[bookmark: _GoBack][image:][image:]

Pedestrian Detection for the Surtrac Adaptive Traffic System

Final Report - 2016

Principal Investigators: Bernardo R. Pires, Stephen Smith

Co-Principal Investigator: Mehmet K. Kocamaz, Greg Barlow

Research team: Chris Kaffine, Luyao Hou, Jian Gong, John Kozar,

DISCLAIMER
The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the U.S. Department of Transportation’s University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof.
Introduction and Problem Description
Adaptive traffic lights have the potential to significantly facilitate motor vehicle travel and reduce pollution and congestion. However, other road users, especially pedestrians, may suffer longer wait times if they are not considered by the adaptive algorithms. Surtac, the real-time adaptive traffic signal control system developed at CMU, has been demonstrated to significantly improve traffic flow on multiple performance metrics, including reductions of 25% of travel time and 40% wait time for motor vehicles [1,2]. The objective of this project is to bring this same intelligence to pedestrian traffic, which has, thus far, not been targeted by Surtrac deployments.
Approach
This project is the result of a real-world need from the City of Pittsburgh and the Surtrac team to incorporate pedestrian traffic into the Surtrac planning algorithm to ensure that all traffic modalities are considered in when controlling traffic flow. Phase 1 of the project analyzed pedestrian traffic at multiple Surtrac deployments. Phase 2 focused on an intersection already equipped with Surtrac system in the Oakland / East Liberty region. The initial objective was to add additional cameras and processing capabilities to the intersection. However, due to delays in the camera installation, the deployment has been delayed. Instead, the team has collected data and prepared all processing algorithms in anticipation to the system deployment.
Intersection Selection
Figure 1 shows the Surtract Deployments in the Pittsburgh region at the start of the project in January 2016. Equipped intersections are marked with dots. The team visited most of the intersections to determine the best location for the pilot deployment. The intersection selection considered several aspects: (1) Volume of pedestrian traffic; (2) Volume of motorized traffic; (3) Logistical aspect to the deployment, including the wiring in the intersection, available space in the intersection cabinet and difficulty of installing additional sensing hardware; (4) Input from stake-holders, including Lee Haller, Deputy Director for the City of Pittsburgh, Department of Public Works.

[image:]
Figure 1. Surtrac Deployments in the Pittsburgh region at the start of the project.
[image:]
Figure 2. Selected intersection at Center and South Aiken Avenues

Careful evaluation of all factors led the team to select the intersection of Centre and South Aiken Avenues as the target for the second Phase of the project (Figure 2), a choice that was approved by the City’s Department of Public Works.
Data Collection
Data for this project was collected using the system developed for [3] and shown in Figure 3. The data collection system is a portable device designed to work at any intersection and provide a suitable viewing angle. The whole device consists of a miniature bullet camera attached to an extensible pole, with a ruggedized Panasonic Toughpad tablet to interface with the camera. The camera is mounted to the top of the pole, which can be set to any height up to 15 ft. to obtain the appropriate view. The system is mounted to a sturdy structure near the intersection such as a lamp post to ensure it remains stationary during recording. The tablet displays the view from the camera during setup to ensure it gets positioned correctly, and then controls the data capture.

[image: IMG_2314.JPG][image: IMG_2390.JPG][image: IMG_2403.JPG][image: C:\Users\mehmet\Dropbox\CMU Proposals\Report2016PedBikeCounting\IMG_0327.JPG]
Figure 3. Portable data collection system
[image:]
Figure 4. Frame of video from each day data was collected. Note the changes in camera angles and weather (particularly rain on ground on the last day)

The development and testing datasets were collected on a total of 4 days between 12pm and 5 pm, resulting in approximately 20 hours of video. The data was stored in 20-second-long segments saved in AVI video files. All the data was manually labeled with approximate entry and exit points for all pedestrians. A total of 1490 pedestrians were observed in this way. All the video monitors one corner of the same 4-way intersection, but because the system had to be taken down and put up again at the beginning of every day the viewpoints are slightly different for every day. Each day of video contains a day-to-night transition, with about a half hour of nighttime footage. Two days also contain a period of rain, while the other days contain a mix of cloudy and sunny weather. A frame of video from each day is shown in Figure 2.
Methodology
Foreground Extraction. Foreground extraction is accomplished by performing a standard Mixture of Gaussians approach to background subtraction, as implemented in OpenCV [4] [5]. This algorithm is initialized with a manually chosen background frame from the beginning of the video for a given day, such as the frames in Figure 2. In the data collected, a frame with no foreground elements present is typically available within the first minute or two of video. The Mixture of Gaussians algorithm then serves primarily to track long-term changes in lighting over the course of a day of footage, and must refrain from incorporating pedestrians who may be waiting for several minutes into the background. For this reason, we give the algorithm a long background history, so changes will be reflected in the background image on a scale of about 10 minutes. To extract the foreground in each frame, we subtract the current background image from the frame in the RGB colorspace, convert the difference image to grayscale, and threshold the grayscale image to generate a foreground mask. This foreground mask is passed into the next stage for pedestrian detection.
Pedestrian Detection. To detect pedestrians in the foreground our algorithm performs connected component analysis on the foreground mask and filters out non-pedestrians based on prior knowledge. Before finding connected components, we perform a dilation followed by an erosion on the foreground mask, both with 3 × 3 kernels. This has the effect of closing any gaps between foreground regions which are sufficiently close to each other. Next, we find contours in the foreground mask, which identify separate connected components. We calculate the area and centroid of the component enclosed by each contour, as well as the length of the contour, and use this information to filter out non-pedestrians.
We first eliminate any component whose area falls below some threshold, which tends to eliminate most of the noise. There are two types of non-pedestrians which tend to make it past this step: cars, and wind artifacts resulting from the camera being blown slightly out of alignment with the background. Cars are always located on the road, which is a region of the video we eliminate for pedestrian tracking by defining a focus region of the video which ignores the road and removing any components whose centroids fall outside of the focus region.
Wind artifacts tend to be concentrated around long edges in the scene, which look like large foreground regions when the camera is a few pixels out of alignment. As a result, they tend to have very long and thin regions, in contrast with pedestrians which tend to be closer to rectangular. We can quantify this property by defining the eccentricity of a contour as the ratio A/L2 (where A is the are a and L the perimeter of the region). This dimensionless quantity is maximized when the contour is a circle, and tends to be very small for the wind artifacts with long perimeters and low area. We eliminate any component whose eccentricity is below a threshold, and keep a count of how many times this occurs per frame. If more than 2 wind artifacts are found, we conclude that the camera is out of alignment in that frame and all detections are suspect, so we skip it and proceed with the next frame.
Pedestrian Tracking. The tracking algorithm takes detections in the current frames from the pedestrian detector and attempts to match them with nearby detections from previous frames to monitor each pedestrian’s progress through the video. This is necessary to differentiate the pedestrians that intend to cross the intersection (and should therefore be considered by the Surtac algorithm when optimizing transit flow) from the pedestrians that are merely passing through the camera field of view.
 The tracker maintains a set of tracks, each containing a sequence of detections from previous frames. Unfortunately, although our pedestrian detector can filter out non-pedestrians, when pedestrians stand close enough together that they occlude each other they are often reported as a single detection. To account for this in the tracker, we make a distinction between pedestrians and targets. The objective of the program is to track Pedestrians; however, the program can only observe detections, which can correspond to single or multiple pedestrians. When pedestrians appear to split or merge because of occlusion the targets in the scene change, and we create new tracks corresponding to the new targets. Each track also maintains a list of which pedestrians are contained in its target. When a new target first appears on screen, we assume it contains only one new pedestrian. An outline of the full tracking algorithm is given by Algorithm 1. Further in this document, we discuss the details of how we deal with splitting and merging targets, as well as how we recover pedestrian paths from target paths.
[image:]

For each detection in a new frame, the tracker finds all tracks whose current position is within a certain threshold distance and suggests the detection as a candidate for the new position of that track. The tracker then looks at the whole set of candidate matches and selects the best options in a process we discuss below. The result of this selection process is that every detection is assigned to an existing track, or a new track is created starting at its position. It is possible that some tracks will have no matching detections in the current frame; we assume this means that the target was missed by the pedestrian detector, so that track is kept alive in case the target is picked up in future frames.
Tracks are only removed from the tracker once a set number of frames have passed during which their target has not been detected. At this point, we assume the target has left the focus region, and the track is removed. Once all tracks associated with a certain pedestrian have been removed, we can reconstruct that pedestrian’s path through the intersection in a process described below.
Handling Occlusion. In order to correctly monitor how pedestrians move through the intersection, the tracking algorithm needs to be able to detect when targets split or merge. Figure 5 shows the frames before and after a merge event with bounding boxes drawn around all the detections. It suggests a simple method for detecting a merge: check whether the bounding boxes in the old frame are both fully contained within the bounding box in the new frame. A split looks the same with the order of the frames reversed, so it can be detected similarly. To integrate this into the tracking algorithm, when suggesting candidate matches we check both for tracks which are close to a detection and which overlap the detection significantly.

[image:]
Figure 5. Two targets before the merge (left), became one target after the merge (right).

To determine which detections get mapped to which tracks we need to choose from the many candidate associations we generated above. We want a choice that is optimal in terms of keeping the centroids of the detections close to the centroids of the associated targets. We pose this as a bipartite graph matching problem by considering detections and tracks as nodes of a graph with edges between nodes which we have proposed as candidate matches. The weights on the edges are the quantity we want to minimize, in this case the distance between centroids. As shown in Figure 7, some of the edges in the initial graph represent false matches which we would like to eliminate. A refined graph should contain disconnected components of one of the 3 forms shown in Figure 6, which correspond to the continuation of a target, a target splitting into multiple new targets, or multiple targets merging into a single new target. Ideally, we’d like to find a refinement which minimizes the edge weights. We use a greedy algorithm to approximate the optimal solution by iteratively removing the edge with the largest weight unless doing so would remove the last edge connected to a node, in which case we skip it and continue with the edge with the next largest weight. This process is demonstrated in Figure 7.

[image:]
Figure 6. Allowed output subgraphs corresponding to different occlusion-related events. On the left, the track continues. On the middle, the track splits. On the right, the tracks merge into the same target.
[image:]
Figure 7. An illustration of the match optimization algorithm. At each step is an image showing current track positions in red and new detection positions in blue. All pairs of tracks and detections that are within a threshold distance of each other are matched, indicated by a solid or dotted line. Solid lines are the correct matches, and dotted lines are the extraneous matches the algorithm will eliminate. On the right is the bipartite graph representation of the current set of matches.

Once the graph is refined, we need to use the results to update the tracker state. To do this, we process each connected component of the graph as a continuation, merge, or split event. A continuation event consists of one track and one detection, and it is handled by updating the current position of the track with the position of the detection. Merges, consisting of multiple tracks and one detection, are slightly more involved since the targets being tracked are changing. All tracks are removed, and a new track is initialized with the detection as its starting point. The list of pedestrians contained in the track’s target is formed by concatenating the lists for each of the merging tracks and removing any duplicates. Splits, with one track and multiple detections, are handled similarly to merges, but they generate some ambiguity which we will have to address later. Again, we remove the existing track, and we initialize new tracks starting at each of the detections. Determining the pedestrians contained in the new tracks’ targets is difficult, however, especially since the new targets could still contain multiple pedestrians. It’s useful to delay the decision of assigning pedestrians to targets until later, when more evidence has been accumulated. To do this, we copy the list of pedestrians from the original track into all new tracks and wait until later to solve the ambiguity.
Resolving Split Ambiguity. To deal with the ambiguity of split tracks we need a way of determining which targets after a split contain which pedestrians. We use two methods of handling this, both relying on the assumption that every target starts with only a single pedestrian. If a track’s target contains only one pedestrian, we monitor two features at every frame: the track’s velocity based on the last 6 detections, and a histogram of pixel colors within the contour of the most recent detection in that track. These features are associated with the pedestrian and are saved once that track merges. After a split, we compute color histograms for each of the new tracks and compare them to each of the histograms saved with the pedestrians. If there is a sufficiently close match, we set that pedestrian as the only one in the track’s target, and set the track as the pedestrian’s only possible location. We repeat this for several frames after a split, after which color information is deemed unreliable. Once enough new detections have been added to a track we also compare that track’s velocity with the saved velocity of each pedestrian. This is helpful for resolving cases when two pedestrians walk past each other in opposite directions, as their velocities are likely to be very similar before and after the occlusion. Again, the velocity comparison is performed for only a few more frames. If these frame limits pass and the identity of a target is still in question we wait in the hopes that other targets will be resolved. If all pedestrians that may be associated with a target but one are known to belong to other targets, then we conclude that the remaining pedestrian must belong to that target. If all the targets associated with a pedestrian are off-screen, then we know there is no chance of gaining any more information and we must decide to resolve the ambiguity. At this point we look at the color histograms again and take the best option.
There is one additional complication to handle coming from the assumption that when a target first appears it contains only one pedestrian. This is frequently true, but there are cases when pedestrians walk into view together. When this happens, it is possible for a track to split into more detections than there are pedestrians associated with it. We detect when this happens and correct for it by duplicating one of the pedestrians in the track. In principle, if we could choose the correct pedestrian to duplicate this would solve the problem. However, determining the correct pedestrian can be difficult if there were other splitting/merging events before the problematic split. We observe that these complex series of events are uncommon, and frequently there is only one choice of pedestrian when the split occurs. As a result, we choose the pedestrian to duplicate randomly, solving the simple case correctly and producing valid if possibly incorrect behavior in the more complex cases.

[image:]
Figure 8. Background frame overlapped with zones used to distinguish pedestrians waitig to cross the intersection, from pedestrians walking in the sidewalk.

Reporting Waiting Pedestrians to Surtrac. The ultimate objective of the system is to report the number of pedestrians waiting at the intersection to the Surtrac system. Thus, it is necessary to distinguish between pedestrians waiting to cross and pedestrians moving on the sidewalk with no intention of crossing the road. With this objective in mind, the focus region is split into 5 zones as shown in Figure 3. A pedestrian is counted as waiting to cross the street if he/she has entered through any zone besides 5, has lingered inside zones 3, 4, or 5 for at least 2 seconds; and has a slow rate of movement.

Conclusions and Recommendations
This project developed a system for automatic counting of pedestrians waiting to cross an intersection equipped with adaptive traffic lights. The software and hardware are ready for deployment and the intersection to be equipped has been approved by all stake-holders. We are awaiting permission from the City of Pittsburgh for final installation, which we expect to achieve during the 2017 calendar year.

References
[1] S. F. Smith, G. J. Barlow, X.-F. Xie, and Z. B. Rubinstein. SURTRAC: Scalable Urban Traffic Control. Transportation Research Board Annual Meeting, Washington, D.C., January 2013.
[2] X.-F. Xie, S. F. Smith, and G. J. Barlow. Schedule-driven co-ordination for real-time traffic network control. International Conference on Automated Planning and Scheduling (ICAPS), Sao Paulo, Brazil, June 2012.
[3] M. K. Kocamaz, J. Gong, and B. R. Pires. Vision-based counting of pedestrians and cyclists. In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 1–8. IEEE, 2016.
[4] G. Bradski. The OpenCV library. Dr. Dobb’s Journal of Software Tools, 2000.
[5] Z. Zivkovic. Improved adaptive Gaussian mixture model for background subtraction. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on, volume 2, pages 28–31. IEEE, 2004.

image6.jpeg

image7.jpeg

image8.jpeg

image9.png

image10.png
Algorithm 1: Tracking Algorithm

Input: detections found in the current frame
foreach detection do
find nearby and overlapping tracks, propose as

matches
end

refine matches
foreach match do
| update tracks involved in match
end
foreach pedestrian do
if track is uncertain then
| look for track with matching features
end
if pedestrian is offscreen and crossed the street
then
| record wait time
end
end
foreach track do

if most recent detection is too old then
| remove track

end

end

image11.png

image12.png

image13.png
(a) Initial match candidates

proposed by distance thresholding

(b) Track 3 and detection c are farther away than any other matches,

so that edge is removed

W

(c) Track 4 and detection e are the most distant match, but removing (d) Track 3 and detection e are the next most distant match, so that
it would remove the last edge from track 4, so it is kept. Track 1 and edge is removed. No more edges can be safely removed, so the algo-
detection b are the next most distant match, so that edge is removed rithm terminates

image14.png

image1.jpeg
Carnegie Mellon University
The Robotics Institute

image2.png
Technologies for
Safe and Efficient
Transportation

image3.emf

9/12/11 2:39 PMimage.aspx 681×195 pixels

Page 1 of 1http://www.heinz.cmu.edu/traffic21/image.aspx?id=1372

A U.S. DOT UNIVERSITY TRANSPORTATION CENTER

Technologies for
Safe and Efficient
Transportation

Current Deployment Effort

!

Baum Boulevard

Centre Avenue

Penn Avenue

H
ig

hl
an

d
Av

e

Fifth Avenue

In the field ...
25% lower travel times
40% less time idling
30-40% fewer stops
21% lower emissions

Key Capabilities
• True real-time response to traffic conditions
• Manages multiple dominant flows
• Scalable to road networks of arbitrary size
• Multi-modal optimization

intelligent traffic signals

surtrac.net
@surtrac
info@surtrac.net

•  Penn Ave east: Surtrac is operational
•  Baum/Centre: Equipment is installed and testing is

underway
•  Before/after evaluation: Planned for September

9/12/11 2:39 P M im ag e.aspx 681 × 195 pixels

Pa ge 1 o f 1 h ttp : / / w w w . h e i n z . c m u . e d u / tr a f f i c 2 1 / i m a g e . a s p x ? i d = 1 3 7 2

A U.S. DOT UNIVER SIT

Y TR

A N S P O R TA T I O N CEN T ER

Te

c

hn o l o g i e s f o r

S a

f

e a n d E f ﬁ c i e n t

Tr

an

s p o r t a t i o n

Current Deployment Effort

!

B

a

u

m

B

o

u

l

e

va

r

d

C

e

n

t

r

e

A

ve

n

u

e

Pe

n

n

Av

e

n

u

e

H

i

g

h

l

a

n

d

A

v

e

Fi

f

t

h

A

ve

n

u

e

In t h e f ie ld ...

25% lower travel times

40% less time idling

30-40% fewer stops

21 % l o w e r e m i ssi o n s

Ke y Ca p a b i l i t i e s

·

Tr u e r e a l - t i m e r e sp o n se t o t r a f f i c co n d i t i o n s

·

Manages multiple dominant flows

·

Scalable to road networks of arbitrary size

·

Mu l t i - m o d a l o p t i m i za t i o n

in t e ll ig e n t t r af f ic s ig n al s

surtrac.net

@surtrac

in f o @ s u r t r a c . n e t

•

Penn Ave east: Surtrac is operational

•

Baum/Centre: Equipment is installed and testing is

underway

•

Before/after evaluation: Planned for September

image4.png

image5.jpeg

