Leader with Complete
History, and apply this algorithm to both the real and synthetic data sets for all four cities. The
idea behind the algorithm is to choose the decision, in this case to choose the cell for placement of
vehicle, which is most likely to maximize the average reward based on historical pickups.

11



(a) New York (b) Chicago (c) San Francisco (d) Los Angeles

Fig. 8. FTL-CH algorithm performance on real and synthetic data sets across four cities for a day with three
minute time snapshot (aggregate of 480 time snapshots). Certain time snapshots observe no good

placements in Chicago using synthetic data; reward percentage is not shown for these time snapshots.

In Figure 8 we compare the performance of this algorithm on the real and synthetic data
sets. Performance is measured by a reward function (see [17] for exact definition) reflecting the
percentage improvement for earlier or quicker pick up. As can be seen in Figure 8 the synthetic
data set tends to give more optimistic results but maintains the same pattern as that from the real
data set. Further work is needed for a more thorough comparison.

7 CONCLUSION
The emergence of ride sharing services and the availability of extensive data sets from such
services are creating unprecedented opportunities for: 1) doing city-scale data analytics on urban
transportation for supporting Intelligent Transportation Systems (ITS); 2) improving the efficiency
of ride sharing services; 3) facilitating real-time traffic congestion prediction; and 4) providing
new public services for societal benefit. Moreover, the power of neural networks for machine
learning has allowed the creation of useful models which can capture human behavior and dynamic
real-world scenarios. The key contributions of this paper include:

• We map the ride requests of ride sharing services into a time sequence of images that capture
both the temporal and spatial attributes of ride request patterns for a city.

• Based on extensive real world ride request data, we introduce a GANs based workflow for
modeling and generating synthetic and realistic ride request data sets for a city.

• We further show that our GANs workload can be effectively scaled using Xeon CPU clusters
on AWS, in reducing training times from hours to minutes for each city.

• Using previous work on modelling urban mobility patterns, we validate our GANs generated
data sets for ride requests for four major US cities, by comparing the spatial and temporal
properties of the GANs generated data sets against that of the real data sets.

• We apply the synthetic data to a real-world problem of dynamic vehicle placement and
compare the performance between real and synthetic data sets for four cities.

There are other promising avenues for further research. Some open research topics include:

• Using the GANs generated data sets for experiments on new algorithms for dynamic ride
pooling, and real-time traffic congestion prediction.5

5Code and models of our GANs along with algorithms for looking at transportation related problems like pooling and
placement are available at https://github.com/ajauhri/mobility-modeling.
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• Using the GANs generated data sets for conducting experiments on what-if scenarios related
to traffic congestion prediction and mitigation, and planning for future development of
transportation infrastructures.
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