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1. Overview 

In this report, we summarize work performed under Carnegie Mellon (CMU) University 
Transportation Center (UTC) Contract No. DTRT-13-GUTC-26 toward the development of a 
system for real-time dynamic optimization of municipal snow plowing operations. Building on 
our earlier work in this area, [Kinable 2016a, 2016b], this work has taken further steps in both 
in the design, analysis, and testing of scalable algorithms generating snow plow routing plans, 
and in the engineering and hardening of a in-vehicle device for generating turn-by-turn snow 
plowing instructions for a given snowing plan. With regard to snow plow routing, there were 
multiple accomplishments. First, the static snow plow algorithms developed in our earlier work 
were extended to incorporate additional types of real-world side constraints and further 
analyzed experimentally [Kinable 2019]. Second, a new, extended “late-acceptance” (LA) 
heuristic search procedure (referred to below as the CMU Planner) was developed to provide a 
fully scalable solution that also capable of addressing dynamic re-routing if problems arise 
during execution of the plan. In a comparative analysis of snow plow routing plans generated 
by the CMU Planner and those generated by the City of Pittsburgh’s current system ( a product 
called RouteSmart) on City street data for a section of the Pittsburgh East End, the CMU 
planner was shown to generate plans that were 12% more efficient in terms of travel time 
while respecting all specified constraints. When configured to give priority to primary road 
segments over secondary road segments, the CMU planner continues to outperform 
RouteSmart with respect to total travel time, but completes clearing primary segments in less 
than one third of the time required by RouteSmart.  

An enhanced in-vehicle navigation device for issuing turn-by-turn instructions to the snow 
plow driver was also developed, including an API for loading current City of Pittsburgh routes 
as well as those generated by the CMU Planner, and providing “skip” button and local 
rerouting capability to get vehicles back onto the planned route if the driver is forced to 
deviate. The in-vehicle navigation app was successfully pilot tested by a driver from the 3rd 
division of the City of Pittsburgh Department of Public Works (DPW) and feedback was 
positive. 

Based on these collective results, a proposal was subsequently submitted to a City of 
Pittsburgh Request for Proposals (RFP) on “Telematics and Snow Plow Optimization” for 



purposes of transitioning the developed technology into City operations and turning it into a 
commercial product. 

Before describing the accomplishments in more detail, we first review the snow plow routing 
problem considered. 

2. The Snow Plow Routing Problem  

In cold weather cities like Pittsburgh, snowstorms can have a significant disruptive effect of on 
both mobility and safety, and consequently the faster that streets can be cleared the better. 
Yet in most cities (including Pittsburgh), static plans for snowplowing are developed using 
simple allocation schemes, e.g., streets are divided among vehicles based on geographic area, 
and each driver determines his/her individual route. These schemes are used because they are 
easy to implement and they work but the resulting snow plowing operation can be quite 
inefficient. In extreme cases (e.g., the Pittsburgh storm of February 5-6, 2010 where snow 
removal took several days to accomplish), this inefficiency can lead to protracted periods of 
hardship for urban residents and travelers.  
 
The generation of efficient vehicle routes for snow removal is a challenging optimization 
problem, requiring consideration of constraints relating to resources (vehicle and crew 
availability; vehicle speed, range, home location), coverage topology  (number of passes per 
road, one way roads, dead ends, refueling locations), snow-clearing priorities (main arteries 
before side streets) and refresh rates (depending on storm intensity). Variations of the problem 
have been formalized as the Chinese Postman problem and the Capacitated Arc Routing 
Problem, and both problems have been shown to be inherently difficult to solve optimally. 
Nevertheless, it is possible to produce near-optimal solutions with a variety of approximate 
search procedures (e.g., [Perrier 2008, Salazar 2012]), and these solutions can lead to 
substantial improvements in snowplowing performance. Centennial, Colorado, for example, 
recently reduced the time required to clear streets by 28-40% by focusing on optimization of 
routes [Sedlak 2013].  
 
Any ability to produce efficient snowplowing routes, however, is susceptible to execution-time 
dynamics. Impassible road segments due to blocking vehicles that are stuck or to unaccounted 
for construction projects will mandate deviations from pre-planned routes, which can result in 
significant efficiency loss if left to driver response.  Events such as snow plow breakdowns or 
shifts in storm intensity can similarly render pre-planned routes obsolete and require re-
optimization. As has been recently suggested in [ITS 2014], even greater improvements to 
snow removal operations can be expected if snow plow route optimization is coupled with a 
real-time ability to re-route vehicles when circumstances warrant. 
 
Thus, our broad technology objective has been to develop a dynamic snow plow routing 
system, capable of generating near-optimal plowing plans that fit current operational 
constraints and reactively maintaining them through execution as unexpected events 
force changes. The overall concept of operations for the envisioned system is summarized in 



Figure 1. Prior to execution, relevant map data and plowing constraints are imported, along 
with current information of the availability and locations of snow plowing assets, and a storm 
specific plowing plan is generated. If available, a default plowing plan may also be imported 
and customized to fit the current operational constraints. Once the plowing plan is generated, 
routes are communicated to each vehicle and turn-by-turn instructions are presented to each 
driver through an onboard navigation app. In the event that unexpected problems are 
encountered during execution of a route, the disruptive event is communicated by to the 
dynamic planner, and the route is revised (in real-time) to circumvent or otherwise overcome 
the disruptive event. 

 
Figure 1: Overall Concept of Operations 

 
In the sections below, we summarize the progress made toward this goal over the course of 
this Phase II project. 

 
3. Scalable Snow Plow Routing Algorithms 

One principal thrust of the project was the further development of algorithms for generation of 
snow plow routes. To build understanding of the structure and complexity of the snow route 
planning problem, our prior work developed and compared a range of different state-of-the-
art solution generation approaches, including a mixed-integer linear programming (MILP) 
model, a constraint programming (CP) model, and a constraint-based tree search procedure 
utilizing a late acceptance heuristic [Kinable et.al 2016a, 2016b]. The results obtained here 
confirmed basic intuitions about the scalability issues associated with some of these 
approaches, namely the MILP model and, to a lesser extent, the black-box CP model. But these 
initial models also ignored certain real-world resource constraints, such as fuel and salt 
consumption and replenishment, and to further understand how these constraints influenced 
scalability, extended formulations were developed and evaluated as an initial step toward 
developing a more viable solution to the dynamic snow plow planning problems. The results 



obtained, which do not significantly change the conclusions reached in [Kinable et.al 2016b], 
are reported in [Kinable et.al 2019] (attached as an appendix to this report). 

Both of these analyses pointed to the need for a heuristic solution to achieve a scalable 
approach, and the heuristic tree search method was found to provide a basis for finding a 
reasonably good solution fast. Accordingly, a variant of this procedure was integrated within a 
local improvement search framework to allow for scalable generation of efficient snow plow 
routing problems over time. A second benefit of utilizing a local improvement search 
framework is that the fact that it operates by modifying the existing solution to generate new 
better ones makes it equally appropriate for repairing a route that has been unexpectedly 
found to be impassable during execution (e.g., by an abandoned vehicle). In other words, the 
algorithm is equally suitable for static generation of snow plowing plans and dynamic revision 
of plans when they are discovered to be no longer feasible. We refer to this scalable dynamic 
route planning algorithm as the CMU route-planning algorithm. 

3.1 The CMU Route-Planning Algorithm 

The CMU route-planning algorithm generates routes in an iterative manner. It accepts as input 
a set of street segments to be plowed (referred to as “plow jobs”), a larger set of street 
segments that can be used for moving from one plow job to the next if necessary, the set of 
vehicles that are available to handle plow jobs, along with their plowing constraints (e.g., 
capacity, initial location), and the location of other relevant resources (e.g., salt depots).  
Underlying map data associates turning information, speed limits, and other plowing 
constraints with input street segments.  The plow jobs, street segment data and depots are 
used to build a plowing graph and a routing graph respectively (see Figures 4 and 5 below for 
an example of each), which, in turn, are used by the algorithm to calculate efficient, feasible 
routes. The algorithm begins by generating an initial feasible route, using a specific search 
heuristic that we have developed. Once an initial route has been generated, it and 
subsequently generated routes are repeatedly revised to produce new alternative routes.  At 
each step, the quality of each new route that is generated is evaluated (e.g., by considering its 
projected travel time), and the search continues from the best routes found so far. 

This iterative search puts the core route generation algorithm into a class of algorithms 
referred to as “anytime” algorithms – it generates a good feasible solution fast, and then 
continues to improve on that solution as you give it more time. If generating a route in advance 
of execution, then one can run the algorithm for an extended amount of time to produce a 
more optimized route. However, if less time is available for generating a route, then a less 
optimal, but still feasible route can be obtained. This makes the core route generation 
algorithm ideally suited to provide the dynamic planning capabilities that will be inevitably 
needed during execution of the plowing plan. 

3.2 Experimental Comparison 

To calibrate the performance of the CMU Route Planner, we conducted an experimental 
comparison with the Routesmart system, which is currently used by the City of Pittsburgh to 
generate its routes. The comparative analysis was carried out using City of Pittsburgh 



snowplow routing data for the neighborhood of Greenfield. The area in question has 629 street 
segment lanes (i.e., plow jobs) that have to be sequenced. These street segments were 
collected from one of the City’s current snowplow routes. This set of street segments was then 
provided as input to the CMU route planner and the resulting snowplow route was compared 
to the current City route. 

Figure 2 shows three plowing schedules, the top one produced by Route Smart and the bottom 
two variants generated by the CMU route planner (one that minimizes the total route duration 
while covering all segments (formally defined as ‘makespan’), and one that prioritizes decisions 
to plow primary road segments before secondary roads, etc.). The graph depicts service over 
time, ranging from time 0 (start of plowing time) where 0% of the area has been plowed, to the 
end of the schedule where 100% of the area has been plowed. The different colored lines 
represent priority classes: P1=primary streets, P2=secondary streets, P3=tertiary streets. So for 
example, when instance line P1 hits 100%, the inference is that at that time, 100% of the 
primary road segments have been plowed. The Greenfield pilot contains only primary and 
secondary roads, and no tertiary roads or lower categories. The black vertical lines in the graph 
mark the end of a schedule (makespan). 

 

 
Figure 2: Percentage of service provide/completed over time 

  



 
 

 Route 
Duration 

Completion Time: 
Primary 

Completion Time: 
Secondary 

Total U-
turns 

RouteSmart 01:40:42h 6002s 5836s 18 
CMU Planner: Make 
span Minimization 

 
01:28:42h 

 
5282s 

 
5137s 

 
17 

CMU Planner: Lex 
(prioritized) Search  

 
01:38:48h 

 
1906s 

 
5705s 

 
17 

 
Table 1: Comparative expected plowing completion times 

Table 1 provides the numerical results for each of the three alternatives. A couple of 
observations can be made: 

• Routesmart has the longest makespan, the most u-turns, and is overall the slowest in 
comparison to the routing plan that was provided to us by the City of Pittsburgh. 

• Optimizing towards makespan clearly results in the shortest schedule. Interestingly 
however, if we optimize using Lexicographic (i.e., prioritized) search, we still end up 
with a shorter schedule than the RouteSmart schedule. The Lex search schedule takes 
about 10 minutes longer to complete than the makespan schedule, but the primary 
roads are cleared significantly faster (56 minutes). 

 
The graph in Figure 3 gives a different view of the same data as the previous graph. Here the 
service rate is displayed, expressed in ft/s, aggregated over all routes. A service rate of 0 means 
that no vehicles in the schedule are plowing at that moment. For instance, at the end of the 
schedule, just before the makespan marker, the vehicles are done plowing and are returning to 
the depot, hence the service time at that time is 0. Notice that the bars are stacked (they are 
NOT behind each other). The height of the bar depends on whether all vehicles are plowing, 
and their speed. The colors again indicate the priority class: if the bar is blue, only primary 
roads are being plowed; if a bar is green, only secondary roads are being plowed. If a bar is 
both blue and green, at least one primary and one secondary road are simultaneously being 
plowed at that time. Note that the Lexicographic (i.e., prioritized) search, does not 
simplistically enforce that all primaries are plowed strictly before secondaries; instead, a more 
sophisticated approach is utilized where priority is given to the primary roads, but plowing 
secondary roads is allowed whenever this is advantageous to the overall schedule. 



 
Figure 3: Plowing service rates 

Finally, Figures 4 and 5 show the plowing graph and the routing graph respectively for the 
Greenfield neighborhood experiment. The plowing graph (Figure 4) contains all streets that 
require plowing. The blue square on the left is the 3rd division depot, where the salt is stored 
and the vehicles are located.  The plowing graph is a subgraph of the routing graph (Figure 5) 
that represents the larger set of “deadhead” road segments that the vehicle can travel when 
moving from one plowing segment to the next. 

 

 
 

Figure 4: The Plowing Graph for Greenfield 



 
 

Figure 5: The Routing Graph for Greenfield 

 

4. In-Vehicle Navigation 

A second major thrust of the project was the further development of a mobile app that 
provides turn-by-turn instructions to the driver during execution of a previously planned snow 
plow route. Building on our previously work, the prototype described in  [Kinable 2016a] was 
extended and re-engineered in several ways: 

• Switch to mapbox as a route navigation interface – One significant limiting factor of the 
initial prototype was its use of Scobler as a route navigation interface. The fact that 
Scobler only allows a client to provide the display with one advance waypoint at a time 
led to weird user interaction behavior, where upon reaching  each waypoint (i.e., each 
intersection) caused the app to announce that the route was completed before it was 
possible to reinitialize and feed in the next waypoint for display. The mobile app was re-
engineered to instead use the mapbox navigation interface, which allows input of a 
sequence of up to 25 waypoints and minimizes this problem. (Google Maps provides a 
similar capability and in a production version this might be the way to go. There will be 
a charge.) 

• Skip button – A skip button was introduced to allow the driver to indicate that the next 
road segment being announced in the plan cannot be executed (e.g. due to obstacles or 



unacceptable conditions). In this case, the app will determine which alternative route 
the driver has taken and then issue a query to mapbox to reroute to the next road 
segment on the originally planned route. In a future version of the app, a call will be 
made back to a server running the dynamic planner described in Section 3.1 to compute 
a potentially better recovery plan (possibly even involving changes to other vehicle’s 
routes). 

• Multiple modality communication – The app was extended to provide both visual and 
auditory guidance to the driver. In point of fact, it is quite loud in the truck during 
plowing operations and visual communication will likely be the most effective medium. 
The basic visual display shows where the vehicle is on the map, when the next turn is, 
and whether the plow should be up or down for this road segment. 

Figure 6 shows a few visualizations from the current in-vehicle app. It is designed to run on 
an IOS device, specifically an IPAD. This decision was made based on preferences indicated 
to us by the City of Pittsburgh. The app could straightforwardly be ported to an Android 
device. 

 

Figure 6: The In-Vehicle Navigation App 

Conclusions 

This research has focused on developing snow plow route planning and execution technology 
that can enable cold weather cities to better cope with the disruptions of winter storms. Key to 
our focus and approach is (1) the notion that generated plowing plans should match current 
storm conditions and resource availability (instead of assuming a single pre-generated plan 
based on expected conditions), (2)  the expectation that plans can be dynamically revised in 
real time in response to unexpected circumstances that are encountered during execution. 
Two complementary technologies have been developed that promote these key ideas of offer 
the potential for better logistical solutions to snow removal in urban environments. The first is 
a scalable snow plow route planning algorithm capable of quickly finding a good quality snow 



plowing plan for a given storm situation and set of available plowing resources, and then 
improving that solution if more computing time is available before it is time to execute. Given 
the nature of this algorithm, it is also equally suited for revising a plowing plan in real-time 
during execution if unexpected circumstances arise. The second technology developed over 
the course of this research is an in-vehicle mobile app that is capable of accepting a previously 
generated plan and using it to provide turn-by-turn instructions to a snow plow vehicle driver 
during execution. Based on collective results obtained with both of these technologies, a 
proposal has been submitted in response to a City of Pittsburgh RFP for transition of these 
technologies into City operations and commercialization for subsequent  transfer to other 
cities. 
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