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Problem Statement 
Low-income communities and minority communities have experienced inferior access to 
transportation choices when compared to their white and more affluent counterparts. Many of 
these same populations have also experienced greater exposure to many of the negative 
externalities from transportation systems, such as congestion and air pollution [1], [2]. These 
inequalities seed serious structural inequities in our society, from missed doctor’s appointments 
[3] to the exclusion of these individuals from higher paying jobs [4] to differential health 
outcomes [5].  
 
In the US, many individuals in lower income populations rely on public transit as their main 
mode of transportation. Close to 40 percent of one-parent families receiving public assistance do 
not own a car and rely on public transportation for day-to-day travel [6]. Most public transit 
systems run on a fixed route system, in which vehicles run along an established path at preset 
times. In densely populated neighborhoods, a fixed route system may work well, since walking 
distance to bus and train stops may be acceptable. But in medium or low-density areas where 
residents may have to travel longer distances to and from transit stops, the lack of accessibility 
creates tremendous challenges for human mobility and leads to usage of unsustainable 
transportation modes. In addition, nearly one in five people—more than 61 million Americans—
have a disability [7]. Of those, some six million have a travel-restrictive medical condition—one 
that limits their day-to-day mobility [7]. This includes individuals with hearing, vision, and 
ambulatory difficulties that require the use of a wheelchair. By 2040, it is projected that there 
will be roughly 80 million seniors living in the U.S., which represents about a 70% increase in 
the number of elderlies from today’s numbers [8]. In an effort to reduce the mobility gap, the 
Americans with Disabilities Act (ADA) began requiring transit agencies that provide fixed-route 
services to also provide “complementary paratransit.” However, even these paratransit services 
face challenges in providing timely, efficient, and cost-effective service and these issues are 
likely to worsen as demand for these services increase [9]. 
 
More recently, transportation network companies (TNCs) (e.g., Uber and Lyft) have 
revolutionized mobility in many urban areas by detaching car access from car ownership, and in 
theory reducing many mobility gaps that arise from people not having access to a personal 
vehicle. Despite its high-tech luster, ride-hailing services do not serve all neighborhoods and 
travelers equally. Ge et al. concluded that minority TNC riders experience statistically 
significantly longer waiting times, on average. Studies also reveal some drivers for both UberX 
and Lyft discriminate based on the perceived race of the traveler, leading to more frequent ride 
cancellations [10]. 
 
AVs have the potential to be one of the biggest revolutions in transportation since the 
introduction of the personal car. The deployment of AVs is fast-approaching—Google’s Waymo, 
for example, has already deployed fully-autonomous taxis in some cities, and many other 
technology firms have begun pilot operations [11]. AVs hold serious promise for promoting 
social equity by increasing mobility for minority, low-income, and elderly populations as well as 
people with travel restrictive medical conditions. However, shared AVs, as with any emerging 
technology, could also exacerbate existing social inequalities. The potential distribution of 
impacts across populations and equity considerations are absent from most AV modeling efforts. 
It is important to see how configurations of autonomous mobility services could make trade-off 
between an inexpensive service with high waiting times and a service with high availability. 



Without proper policy, autonomous services could become a mode of transport for the wealthier 
part of the population if we only focus on the operational efficiency, putting us on a track for 
greater social imbalance [12]. 
 
To ensure that the path towards vehicle automation to simultaneously reduce transportation 
inequity and leads us towards a smarter and more sustainable transportation system, this study 
uses agent -based simulation to evaluate how pricing and fleet size policies on shared AV 
systems effects system performance (e.g., congestion and operations) as well as sub-population 
level outcomes (e.g., travel cost for different groups). 
 
Case Study Area 
This paper focuses on assessing the transportation system and sub-population level impacts of 
different pricing and fleet sizing policies for shared AV services in Seattle. While the 
conclusions of this research are meant to be generalizable, we focus our study on Seattle, 
Washington because it’s a diverse city with known inequalities among income, race, and other 
factors. Areas outside of the city limits of Seattle are not in scope of this study.  

 

 
Figure 1. Study Region 

 



Data 
We extracted the road network data from OpenStreetMap and public transit network and 
schedules from General Transit Feed Specification (GTFS). Converting GTFS to transit 
schedules and mapping transit stops and transit routes to the road network are accomplished by 
pt2matsim tool [13]. Transit modes (bus and tram in this study) will reflect congestion effects if 
they share the same road with private vehicles, otherwise dedicated artificial links are created 
and transit vehicle will travel in fixed schedule. After cleaning and simplifying the network, 27k 
nodes and 57k links are extracted as the multi-modal network. 
 
Agent-based transportation simulation requires disaggregated detailed traveler’s information. A 
tour is required in simulation preparation to represent a chain of trips of a traveler throughout the 
day. Here we adopted the mobility population by cleaning and geo-constraining data from 
SoundCast activity-based travel model (Puget Sound Regional Council (PSRC), 2014). The 
household, person and trip tables from PSRC are based on extensive travel survey as well as 
American Census Survey (ACS) and other data source to synthesize a robust population and 
travel patterns of Seattle [14]. To model the heterogeneity of subpopulations, we split the 
synthesized population into multiple categories based on their associated household income 
level, age, employment status and car ownership. The value of travel time (VOTT) which 
reflects the wealth difference is used as a critical indicator to model the different behavioral 
patterns within subpopulations.  
 
Overall, the synthetic population (home based in Seattle city) in 2014 was 625k with 30% 
households being low-income (lower than $50k). In this study, we focus on several categories of 
subpopulation. The reference group is set as an employed adult (age 18-64) with car ownership 
and $100k - $150k household income. The elderly and/or low-income and/or unemployed groups 
are treated as vulnerable subpopulation and compared with reference groups. From Table 1. 
below one can see can clear difference between vulnerable groups and reference groups where 
low-income/unemployed/elderly tends to use less private owned vehicle and low-income adults 
has fewer trips per day but longer travel distance.  
 

Table 1. Subpopulation Summary 
 Percentage of 

population 
Average trip 
rate (per day) 

Average trip 
distance 
(miles) 

Mode share (%) 

Low-income, 
18-64, 
employed 

11.1% 3.10 
 

3.56 28% walk, 4% bike, 
57% car, 11% transit 

Low-income 
elderly 

4.9% 3.53 3.03 30% walk, 1% bike, 
56% car, 13% transit 

Unemployed, 
18-64 

11.2% 3.65 3.11 29% walk, 5% bike, 
55% car, 11% transit 

Reference 
group 

14.5% 3.62 3.13 23% walk, 2% bike, 
67% car, 8% transit 

 
  



Methodology 
SAV configuration and MATSim simulation 
We implemented SAV vehicles in the simulation as demand-responsive transportation (DRT) 
service by using MATSim’s DRT module. These vehicles have a maximum capacity of 4 
passengers, and the automation was reflected by the change of road capacity in a mixed traffic 
condition (In this case the SAV consists only 3% of the vehicles, which makes the capacity 
change ignorable). Ridesharing will be executed when ride requests are in the proximity of the 
vehicle and the agents have similar destinations, implemented in DVRP algorithm [15]. The 
SAV vehicles are randomly distributed across the simulation area. Idle vehicles will return to one 
of these starting locations as they are regarded as depots and all vehicles returned to their 
predefined, random locations after each day operation. The maximum waiting time is set to 20 
minutes. the request will be rejected if waiting time exceeds the limit, although travelers have the 
ability to replan their activity by mutate departure time, mode choice, etc. 
 
Choice dimensions and scoring function 
In our simulations, the mode options include car, transit, bike, walk and SAV. Daily itineraries or 
agents’ plans contain up to five different activity types: “home”, “work”, “shop”, “school” and 
“others”, which can be linked via several possible trip-chain combinations. 
 
Regarding the mode split procedure, note that user equilibrium is not reasonable enough to 
depict the mode choice of traveler and goes far from the observed results. This process is 
influenced by a large number of factors, many of which are difficult to quantify and measure. To 
account for these factors in practice, the multinomial logit (MNL) model is applied as follows,  
 

Pr (𝑚𝑚) =
exp(𝜃𝜃𝑆𝑆𝑚𝑚𝑤𝑤)

∑ exp(𝜃𝜃𝑆𝑆𝑚𝑚𝑤𝑤)𝑚𝑚∈𝑀𝑀
,𝑤𝑤 ∈ 𝑊𝑊 

 
where for each OD pair 𝑤𝑤 ∈ 𝑊𝑊, Pr (𝑚𝑚) is the probability of choosing mode 𝑚𝑚 and 𝜃𝜃 is 
nonnegative empirical parameters associated with the degree of passenger’s perception of travel 
cost and set to 1 in our model. 𝑆𝑆𝑚𝑚𝑤𝑤 represents the scores (utility) of users choosing mode 𝑚𝑚 
between OD pair 𝑤𝑤. 
 
In addition to mode choices, agents can modify the departure time and duration of each activity 
in their plans set to reflect aspects like the optimal duration for the activity type, and site opening 
and closing times. These out-of-home activity attributes are described in Table 2. 
 

Table 2. Activity Type Time Specification 
Activity Type Opening time Closing time Optimal 

duration 
Home undefined undefined 12:00:00 
Work undefined undefined 08:00:00 
School 07:00:00 21:00:00 08:00:00 
Shop 07:30:00 21:00:00 01:00:00 

Others undefined undefined undefined 
 
  



In MATSim, the travel plan may be modified given constraints of one day time and real-time 
road conditions. Part of travelers will change their daily activities based on the utilities of 
individuals. Besides monetary costs and travel time, early departure, late arrival, or cancelling an 
activity will also affect activity utility. Agents’ daily activities are modeled in MATSim through 
an iterative learning mechanism based on a quantitative score illustrated in the section below. 
The score of a plan is similar to the mode utility in the mode choice model but incorporates the 
additional utility (score) of activities [19]. The basic function of calculating the plan score is as 
follows, 

 
 

where 𝑁𝑁 is the number of activities in the plan, 𝑆𝑆act,q  refers to the score of activity 𝑞𝑞 and 
𝑆𝑆trav,mode(q) represents the score of trips after activity 𝑞𝑞 via 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑞𝑞). The last activity is 
combined with the first one to have the same number of activities and trips. More specifically, 
the activity score is broken down as follows to capture the activity duration performance and late 
arrival penalty. 

 
 

where 𝑡𝑡typ,q (in hours) is the typical duration of activity 𝑞𝑞, 𝑡𝑡dur,q is the actual duration of activity 
𝑞𝑞, 𝑡𝑡0,q is the duration when the utility of activity 𝑞𝑞 starts to be positive. 𝑡𝑡0,q is set to 𝑡𝑡typ,qexp 
(−10/𝑡𝑡typ,q), 𝑡𝑡start,q is the actual start time of activity 𝑞𝑞, 𝑡𝑡latest arr,q is the latest start time of 
activity 𝑞𝑞 without penalty. Without further information regarding travelers’ preference for early 
departure/late arrival, we set these activity scoring parameters as default in MATSim.  
 
Calibration Process 
We validated the simulations based on other open-sourced data including 2014 Household Travel 
survey conducted by City of Seattle & PSRC and hourly link traffic counts from Seattle Open 
Data Program published by city departments. Real-world traffic observations are given by DOT 
with hourly counts of 30 links of freeway selected. By incorporating CaDyTS (Calibration of 
dynamic traffic simulations), MATSim is able to calibrate the daily plans to match closer to 
observed link counts. The mode share is also compared with 2014 Household Travel survey. 
 
Results and Recommendations 
To understand the impact of introducing a new SAV mode on multi-modal transportation 
systems, three aspects of SAV impacted were analyzed, considering the congestion effects, SAV 
operations/performance and the variety of subpopulation’s benefits. 
 
System level performance 
Figure 2 and Figure 3 show the traffic volume and volume change of some representative links in 



Seattle. With the introduction of SAV, we can conclude that there’s an increase in congestion, 
due to the increase in distance driven on the roads caused by modal shifts and SAV operations. 
By calculating the link travel time, however, the increase of time is 1.3% on average and 1.9% at 
90% quantile. However, the maximum delay compared to base case is about 6.9 times of travel 
times for certain links. The red lines in Figure 3 shows the link count change over 60% compared 
with base scenario in the morning peak hour, where most congestion effects occur in downtown 
and surrounding areas. 
 

     
Figure 2. Average Annual Weekday Traffic Volume 

 



 
Figure 3. Percentage of Traffic Volume Change (7-8 am) with SAV Fleet size of 5000 

 
Subpopulation-level evaluation 
It’s critical to understand how SAVs would mode choice for different subpopulations. Since the 
travel time wasn’t change to much for other modes of transportation, here we consider all the 
trips that each subpopulation groups switch from other mode to q SAV and compare their 
disutility improvement due to SAV service (see Table 3). By calculating the relative ratio of each 
subpopulations using SAV, it clearly shows that SAV service would be more appealing to 
higher-income level groups, with more than 70% of the SAV users come from the reference 
groups (employed high-income adults). This is due to the benefits of reducing the value of in-
vehicle travel time, which provides more value savings for the high-income group since their 
value of time are substantially higher than low-income groups. These observations occur both in 
$0.5/mile and $1/mile pricing schemes, and higher SAV price will impose heavier effects on 
vulnerable groups and hinder their accessibility to SAV.  
  



 
Table 3. Subpopulation Utility Comparison 

 Fleet size = 5000, Price = 
$0.5/mile 

Fleet size = 5000, Price = 
$1/mile 

 Percentage of 
request 
among 

targeted SAV 
users 

Travel disutility 
improvement 

Percentage of 
request among 
targeted SAV 

users 

Travel 
disutility 

improvement 

Low-income, 
18-64, 

employed 

9.2% 20.9% 6.8% 9.9% 

Low-income 
elderly 

5.7% 22.4% 3.3% 11.4% 

Unemployed, 
18-64 

13.6% 21.2% 15.3% 8.2% 

Reference group 71.5% 29.6% 74.6% 20.7% 
 

Discussion 
This study performed multiple agent-based simulations with SAV settings to show the impacts 
with of different fleet size and pricing policy from different perspectives: transportation 
authorities, SAV companies, and subpopulation considerations. With fleet size increase from 
2000 to 8000, the average/median waiting time for SAV reduces substantially and provide a 
more efficient operations given higher occupancy rates traveled and a higher revenue-to-cost 
ratios. The optimal fleet size and pricing policy still need investigation (with more fleet size 
experiments). The operations of SAV induce a slightly more congested road network, and the 
spatial distribution of waiting time and trip rates implies an uneven service for different 
geographical locations. The comparison of SAV use and disutility change among different 
subpopulation shows that the benefits of SAV varies across populations, and high-income groups 
would benefit more from the service. Future analysis should be conducted (e.g., subsidies for 
vulnerable groups, different fleet size and pricing policies, dynamic routing/rebalancing 
strategies) to provide a more equitable SAV operations for the transport authorities.   
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