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ABSTRACT
Parks are integral to the success of any vibrant city and have long been touted as engines of eco-
nomic growth that also improve public health, clean the air, manage stormwater, and enable patrons
to commune with nature while enjoying a rich set of social experiences within their community.
Today, 165 parks are maintained in Pittsburgh ranging from small neighborhood parks to large
greenways. Unfortunately, the financial constraints of the city have challenged its ability to main-
tain its parks; Pittsburgh parks are underinvested in comparison to both regional and aspirational
peers. A key challenge for local governments is to develop and maintain parks and other public
goods in ways that equitably distribute benefits to health, well-being, livability, accessibility to
essential services, and the economy. This is critical because in areas where essential services are
unevenly distributed across a community, parks and greenways often lead to a bifurcation: they
either serve as barriers that result in social polarization, or serve as enabling public facilities that
connect citizens in under-resourced areas to their wider communities and services; the polarizing
or unifying nature of parks is heavily dependent on the configuration and health of surrounding
mobility services. The overarching goal of this work is to explore urban park use and correlates of
use (measured by time-dependent accessibility) in order to bring to light ways in which city offi-
cials and planners can quantify data-driven returns on potential investments to parks and mobility
services and implement changes that will more equitably distribute these benefits.

Keywords: accessibility, emerging mobility, micromobility, mobility service, parks, reliability
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INTRODUCTION
Parks are integral to the success of any vibrant city and have long been touted as engines of eco-
nomic growth that also improve public health, clean the air, manage stormwater, and enable patrons
to commune with nature while enjoying a rich set of social experiences within their community
(1, 2). High-quality park systems attract employers, accelerate the pace of commercial develop-
ment, and generate new tax revenue.

Pittsburgh has experienced a severe decline in population and economic opportunity over
the past 60 years largely due to the decline and relocation of industrial manufacturing. Pittsburgh’s
prosperity during the early-to-mid 20th century allowed the city to invest extensively in parks
leaving a legacy that benefits the community today. By the late 1960’s, however, the economy
began to contract resulting in population decline (0.67 million in 1950 to 0.30 million in 2019).
Erosion of the city tax base also led to decades of underinvestment in infrastructure, including park
facilities. Today, 165 parks are maintained in Pittsburgh ranging from small neighborhood parks
to large greenways. Evidence of the distribution of parks is that approximately 92% of Pittsburgh
residents live within a half-mile walk of a park (3). Despite having better access to open space than
their regional peers, Pittsburgh parks are underinvested in comparison to peers (3). The dwindling
resources available for maintenance and upkeep, coupled with aged park and recreation facilities,
have resulted in deteriorating conditions. Despite efforts by the City’s Department of Public Works
to do more with less, today more than half of all parks in Pittsburgh are in fair or poor condition;
more than 95% of 3,400 Pittsburgh residents interviewed believe the parks need more resources (4).
In 2019, Pittsburgh residents passed a Parks Tax referendum that amended the City of Pittsburgh
Home Rule Charter to establish a trust fund for improving Pittsburgh parks.

To help inform the allocation of the Park Tax funds (approximately $10 million/year), the
Pittsburgh Parks Conservancy (PPC) developed the Restoring Parks Plan (5), which is a publicly
supported and transparent equitable investment strategy encompassing all park and recreation sites
within Pittsburgh. The aim of the Restoring Parks Plan is to upgrade and modernize parks and
recreation facilities and programs throughout Pittsburgh by investing in four key budget areas:
maintenance, rehabilitation, capital projects, and programming. In achieving these goals, the PPC
is committed to transparency (i.e., clear and open budgeting), spending equitably across the city
(i.e., prioritizing the parks and communities that need it most), and citizen input and guidance (i.e.,
public accountability to ensure goals are accomplished). To meet these commitments, the PPC
developed a Park Scoring Database (6) that comprises the first-ever comprehensive inventory of
all park and recreation sites, assessment information on park needs, community needs, and public
priorities, as well as extensive demographic, health, community condition, and ecological infor-
mation. Community input was collected over the course of 240 listening tours that were conducted
across 70 Pittsburgh neighborhoods. In addition to feedback collected during the tours, 3,400 sur-
veys were administered to determine public priorities for park investment. Leveraging the Park
Scoring Database, the PPC aims to evaluate allocation scenarios and map out investment strategies
for the City’s parks, which will provide a quantifiable backdrop for the myriad of vital qualifiers
for improving public health, access, and community investment, all of which are “people centric.”
Despite the wealth of community research tools and information provided by the Restoring Parks
Plan, the PPC has struggled to make targeted investments because they are unable to quantify the
performance and accessibility of park facilities. Thus, a key aim is to 1) quantitatively measure and
integrate the performance of parks into the Park Scoring Database, and 2) develop and maintain
parks in ways that equitably distribute benefits. In this sense, they seek to make decisions based
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on the ability of populations to both access and benefit sufficiently from park resources.
The historical public facility management paradigm ignores the value of parks and casts

it as a problem of achieving equity based on static spatial distribution metrics. Existing planning
and maintenance decisions aim to evenly distribute parks among populations spatially with little
to no consideration of the location or measurable quality of mobility services that link populations
to parks (7–13). There is, however, a silver lining when the narrative is shifted to a more dynamic
view of accessibility from a transportation perspective. The proliferation of shared transportation
modes and micromobility infrastructure has changed the way that people travel within urban areas.
People are no longer constrained to riding their personal vehicle or using the fixed-schedule public
transit network to reach their final destination. Rather, they may use emerging mobility options
to construct convenient trips from end-to-end. By harnessing the full extent of the multimodal
network, people can access a larger set of essential resource destinations, such as parks (other
examples include grocery stores, work places, hospitals etc.).

The overarching aim of this work is to 1) integrate privacy-preserving cyber-physical sys-
tem technologies that measure park usage into Pittsburgh parks (i.e., quantitatively measure and
integrate the performance of parks into the Park Scoring Database), 2) develop a novel multimodal
network modeling framework that accounts for five major factors across all travel modes: day-to-
day average travel time, price, reliability represented by day-to-day travel time variability, safety
risks, and discomfort (i.e., quantify community accessibility to parks across time and space), and
3) quantify the total system performance through a probabilistic spatio-temporal network reliabil-
ity analysis in which the failure limit state is defined as any subset of a community’s population not
being able to access and/or benefit sufficiently from its surrounding parks. Note that this is a func-
tion of both park performance and accessibility. For the purpose of making optimal urban planning
and investment decisions, through this framework we will be able to simulate the effects of spe-
cific park and mobility service maintenance, rehabilitation, and capital projects on the probabilistic
health and weights of network nodes and linkages, as well as the connectivity of the network. In
other words, this framework enables decision makers to understand which mobility options have
the potential to improve accessibility, gain insights into spatio-temporal mobility disparities across
different populations with different needs, and incorporate real-time metrics into their Park Score
database to assess the need for asset improvements.

This report is structured as follows. First, a novel multimodal network modeling framework
is presented. The design of the multimodal network, assignment of travel costs, and the process
for measuring accessibility between an O-D pair is presented. The proposed method is demon-
strated using a subset of the transportation network in Pittsburgh, PA, and the results of the study
are discussed. Second, a framework for the probabilistic assessment of how well subpopulations
access (as defined in the subsequent section) and benefit from the parks in and around their com-
munities is presented. Third, the development of a privacy-preserving sensing architecture used to
measure the usability of walkable/bikable paths in parks is presented. The report concludes with
an overview of the findings, conclusions, and recommendations.

SECTION 1: MEASURING TIME-DEPENDENT ACCESSIBILITY WITH EMERGING
MOBILITY OPTIONS
The proliferation of shared transportation modes and micromobility infrastructure has changed
the way that people travel within urban areas. People are no longer constrained to riding their
personal vehicle or using the fixed-schedule public transit network to reach their final destination.
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Rather, they may use emerging mobility options to construct convenient trips from end-to-end. By
harnessing the full extent of the multimodal network, people can access a larger set of essential
resource destinations, such as parks (other examples include grocery stores, work places, hospitals
etc.).

As the mobility landscape evolves, several cities including Austin, Boston, and Portland
have developed plans to make their multimodal transportation networks more efficient, affordable,
reliable, safe, and equitable, all with the goal of improving accessibility to locations that provide
goods and services (14–16). Ensuring successful implementation requires a way for the cities to
measure the ability of different communities to access these points of interest. To address this
measurement challenge, the first part of this project develops a multimodal network modeling
framework that quantifies time-dependent accessibility in a transportation network. The mobility
options included are personal vehicle, transportation network companies (TNC), car share, public
transit, personal bike, bike share, scooter, and walk. Planners can use the framework to compare
the accessibility of different origin-destination (O-D) pairs (in this project, the origins are sub-
populations, or users, and the destinations are park facilities) across time and space and evaluate
where, when, and why mobility is underserved. The proposed method can also be used to deter-
mine how changes to the network, such as the addition of micromobility services or a decrease in
public transit fare, affect accessibility of points of interest for different neighborhoods. While this
framework is used to understand how populations access park facilities in this work, this powerful
framework can also be used more generally to understand a wide range of O-D pairs with essential
service destinations such as grocery stores, work places, hospitals etc.

For this first part of the project, the research goal is related to the objective of the literature
in Table 1, which also seeks to measure point-of-interest accessibility for the purpose of plan-
ning. However, the analysis in these papers neglects three factors that impact an assessment of
accessibility: multimodal travel, a more comprehensive travel cost function, and time-dependency.
This research aims to fill that gap by including all relevant transportation options, accounting for
multiple travel cost factors, and incorporating travel costs that vary by departure time.

In these papers and others (24), accessibility is quantified in different ways. Frequently
used accessibility metrics are contour measures, which count the number of “opportunities” (i.e.
points of interest) within some travel time contour relative to an origin, and gravity measures,
which calculate the sum of opportunities discounted by their travel time relative to an origin. Of
note is the fact that these accessibility metrics, among others, require a determination of the shortest
path by travel time between O-D pairs. Consequently, this paper chooses to measure accessibility
as the cost of the shortest path between an O-D, where cost is defined with respect to travel time,
price, reliability, safety, and discomfort.

This work thereby bridges the aforementioned literature on accessibility analysis with
the body of research concerned with least-cost multimodal route-finding in large-scale networks.
Much of the previous multimodal route-finding research, summarized in Table 2, is focused on the
process of efficiently finding optimal paths with respect to the commonly used criteria of travel
time and number of transfers. This process-driven research, which mostly centers on improving
algorithmic efficiency, is necessary for the development of mobile applications such as Moovit
and Citymapper that people use for real-time navigation in an increasingly multimodal world (25).
Unlike this type of routing research, this work does not concentrate on the algorithmic or runtime
efficiency components of pathfinding, nor does it outline a data-gathering procedure for finding a
multimodal route in real-time. Instead, the research objective is to design a comprehensive multi-
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TABLE 1: Literature Review: Accessibility Evaluation

Study Objective Population
Considered

Accessibility
Metric(s)

Travel Modes Travel Cost Time-
depen-
dent
Analysis

Tribby and Zand-
bergen (17)

measure and
compare
accessibility by way
of PT

– TT of SP PT, walk TT ✓

Djurhuus et al.
(18)

determine
individual-based
accessibility areas
by way of PT

– total
accessible
area

PT, walk,
personal bike

TT ✓

El-Geneidy et al.
(19)

measure and
compare
accessibility by way
of PT

socially
disadvan-
taged

cumulative
opportunities

PT, walk TT, price ✓

Chen et al. (20) measure and
compare
accessibility by way
of PT

– 1. gravity
metric
2. TT of SP,
weighted by
destination
importance

PT, walk TT –

Järv et al. (21) measure and
compare
accessibility to
services by time of
day

– TT of SP PT, walk TT ✓

Carpentieri et al.
(22)

measure
accessibility of
elderly people to
healthcare services

elderly gravity metric PT, walk TT –

Yu et al. (23) evaluate multimodal
accessibility with
resepct to TT and
price budgets and
under TT uncertainty

– cumulative
opportunities

TNC, PT,
walk

TT, price,
reliability

–

This paper measure and
compare
accessibility
between
heterogeneous
regions in a
time-dependent
multimodal network

Population
character-
ized by
time,
location
and
socio-demo

total cost of
SP

personal
vehicle, TNC,
car share, PT,
personal bike,
bike share,
scooter, walk

TT, price,
reliability,
risk,
discomfort

✓

Notes: “TNC” = transportation network company; “PT” = public transit; “TT” = travel time; “SP” = shortest path;
“✓” indicates that time-dependent analysis is possible with the proposed method; “–” indicates that time-dependent
analysis is not possible
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TABLE 2: Literature Review: Multimodal Route-finding

Included Travel Modes Case Study

Study Use Case Travel Cost Shared Mi-
cromobility

On-
demand
Service

Network Size Data
Type

Delling et al.
(26)

RTRP TT – – >1 million nodes real

Zhang et al. (27) RTRP TT + price +
effort +
discomfort

– – >10,000 nodes real

Delling et al.
(28)

RTRP TT, price,
inconvenience

✓ ✓ >250,000 nodes real

Hrnčíř and
Jakob (29)

RTRP TT ✓ ✓ >100,000 nodes real

Dibbelt et al.
(30)

RTRP TT – – >1 million nodes real

Georgakis et al.
(31)

RTRP TT ✓ ✓ N/A N/A

Huang et al.
(32)

RTRP TT – ✓ >6,500 nodes real

This paper accessibility
analysis

TT + price +
reliability + risk
+ discomfort

✓ ✓ >7,500 nodes real

Notes:
“RTRP” = real time route planning; “TT” = travel time; shared micromobility” includes bike share and scooter;
“on-demand service” includes TNC and demand-responsive transit; “generalized travel cost” is a travel impedance
that includes additional elements beyond just travel TT; “✓” indicates inclusion by the study; “–” indicates not
included by the study; “Network Size” does not include time event nodes from the time-expanded public transit
network model

modal network including all possible mobility options for the purpose of examining possible path
choices for individual travelers. With this network model, transportation planners can quantify
the accessibility of relevant points of interest for different communities to gain insight into where
network improvements can be made. This research uses elements of the literature of Table 2 in
designing a connected multimodal network model that permits a determination of the shortest path
between points.

The rest of this section is structured as follows. First, the design of the multimodal net-
work, assignment of travel costs, and process for measuring accessibility between an O-D pair is
presented. Second, the proposed method is demonstrated using a subset of the transportation net-
work in Pittsburgh, PA, and the results of the study are discussed. The final section highlights key
conclusions and identifies opportunities for future work.

METHODOLOGY
The process of measuring accessibility in a regional multimodal network involves three stages:
designing the multimodal network, defining an edge cost function, and finding the least-cost path
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TABLE 3: List of Notation

Gm graph associated with travel mode m
Nm set of graph nodes associated with Gm
Am set of graph edges associated with Gm
Ndr set of road intersection nodes in the driving network
Adr set of road segment edges in the driving network
Npk set of parking nodes

Apk,cnx set of edges that connect parking nodes to their nearest neighbor node in the driving
network

Nb set of road intersection nodes in the bikeable network
Ab set of road segment edges in the bikeable network

Nps set of public transit physical stop nodes
Nrt set of public transit virtual route nodes

Aboard set of edges from physical stop nodes to associated virtual route nodes, which repre-
sent the process of waiting and boarding

Aalight set of edges from virtual route nodes to associated physical stop nodes, which repre-
sent the process of alighting

Art set of edges between virtual route nodes
Nbsd set of bike share depot nodes

Absd,cnx set of edges that connect bike share depot nodes to their nearest neighbor node in the
bikeable network

Absd set of precomputed edges that connect bike share depot nodes
Ncsd set of car share depot nodes

Acsd,cnx set of edges that connect car share depot nodes to their nearest neighbor node in the
driving network

Atx set of transfer edges
NOD set of origin nodes and destination nodes

AOD,cnx set of edges that connect the origin and destination nodes to the component networks

between selected O-D pairs based on characteristics of travelers. The first step to constructing the
multimodal network is to model each single-mode transportation network as a graph consisting of
road intersection nodes and road edges. These graphs are then connected to each other by transfer
edges at relevant nodes where transfers are likely to take place, which results in a single multimodal
graph, or “supernetwork” (33, 34). Once the network topology is determined, a time-varying travel
cost is assigned to each edge. In this work, the travel cost is given by the weighted sum of travel
time, price, reliability, and risk. A time-dependent shortest path algorithm is subsequently used to
find the least-cost path between selected O-D pairs for different departure times. Table 3 specifies
the notation used in this report.

Multimodal Network Design
This work considers an exhaustive list of possible travel modes: personal vehicle (PV), transporta-
tion network company (TNC), car share (CS), public transit (PT), personal bike (PB), bike share
(BS), scooter (S), and walking (W). The component network for each travel mode m is modeled
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separately and represented by a graph Gm = (Nm,Am). Whereas some modes (e.g., TNCs) allow
travelers to hail a ride or exit at any point in that mode’s network, others such as public transit
and bike share require that commuters only move between fixed points. The supernetwork consists
of these component networks joined together by transfer edges. Origin and destination nodes are
joined to certain points in the component networks by connector edges. It is important to note that
this network only models outbound trips where a person commutes from their neighborhood to a
point of interest. This distinction is necessary because modeling the inbound trip would require
the reversal of some transfer edges and connection edges within the personal vehicle and car share
component networks.

Personal Vehicle
The personal vehicle network GPV = (Ndr,Npk,Adr,Apk,cnx) consists of the typical street map used
by drivers. Road intersections comprise the graph’s core set of intersection nodes, which are
connected by road segment edges. A parking connector edge joins each parking node to its nearest
nearest neighbor street intersection node in the driving network. The directional connector edge
goes from the street intersection node to the parking node since this network model only considers
the outbound trip; once a person parks their car, they do not use their personal vehicle again on the
outbound trip.

TNCs
The TNC network GT NC = (Ndr,Adr) is created by duplicating the personal vehicle network and
removing parking nodes and their connector edges. Riders in the TNC network can choose their
point of entry and exit at their convenience.

Car Share
Commuters using a car share rental vehicle, which they must pick up at a depot, use the personal
vehicle network to drive and park their shared vehicle. The car share component network can be
thus modeled as GCS = (Ndr,Npk,Ncsd,Adr,Apk,cnx,Ncsd,cnx,Acsd,cnx). In this model, Ncsd specifies
the set of all car share depot locations and Acsd,cnx denotes the set of connector edges that join the
each depot to its nearest neighbor node in the rest of the network. Modeling only the outbound
trip requires that these directional edges go from the depot to the street intersection node; after a
commuter rents a vehicle, they do not return the vehicle on the same outbound trip (the vehicle is
returned on the inbound trip).

Public Transit
A time-dependent network GPT = (Nps,Nrt ,Aboard,Aalight ,Art) is used to model the public transit
network (35). This model contains two types of nodes: physical stop nodes Nps and route nodes
Nrt . Physical stop nodes represent actual locations in the network where travelers board or alight
a bus. Since more than one bus route can pass through a physical stop, each stop is also linked
to one or more route nodes. The edge from a stop node to a route node represents the cost of
waiting and boarding, whereas the edge from a route node to a stop node represents the cost of
alighting. Hence, it is possible to switch routes at one physical stop by using an alighting edge
tied to one route node and a boarding edge tied to a different route node. The graph also consists
of route traversal edges in the set Art which connect route nodes, where the weight of each route
edge corresponds to the cost of traveling along that particular bus segment. The time-dependent
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FIGURE 1: An example showing how precomputing shortcut bike share edges can reduce the size
of the network.

model of public transit was selected over the time-expanded model for its smaller size and easier
integration with other component graphs.

Personal Bike
The personal bike network GPB =(Nb,Ab) includes road edges that are considered bikeable accord-
ing to the OSMnx package in Python (36). Per the OSMnx package definition, a road is considered
bikeable unless it is a highway, private road, or a street specifically marked for pedestrians.

Bike Share
The original bike share network GBS = (Nb,Nbsd,Ab,Absdcnx) is formed by duplicating the per-
sonal bike network and then adding bike share depot nodes and bike share connector edges. The
depot nodes represent the locations where travelers can pick up or drop off a shared bicycle. A
bidirectional bike share connector edge joins each depot node to its nearest neighbor intersection
node in the bike share network, similar to how parking and car share depot connector edges are
implemented.

Since a traveler using a shared bike must pick up and drop off the bicycle at a depot,
it is possible to consolidate the bike share network into a set of depot nodes and depot edges.
Shortcut bidirectional depot edges connect depot nodes directly to each other, where a short-
cut edge between nodes represents the least-cost path between them. The precomputed network
GBS,pre = (Nbsd,Absd) is useful for simplifying the graph and expediting processing time when
evaluating shortest paths in the full multimodal network.

Scooter
The scooter network GS = (Nb,Ab) is modeled as a duplicate of the personal bike network. The
inherent assumption is that scooters may use the same roads as a bicycles. Explicitly modeling
the location of a scooter pickup node is not possible since riders may leave scooters in any valid
parking spot in the network. Given that this network model is being used for planning purposes as
opposed to real-time navigation, it is also not necessary to identify exact scooter locations. Instead,
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data can be used to estimate the average distance that a person must walk in order to pick up the
nearest scooter. This estimation process, which is embedded in the procedure for building transfer
edges, is explained in section 4.1.9

Walk
The full walking network is not explicitly modeled in this design. Rather, only certain relevant
walking segments are included. The relevant walking segments pertain to the following scenarios:
transfers between two component networks, connections from the origin to the component net-
works, and connections from the component networks to the destination. For example, a transfer
between a bike share depot and a public transit physical stop is modeled as a single walking seg-
ment whose approximate distance is equivalent to the Haversine distance between the depot and
stop node. This modeling decision removes the need to include the full walking network, which
simplifies the design.

Transfer Edges
After modeling each component network, transfer edges are created to connect component net-
works to each other. Transfer edges that form the set Atx are directional and assumed to be traversed
by walking. Locations in a component network where a mode change may take place are called
switch points, following the approach of (37). If the switch point is at a predetermined location
(e.g bus stop, bike share depot, parking node), it is denoted a “fixed pickup” or “fixed drop-off”
node; if the switch point changes depending on the commuter’s needs (e.g., TNC pickup point), it
is considered a “flexible pickup” or “flexible drop-off” node. Each transfer link is constructed by
joining a switch point in one component network to a switch point in another. A multimodal graph
with transfer edges is depicted in Figure 2, which demonstrates a small example network that in-
cludes the bike share, public transit, and TNC modes. The component networks in this figure are
slightly offset for visualization purposes, since they physically overlap.

Building transfers efficiently requires the specification of constraints on allowable switches
between travel modes. Figure 3 enumerates the plausible mode changes, where the arrows indicate
the direction of the change. This list of allowable changes between modes is based on practical
considerations. One such assumption is that travelers using a personal or car share vehicle can
switch from the driving mode to another mode only after dropping their vehicle in a parking zone.
In addition, changing modes from personal bike to public transit is enabled by the presence of a
bike rack on a bus. It is also assumed that intermediate bike parking is not available and bike racks
do not exist on other vehicles, which implies that travelers who ride their personal bike on any part
of a path can use only a combination of the personal bike, public transit, and walking networks.
In addition, any modal transfer can be associated with a specific generalized cost that influence
the optimal path finding, e.g., convenience, cost, fare discount or discomfort. This is achieved by
imposing node-based generalized cost to associate any specific edge-to-edge movement. The cost
can be set arbitrarily small to imply seamless connection, negative to imply fare discount offered
to use two specific modes sequentially, or arbitrarily large to imply prohibition between any two
modes.

An additional assumption in this network design is that travelers are willing to walk a
distance less than or equal to W when transferring modes. The implication is that for every fixed
drop-off node in any component network, there exists a “walking catchment zone” (WCZ) which
contains all surrounding nodes within a Haversine distance of W . Though this approximation
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FIGURE 2: Example supernetwork with transfer edges for bike share, public transit, and TNC
networks.

underestimates true network walking distance, it is assumed to closely represent actual distance
due to the presence of walking shortcuts. However, it is not necessary to build a WCZ for flexible
pickup/drop-off networks. The reason is that, when given a choice of where to be dropped off in
a flexible network, travelers would logically always choose the drop-off node is that nearest the
next pickup node they wish to use. Thus, if the transfer is allowed, a transfer edge is drawn from a
fixed drop-off node to the nearest node in flexible pickup network and vice versa for a fixed pickup
node.

In previous research (26, 27), transfer edges are created by joining switch points in one
component graph to their nearest neighbor in the reference walking network. Constraints relating to
the mode sequence are then enforced at runtime by the use of a specific label-constrained algorithm
or by the inclusion of a only a subset of component graphs. The approach in this report, which is
similar to (37), is different in the sense that transfer links embed mode sequence constraints. This
eliminates the need to use a label constrained shortest path algorithm.

Origin and Destination Connectors
Transportation planning analysis is typically conducted on an aggregated geographic level, where
the geographic entity is selected to represent the travel patterns of many people within the entity
(38). Common geographic units include traffic analysis zones and census block groups. The
proposed network model uses the centroids of the geographic unit as both origins and destinations
so that accessibility between regions can be measured. The set of origin and destination nodes is
called by NOD. Each origin is connected to nearby pickup nodes by origin connector edges and
each drop-off node is connected to nearby drop-off nodes by destination connector edges. An O-D
pair and its associated connector edges, denoted by AOD,cnx, is added to the network on the fly at
the time of evaluation to minimize network size.
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FIGURE 3: Allowable mode changes.

The procedure to build O-D connector edges is similar to the process of creating transfer
edges. The idea is that a traveler can transfer from the origin to any component graph that has
a fixed pickup node within the origin’s WCZ, and vice versa for fixed drop-off nodes within a
destination’s WCZ. However, if there is no fixed pickup node within an origin’s WCZ for a specific
mode, an edge is instead created from the origin to the nearest fixed pickup node in the mode’s
component network. This modeling choice reflects the reality of a commuter’s decision-making
process, as they are they are more likely to walk a longer distance on the first leg of their journey
rather than at an intermediate stage. The same exception is made if all fixed drop-off nodes of
a specific mode type exist outside a destination’s WCZ. An origin connector edge also joins the
origin to its nearest neighbor in flexible pickup networks, and a destination connector edges joins
the destination to its nearest neighbor in flexible drop-off networks.

Supernetwork
The multimodal graph is defined as the union of all component networks, transfer edges, O-D
nodes, and O-D connector edges:

GMM = GPV
⋃

GT NC
⋃

GCS
⋃

GPT
⋃

GPB
⋃

GBS
⋃

GS
⋃

Atx
⋃

NOD
⋃

AOD,cnx (1)

Cost Assignment
Transportation planners can use this network model to measure accessibility between points by
departure time. This report defines accessibility from an origin to a destination as the total cost
of the least-cost path between them in a multimodal network. Finding the least-cost path requires
a cost determination for each edge and node in the graph, followed by the process of running a
shortest path algorithm.
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Generalized Cost Function
One way that the proposed method distinguishes itself from previous research is by defining the
edge cost function as a combination of five time-dependent factors: price, average travel time,
reliability, risk, and discomfort. The total cost C of an edge e is defined as a linear combination of
the five individual attributes as a function of departure time t, given by equation 2.

Ce(t) = βp · pe(t)+βT T ·T Te(t)+βr · re(t)+βk · ke(t)+βD ·De(t) (2)

where p is the price, T T is the average travel time, r is the reliability, k is the risk, and D is the
perceived discomfort value. All cost factors are defined with respect to edge e and departure time t.
Reliability is measured by the edge’s 95th percentile travel time, following common practice in the
transportation engineering field (39). The edge’s risk ke is quantified by its unitless risk index xe
multiplied by its average travel time T Te, where the risk index considers the road segment’s vehicle
crash rate for vehicle networks or the road segment’s availability of micromobility infrastructure
for micromobility networks. The discomfort attribute of an edge represents the level of physical
exertion required for its traversal. This model assumes that an edge’s discomfort attribute is zero
for all inactive commuting modes, which includes all modes that use vehicle travel. Active modes,
which include biking, walking, and scooter-riding according to the Department the Energy’s Alter-
native Fuels Data Center (40), are associated with some degree of physical difficulty. In this work,
the discomfort value of an edge De is quantified by a discomfort weight parameter d multiplied
by the edge’s average travel time T Te. The benefit of defining reliability, risk, and discomfort in
terms of travel time is that the attributes are on the same scale such that no single factor completely
dominates the cost function.

The β parameters can be interpreted as the dollar value that a person assigns to a single
unit of the cost factor. The parameter βp thus takes on the unitless value of 1, while βp has units of
dollars per minute and is representative of a person’s value of time. When conducting analysis, the
β parameters can be adjusted based on the population group under consideration or the goals of the
transportation planner. For example, a planner interested in bike safety may choose to give higher
weight to βk. A planner may also choose to assign a higher value of time βT T when evaluating
path options during commuting hours vs. off-peak hours.

Regarding time dependency, inactive modes are assumed to be unaffected by traffic flow
such that all associated edge costs are constant with time. The travel time and reliability of the
traversal edges of the personal vehicle, TNC, and car share modes vary with time in accordance
with traffic flow, while price is constant. For TNC and car share edges, however, price also changes
with time because their price is correlated with usage time. The travel time and reliability of
public transit edges are time-dependent as a result of both the fixed schedule and traffic conditions.
The risk index and discomfort weight associated with an edge are assumed to remain constant
regardless of departure time.

Transfer Edge Costs
The cost vector of a transfer edge consists of the cost attributes that are associated with the shortest
walking path between the two nodes that define the edge, in addition to a dollar-valued inconve-
nience cost that is associated with the act of transferring. The distance of the shortest path can be
estimated as the Haversine distance between the two nodes, an approximation that simplifies the
transfer edge cost calculation. The price attribute of a transfer edge is considered to be $0, which
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FIGURE 4: An example of 10 historical daily scooter observations (red) for a given time interval
shown relative to a specified fixed node (blue). The average and 95th percentile distance to the
nearest scooter are used to assign scooter transfer edge costs.

is consistent with the price associated with a walking path, unless parking or other fixed costs are
embedded into the edge.

For directional transfer edges that connect fixed drop-off nodes to the nearest intersection
node in the flexible scooter network, the time-dependent cost vector is estimated based on historical
observations of physical scooter locations. If given the actual location data of all scooters by date
and departure time, one can find the distance between any fixed drop-off node and its nearest
physical scooter for the specified date and departure time pair. Repeating this process for n days
results in a distribution of the distance, which can be converted to walking travel time, from each
fixed node to its nearest scooter. From this distribution, the average and 95th percentile walking
time from a fixed node to its nearest scooter can be derived. This procedure, which is depicted with
an example in Figure 4, can also be used to model the average and 95th percentile waiting time for
a TNC vehicle.

Node Costs
In addition to edge costs, movement-based node costs are added to the model. These node costs
represent a penalty on moving from one link to another via a particular node. For this network
model, movement-based node costs can be used to prevent or discourage certain behavior, such as
the usage of two consecutive transfer edges. Without node costs, the least-cost route may consist of
several connected transfer edges that effectively create a longer transfer edge whose length exceeds
the parameter W defined in the Transfer Edges section. This situation could arise if βT T is low.
Since transfer edges are traversed by walking, they have a price of zero and minimal risk and
discomfort costs; hence they are desirable from a cost standpoint if value of time is low.

Accessibility Analysis
Once costs are assigned to the multimodal network, it can be used to evaluate accessibility on an
O-D level in addition to an origin level or a destination level. On the O-D level, accessibility is
defined as the cost of the least-cost path between two points. This use-case will be explored in the
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next section. This framework also enables an assessment of origin-level accessibility, where the
quantity of essential service destinations reachable by a given origin within some cost threshold can
be compared. Destination-based accessibility can be evaluated in a similar manner; policymakers
can determine the number of origins able to reach a particular destination to better understand its
value to the network. The time-dependent least-cost path necessary for this analysis can be found
with the decreasing order of time algorithm presented in (41).

CASE STUDY
The proposed methodology is demonstrated on a group of demographically-different neighbor-
hoods in Pittsburgh, PA. In all test cases, the personal vehicle network is excluded from the su-
pernetwork since the population of interest is assumed to not have access to private vehicles. The
final supernetwork, inclusive of all traversal, transfer, and O-D connector edges, has 7,924 nodes
and 53,988 edges. To test the multimodal route-finding capability, census block group centroids
are used as origin and destination nodes. A two-hour departure window divided into thirteen time
intervals is considered, and the time-dependent algorithm is provided by open-source code on
Github1 detailed in (42).

Network Settings and Data
The area’s driving and biking networks are extracted from the Python package OSMnx, which
downloads geospatial data from OpenStreetMap and then simplifies the network topology (36).
Locations of bike share depots, bike lanes, parking meters, and parking rates are obtained from
the Western Pennsylvania Regional Data Center (43). For simplicity, the parking nodes are con-
solidated into one representative node per parking zone, represented by the average location of a
parking meter within a zone. The cost of parking is calculated as the product of the hourly parking
rate and the number of parking hours, which is assumed to be eight hours in accordance with a full
work day. Public transit stop locations and route information are provided by the General Transit
Feed Specification (GTFS), and the locations of Zipcar (44) depots are found by querying Google
My Maps (45) and downloading the coordinate pairs returned. While this method for extracting car
share locations is not entirely accurate, it serves the purpose for testing the model. In the Pittsburgh
region, Zipcar runs the car sharing service, POGOH (46) operates the bike share system, Spin (47)
manages the scooter fleet, and Pittsburgh Regional Transit (48) acts as the public transit agency.

Assigning cost attributes to the edges requires the specification of several parameters,
which are listed in Table 4. Prices for a Zipcar car share, POGOH bike share, Spin scooter, and
Port Authority bus ride are obtained from various company or agency websites. Travel speed pa-
rameters for bicycles, personal vehicle operating costs, TNC prices, and waiting time for TNC
vehicles are based on previous research (49–53), with presumed equivalence between scooter and
bike speeds. The traversal time between bus stops and average headway between bus trips are both
based on GTFS schedule data, and the average waiting for a bus, regardless of the commuter’s
arrival time at the stop, is assumed to be half of the bus headway time per convention (54). To
calculate the risk index, the factors considered for the micromobility networks are road type and
bike lane presence, while the single factor considered for the driving networks is vehicle crash rate.
Movement-based node costs are also added to prevent a route that uses two consecutive transfer
edges. Finally, the walking catchment zone parameter W is set at 0.5 miles to prevent transfer or

1https://github.com/psychogeekir/MAC-POSTS
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O-D connection edge lengths greater than this value.
Data that was not available for this case study is estimated. The unavailable information

includes actual historical travel time data for any of the vehicle networks, as well as historical
scooter observations. For average traversal time between transit stops, GTFS schedule data is used
instead. The average travel time for edges in the driving networks is assumed to be the product of
its speed limit, length, and a travel multiplier used to represent the ebb and flow of morning traffic.
This multiplier function is generated as a bell-shaped curve with a value of 1 at the start and end of
the departure window and a value of 1.5 in the middle of the window. In the time-dependent vehicle
networks, each edge’s reliability attribute, which is represented by its 95th percentile travel time,
is approximated as its average travel time multiplied by a factor of 1.5. Edges traversed by active
modes are assumed to have time-invariant travel times such that their reliability attributes equate
to their average travel times. Finally, data pertaining to historical scooter locations is generated
artificially for 30 days for each time interval by distributing 100 scooters throughout the region in
a random uniform way.

For the subsequent examples, the β parameters are defined as βp = 1, βT T = $10/minute,
βk = $1/minute, and βd = $0.5/minute. The value of βr is adjusted in the fourth case to show how
this parameter affects the selection of the least-cost route.

Results
To show the flexibility of the proposed framework, the example for this case study compares the
accessibility between the same O-D pair for four separate cases. The first three cases (Case 1,
Case 2, and Case 3) use βr = $0.75/minute and the other parameters detailed above. In Case 1,
all modes of travel are available, whereas the scooter network is removed in Case 2, and both
the scooter and bike share networks are removed in Case 3. The fourth case (Case 4) models
the situation where the traveler places a higher value on reliability, indicated by βr = $5/minute,
which could be representative of a commuter’s mindset en route to work. All modes of travel are
permitted in Case 4. To further test the importance of reliability to the commuter, the reliability
cost attribute of a public transit boarding edge is increased from 1.5 ·T T to 2 ·T T . All examples
use the same O-D pair, where the origin and destination are the centroids of block groups with
FIPS codes 420035623001 and 420031402001, respectively. Comparisons of path costs are made
in relative terms since absolute costs do not have physical significance.

The resulting least-cost paths are shown in Figure 5. When all modes are available, the
traveler characterized by this set of β parameters has an optimal route that begins the trip with a
scooter and finishes with a bike share. The transfer to the bike share network in the middle of the
trip can be rationalized by the bike share’s cheaper price; the price of a bike share edge is $0.066
per minute whereas the scooter cost is $0.39 per minute. This optimal route shows the potential
of shared micromobility modes to reduce overall travel costs and improve accessibility for those
capable of using active modes of travel.

From Case 1 to Case 2, the generalized travel cost increases by 11.4% as commuters switch
from a scooter on the first leg of their trip to public transit. Still, the path includes a bike share for
the final segment. The fact that the bike share network is used at the end of the trip in both cases
indicates that the destination is in close proximity to a depot, which helps improve the destination’s
accessibility at least with respect to this particular origin.

In Case 3, the scooter and bike share networks are removed to model the travel preferences
of travelers for whom active modes are not a feasible alternative, such as the elderly or disabled.
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TABLE 4: Specification of Parameters Used for the Pittsburgh Case Study

Travel Mode Price Travel Time Waiting
Time

Risk Index Discomfort
Weight

Personal Vehi-
cle

$0.64/mile (speed limit) ·
(road length)

0 min 1 + α · (crashes/meter) 0

TNC $2.55/ride
+
$1.75/mile
+
$0.35/min

(speed limit) ·
(road length)

7 min 1 + α · (crashes/meter) 0

Car Share $11/60
min

(speed limit) ·
(road length)

0 min 1 + α · (crashes/meter) 0

Public Transit $2.75/ride GTFS traversal
time

(GTFS
headway
time) / 2

1 0

Personal Bike $0.00/ride (15 km/hr) · (road
length)

0 min 1 if bike lane or bike
only, else 100,000 if
major road, else 1.2

0.30

Bike Share $20/300
min

(15 km/hr) · (road
length)

0 min 1 if bike lane or bike
only, else 100,000 if
major road, else 1.2

0.30

Scooter $1/ride +
$0.39/min

(15 km/hr) · (road
length)

walk time
to nearest
scooter

1 if bike lane or bike
only, else 100000 if
major road, else 1.2

0.10

Walk $0.00/min (1.3 m/s) · (road
length)

0 min 1 0.10

Note: α is a risk parameter that weights the value of the vehicle crash rate. The parameter α = 5 was
selected for scaling purposes.

From Case 1 to Case 3, the generalized travel cost increases by 68.6% as these travelers take their
full trip using public transit. The least-cost route requires a transfer, which leads to a sizeable
increase in travel cost likely due to a waiting penalty. A public transit agency aiming to improve
accessibility between this O-D pair specifically for this population group may consider increasing
the frequency of the bus line used for the second leg of the trip.

Case 4 results in a route exclusively in the TNC network, even when all other modes are
available. Although micromobility modes are reliable in the sense that the 95th percentile travel
time for each edge is equivalent to the edge’s average travel time, it still takes longer to commute
by active modes as opposed to a private ride share vehicle in the driving network. This means that
it could still be the case that the 95th percentile travel time in a driving network is lower than the
average travel time in an active mode network. For a commuter who is highly sensitive to the 95th

percentile travel time between this O-D pair, the TNC network provides an optimal route choice. It
is worthwhile to note that the TNC option provides a reliable route due to the assumed reasonable
pickup waiting time of 7 minutes. If it were the case that the region had limited TNC drivers and a
longer wait time or a high surge price, the optimal path could change.
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(a) Case 1: Least-cost route between O-D pair with personal vehicle network excluded.

(b) Case 2: Least-cost route between O-D pair with personal vehicle and scooter net-
works excluded.

(c) Case 3: Least-cost route between O-D pair with personal vehicle, scooter, and bike
share networks excluded.

(d) Case 4: Least-cost route between O-D pair with βr = $5/minute and personal ve-
hicle network excluded.

FIGURE 5: Four different least-cost routes are found between the same O-D pair depending on
the presence of the micromobility networks and the value of the βr parameter. “org” = origin, “s”
= scooter node, “bs” = bike share depot node, “ps” = physical stop node, “rt” = route node (the
number refers, “tnc” = TNC node.

SECTION 2: RELIABILITY ANALYSIS
Once the spatio-temporal probabilistic accessibility of O-D pairs can be quantified between sub-
populations and park facilities (as previously outlined), this work proposes a system-level network
reliability analysis in which the output is the system-level probability of failure with respect to a
given failure limit state (described subsequently), where degradation or insufficient performance of
transportation linkages and/or the reduction of park facility performance increases the network’s
probability of failure. This differentiates from existing work in that the performance or quality of
the service accessed is considered in both the capacity and demand functions of the reliability anal-
ysis; infrastructure management needs to consider the accessibility and utility of essential services
within the communities they are designed to serve in order to create multi-stakeholder frameworks
that can lead to equitable infrastructure design. Another salient example would be consideration
of the utility gained by accessing certain grocery stores, which may or may not provide sufficient
fresh food options.

From the perspective of city planning officials, the objective is to strategically invest in the
park facilities and transportation linkages/assets (e.g., maintenance, rehabilitation, capital projects,
addition of micromobility assets) to minimize the system-level probability of failure given cost
constraints. Notions of equity are deeply rooted within the proposed network reliability analysis
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based on how the failure limit state is defined: a community’s system-wide failure is defined as
any subset of a community’s population not being able to access and/or benefit sufficiently from
its surrounding community’s resources. This ensures that targeted investments are made to reduce
a community’s network probability of failure subject to the constraint that all subpopulations must
remain above a desired accessibility threshold. Because the output of the proposed reward-based
reliability method (i.e., probability of failure) is a universal metric that can be directly compared
across limit states and capacities and does not vary from location to location, this method provides
a way to quantitatively assess and directly compare the health and performance of diverse cities
with respect to a single limit state function.

METHODOLOGY
Let G= (N,A) denote the city network graph. The city has C communities and E types of facilities.
The types are indexed by e. Then, the set of nodes N contains subsets NC, N1, . . ., NE , and NW ,
where NC is the subset of community nodes, Ne is the subset of facility nodes for essential service
type e, and NW is the subset of intermediate nodes. Community node i ∈ NC is connected to facility
node je ∈ Ne of essential service type e through a series of links. Links aℓ ∈ A are indexed by ℓ,
and the cardinality of each set is denoted by the operator | · |.

For ease of exposition, the following formulation is written for a single essential service
type (say, parks), such that the subscript e for the facility node under consideration can be dropped.
Assume there are Ki j paths connecting community i to facility j, where the value of Ki j changes
depending on the i, j pair. The optimal path was determined in Section 2. However, we will more
broadly present the methodology for the case where this path has not yet been determined a priori.
Let Qk

i j be an ordered set of connected links that denotes the kth path connecting community i and
facility j. If link aℓ is on path k connecting i and j, then aℓ ∈ Qk

i j. Let XXX i j be the Ki j ×|A| link-
path incidence matrix whose k-ℓ entry is 1 if aℓ ∈ Qk

i j and 0 otherwise. The kth row of the matrix
XXX i j is a Boolean indicator vector that specifies the subset of links present on the kth path between
community i and facility j. The ∑i, j Ki j ×|A| matrix XXX is defined as the vertical concatenation of
XXX i j ∀ i, j, such that XXX = [XXXT

11| . . . |XXXT
1|V ||XXX

T
21| . . . |XXXT

2|V || . . . |XXX
T
|U |1| . . . |XXX

T
|U ||V |]

T .
The travel time along each link aℓ is characterized by the random variable (RV) Tℓ. The

random vector TTT = [T1, . . . ,T|A|]T is composed of the random link travel times for all links. Let DDD
be a ∑i, j Ki j ×1 random vector that contains the path travel times for all possible paths between all
i, j pairs. Elements of DDD are correlated because paths share common links and nearby links can be
affected by similar events. Note that DDD can be divided into constituent vectors DDDi j ∀ i, j , where DDDi j
contains the random path travel times for all paths between community i and facility j, such that
DDD = [DDDT

11| . . . |DDDT
1|V ||DDD

T
21| . . . |DDDT

2|V || . . . |DDD
T
|U |1| . . . |DDD

T
|U ||V |]

T . Since the total travel time along a path
is the sum of the travel times along the path’s constituent links,

DDD = XXXTTT (3)

Realizations of the random vectors DDD and DDDi j are denoted as ddd and dddi j, respectively.
There exists some desired travel time threshold as determined by the managing officials.

Let Bi j be this travel time limit between community i and facility j, which will herein be referred
to as the travel time budget. For simplicity, the travel time budget is assumed to be constant across
all i, j pairs. This equity constraint ensures that a fair comparison across communities with respect
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Failure Event Relevant Nodes Definition
Path k Failure community ui and facil-

ity v j

kth element of DDDi j exceeds C

Accessibility Fail-
ure

community ui and facil-
ity v j

all elements of DDDi j exceed C

Community Failure community ui attainable utility Ai less than the thresh-
old rτ

System Failure all ui ∈U attainable utility Ai less than the thresh-
old rτ for at least one ui ∈U

TABLE 5: Definitions of Failure Events

to their accessibility to a given facility. By this assumption, Bi j = B.
Each facility j is associated with some utility value, denoted by u j. Let uuu = [u1, . . . ,u|V |]

T .
If community i can access facility j, then the community can attain the facility’s full utility value.
The maximum attainable utility value of community i is denoted by Ai. This value can then be
compared to the community’s desired utility, called uτ . All |NC| communities desire the same
threshold uτ , which enables a fair comparison. Each community i desires the same minimum
threshold quantity of utility, uτ .

Failure of path k that connects community i to facility j is defined as the event that the kth
element of DDDi j exceeds B. Failure of community ui to access facility v j is defined as the event
that all possible paths between the i, j pair fail, which can be written as min(DDDi j) > B. Failure
of community i is defined as the event that the community’s maximum attainable utility value,
denoted by Ai, is below the threshold uτ . On a broader scale, failure of the system is defined as
the event that any one of the |NC| communities fails to attain uτ . A list of failure events and their
definitions is presented in Table 5.

Since this problem is principally concerned with the ability of community members to reap
the benefits of their public services, such as parks, it is critical to recognize how citizens interact
with the facilities corresponding to each type of essential service. For many essential services,
community members need only one facility with a utility value that meets their threshold. This
case applies to schools and grocery stores; students attend only one school at a time, and people
can generally subsist using only one food market that satisfies dietary and cost constraints. On the
contrary, access to healthcare and parks is marked by a different dynamic. Across the literature,
healthcare access, for example, has been measured in terms of a community’s proximity to pharma-
cies, primary care, dental care, surgical facilities, etc. The use of multiple metrics suggests that just
a single facility is insufficient to capture the needs of a community. Thus, two objectives emerge
depending on the essential service category: 1) find the probability that a community accesses at
least one facility that meets their utility threshold, and 2) find the probability that a community can
access multiple facilities whose total utility meets their threshold. For park facilities, we explore
the later of these two cases.

Reliability Analysis
Let YYY be a |U |×|V | random binary matrix whose i- j entry is 1 if community ui accesses facility v j,
and 0 otherwise. Since each element of the matrix YYY can be either 0 or 1, there are 2|U |∗|V | possible
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realizations of YYY . The full set of realizations, which is indexed by s, composes the domain of YYY .
The domain of YYY is then given by S(YYY ) = {yyys, s = 1,2, . . . ,2|U |∗|V |}, where yyys is a single realization
of YYY .

Recall that a community ui is said to be able to successfully access facility v j if at least
one path between the pair has a path travel time realization below or equivalent to the travel time
budget C. The probability that the accessibility success event occurs for the i, j pair can be found
as P(min(DDDi j)≤C). Conversely, the accessibility failure event for community ui facility v j occurs
if all paths have travel time realizations above C. The probability that the failure event occurs for
the i, j pair can be found as P(min(DDDi j)>C).

Each realization yyys of the |U |× |V | random binary matrix YYY represents a different combi-
nation of joint accessibility success and failure events across all i, j pairs. Accessibility success
and failure events are dependent because elements of DDD are correlated. Define the accessibility set
As as the ordered pairs of communities and facilities for which the accessibility success event oc-
curred in realization yyys; these are the i, j pairs corresponding to the elements of yyys whose values are
1. Define the complementary failure set A C

s as the ordered pairs of communities and facilities for
which the accessibility failure event occurred in realization yyys; these are the i, j pairs corresponding
to the elements of yyys whose values are 0. The probability of each realization yyys is then the joint
probability of the accessibility success and failure events that compose it:

P(yyys) = P

 ⋂
(i, j)∈As

min(DDDi j)≤C ∩
⋂

(i, j)∈A C
s

min(DDDi j)>C

 (4)

Now consider the random variable Ai, which represents the total utility attained by com-
munity ui. Let AAA = [A1,A2, . . . ,A|U |]

T , such that AAA is a |U |×1 discrete random vector representing
the joint distribution of total attained utility for each of the |U | communities. It is important to note
that the components of AAA are correlated since accessibility success and failure events are depen-
dent. The vector AAA has 2|U |∗|V | possible realizations, also indexed by s. Note that the realization
yyys and aaas share the common index s because they are defined by the same unique combination of
accessibility success and failure events. Recall that rrr is the deterministic utility vector whose jth
element is the utility value associated with facility j. Since a community receives a facility’s full
utility only when accessing it, the domain of AAA is given by, S(AAA) = {aaas = yyysrrr, s= 1,2, . . . ,2|U |∗|V |}.

The probability of each realization aaas is then equivalent to the probability of yyys, which can
be found by Equation 4. Once the joint probability mass function (PMF) of AAA has been enumerated
explicitly in this manner, the marginal PMF of Ai can be determined for all ui ∈U . The probability
of failure of a single community ui, denoted by PF,i, can then be found simply as,

PF,i = FAi(rthresh) (5)

where FAi(·) denotes the cumulative distribution function (CDF) of Ai. This calculation
completes the first objective. Furthermore, the probability of system failure, PF,sys is defined as the
probability that at least one community fails. PF,sys is equivalent to the probability of the union of
all community failure events, given by,
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FIGURE 6: Community need scores, site need scores, and environmental overlay scores are used
to inform the Pittsburgh Parks Conservancy’s final Investment Priority Score for (6).

FIGURE 7: Sensing node deployment locations across the top (north of 5th Avenue) and bottom
(south of 5th Avenue) halves of Mellon Park.

PF,sys = P

 |U |⋃
i=1

(Ai < rthresh)

 (6)

This calculation completes the evaluation of the system-level probability of failure.

SECTION 3: MEASURING THE PERFORMANCE OF PARK FACILITIES
The third part of this research seeks to incorporate real-time metrics into the Park Scoring database
to assess the need for asset improvements. The Park Scoring Database comprises the first-ever
comprehensive inventory of all park and recreation sites, assessment information on park needs,
community needs, and public priorities, as well as extensive demographic, health, community
condition, and ecological information. Community input was collected over the course of 240
listening tours that were conducted across 70 Pittsburgh neighbor-hoods. In addition to feedback
collected during the tours, 3,400 surveys were administered to determine public priorities for park
investment. However, these metrics (shown in Figure 6) lack real-time metrics quantifying usage,
human-human sociability, or human-asset interaction. To highlight the importance of integrating
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(a) (b) (c)

FIGURE 8: Examples of three of the eight sensing nodes installed at (a) Location 1, (b) Location
3, and (c) location 6.

real-time monitoring based on in situ measurements into the park scores, the PI will reflect on a
previous experience. During the late summer and fall of 2018, the PI used a network of Urbano
sensing nodes to monitor pedestrian traffic on a section of a vital pathway connecting an under-
resourced community to the Detroit Riverfront (Detroit, MI). Pedestrian use data was collected
in real time and several use trends and correlations were observed including correlations between
weather and trail usage as well as the numbers of pedestrians at various times of the day. A series of
unexplained periods of drastically reduced trail usage were also regularly observed. After visiting
and investigating the location it was determined that these periods of little to no pedestrian traffic
were correlated to unexpected (i.e., not anticipated by the urban planners) severe flooding along
the trail due to the storm sewer inlet infrastructure not functioning properly; this critical pathway
was rendered unusable for several days following any rain event.

Park usage and associated health/performance metrics are measured directly using a low-
power wireless sensing archicture developed by the PI. Each sensing node, called Urbano (from
the Latin urbanus, “of or belonging to a city”, derived from urbs, “city”), is an Internet of Tings-
(IOT) based technology that supports interoperability among diverse arrays of heterogeneous IoT
devices, preserves privacy and trust among citizens, supports cloud-based analytics, and has a user-
friend design. For example, discrete pedestrian counts (measured from passive infrared, or “PIR”,
sensors) are collected from distributed sensing nodes. Because Urbano nodes support low-power
and low-cost sensing and use cellular communication to free nodes from fixed power sources (re-
lying instead on small solar panels for solar harvesting), they can be deployed in under-resourced
areas, enabling decision makers to make data-driven investments in neighborhoods that have histor-
ically been underserved. This addresses the urgent need for quantitative approaches to integrated
park and transportation design and management in under-resourced areas to ensure that invest-
ments made in parks using limited tax dollars have maximum effect. In situ data measured using
Urbano nodes is transmitted to a cloud-based server and provides a wealth of information that will
be used to characterize usage subject to, for example, daily environmental (i.e., weather) and oper-
ational conditions. This can also be used to capture “before” and “after” data to quantify the impact
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of asset and infrastructure management decisions made by the City of Pittsburgh and Pittsburgh
Parks Conservancy.

FIGURE 9: Lawn signs inform park users about the scope of the project and data collected.

FIGURE 10: Sensing node circuit configuration.

For this project, a network of eight sensing nodes (Figure 7) were installed across Mellon
Park in Pittsburgh, PA. The only limitation of the size of the network was the availability of light
poles (which are used for the installation to keep the sensing nodes out of reach). As requested by
the City of Pittsburgh, each sensing node is accompanied by a lawn sign (Figure 9) that provides
information about the project, states the objective of the data collection, and lets users know that
the data is full privacy preserving.

A schematic of the Urbano nodes designed, built, and deployed for this project is shown
in Figure 9. A 12V rechargeable lead acid batter, solar controller, two PIR sensors, GPS module,



Flanigan 26

Urbano node, and SD card module are packaged within a water-tight enclosure and connected to an
external 10-watt solar panel. A hard copy of all data is backed up on the external SD card. Time-
synchronization is achieved across sensing units using GPS. Pedestrians and bikers are counted
immediately when they pass along the paths in front of the nodes. When users move from left to
right in front of the node, data is collected as: ‘‘06/08/202209:00:15-RIGHT’’. When
users move from right to left in front of the node, data is collected as: ‘‘06/08/202208:56:
02-LEFT’’. Due to installation delays caused by the COVID-19 pandemic (which resulted in
the installation not being signed off by the administration until mid-Summer 2022), the team is in
the early stages of data collection. The team anticipates working with park managers (after several
months of data are collected) to start co-creating a usage performance metric that will integrate
into their scoring database based on the real-time data.

CONCLUSION
The research described in detail in this report explores urban park use and correlates of use (mea-
sured by time-dependent accessibility) in order to bring to light ways in which city officials and
planners can quantify data-driven returns on potential investments to parks and mobility services
and implement changes that will more equitably distribute these benefits. This report presents the
problem descriptions, approaches, methodologies, and findings for three primary thrust required
to achieve the overarching project goal: 1) development of a novel multimodal network modeling
framework that accounts for five major factors across all travel modes: day-to-day average travel
time, price, reliability represented by day-to-day travel time variability, safety risks, and discom-
fort (i.e., quantify community accessibility to parks across time and space), 2) quantification of
the total system performance through a probabilistic spatio-temporal network reliability analysis
in which the failure limit state is defined as any subset of a community’s population not being
able to access and/or benefit sufficiently from its surrounding parks (note that this is a function of
both park performance and accessibility), and 3) integration of privacy-preserving cyber-physical
system technologies that measure park usage into Pittsburgh parks (i.e., quantitatively measure and
integrate the performance of parks into the Park Scoring Database)

The modeling framework developed in this project successfully evaluates time dependent
accessibility in a multimodal network. This framework builds upon previous literature in several
ways. First, it incorporates all relevant mobility options including personal vehicle, TNC, car share,
public transit, personal bike, bike share, scooter, and walking. In addition, it defines a generalized
travel cost function that accounts for average travel time, price, reliability, risk, and discomfort, as
well as a movement-based node cost that can impose additional (dis)incentives for any multimodal
trip. Since each factor is assigned a weight that represents its value to the traveler, these weights can
be tailored to different population groups. This framework can be used by transportation planners
as they evaluate where to add and improve mobility services and mobility infrastructure with the
goal of creating a more accessible and equitable mobility system. Planners can also use this model
to examine how any change to mobility services can potentially impact individual travelers with
different starting points, departure times, or socio-demographics.

To demonstrate this model in real-world large-scale network, four scenarios are explored in
the Pittsburgh metropolitan network. The results exhibit the potential of micromobility to improve
access between a specific O-D pair by leading to a sizable reduction in generalized travel cost rel-
ative to the baseline public transit and walking case. The case study also highlights the ability to
account for different population groups via parameter adjustment, which points to an opportunity

``06/08/2022 09:00:15 - RIGHT''
``06/08/2022 08:56:02 - LEFT''
``06/08/2022 08:56:02 - LEFT''
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for future work in sensitivity analysis of the various parameters and cost functions. The PI rec-
ommends that continuation of this work should involve estimation of the pattern of network usage
for each mode and facility in high granularity. This can be accomplished by aggregating least-cost
paths for all individuals across multiple O-D pairs to find commonly-used nodes and links. Such
an assessment could inform a decision on when, where, and how to improve mobility services.

Once the spatio-temporal probabilistic accessibility of O-D pairs is quantified between sub-
populations and park facilities (as stated previously), this work proposes a system-level network
reliability analysis in which the output is the system-level probability of failure with respect to a
given failure limit state. By defining the failure limit state to be any subset of a community’s pop-
ulation not being able to access and/or benefit sufficiently from its surrounding community’s park
facilities, the research team finds that system-level performance can be effectively characterized by
degradation or insufficient performance of the transportation linkages and/or the reduction of park
facility performance. This radically differentiates itself from existing work in that the performance
or quality of the service accessed is considered in both the capacity and demand functions of the
reliability analysis; management of infrastructure (in this case parks) needs to consider the acces-
sibility and utility of essential services within the communities they are designed to serve in order
to better create multi-stakeholder frameworks that can lead to equitable infrastructure design.

For this project, the aforementioned performance of park assets is measured by the Park
Scoring database. This project delivers the design, construction, and installation of a wireless
sensing network used to monitor pedestrian and bike traffic in Pittsburgh’s Mellon Park. Due to
installation delays caused by the COVID-19 pandemic (which resulted in the installation not being
signed off by the administration until mid-Summer 2022), the team is in the early stages of data
collection. Next steps will include taking collected data and incorporating real-time metrics into
the Park Scoring database that account for park usage.

Looking forward, there are three key research thrust developed in this work that will be
further leveraged: spatio-temporal multimodal accessibility, system-level reliability that accouts
for accessibility and park facility performance, and quantification of park facility performance us-
ing cyber-physical system technologies. For the purpose of making optimal urban planning and
investment decisions, the research team plans to continue the existing stakeholder partnerships to
simulate the effects of specific park and mobility service maintenance, rehabilitation, and capital
projects on park facility accessibility. This will enable decision makers to understand which mobil-
ity options have the potential to improve accessibility, gain insights into spatio-temporal mobility
disparities across different populations with different needs, and incorporate real-time metrics into
the Park Score database to assess the need for asset improvements.
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