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Introduction 

Operating a joint network of highways and arterial streets in real-time is challenging. The main challenges are 
twofold. Highways and arterials are highly inter-dependent but may have their own operational strategies 
and systems that do not necessarily synchronize. As a result, trafc queues can spillover from highways 
to arterials, or the other way around, leading to substantial congestion that worsens the overall system 
performance. Coordinating the signal control system on arterials and ramp metering control on ramps 
to/from highways are one key to mitigating such congestion. In addition, most signal or ramp metering 
systems deal with recurrent trafc congestion or normal trafc conditions. They can alleviate queues locally 
to some extent under non-recurrent congestion (being responsive or reactive), but are not designed to prevent 
queuing from the occurrence of incidents (being predictive) nor mitigate congestion for the joint network. To 
this end, managing trafc predictively (or proactively) and coordinating ramp metering and street signals 
among all relevant highway on-ramps/of-ramps can efectively improve the joint network performance. 
Transportation Systems Management and Operations (TSMO) refers to a set of strategies that could be 

utilized to mitigate system-level congestion, particularly non-recurrent trafc impacts, such as information 
provision, signalization, and access control. Though TSMO are technically available to practitioners, but 
what time and what strategy to engage remain unknown. Being predictive and proactive, and coordinating 
among all control strategies (e.g. street signals and ramp metering jointly) is the key to efective management 
of network-level trafc. Proactive operational management is highly dependent on accurate real-time trafc 
data and swift real-time trafc prediction. 
This research project aims to integrate solutions to the two problems into a fully scalable TSMO system: 

ahead-of-curve prediction and system-level signal and ramp metering coordination. The former was previ-
ously addressed by [1], where we propose theories, models, and algorithms of machine learning to predict 
trafc patterns in real time and identify non-recurrent patterns. Provided with advanced prediction, signal 
timing plans can be adjusted ahead of severe congestion (recurrent or non-recurrent) to favor foreseeable fow 
streams that become dominant on certain streets or routes. To this end, we develop models and test solutions 
to optimize the timing plans for both ramp metering and street signals in the TSMO system. Prediction and 
operational strategies are intimately coupled. The prediction will be made by a machine that learns not only 
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historical trafc patterns but also real-time data (possibly from multiple sources). Operational strategies 
are made and updated in real-time to achieve management goals (e.g. minimization of total travel time) 
as a result of ahead-of-curve prediction of network impacts. In particular, acknowledging the efectiveness 
of the ahead-of-curve prediction, the research focuses on the system-level signal and ramp metering coordi-
nation for system-level performance improvement: fuse multiple data sources related to highways and local 
street/intersections; develop an efcient network-level modeling framework enabled and validated by multi-
source data; make real-time optimal signal plans and ramp metering plans; and fnally quantify the network 
benefts of operational strategies to improve mobility/safety. The project demonstrates the efectiveness and 
replicability of the models and algorithms in Maryland’s TSMO 1 system. 

2 Literature Review 

This section presents a review of prior work on transportation network fow models and how ramp metering 
and signal timing control are incorporated into the network loading models. State-of-the-art control schemes 
for ramp metering and signal timing are also summarized. 

2.1 Network trafc fow model 

In trafc fow models, transportation networks are represented by directed graphs. The links of a graph 
represent major roadway segments. The nodes of a graph are placed at locations where a major change 
in road geometry occurs (e.g., on-ramps and of-ramps, merge/diverge, intersections, etc.), or to enforce 
boundary conditions such as origin-destination (OD) demand and control schemes such as signal timing and 
ramp metering [2]. 

2.1.1 Transportation network modeling 

In mesoscopic trafc simulation, trafc fow is frst quantized into vehicle packets [3]. A small loading interval 
(e.g., 5 seconds) is set and vehicles are released from origin nodes. At the beginning of each interval, we load 
the vehicles through the network according to the evolution rules defned by link and node models, and we 
keep moving vehicles until all vehicles reach their destinations. The core components of network fow models 
or dynamic trafc assignment (DTA) are thus link and node models, and travelers’ route choice models. To 
approximate various real-world roadway and driving scenarios, abundant research has been conducted for 
the three core models below. 

Link model Given supply and demand of each link at time step t, link models determine receiving and 
sending fow and move vehicles through each link in the trafc network. 
Point queue models or PQ [4, 5] place the queue at the downstream end of the link which occupies no 

physical space, but conceptually holds vehicles back to represent any congestion delay on the link [2]. PQ 
discharges vehicles at a maximum rate and the receiving fow is a constant which represents the maximum 
in-fow rate. PQ is often used to model virtual (un)loading links connected to origin and destination nodes. 
Spatial queue model or SQ [6] adds a gate on receiving fow to refect the fnite space on the link. Queue 

spillover occurs at critical density, i.e., at that time no vehicles can enter the link. The sending fow for SQ 
is calculated in the same way as for PQ model. SQ simulates the scenario where all vehicles in a queue move 
together. SQ can be used to model short links as spatiotemporal evolution of queue spillback along the link 
is ignored by the model. 
Cell transmission model or CTM [7] is an explicit solution to LWR hydrodynamic trafc fow model using 

Godunov’s scheme [8, 9]. Time is discretized into intervals of length ∆t and links are divided into cells of 
length ∆x ≤ [vf ∆t]− (where vf is the free-fow speed of a link) which ensures a vehicle can travel through a 
cell in one time step under free-fow trafc conditions. The queues are placed at each cell along the link so 
the spatiotemporal evolution of queue spillback can be modeled. 
Link queue or LQ [10] models each link in the graph as a cell while still continuously approximating the 

kinematic wave model on a road network. CTM and LQ are often used for modeling fow evolution for major 
roadways in the network. 
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Link transmission model or LTM [11, 12] uses the Newell-Daganzo method to directly calculate sending 
and receiving fows of each link. Instead of tracking the states of cells within links in CTM, LTM stores the 
link cumulative curves and calculates the outfow at the ends of the links using the forward and backward 
prevailing trafc states determined by link fundamental diagram. A stochastic network loading model called 
double queue (DQ [13, 14]) is also developed as a probabilistic extension of LTM. 

Node model A node model is a predefned function that computes the resulting fow on each connecting 
pair while satisfying several constraints and principles [2] which respect route choices, frst-in-frst-out (FIFO) 
and invariance principles, etc. 
FWJ node model [15, 16, 17] is one example of junction fux function which computes the fux of any 

upstream link to any downstream link using the minimum of weighted average sending and receiving fow 
weighted by turning portions. A general node model which handles multiple upstream and downstream links 
was proposed by [18]. The virtual demand which represents the maximum possible outfow rate and virtual 
supply which represents the maximum possible receiving fow is used instead of actual demand and supply. 
These two general node models contain link-in-series, diverge, and merge nodes as a special case, and can 
model general uncontrolled-competition intersections [19]. 
Complex link and node models can also represent signal-controlled intersections, stop/yield-controlled in-

tersections [20], roundabouts, ramp metering, and so forth. The integration of signal-controlled intersections 
and ramp metering are summarized in Section 2.1.2 and 2.1.3. 

Route choice model Route choice models convert origin-destination (OD) demand into time-dependent 
path fows. Popular route choice models include dynamic user equilibrium [21, 22], dynamic system optimal 
[23, 24], adaptive routing, hybrid models [25], and discrete and logic choice models [26, 19, 27, 28]. For non-
recurrent trafc conditions, behavior models that characterize traveler’s behavior changes after incidents 
[29, 30] and prediction-correction models [31], are often built to simulate the time-dependent diverted trafc 
fow under pre-defned incident scenarios. The research gap lies in modeling route choices under unplanned 
incidents and providing a reasonable goodness of ft to feld trafc data. 

2.1.2 Ramp metering integration in network modeling 

The most common approach to model ramps with signal control is by supply-demand approach [32]. For 
a freeway on-ramp with a meter, the ramp metering rate (0 ≤ r(k) ≤ 1) is the ratio of metered fow rate 
over the on-ramp full fow capacity C, which clips the demand of upstream links [33, 34, 35, 36, 37, 38]. 
An alternative approach applies metering rate directly on the outfow that would leave a cell in absence of 
ramp metering [39]. The metering rate r(k) is given by the a ramp controller (e.g., fxed time [40], local [41], 
coordinated [42]) and updated depending on trafc conditions [43]. In [44], the state-space model for each 
segment is formulated as a subsystem with a discrete-time stochastic state-space model linear to the vector 
of ramp metering rates produced by the respective controller. 

2.1.3 Signal-controlled intersection in network modeling 

For a signal-controlled intersection, each turning movement is represented as a separate link model and an 
intersection node model permits a combination of movements that receive the right of way with a gate on 
the upstream link demands [32, 45, 46]. A pre-timed signal timing document (or given by a controller in 
real-time), defnes the group of permissible vehicle movements, cycle length, green split and ofset, and is then 
used by the intersection node as model input. A network trafc assignment with integrating signal control 
and path-based signal was presented in [47, 48]. A set of experiments was designed to compare the network 
performance under the path-based coordination scheme with no coordination and arterial-based coordination. 
In [45, 46], the signal control splits given by a controller is applied to the intersection cells to reduce maximum 
fow capacity. A linear DTA with signal control was then developed which obtains system-optimal fows as 
well as the lowest possible emission. A joint dynamic trafc routing and adaptive signal control model is 
proposed in [49]. The control strategy is tested and analyzed by microscopic trafc simulation with signalized 
intersections under diferent levels of demand. [50] optimized the timing of signalized intersections for each 
rate to eliminate the impacts of sub-optimal signal timing parameters on network performance. It should be 
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noted that due to the characteristics of gated signals at intersections, the network dynamics is often rendered 
into a nonlinear model with discrete states and inputs [51]. Continuous relaxations [52, 53, 54, 55, 56], 
surrogate methods [57, 58] and decomposed models [59] were proposed to convert the system dynamics to 
continuous regime or to a stack of smaller optimization problems. 

2.2 Integrating ramp metering and intersection signal control 

Ramp metering [60] and intersection signal control strategies can be categorized into pre-timed or trafc-
responsive methods [35]. Pre-timed signal timing plans [40] are optimized for particular times of the day, or 
a typical day of week and holidays based on constant historical trafc. Trafc-responsive control strategies 
can be further classifed as local and coordinated [60]. Local strategies make use of trafc measurements in 
the vicinity of a ramp or intersection to optimize ramp metering values or splits, ofsets, and cycle of signal 
timing plan. Coordinated strategies make use of measurements from an entire region of the network to 
control and synchronize all metered ramps and signalized intersections. Local strategies include rule-based 
controllers such as PID [41], neural network or fuzzy-logic based approaches [61], and reinforcement learning 
[62, 63]. Coordinated strategies involve interactions among signals and metered ramps through network 
fow models. Optimal control strategies or model-predictive control (MPC) are often used. Most Trafc 
Management Centers in the U.S. operate a coordinated signal system that relies on historically generated 
signal timing plans, coupled with real-time technology to manage day-to-day operations on the local network 
[1]. 

2.2.1 Ramp metering control 

Fixed-time ramp metering strategies are optimized of-line for particular times-of-day with constant historical 
trafc. Linear programming or quadratic programming problems [40, 64, 65] were formulated to solve for 
static on-ramp volumes which maximize the number of served vehicles while avoiding trafc congestion on 
the mainline. Due to the absence of real-time measurements, pre-timed ramp metering strategies cannot 
adapt to real-time trafc states (e.g., non-recurrent demand, incidents, etc.) and may lead to congestion or 
underutilization of the freeway [35]. 
The most commonly-used trafc-responsive approach for local ramp metering control is the feedback 

ALINEA controller [41, 66]. ALINEA is a feedback controller to track the diference between desired down-
stream occupancy (typically the critical occupancy) and current occupancy with ramp metering rate. Neural 
network [67] or fuzzy-logic based [61] methods are also applied. For coordinated ramp metering control strate-
gies, optimal control or MPC [68, 35, 69, 70] which embed a network fow model with ramp metering into 
the optimization are proposed. 
Recently, reinforcement learning (RL) methods are used for local and coordinated ramp metering control 

[71, 72, 73, 74]. A simulation environment with ramp metering control is built with system states, control 
inputs, rewards are defned beforehand. A neural network is updated to approximate the optimal control 
policy [63, 75, 76] which maps the system states to the control inputs to maximize the cumulative future 
rewards. However, the efectiveness of RL methods for real-world application is often questioned, since we 
lack a risk-free trafc environment for RL to exercise trial-and-error considering RL’s low sample efciency 
[77, 78]. In addition, RL algorithms make assumptions on system dynamics that may not necessarily align 
with ground truth, they may take quite long time to converge in practice. This prevents the deployment of 
RL in ramp metering practice. 

2.2.2 Signalized intersection control 

Classic trafc signal control methods include Webster method [79], GreenWave [80], Maxband [81], SOTL 
[82], Max pressure [83], SCOOT [84], etc. A detailed review of these methods can be found in [85]. These 
methods should be taken into comparison as baselines for MPC or RL methods. For coordinated signal timing 
control, several dynamic trafc assignment models with signal control [86, 87, 88, 89] have been proposed 
in the literature. Most of them are formulated as a mixed-integer programming (MIP) program due to the 
discrete nature of system states and control inputs. Continuous relaxation to the optimization problem are 
later presented [52, 53, 54, 55, 56]. As an alternative, multi-agent reinforcement learning (MARL) approaches 
[90, 91] are recently applied to scale coordinated signalized intersection control to large-scale network [92]. 
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A fully decentralized multi-agent actor-critic algorithm for adaptive trafc signal control is presented in [93]. 
[94] tackles the problem of multi-intersection trafc signal control, especially for large-scale networks, based 
on RL techniques and transportation theories. The results demonstrate its optimality and sample efciency 
in a real-world scenario with 2,510 trafc lights in Manhattan, New York City. 

2.2.3 Integrated corridor control: local synchronization 

Trafc corridor control optimizes trafc performances in both motorways and urban roads, typically in-
tegrating ramp metering control at the motorway entrances with signal control at road intersections [95]. 
Jointly optimizing both sub-systems in MPC is essentially hard. [36] proposed a solution by integrating 
actuated signal control and ALINEA through local synchronization. The framework controls ramp metering 
rate by ALINEA, but the meter is switched of when the intersection was congested and queue-overwrite was 
needed. Actuated control is used for signalized intersection with the maximum green of each phase adjusted 
according to the real-time trafc states. Similarly, in [96], ramp metering is controlled by UP ALINEA with 
queue-overwrite and an interchange signal optimization node which takes into account the meter rate and 
on-ramp queue length are solved to obtain green duration for each movement. A local synchronization trafc 
control scheme is proposed to manage queues at those critical locations through coordination of neighboring 
intersection trafc signals and freeway on-ramp meters. 
A decomposed corridor control framework is developed in [97] which features a linear programming 

algorithm for coordination of a freeway entrance ramp metering and an arterial intersection signal. This 
framework is comprised of three components: (1) intersection signal timing optimization which minimizes 
the gap between demand and supply of all movements; (2) a ramp metering control using ALINEA, and (3) 
coordination strategy of the two trafc control system which adjusts parameters in the objective function of 
intersection signal timing optimization. The framework is tested at Freeway SR87 near Taylor and analysis 
demonstrates the efectiveness of the approach with a net delay reduction by 7%. 

3 Research Gaps and Tasks 

Based on the literature review, the main research gaps lie in: 

• The dynamic network models integrating both ramp metering and local signalization exist, but are in 
lack of theories and models to be calibrated with large-scale multi-source data. Those data sets become 
increasingly available, just to name a few, 24/7 trafc counts, trafc speeds, weather conditions, vehicle 
classifcations, incidents, and Waze, could help better understand the dynamic O-D fow, and travel 
behavior under unplanned incidents. 

• The dynamic network models usually consider only standard passenger cars without explicitly modeling 
trucks, though the impact of trucks can be tremendous, particularly under non-recurrent incidents. 
Trafc data by vehicle classifcation can be used to better understand the travel behavior and trafc 
fow by cars and trucks, separately. Therefore, information dissemination and signal control may target 
a specifc vehicle class to improve system efciency. 

• Most of models for synchronizing ramp metering and local signalization are designed for a few adjacent 
intersections surrounding a ramp. The network impact of signal synchronization at the level of multiple 
ramps across multiple highways are not explicitly modeled. This is particularly important for managing 
a regional network, e.g. a TSMO system for a corridor or a network. 

• Most of control strategies for synchronizing ramp metering and local signalization are responsive or 
reactive. Control strategies reactive to detected incidents or real-time trafc fow, which could be too 
late to gain system improvement once the congestion is already occurring. A best way is to design 
control strategies in a predictive manner. Trafc can be predicted for each roadway segment 30-min 
in advance. Thus, engaging optimal control are designed to prevent substantial queuing proactively. 

In view of these research gaps, we propose to develop and assess the timing plans for both ramp metering 
and street signals to proactively prevent queuing, stemming from either recurrent congestion or from the 
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occurrence of incidents. Instead of explicitly modeling microscopic trafc fow dynamics for on-ramp and 
of-ramp impacts, the integrated ramp metering and signal control will be made based on a path-based 
dynamic network model which enables predictions of network impacts of recurrent and non-recurrent trafc 
through explicitly modeling path-level travel behavior. The architecture learns not only historical trafc 
patterns but also has the potential to be fne-tuned with real-time data. 
The project is divided into four major tasks: 

Task 1: Identify and process (pre-COVID) various data sources for in-depth data analytics 
and system control 

The following data are collected, processed, and integrated for network modeling and further development 
of control strategies in the TSMO 1 system, shown in Figure 1. 

• Transportation network data (GIS model) for the TSMO 1 area 

• Trafc counts by vehicle classes on local streets, intersections, and highways in the TSMO 1 area 

• Trafc speed data for highways in the region and major arterials within the TSMO 1 area 

• Existing signal timing schemes for selected intersections and planned ramp metering schemes 

• Management goals in the TSMO 1 area, such as queue limits on on-ramp and of-ramps, as well as on 
local streets 

• Historical incident data, including the geographical scope of the closures, lane closure confgurations, 
crashes, and past events that substantially infuence trafc in the TSMO 1 area 

Task 2: Establish a dynamic network model for the TSMO 1 system 

An open-source mesoscopic network analysis tool, MAC-POSTS (Mobility Data Analytics Center - Pre-
diction, Optimization, and Simulation toolkit for Transportation Systems)1 , developed by Mobility Data 
Analytics Center (MAC) at Carnegie Mellon University (CMU) is used to simulate the dynamic trafc fows 
over time in the TSMO 1 area. The TSMO 1 regional network, together with the construction plans and/or 
incidents, will be coded into MAC-POSTS. A dynamic network model for TSMO 1 is established that pro-
vides estimated 5-min origin-destination demand among all street segments that vary by time of day. The 
travel demands in the area are carefully calibrated using multi-day data sets collected in Task 1. With the 
estimated demand, the network model is then able to replicate the close-to-real-world trafc dynamics. It 
also has the capacity to model dynamic trafc evolution with the consideration of any other travel control 
and trafc demand management strategies than ramp metering. This model adopts state-of-the-art trafc 
models and is much more computationally efcient than other microscopic models that are extremely labor-
intensive to establish. It should be noted that this dynamic network model can be leveraged for MDOT to 
make optimal decisions on capital investment, incident management, trafc control, queue warnings, traveler 
advisory and other ITS strategies in general. 

Task 3: Develop control strategies for ramp metering and local signal synchronization 

Based on the dynamic network work developed in Task 2, two control strategies i.e., ALINEA and 
local signal synchronization (LSC), are used to control metering rates at diferent meters along the corridor 
and related arterials signals to minimize system-level congestion while ensuring equity among highways and 
arterials. While ALINEA operates on each ramp independently, the LSC takes into account the coordination 
of ramp meters and local signalized intersections. 

1https://github.com/maccmu/macposts 
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Figure 1: Location of TSMO 1 system 

Task 4: Evaluate the efectiveness of optimal corridor control for each scenario 

This task evaluates the TSMO 1 system performance before and after the deployment of corridor control 
under diferent scenarios. The performance metrics include total trafc delay, average travel time, emissions, 
energy use, vehicle-miles traveled, congestion attributed to highway or local roads, etc. This will be com-
pleted in a simulation environment but can serve as a benchmark of control system performance before feld 
deployment in the future. 
The rest of the report details the methodologies to complete these tasks and discusses the results and 

fndings. 

4 Data collection and processing 

TSMO is the Maryland Department of Transportation (MDOT) State Highway Administration (SHA)’s 
integrated approach to planning, engineering, operating, and maintaining existing facilities to maximize 
their full-service potential, and ultimately improve the safety, security, and reliability of the transportation 
network [98]. The TSMO 1 system, located in the western region of Baltimore, MD, encompasses two main 
east-west highway corridors: I-70 and US-40, as shown in Figure 1. Particularly, this area has multiple 
locations of signal control and ramp metering control points and the TSMO program provides sufcient data 
and infrastructure resources as a testbed for implementing/testing integrated corridor control strategies. 
This section briefy discusses the multiple data sources used in this project, including network topological 

data, trafc count data, trafc speed data, signal timing plans, and incident data. 

4.1 Network description 

To build the network, data from multiple sources is used and fused together. The original network topological 
data is from INRIX [99], while the link geometry information is acquired from WRA [100] as well as TIGER 
census road shapefles [101]. The number of lanes for the roads is extracted from Google Maps [102]. To better 
model the trafc dynamics within this area, we expand the modeling area by incorporating the surrounding 
areas which can also generate trafc demand using the TSMO 1 system. 
We further consolidate the network in order to make it more robust for dynamic trafc simulation and 

alleviate the computation complexity [103]. The original network data is trimmed to ensure there are no 
isolated nodes and links. In addition, some neighboring links with small lengths and the same speed limit are 
further combined, which can substantially reduce the network size. The OD connectivity is also examined 
in order to correctly estimate OD demand. Figure 2 depicts a part of the network before and after the 
consolidation. 
The fnal network model used for the subsequent analyses contains 1,509 links, 775 nodes, 124 ori-

gins/destinations, and 15,376 OD pairs, as shown in Figure 3. 
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(a) Before consolidation 

(b) After consolidation 

Figure 2: Illustration of network consolidation (blue line: link, green dot: node) 
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Figure 3: An overview of the TSMO network 

4.2 Trafc counts 

Trafc count data represents the vehicle counts passing by a certain location, and it is usually collected 
by loop detectors, tubes, or manual counting. In this project, the count data is provided by the MDOT. 
However, due to the scarcity of count data and in order to better calibrate our model, we collected the 
available counts from 2017 to 2021, which include both pre-COVID and COVID trafc conditions. In order 
to estimate a baseline (on a recurrent trafc day) travel demand, the count data excludes weekends, holidays, 
as well as any days afected by incidents such as accidents, road closures, or hazardous weather conditions. 
The count data is carefully examined, cleaned and matched to the links in the transportation network. 

Two vehicle types, i.e., cars and trucks, are counted separately in the data, which represent smaller private 
or ride-hailing vehicles, and larger freight trucks, respectively. In total, there are 153 locations with valid 
car and truck volumes, as shown in Figure 4. 

4.3 Trafc speed data 

Trafc speed data is provided by INRIX and obtained from RITIS [104] for the weekdays during 04/01/2017-
12/31/2017. Speeds of diferent vehicle types are measured separately, and hence both passenger car speeds 
and freight truck speeds are available. All the speed data is measured every 5 minutes of each day, and we 
average the data for diferent days in 2019 and aggregate the data to 15-minute intervals. There are a total 
of 537 links with valid car and truck speed measurements, as shown in Figure 5. 

4.4 Other data 

Besides the trafc counts and trafc speed data, we also obtained existing signal time plan for ramps and 
local intersections of interest from MDOT SHA, which can be integrated into the dynamic network model. 
Meanwhile, the incident data was acquired from WAZE [105], archived by MDOT SHA, which includes 
accidents, road closures, or hazardous weather conditions within this area. The incident data is used to 
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Figure 4: An overview of the trafc count locations 

Figure 5: An overview of the speed data (links with observed speed data are marked in red) 
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distinguish non-recurrent trafc data from recurrent one and thus identify the typical non-recurrent trafc 
fow patterns. 

5 Dynamic Network Modeling 

This section describes trafc dynamics modeling for the TSMO 1 network. 

5.1 Mesoscopic multi-class trafc fow model 

In this project, the trafc dynamics in the region are simulated in high spatio-temporal resolutions. The 
MAC at CMU develops an open-source multi-class dynamic network modeling tool, MAC-POSTS, which is 
capable of simulating network-wide trafc dynamics for any general networks consisting of freeways, arterials, 
and local streets [19]. MAC-POSTS adopts the state-of-art mesoscopic trafc fow model and can scale up 
to regional-level transportation networks. MAC-POSTS can be calibrated to replicate real-world trafc 
conditions and predict the impact of diferent trafc scenarios, such as tolling, work zones, events, and 
incidents. 
For modeling the heterogeneous vehicle fow on links, MAC-POSTS adopts a multi-class trafc fow 

model proposed in [106], which can model the fow dynamics consisting of multiple classes of vehicles with 
distinct fow characteristics. It pragmatically generalizes the CTM to multi-class heterogeneous vehicle fow. 
It includes the concept “physical space split” for each class, which is the fraction of physical space that 
each vehicle class occupies and uses to progress. Then the “perceived equivalent density” of each class is 
calculated, representing the equivalent density perceived by some vehicle class, if converting all other class 
vehicles to this class based on the space they occupied. At each loading time interval, vehicles move through 
cells following the relations between upstream demand and downstream supply computed using the “physical 
space split” and “perceived equivalent density”, as well as the fundamental diagram of each class. The main 
feature of this multi-class fow model is that it encapsulates three mixed fow regimes: one class can overtake 
the other class under free fow, overtaking occurs restrictively under semi-congestion, and no overtaking can 
occur under congestion. More details can be found in [106]. 
As for a node model for vehicular fow evolution through junctions, MAC-POSTS uses a relaxed version 

of the general node model introduced by [15]. For junction j, denote the set of all upstream links by A→j , 
and the set of all downstream links by Aj→. Also, denote the turning proportion from any upstream linkP 
a ∈ A→j to any downstream link b ∈ Aj→ at time t by ψa→b(t), where ψa→b(t) = 1, ∀a ∈ A→j . Theb∈Aj→ 

fux from any upstream link a ∈ A→j to downstream link b ∈ Aj→: 

da(t)ψa→b(t) 
qa→b = min{da(t)ψa→b(t), sb(t) P } (1)

da(t)ψα→b(t)α∈A→j 

where for any link a, the link demand da(t) and supply sa(t) can also be computed for deciding the number 
of vehicles to be moved through the junctions. 
Note that our model successfully includes the efect of queuing and spill-back in the dynamic network 

loading. Figure 6 depicts the implementation of the above link and node models, where the arrows represent 
how we move diferent classes of vehicles within the links and among diferent links through the nodes. 

5.2 Signal control modeling 

To properly account for trafc controls, the fow updating rules for the CTM in the dynamic network model 
are modifed to model the efects of signalized intersections and ramp meters on trafc fows. 

5.2.1 Signalized intersection 

In the original CTM, the relation of the fow q and the density k is in the form 

q = min(vk, qmax, u(kj − k)) (2) 
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Figure 6: Implementation of link and node models 

where q is thel link fow; qmax is the saturation fow rate; v is the free fow speed; k is the density; kj is the 
jam density; and u is the backward propagation speed. 
To model the fow updates at signalized intersections, the major modifcation is to make the maximum 

fow qmax in Eq. 2 time-dependent in accordance with the signal timing. ( 
qmax t ∈ green 

qmax(t) = (3)
0 otherwise 

where it switches between qmax (green phase) and zero, the end cell of an intersection approach will serve 
as a functioning signal, and the fow dynamics still approximate the kinematic wave model. The trafc at 
a typical intersection is grouped into movements that go through the conficting area alternatively during 
their green time. 

Signalized diverges 

The fow diverges at an intersection occur where the trafc stream on a single link splits into left turn, 
through, or right turn movements. In the modeling, the intersection behind the stop line is virtually enlarged 
to store the turning vehicles for waiting to be serviced by certain phases. Denote the end cell Cj of a links 
lj approaching a signalized intersection, and the fow conservation equation is: X X 

m m ns(t + 1) = n (t) + ys−1,s(t) − y (4)s s,s+1(t) 
m=L,R,T m=L,R,T 

where the superscripts of L, R, and T denote the left turn, right turn, and through movement, respectively; 
mns(t) denotes the number of vehicles in cell s at time interval t; n (t) denotes the number of vehicles unders 

movement m in cell s at time t; ys−1,s(t) is the number of vehicles moving from cell s − 1 to cell s at time 
minterval t; ys,s+1(t) is the number of vehicles under movement m moving from cell s to cell s + 1 at time 

interval t; The cell Cj is the preceding cell of Cj . The fux into and out of cell Cj are:s−1 s s 

ys−1,s(t + 1) = min{ns−1(t), Qs,max, δs(Ns(t) − ns(t))} (5) 

m m m ys,s+1(t + 1) = min{ns (t), qs,max(t), δs+1(Ns
m 
+1(t) − ns+1(t))},m = L, R, T (6) 
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where Qs,max is the maximum number of vehicles that can fow into cell s during time interval t; Ns(t) is the 
maximum number of vehicles that can cell s can hold at time interval t; qs,max(t) is the maximum number 
of vehicles that can fow out of cell s during time interval t, which is controlled by the signal timing plan; 
Ns

m 
+1(t) is the storage capacity for vehicles under movement m. 

Signalized merges 

The fow updating rule for the signalized merge is 

ns+1(t + 1) = ns+1(t) + ys,s+1(t) − ys+1,s+2(t) (7) 

where s + 1 is the start cell index for the downstream link, i.e., the frst cell of the downstream link that 
receives the stream with cell index of s serviced by the signal. The incoming fux ys,s+1(t) is determined by 
the signal timing plan: 

ys,s+1(t) = min{ns(t), qs,max(t), δs(Ns(t) − ns(t))} (8) 

while the outgoing fux ys+1,s+2 is computed by the normal CTM cell. 

5.2.2 Metered freeway on-ramp 

Modeling ramp meters only needs to deal with the metering rate Rt at time t. The updating rule at a 
freeway merge section is as follows : 

Dt = min(DR
t , Rt , qmax) (9)R 

Dt = Dt 
M + Dt (10)R 

St = min(St (11)M , D
t) 

Dt 

f t M St = (12)M Dt 

Dt 

f t R St = (13)R Dt 

where Rt is the ramp metering rate; Dt is the ramp demand at time t; Dt is the demand upon the beginning R 
cell of the link downstream of the ramp; Dt demand on mainline competing with the ramp demand; St 

M M 
supply of the beginning cell of the downstream link; St is the total service fow rate; f t is the outfow fromR 
ramp; and f t is the outfow from upstream mainline.M 
The modifcation is twofold: (i) the ramp demand to the merge point is bounded not only by actual 

demand and the fow capacity, but also by the metering rate executed at that time step (Eq. 9); (ii) in the 
overfow or congestion situation, fow from the freeway mainline and the ramp will be distributed to the 
downstream link proportionally to their relative demand (Eq. 11-13). 

5.3 Model calibration 

Before applied to practical applications, the dynamic network model needs to be calibrated in order to 
approximately reproduce the actual trafc conditions. To this end, multiple data sources collected in Section 4 
are used and a data-driven calibration framework is adopted to calibrate the model. 
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5.3.1 Multi-class dynamic OD demand estimation 

This calibration is referred to as the multi-class dynamic OD demand estimation (MCDODE) problem, which 
aims to estimate the time-dependent vehicle demand for each OD pair in the study period. Diferent from the 
traditional DODE problem, which typically deals with single-class vehicle demand, our MCDODE framework 
is able to diferentiate and estimate demands for multi-class vehicles, which enables further high-granularity 
trafc simulation. 
The MCDODE is formulated as an optimization problem aiming to estimate travel demand to minimize 

the discrepancy between the observed data and the simulation results (i.e., trafc count and travel speed). 
The objective function is as follows: 

min L =L1 + L2 + L3 + L4 
{qcar,qtruck} 

′ ∥2 =w1(∥ycar − ycar 2) 
′ (14)+ w2(∥ytruck − ytruck∥22) 
′ ∥2+ w3(∥zcar − zcar 2) 
′ + w4(∥ztruck − ztruck∥22) 

′ where qcar and qtruck are the car and truck demands, respectively; ycar and ycar are the observed and 
′ estimated car fows, respectively; y and ytruck are the observed and estimated truck fows, respectively; truck 

′ ′ z and zcar are the observed and estimated car travel times, respectively; z and ztruck are the observed car truck 
and estimated truck travel times, respectively; w1, w2, w3, and w4 are the weights to balance the fve terms 
in the optimization. 
More details of the calibration framework and the computational-graph-based solution method are omit-

ted here, and interested readers are referred to our previous studies [19]. 

5.3.2 Calibration results 

Simulated trafc conditions are calibrated to match the observed morning peak hour (5 AM - 12 PM) trafc 
conditions. MAC-POSTS simulates the movements of all vehicles in the studied network with high spatial 
(around 50 meters) and temporal (5 seconds) resolution. As with the information provided, we assume 60% 
of cars are adaptive to the trafc information, while 40% of cars and all trucks stick to the pre-scribed 
routes. Note that MCDODE aims to estimate the baseline travel demand on a recurrent trafc day. As for 
non-recurrent trafc patterns, time-varying travel demand in the TSMO 1 regional network is assumed to be 
the same as the baseline scenario. However, route choices of trips during construction/incident will change 
in response to the level of congestion at various parts of the network evolving by the time of day. 
Figure 7 presents the comparison between simulated 5-min trafc volumes and observed 5-min trafc 

volumes, in which the vertical axis is the simulated counts and the horizontal axis is the observed counts. 
The coefcient of determination R2 , as a measure of goodness of ft, is 0.730 and 0.924, for the car fow and 
truck fow, respectively. The calibration results are considered to be reasonably well for such a large-scale 
network, advantageous than many other studies attempting to replicate real-world trafc conditions using 
network simulations. The discrepancy between the observed fow and simulated fow is attributed to several 
factors, of which the main reasons are twofold: O-D connectors in the peripheral areas of the network can 
direct fow from/to using links with volume counters, but they do not necessarily infuence the route choices 
of trafc across the regional network (this is the case of many dots representing a overly small or overly large 
observed values); the models of trafc fow dynamic, link/node capacity and route choices can be improved 
to represent transportation systems more realistically. The former problem can be addressed by carefully 
generate O-D connector(s) in regards to counter locations, whereas the latter problem can be alleviated by 
implementing more sophisticated trafc models. Both will be further addressed in future research. 
Overall, our model shows relatively good performance in capturing the trend of the observed data and 

this indicates that the proposed regional model can refect the actual trafc dynamics in the whole TSMO 
1 area to some extent. The calibrated model lays the ground for the following development and assessment 
of diferent control strategies. 
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Figure 7: Trafc count calibration (left: car count, right: truck count) 

6 Control Strategies 

This section describes two control strategies developed to control metering rates at diferent metering loca-
tions along the corridor and related local arterial signals to minimize system-level congestion while ensuring 
equity among highways and arterials. 

6.1 ALINEA 

ALINEA is a well-known trafc-responsive metering algorithm [41] which tracks the diference between 
desired downstream occupancy (typically the critical occupancy) and current occupancy with ramp metering 
rate. Mathematically, it can be formulated as follows: 

r(t) = r(t − 1) + KR(Oc − Oout(t)) (15) 

where r(t) is the metering rate for the current time step and r(t−1) is the metering rate in the previous time 
step, Oc is the target occupancy to be maintained which is usually slightly lower than the critical density 
(corresponding to the capacity fow), and Oout(t) is the current occupancy. KR is the only parameter to be 
adjusted in implementation. 
Previous research has shown that ALINEA control can reduce total travel time signifcantly [60, 107, 

108, 109]. But it is for an isolated ramp only, lacking consideration of coordination among ramp meters and 
local signalized intersections. 

6.2 Local synchronization control 

Congestion that originates at closely spaced highway junctions and intersections, such as freeway interchange 
areas, could spread and signifcantly worsen the performance of the entire transportation system. To address 
this issue, a local synchronization control (LSC) scheme has been developed to coordinate the signal control 
system on arterials and the ramp metering control on ramps, efectively alleviating congestion. 
The LSC scheme efectively manages queues at critical locations by coordinating neighboring intersection 

trafc signals and freeway on-ramp meters, whenever they are available. Its primary objective is to reduce 
the infux of trafc into heavily congested sections while increasing the outfow of trafc. By doing so, the 
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scheme prevents queues from developing into the catalysts for gridlock, thereby signifcantly improving the 
overall performance of the transportation system. 
The LSC scheme is illustrated in Fig. 8. The LSC focuses on closely monitoring trafc operations, 

specifcally the formation of vehicle queues on critical links. These queues, if not promptly addressed, can 
escalate into local gridlock or even network-wide congestion. When the LSC system identifes the possibility 
of queue spillback, it takes over the regular trafc operations and implements synchronized control actions 
aimed at efciently discharging the queued vehicles while concurrently reducing the infow of trafc. During 
this period of LSC activation, the primary objective is to clear the critical queue. Once the queue has been 
successfully managed and cleared, normal trafc operations are resumed, allowing the system to function as 
usual. 

Figure 8: Flowchart of local synchronization control scheme [20]. 

Road sections that commonly beneft from synchronization treatment are typically short in length and 
have signifcant trafc volumes converging from one or both ends. These sections include on-ramps that 
are controlled by either on-ramp meters, trafc signals regulating the infow of trafc, or both. They also 
encompass of-ramps that lead to signalized intersections, as well as short road segments that connect two 
consecutive trafc signals. These types of road sections are commonly encountered in freeway interchange 
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areas. 
Specifcally, for a metered on-ramp, a queue detector is positioned at the upstream end of this on-ramp. 

When queue spillback is detected, the synchronization operation is activated, implementing the following 
steps: 

• Disabling the current meter: The meter that regulates the fow of vehicles onto the ramp is turned 
of. This allows ramp trafc to freely merge with the trafc on the freeway, without any restrictions 
or delays. 

• Reducing maximum green time of feeding phases: The duration of the green signal for the trafc signals 
controlling the lanes that feed into the on-ramp is decreased. By reducing the maximum green time, 
the aim is to prioritize the discharge of vehicles from the congested ramp, thereby alleviating the queue 
and preventing further spillback. 

These measures work in tandem to synchronize the trafc fow and alleviate congestion on the metered 
on-ramp. By temporarily suspending the metering process and adjusting the signal timings of the feeding 
phases, the system aims to efciently clear the queue and restore smooth trafc operations. 
As for the normal operations in Fig. 8, it just uses ALINEA to calculate the metering rate. 
Overall, the LSC scheme has three important factors: 

• Queue detector position. The positioning requires the observation or knowledge of how local congestion 
evolves during the study period. In the established dynamic network model, queue detection is modeled 
as tracking the occupancy changes at the detection locations. Particularly, if the trafc fow dynamics 
are modeled using the CTM, the occupancy will be naturally emulated as the ratio of the number of 
vehicles to the holding capacity at the location of interest. 

• Virtual cycle of the synchronization operation. The virtual cycle specifes the duration of synchroniza-
tion operations, which continues until the virtual cycle is completed. If the queue persists, another 
virtual cycle will be initiated, or normal operations will resume if the queue is cleared. The length of 
the virtual cycle can be determined in conjunction with queue detection and is set equal to the number 
of intervals required for the queued trafc to traverse the entire congested section in the CTM. 

• Adjustment factor of synchronization intensity. The adjustment factor governs the extent to which 
the afected phases are metered, controlling the duration of the discharging phase increase and the 
decrease of the feeding phases. Its purpose is to prevent potential negative impacts resulting from an 
overly aggressive LSC strategy, such as excessively reducing the duration of the feeding phases to their 
minimum green time. 

7 Experiments 

This section examines the proposed control strategies on two locations of I-70 highway. Those two locations 
are selected in regards to their recurrent trafc congestion in the AM peak. The congestion is primarily 
attributed to merging trafc fow from its on-ramp. Consequently, implementing ramp metering may be 
able to allieve the merging confict and thus has great potential to reduce I-70 congestion. For each location, 
three cases of calibrated trafc demand are tested: (1) no ramp metering control (i.e. baseline), (2) ALINEA 
control and (3) LSC control. Simulations with various demand and lane closure caused by incidents are also 
conducted to test the efectiveness of control strategies under occurrence of potential congestion and incidents. 
Results of diferent scenarios are summarized and the best control strategy is identifed based on metrics 
regarding both trafc conditions and environmental impacts. 

7.1 Scenarios set-up 

The location A is on the merging ramp connecting Marriottsville Rd northbound to I-70 eastbound (shown as 
the link between node 3165 and 3160 in Figure 9). The local signalized intersection (Resort Road/Marriottsville 
Road) on the upstream of ramp is also considered. 
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Figure 9: Illustration of the location A on I-70 highway 

The location B is the ramp connecting US-29 southbound to I-70 eastbound (shown as the link between 
node 3143 and 3145 in Figure 10). Similarly, a local signalized intersection on its upstream is considered. 

Figure 10: Illustration of location B on I-70 highway 

For each location, we set up three scenarios to investigate the impact of diferent ramp metering strategies 
on local trafc: (1) baseline: no ramp metering control, (2) ALINEA control; and (3) LSC control. In our 
simulations, 40% of cars stick to the prescribed routes and 60% perform adaptive routing due to the change 
of trafc conditions, while all trucks use prescribed routes. This is learned as part of the baseline network 
simulation calibration. The aggregated trafc metrics within the local roads around the controlled ramp 
and downstream roads are used to analyze the trafc impacts, including vehicle hours traveled (VHT), also 
known as total travel time, vehicle miles traveled (VMT), average travel time, average travel distance, average 
vehicle delay which is the average waiting time at intersections for two vehicle classes, and environmental 
impacts such as fuel use, CO2, NOX, etc. Selected roads used for measure system performance for each 
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control location are highlighted in yellow in Figures 11 and 12. 

Figure 11: Selected links for location A 

Figure 12: Selected links for location B 

For the control strategy with the best performance, we set up fve scenarios for each location to test its 
robustness under diferent demand levels and a possible occurrence of incidents. Four of the fve scenarios 
use calibrated demand multiplied by scalars ranging from 0.9 to 1.2. The other scenario uses calibrated 
demand with lane closure caused by hypothetical incidents on I-70. The incident occurs on the eastbound I-
70 between the intersections Marriottsville Rd/I-70 and US-29/I-70, resulting in the reduction in the number 
of lanes from 2 down to 1 in the eastbound direction from 7:50 AM to 8:20 AM and the lane reopens after 
8:20 AM. 
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7.2 Results of scenarios with calibrated demand 

Table 1 and 2 present the aggregated metrics of diferent scenarios with the calibrated demand. The evalu-
ation in each location considers roads near the controlled ramp of interest, shown in Figures 11 and 12. The 
impact to other areas is generally negligible. 
For location A, both the ALINEA and LSC methods show the ability to substantially reduce average 

travel time and VHT for both vehicle classes. ALINEA reduces VHT by 10% and average travel time by 5%, 
whereas LSC reduces VHT by 15% and average travel time by 9%. VMT would not be reduced as much since 
travelers are likely to take deviated routes due to ramp metering. Overall, LSC has a better performance in 
reducing overall congestion since it avoids severe congestion on the ramp and its spill over to local streets. 
Additionally, both methods efectively reduce fuel use and emissions for cars, ranging from 7% to 10%. 
However, the change in metrics for trucks is small before and after the implementation of ramp metering 
control. This can be attributed to the dominance of cars in the trafc fow and their higher sensitivity to 
the control strategies implemented. LSC outperforms ALINEA in terms of a greater reduction in average 
travel time, VHT and VMT. However, when it comes to emissions, both ALINEA and LSC exhibit similar 
performance without signifcant diferences. 
For the location B, similar results can be found that both the ALINEA and LSC methods are able to 

reduce average travel time compared to the no control scenario, and LSC outperforms ALINEA in terms of 
achieving a greater reduction in average travel time and delay for both vehicle classes. ALINEA does not 
necessarily reduce VHT or VMT, implying its impact to trafc mitigation is minimal in this case. However, 
LSC is consistently efective in managing trafc, reducing average travel time by 10% and average travel 
time by 5%. Similar to the results in the location A, LSC can efectively reduce fuel use and emissions, 
raging from 5% to 9%, outperforming ALINEA. 
Table 3 summarizes the average vehicle delay on the ramp and (immediate) downstream highway segment 

for the two locations. It can be seen that ALINEA causes a larger average delay on the ramp and LSC is able 
to efectively balance the delay on both controlled ramp and downstream highway, ensuring equity among 
highways and arterials. 

7.3 Results of scenarios with various demand level and incident efect 

After identifying LSC as the preferred control strategy, we test the efectiveness and sensitivity of LSC to 
various demand levels and the possible occurrence of an incident on I-70. Four scenarios are created for each 
location: (1) reduced demand (scalar of 0.9), (2) original calibrated demand (scalar of 1.0), (3) increased 
demand (scalar of 1.1), (4) increased demand (scalar of 1.2); and (5) calibrated demand with an incident. 
The aggregated metrics are summarized in Table 4 and 5. 
The results show that for both two locations, when demand increases, both trafc and environmental 

impact metrics remains relatively unchanged, implying LSC is able to accommodate demand within a rea-
sonable range. Even under a major incident on I-70, the average travel time does not change as much for 
both cars and trucks, ensuring a robust and satisfactory performance of LSC with diferent levels of demand 
and incidence occurrence. It is worth noting that the average delay and travel time with the selected areas 
(Figures 11 and 12) tend to increase slightly because vehicles may deviate to use this selected area as a result 
of its improved performance. This deviation is more profound when a incident occurs on I-70, especially for 
location B. 

8 Conclusion 

This project develops control strategies for ramp metering and local signal synchronization with the estab-
lishment of a simulation-based dynamic network model for Maryland’s TSMO 1 sytem. First, a mescoscopic 
network simulation model is developed with a signal control module for coordinated signalized intersec-
tions and ramp metering. Second, multi-source data are collected and a data-driven calibration framework 
is adopted to calibrate the dynamic network model. The result demonstrates the calibrated model has a 
satisfactory accuracy to reproduce the actual trafc conditions. Mescoscopic network simulation is also com-
putationally efcient to performance. One run of all 250,000 vehicles across 15,376 O-D pairs takes less than 
3 minutes on a regular i-5 desktop computer. Furthermore, two control strategies are developed and tested 
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to control metering rates at diferent ramps along the I-70 corridor with the objective of minimizing system-
level congestion ensuring equity among highways and arterials. Last but not least, several scenarios with 
diferent demand levels, control strategies and incident occurrence are created to examine the efectiveness 
and robustness of the proposed control methods. Results show that the LSC method outperforms ALINEA 
in terms of achieving a greater reduction in average travel time, VMT and VHT, and ensuring a good bal-
ance of vehicle delay on both ramps and immediate downstream highway segments. It is recommended to 
Maryland Department of Transportation to consider coordination among ramp metering and localized signal 
control to achieve the best performance and equity. The mesoscopic network simulation model developed for 
this project can also be quickly adopted for assessing and optimizing other ITS strategies as well, such as 
trafc routing, traveler information provision, tolling, HOV lanes, queue warning and incident management. 

21 



22 

control 
policy 

vehicle 
class 

trips 
VHT 
(hour) 

VMT 
(miles) 

Average travel 
time (min) 

Average travel 
distance (miles) 

fuel 
(gallon) 

CO2 
(kg) 

HC 
(kg) 

CO 
(kg) 

NOX 
(kg) 

No control 
car 
truck 

32,076 
3,471 

910.07 
129.57 

61,977.15 
9,117.63 

1.7 
2.24 

1.93 
2.63 

2,341.50 
536.86 

20,808.95 
4,771.11 

36.18 
10.61 

88.81 
65.37 

72.24 
61.37 

ALINEA 
car 
truck 

30,483 
3,471 

821.01 
126.44 

58,160.07 
9,164.72 

1.61 
2.19 

1.9 
2.64 

2,197.80 
540.17 

19,532.15 
4,800.52 

33.58 
10.57 

83.44 
66 

67.75 
61.6 

LSC 
car 
truck 

29,392 
3,404 

764.07 
122.47 

54,964.15 
8,953.96 

1.55 
2.16 

1.87 
2.63 

2,085.90 
529.13 

18,537.70 
4,702.44 

31.55 
10.27 

79.22 
64.9 

64.14 
60.21 

Table 1: Metrics for three scenarios on location A 

control 
policy 

vehicle 
class 

trips 
VHT 
(hour) 

VMT 
(miles) 

Average travel 
time (min) 

Average travel 
distance (miles) 

fuel 
(gallon) 

CO2 
(kg) 

HC 
(kg) 

CO 
(kg) 

NOX 
(kg) 

No control 
car 
truck 

38,672 
3,599 

1,043.61 
135.69 

70,753.94 
9,644.81 

1.62 
2.26 

1.83 
2.68 

2,684.78 
569.15 

23,859.66 
5,058.02 

41.03 
11.11 

101.83 
69.75 

82.63 
64.88 

ALINEA 
car 
truck 

40,050 
3,547 

1,069.88 
129.69 

71,806.56 
9,001.69 

1.60 
2.19 

1.79 
2.54 

2,701.71 
528.17 

24,010.06 
4,693.85 

42.05 
10.56 

102.15 
63.96 

83.41 
60.41 

LSC 
car 
truck 

36,631 
3,612 

937.16 
126.18 

65,738.94 
9,020.51 

1.54 
2.10 

1.79 
2.50 

2,491.11 
532.19 

22,138.49 
4,729.53 

37.85 
10.39 

94.62 
65.15 

76.71 
60.64 

Table 2: Metrics for three scenarios on location B 

location control method average delay of ramp (5 sec increments) average delay of downstream highway (5 sec increments) 

A 
ALINEA 
LSC 

7.07 
5.04 

5.19 
5.31 

B 
ALINEA 
LSC 

6.11 
5.95 

5.01 
5.25 

Table 3: Comparison of average vehicle delay on the ramp and downstream highway 
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scenario 
vehicle 
class 

trips 
VHT 
(hour) 

VMT 
(miles) 

Average travel 
time (min) 

Average travel 
distance (miles) 

fuel 
(gallon) 

CO2 
(kg) 

HC 
(kg) 

CO 
(kg) 

NOX 
(kg) 

demand x0.9 
car 
truck 

28,580 
3,269 

796.18 
119.69 

56,291.15 
8,655.18 

1.67 
2.20 

1.97 
2.65 

2,124.71 
509.84 

18,882.26 
4,530.97 

32.53 
10.00 

80.74 
62.21 

65.57 
58.19 

demand x1.0 
car 
truck 

29,392 
3,404 

764.07 
122.47 

54,964.15 
8,953.96 

1.55 
2.16 

1.87 
2.63 

2,085.90 
529.13 

18,537.70 
4,702.44 

31.55 
10.27 

79.22 
64.9 

64.14 
60.21 

demand x1.1 
car 
truck 

29,473 
3,688 

793.20 
133.39 

56,896.43 
9,732.51 

1.61 
2.17 

1.93 
2.64 

2,156.96 
574.97 

19,168.94 
5,109.73 

32.70 
11.17 

81.94 
70.49 

66.38 
65.45 

demand x1.2 
car 
truck 

30,156 
3,888 

797.29 
141.38 

57,265.51 
10,329.25 

1.59 
2.18 

1.90 
2.66 

2,170.77 
610.29 

19,291.65 
5,423.60 

32.92 
11.86 

82.46 
74.83 

66.81 
69.46 

demand x1.0 
with an incident 

car 
truck 

27,808 
3,486 

849.14 
144.47 

57,657.69 
9,777.55 

1.83 
2.49 

2.07 
2.80 

2,167.35 
570.70 

19,261.28 
5,071.77 

33.83 
11.72 

81.87 
68.16 

66.90 
65.50 

Table 4: Metrics for LSC method on location A 

scenario 
vehicle 
class 

trips 
VHT 
(hour) 

VMT 
(miles) 

Average travel 
time (min) 

Average travel 
distance (miles) 

fuel 
(gallon) 

CO2 
(kg) 

HC 
(kg) 

CO 
(kg) 

NOX 
(kg) 

demand x0.9 
car 
truck 

36,734 
3,320 

975.46 
118.40 

67,917.76 
8,395.00 

1.59 
2.14 

1.85 
2.53 

2,570.94 
494.55 

22,847.92 
4,395.07 

39.20 
9.70 

97.62 
60.47 

79.21 
56.44 

demand x1.0 
car 
truck 

36,631 
3,612 

937.16 
126.18 

65,738.94 
9,020.51 

1.54 
2.10 

1.79 
2.50 

2,491.11 
532.19 

22,138.49 
4,729.53 

37.85 
10.39 

94.62 
65.15 

76.71 
60.64 

demand x1.1 
car 
truck 

42,297 
3,800 

1,225.66 
145.29 

79,381.78 
9,911.23 

1.74 
2.29 

1.88 
2.61 

2,975.91 
576.19 

26,446.88 
5,120.61 

46.92 
11.83 

112.58 
68.68 

92.17 
66.52 

demand x1.2 
car 
truck 

43,270 
4,006 

1,290.65 
162.42 

81,165.09 
10,603.13 

1.79 
2.43 

1.88 
2.65 

3,011.52 
611.25 

26,763.36 
5,432.17 

48.88 
13.01 

113.14 
71.66 

93.55 
70.87 

demand x1.0 
with an incident 

car 
truck 

38,561 
3,523 

1,027.97 
123.91 

70,485.65 
8,857.39 

1.60 
2.11 

1.83 
2.51 

2,668.95 
522.96 

23,718.95 
4,647.53 

40.83 
10.18 

101.27 
64.16 

82.22 
59.57 

Table 5: Metrics for LSC method on location B 
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