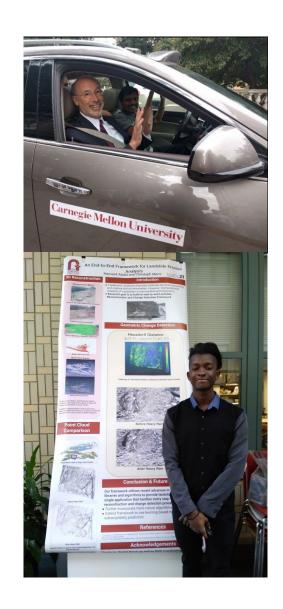
Technology and Trends in Vehicle Automation Pennsylvania Society of **Professional Engineers** June 9, 2021

Stan Caldwell Executive Director

Traffic 21 A transportation research institute of Carnegie Mellon University


Mobility21

A USDOT NATIONAL UNIVERSITY TRANSPORTATION CENTER

Carnegie Mellon University

Trends Driving Intelligent Transportation Systems

- Sensors
- Data Analytics (real time and predictive)
- Cyber Physical Systems
- Edge Computing
- Internet of Things
- 5G and Advanced Wireless

Technologies Disrupting Transportation

Automation

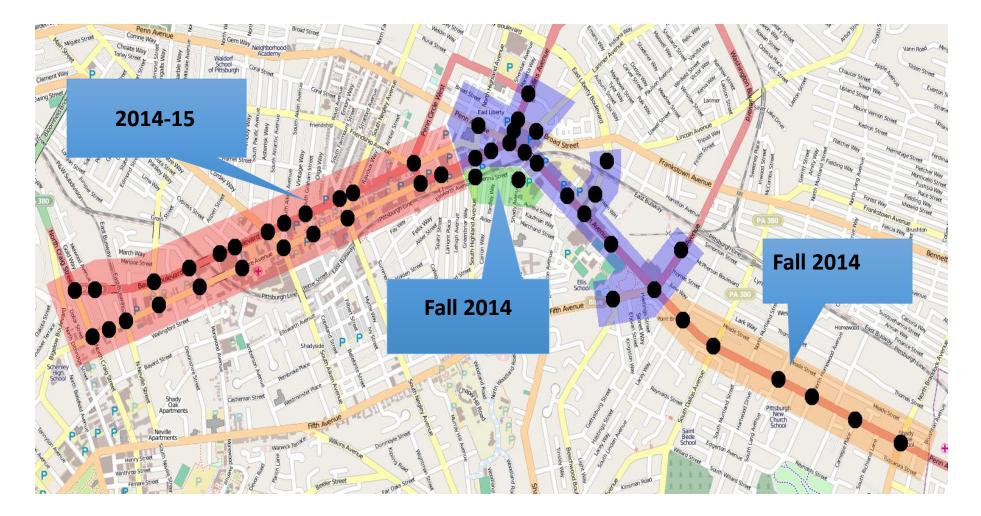
Connectivity

Shared Use

Electrification

Novel Modes, Drones, Hyperloop, etc.

Connected Vehicles


Dedicated Short Range Communication (DSRC)

CV2X vs DSRC

CV2X Enabled by 5G Cellular Network

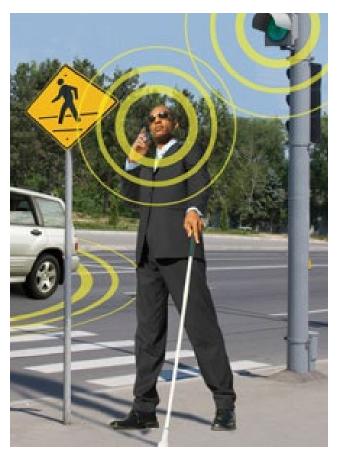
Surtrac Adaptive Signal Control Expansion

Safe Intersection Crossing for Pedestrians with Disabilities

Stephen F. Smith The Robotics Institute

Carnegie Mellon

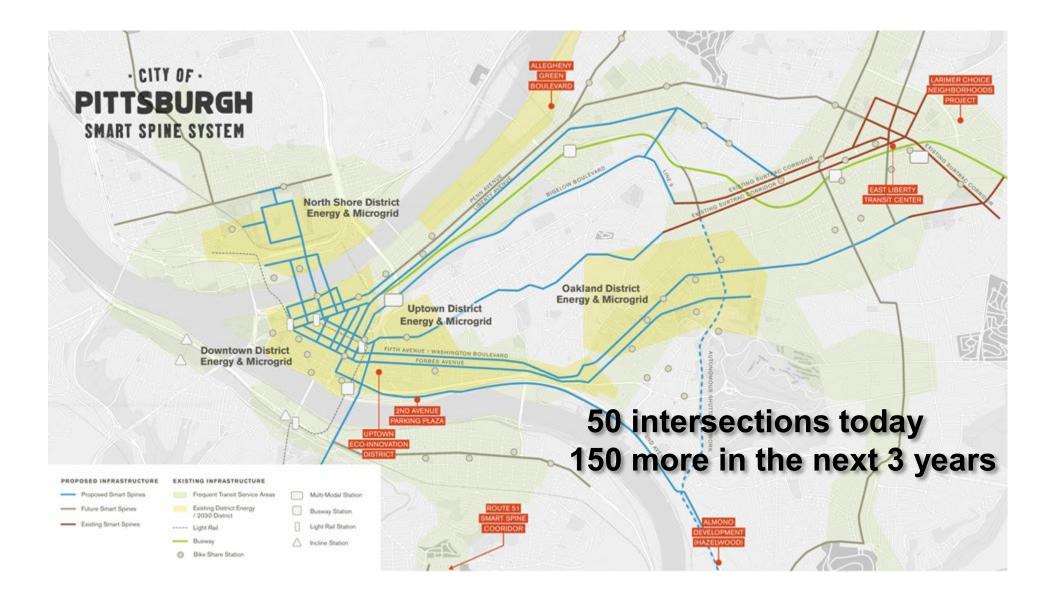
U.S. Department of Transportation Federal Highway Administration

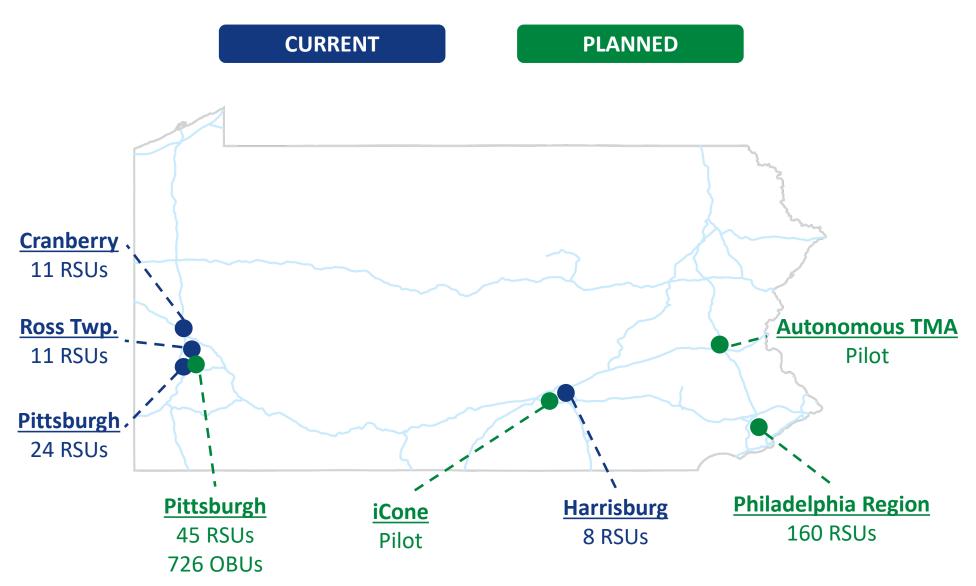


U.S. Department of Transportation Office of the Assistant Secretary for Research and Technology

Safe Intersection Crossing

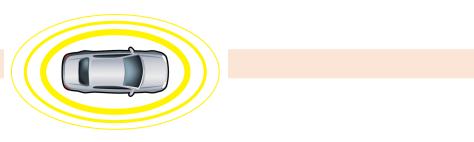
- Project Objective: Develop a smartphone application that allows pedestrians to
 - *interact directly* with the intersection and
 - *actively influence* traffic signals for safe and efficient crossing




U.S. Department of Transportation Federal Transit Administration

CALL

V2I Deployments


Connected and Autonomous Vehicles

Connectivity

• Includes all types of communication with vehicles and infrastructure (Wi-Fi, DSRC, Cellular, etc.)

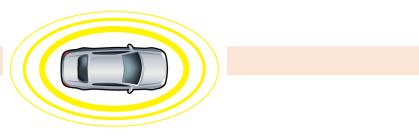
Connected Vehicle

Communicates with nearby vehicles and infrastructure

Connected and Autonomous Vehicles

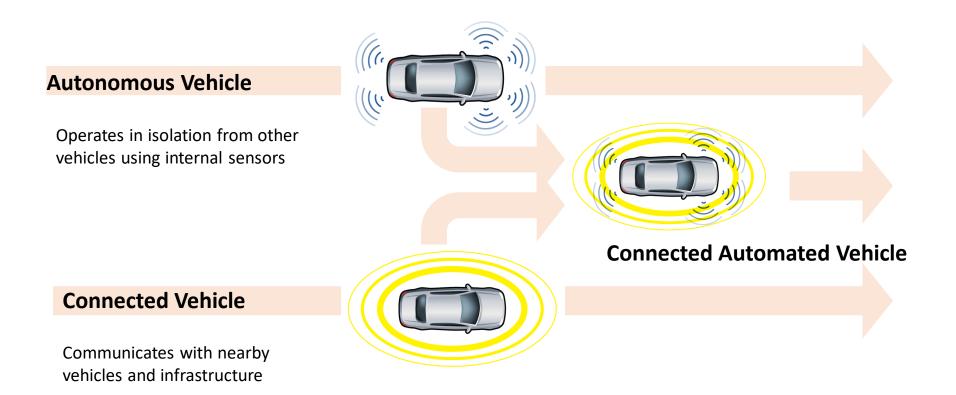
Connectivity

• Includes all types of communication with vehicles and infrastructure (Wi-Fi, DSRC, Cellular, etc.)



Operates in isolation from other vehicles using internal sensors

Connected Vehicle


Communicates with nearby vehicles and infrastructure

Connected and Autonomous Vehicles

Connectivity

 Includes all types of communication with vehicles and infrastructure (Wi-Fi, DSRC, Cellular, etc.)

SAE J3016[™] LEVELS OF DRIVING AUTOMATION[™]

Learn more here: sae.org/standards/content/j3016_202104

Copyright © 2021 SAE International. The summary table may be freely copied and distributed AS-IS provided that SAE International is advisowledged as the source of the content.

Carnegie Mellon University 30 Years of Self-Driving Car Research

1984

- The Terregator's top speed was a few centimeters per second; it could avoid obstacles.
- NavLab launched. Its goal: apply computer vision, sensors and high-speed processors to create vehicles that drive themselves.

1986

Humans or computers controlled NavLab1, a Chevy van. Top speed: 20 mph.

1990

NavLab 2, a US Army HMMWV, wrangled rough terrain at 6 mph. Highway speed: 70 mph.

1995

NavLab 5, a Pontiac Trans Sport, traveled from Pittsburgh to San Diego in the "No Hands Across America Tour."

2000

NavLab 11, a Jeep, was equipped with Virtual Valet.

2005

Sandstorm and Highlander placed 2nd and 3rd in the DARPA Grand Challenge.

2007

Carnegie Mellon's "Boss" won the DARPA Grand Urban Challenge by outmaneuvering other vehicles along the 55-mile course.

2014

Carnegie Mellon's **14th self-driving vehicle** is a Cadillac SRX that:

- avoids pedestrians and cyclists
- takes ramps and merges
- recognizes and obeys traffic lights
- looks like other Cadillac SRXs

www.engineering.cmu.edu

Autonomous Vehicles

2007 GM Lab

2012 GM Lab

Carnegie Mellon

Pittsburgh Demonstration 9-4-14

33 miles along Route 19 in multi-lane, dense traffic with lights and two interstate highways

Connected and Autonomous Vehicles 2040 Vision

2014

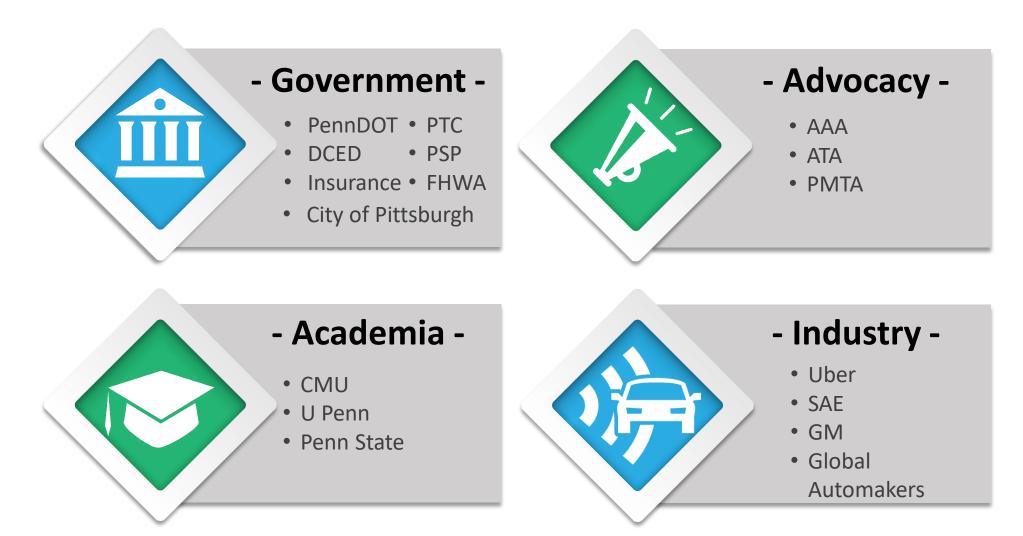
Report to the Citizens of Pennsylvania Vehicle Automation in Pennsylvania

February 1, 2018

PREPARING for the FUTURE

Stay Informed

Understand the Implications


Start Small & Work With Partners

Develop a Plan

AV Policy Task Force

State Policy

- PennDOT Automated Vehicle Testing Guidance
- PennSTART Test Track
- Truck Platooning
- Regulations on Personal Delivery Devices
- Automated Vehicles Equipped with Truck Mounted Crash Attenuators

Local AV Policy

- <u>The Pittsburgh Principles include (Pittsburgh 2019)</u>:
- Instituting transparent lines of communication between the City and partners testing autonomous vehicles, and annual reports on the implementation of AV policies
- Promoting automated driving systems that encourage high vehicle occupancy with lower or no emissions, and lower cost and equitable transportation options
- Engaging industry leaders and community stakeholders to collaboratively facilitate the further development and deployment of self-driving technology

Smart Belt Coalition (SBC)

A Regional Connected and Automated Vehicle Collaborative

Purpose, Vision and Mission

Vision

Mission

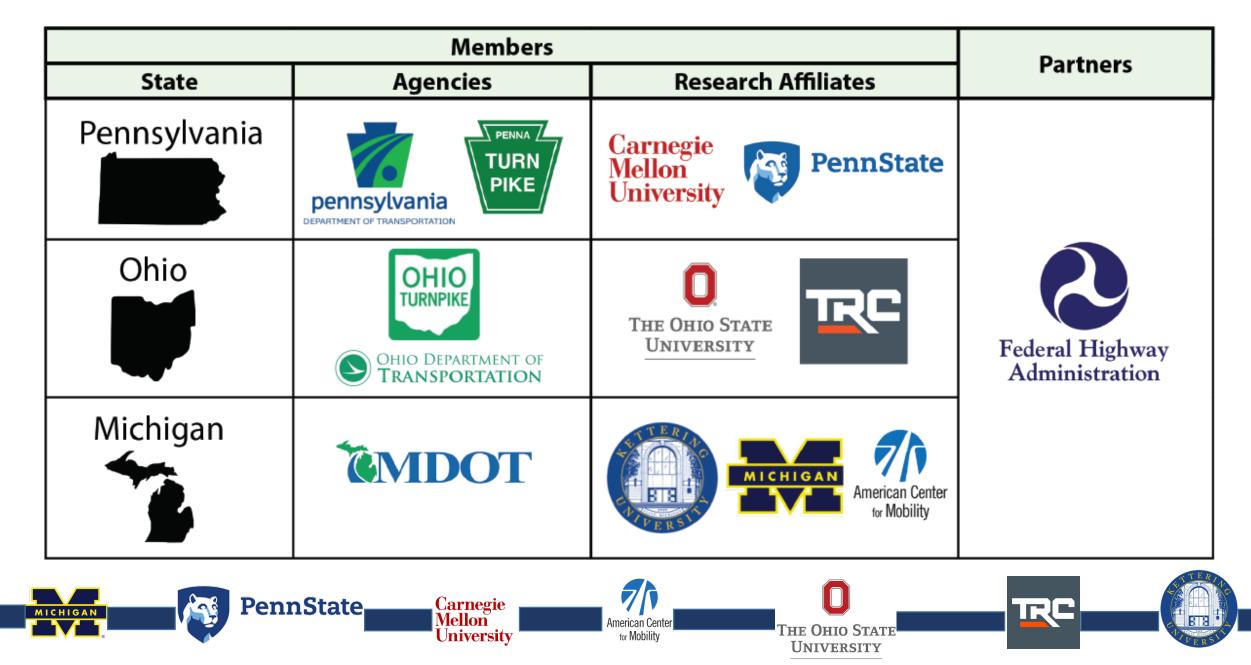
Ohio Department of **Transportation**

• The Smart Belt Coalition will organize for the economic benefit, safety, and welfare of the partner states.

OHIO TURNPIKE

TURN

pennsylvania


- The Coalition's Vision is to be a multi-jurisdictional network that fosters the advancement of connected and automated vehicle technology.
- The Coalition's Mission is to create a mechanism for transportation agencies, academic institutions, and others to collaborate on connected and automated vehicle initiatives.

pennsylvania DEPARTMENT OF TRANSPORTATION

Priority Applications

- Work Zones: Reservation and Traveler Information System
- Freight: Truck Platooning
- TIM: CV Applications
- Work Zones: Intelligent/Connected WZ Detection
- Freight: Truck Parking

Autonomous Vehicle Companies Testing in Pittsburgh

- Uber
- Argo Al
- Aurora
- Aptiv (Motional)
- Locomation

LOCOMTION

Early Levels of Automation Improving Safety

- According to a study by the Insurance Institute for Highway Safety, the crash involvement rate for vehicles with blind-spot monitoring was
 14% lower than the same models without the equipment.
- Corey Harper, a researcher at Carnegie Mellon University, says his analysis suggests the combination of vehicle crash avoidance technologies **reduces crash frequency by about 3.5%.**

"If vehicle crash avoidance technologies were deployed throughout the light-duty vehicle fleet, we could see **crash prevention cost savings of up to \$264 billion**, assuming all relevant crashes are prevented," he says.

Race for Level 3 AV Commercial Deployment

Mercedes Benz Announces Plans for Industry First Level 3 Deployment, Pending Legal Approval

Tesla Auto Pilot Classified Between Level 2 and 3 But

"Very Close to Level 5" Per Elon Musk

Industry Collaboration

- UL 4600 "Standard for Safety for the Evaluation of Autonomous Products"
- SAE Automated Vehicle Safety Consortium
- 5G Automotive Association
- PAVE Partners for Automated Vehicle Education
- ADAS Standard Terminology AAA, Society of Automotive Engineers, Consumer Reports, JD Power and the National Safety Council

Continued Industry Shuffling

- Mercedes Benz and BMW dissolve AV partnership
- Mercedes Benz partners with NVIDIA on AV platform
- Hyundai and Aptiv form Motional
- Yandex and Uber spin off AV unit
- VW breaks with Aurora
- Ford and VW partner on AV technology with ArgoAI
- Toyota invests in PonyAl

Federal Government Initiatives

FHWA

Cooperative driving automation (CDA) enables automated vehicles (AVs) to communicate between vehicles, infrastructure devices, and road users such as pedestrians and cyclists.

NHTSA AV TEST Initiative – Interactive web tool to track AV testing

<u>US DOT</u> Inclusive Design Challenge

<u>US DOT</u> AV 4.0 Assuring American Leadership in Automated Vehicle Technologies

FCC Reallocating 5.9 GHz Spectrum Reserved for Connected Vehicles

Business Model of Driverless Taxis

Shift from AV Taxis to Freight Delivery Via Cute Sidewalk Vehicles and Large Trucks

- UPS and Waymo Autonomous Van Package Delivery Testing
- Amazon Acquires AV Company Zooks for over \$1 Billion

Autonomous Trucking

- Daimler Trucks AV Testing Group partnering Torc Robotics with developing Level 4 AV Truck with new facility in New Mexico
- Waymo testing heavy duty trucks in Texas
- **TuSimple** teaming with delivery and trucking companies to develop the first AV freight network. fleet of 41 autonomous-capable trucks are pulling 13 loads per day between Arizona and Texas.
- FORU Trucking, a technology logistics company, and Trunk, a service provider of autonomous driving technology for trucks
- Locomation On Road Testing Autonomous Relay Convoy Technology

Automated Vehicles Respond to COVID-19

- Columbus Re-launches EasyMile Leap Shuttle for Food Delivery
- GM Cruise Makes Food Bank Deliveries in San Francisco
- Nuro Delivering Medical Supplies in California
- Beep and Navya Delivering COVID-19 Tests at Mayo Clinic in Florida
- Neolix Delivers Medical Supplies in Wuhan and Disinfects Roadways

Infrastructure

- AV companies generally require quality line painting and legible signage.
- Connected traffic signals are an early CAV infrastructure.
- Dedicated Road Lanes from Detroit to Ann Arbor for Autonomous Vehicles
- Audi AG and Ericsson announced success upon wrapping up a three-year cellular vehicle-to-everything (C-V2X) real-world trial that first began in December 2016 in Germany.
- Qualcomm Partners with Hawaii DOT and the University of Hawaii to Extend the Deployment C-V2X Infrastructure Across Entire State

Why Now? – Enabling Information and Communications Technologies

Why Pennsylvania?- Research, Development and Deployment of Innovative Technology and Policy

Learning Assessment Questions:

- In addition to vehicle automation, provide an example of another technology disrupting transportation.
- Give an example of an automated vehicle industry trend.
- Identify a how state or local governments are addressing automated vehicle technology through policy.

Questions

stancaldwell@cmu.edu

http://mobility21.cmu.edu/

