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1. Overview 
In this report, we summarize the progress and accomplishments achieved in Mobility21 
University Transportation Center Award #40459-8.3-1080376, titled “Creating and 
Integrating Solutions to Enable the ‘Complete Trip’”. One integrating theme that has 
been promoted in recent years for framing the technology needs of mobility-challenged 
individuals is that of facilitating the “Complete Trip” [NCMM 2020]. Toward this end, this 
project has focused on two chief deliverables: (1) a mobile smartphone app for persons 
with disabilities that integrates pedestrian-friendly route planning, real-time navigation, 
safe intersection crossing, and coordination of multi-modal travel legs through cloud-
based traveler-to-infrastructure (T2I) communication, and (2) the development of 
enabling technology for an intelligent wheelchair that couples dynamic obstacle 
detection and autonomous navigation capabilities to provide wheelchair users with real-
time driver assist for traversing challenging terrain (e.g., intersection curb cuts, potholes, 
sidewalks under repair). The project focused specifically on complete trip support for 
pedestrians with two types of disabilities, wheelchair users and vision-impaired 
individuals, but we believe the capabilities that have been developed will also be 
applicable and useful to other mobility-challenged individuals. 

Toward the first objective of developing a smartphone app for complete trip support, the 
project has accomplished the following: 

• In collaboration with industrial partners pathVu and Rapid Flow Technologies, we 
have created PedPal+, a smartphone app that combines and extends two 
previously developed component technologies: 

o PedPal – A smartphone app designed to exploit real-time communication 
with the traffic signal system at the intersection to promote safe and 
efficient crossing of signalized intersections [Smith et.al 2019]. 

o pathVu Mobility Planner – A smartphone app that takes advantage of an 
underlying sidewalk mapping data base to generate the most accessible 
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route from A to B (as opposed to the fastest) and then provides real-time 
navigation support as the route is executed [pathVu 2022]. 

PedPal+ is designed to allow its user to request the most accessible route from 
one location to another (e.g., from home to a bus stop) at the beginning of a 
travel episode, and then tracks the user and gives navigation cues as the user 
begins to execute. As the user approaches a signalized intersection along the 
route, the app switches to safe intersection crossing mode, and begins 
interacting with the traffic signal system to gather information about when 
different crossing options are scheduled to occur. The app then indicates to its 
user when the desired crossing direction will next be active (green), it 
communicates to the traffic signal system how much time its user needs to make 
the cross (using intersection geometry information and knowledge of the user’s 
speed) and prepares the user for crossing as the scheduled time approaches.  

• To provide a reliable basis for detecting when the user arrives at a crossing 
corner, a straightforward geofencing solution was developed based on the 
placement of an Ultra-Wide Band (UWB) beacon at each corner light pole of the 
intersection. By establishing communication between the PedPal app and these 
beacons, range data is used to both recognize corners and provide accurate 
tracking of progress during street crossing. Overall, the introduction of UWB 
beacons as additional infrastructure provides 2-3 cm localization accuracy within 
the app and solves the longstanding smartphone localization problem that has 
limited PedPal capabilities to date. 

• Further exploiting the presence of UWB beacons at each corner of the 
intersection, triangularization algorithms for detecting pedestrian movement 
outside of the crosswalk during crossing and issuing corrective course alerts 
were developed and validated using the SUMO traffic simulator. Intended 
principally for vision impaired pedestrians, the concept is to issue a haptic alert 
(e.g., 1 vibration for a left correct and 2 for a right correct). 

• Finally, the PedPal+ app was extended to utilize real-time T2I communication to 
broadcast crosswalk presence information to all approaching “connected” 
vehicles to increase their awareness of the pedestrian crossing. In collaboration 
with Argo AI, control of their autonomous vehicles was extended to receive these 
messages and take precautionary action (i.e., slow down) if appropriate to 
provide a demonstration of this capability. 

• All of the above capabilities were consolidated within the app and incorporated 
into a live demonstration with a vision-impaired pedestrian traveling from his 
residence at Spirit Avenue and Highland Avenue in East Liberty, through the 
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intersection of Highland Avenue and Centre Avenue and onto the east-bound 
bus stop at the corner of Penn Avenue and Highland Avenue. 

Toward the second objective of an intelligent autonomous wheelchair, the project has 
produced the following additional accomplishments: 

• A full-stack autonomous wheelchair was developed to provide a platform for 
investigating the development of core techniques for outdoor navigation and 
dynamic obstacle avoidance. 

• A Self-supervised Learning approach to Traversability analysis was developed 
and applied to generate a cost map based on visual features of different types of 
traversable terrain. The model was learned using first person-view camera 
images and 3D lidar scans to map the first-person view into traversability by 
using a robot's internal vehicle state as a signal for the ride comfort. This result 
was then integrated into an autonomous wheelchair navigation algorithm to 
provide a basis for outdoor wheelchair driving. To provide a baseline for 
evaluation, a second semantic classification approach was also developed and 
used to quantify the leverage provided by the traversability-based approach. A 
user study showed the proposed approach to be superior to the baseline with 
respect to the safety, stability, trustworthiness, and overall preference. 

• To enable autonomous wheelchair navigation along routes that require traversal 
of both indoor and outdoor spaces, the above traversability-based approach was 
subsequently combined with a more traditional indoor autonomous navigation 
approach based on object recognition and scene analysis. This broader 
capability was validated by demonstrating the ability of a prototype intelligent 
wheelchair to travel autonomously from the 3rd floor Atrium inside Newell and 
Simon Hall on the CMU Campus, out onto the sidewalks running between and 
around other CMU buildings, and eventually arriving at a sidewalk nearby a 
former bus stop on Forbes Avenue. 

• Finally, light curtain technology was developed for dynamic detection of 
obstacles during autonomous navigation. Specifically, techniques were 
developed that uses a light curtain (1) to track surrounding objects and estimate 
their velocity, based on particle filtering, and (2) to estimate the sensor ego-
motion, by associating range data to visual features and tracking the visual 
features. Both techniques were tested and validated on board the prototype 
intelligent wheelchair. 

In the remainder of this report, we describe accomplishments in all areas in more detail 
and discuss next steps for technology maturation and transition. 
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2. PedPal+: A Smartphone App for Support of the Complete Trip 
 
The PedPal+ app developed over the course of this project consolidates and extends 
previously developed component technologies for safe intersection crossing (the 
original PedPal smartphone app [Smith et.al 2019]) and pedestrian-friendly routing 
(pathVu’s current wheelchair user routing and navigation app [pathVu 2022]). 
Methodologically, we have taken the PedPal smartphone app as our starting point. 
PedPal derives its core functionality from its real-time connectivity to Surtrac [Xie et.al, 
2012, Smith et.al 2013, Smith2020], a decentralized adaptive traffic signal control 
system developed originally at CMU and now provided commercially by Rapid Flow 
Technologies. PedPal relies on interaction with Surtrac to obtain intersection geometry 
and signal phase information, to ensure that the pedestrian is given enough time to 
cross when the crossing phase becomes active, and to dynamically extend the crossing 
time if the pedestrian is observed to be moving slower than expected. Over the course 
of this project, we have improved and extended its safe intersection crossing 
capabilities, and then expanded its scope by importing routing capabilities from 
pathVu’s routing app.  
 
In the following subsections, we first highlight the major technical advances that have 
been incorporated into PedPal to create the current PedPal+ app. We then present a 
representative use case to illustrate how the app is intended to be used. Finally, we 
describe some current limitations and next steps for rounding out and hardening the 
PedPal+ technology, as well as strategies for subsequent transition of the technology 
into practice. 

2.1 Boosting App Localization Capabilities through Ultra-Wide Band Sensors 
One of the big challenges in the development of the original PedPal app was achieving 
sufficient localization accuracy to provide the necessary pedestrian tracking capabilities 
to support vision-impaired individuals. The iPhone was chosen as the implementation 
platform because of the strength of its native accessibility features (voice-over, zoom, 
etc.). However, like all contemporary smartphone technology, the iPhone’s native 
localization algorithm quickly proved too approximate for two basic needs: (1) identifying 
pedestrian arrival at an intersection corner and (2) real-time tracking of progress during 
pedestrian crossing (to determine whether a real-time extension of the current green 
phase should be requested). To address this problem, the original PedPal development 
effort turned to additional infrastructure support. Bluetooth beacons were introduced on 
the pole at each corner of the intersection and configured to broadcast range 
information to the smartphone app. A geofence is then defined around the known 
location of each corner beacon (which is accessible as extra information added to the 
intersection’s MAP message, which provides the intersection geometry). In practice, we 
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were able to get repeatable corner detection using a 10m radius geofence (which still 
leaves vision-impaired individuals with considerable uncertainty). 

With the emergence of Apple’s Air Tag tracking sensors in early 2022, the opportunity to 
exploit ultra-wide band (UWB) to provide a better solution to corner detection became 
apparent. To explore this possibility, we acquired a set of iPhone 12 mini smartphones 
(the first iPhone to embed UWB radio capability) for use as experimental UWB 
“beacons”, and utilized Apple’s nearby interaction framework to establish connectivity 
between all corner beacons and the PedPal+ app. In field test experiments at the 
intersection of Highland Avenue and Centre Avenue in East Liberty, we have verified 
the advertised 2-3cm localization accuracy in ideal conditions, allowing us to reduce the 
corner geofence to a 3m radius with reliable results. This capability also provides a 
basis for accurately tracking pedestrian progress and strengthens PedPal’s original 
ability to dynamically extend the crossing phase if the pedestrian is moving slower than 
expected. More recently, Estimote has begun producing an inexpensive UWB beacon 
(approximate cost: $30 each) that utilizes the same nearby interaction communication 
framework, and one ongoing thread of work focuses on field testing this sensing 
alternative. 

2.2 Detecting Pedestrian Movement outside of the Crosswalk 
 

 
Figure 1: Estimating pedestrian location during crossing. 

The localization accuracy provided by UWB technology has also introduced the 
opportunity to introduce new safe intersection crossing capabilities. Specifically, we 
have developed a pedestrian localization and reorientation algorithm capable of 
detecting pedestrian movement outside of the crosswalk and signaling a corrective alert 
when this happens. [Hata et.al 2022]. Starting from the assumption that the orientation 
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of the pedestrian at the origin corner prior to crossing is known, the algorithm repeatedly 
triangulates the range information communicated by the three closest intersection 
beacons to estimate the pedestrian’s location at discrete time steps (e.g., every second) 
once crossing commences (see Figure 1). At each time step, the last n locations in this 
time series data are used by the algorithm to predict the pedestrian’s future trajectory. If 
this predicted trajectory crosses the crosswalk boundary (or some specified minimum 
distance from the crosswalk boundary), then a haptic alert is issued by the app – one 
vibration for “move left to correct” and two for “move right” – to reorient the pedestrian, 
and the predicted trajectory is updated accordingly. 

To evaluate both localization and reorienting aspects of the algorithm, A SUMO 
pedestrian traffic simulation model was developed with a simple (linear) noise model, 
where the amount of noise that is added to the actual range information communicated 
by a given beacon increases (or decreases) as the pedestrian gets farther (or closer) to 
the beacon. In a series of experiments with a model of the intersection of Centre 
Avenue and Highland Avenue in the East Liberty region of Pittsburgh PA and a walking 
model for pedestrians, the localization method was found to provide high accuracy, 
differing by only 0.003% from the ground truth, and the reorienting algorithm was shown 
to consistently result in successful crossing within the crosswalk. Example trajectories 
and recoveries generated for west to east crossings of the intersection are shown in 
Figure 2. 

 

             
(a)                                                                       (b) 

Figure 2: Recognition and Correction of pedestrian drifting (a) south, (b) north 

We are currently working toward validating this capability in the field at the actual 
intersection of Centre Avenue and Highland Avenue. 

2.3 Signaling Crosswalk Presence to Approaching Connected Vehicles 

A separate extension to the original PedPal app that was developed over the course of 
the project involved providing the app with the ability to signal the expected presence of 



8 

its user in the crosswalk to any approaching connected vehicle. This real-time “PedPal+ 
to Vehicle” communication capability was provided by re-engineering and expanding the 
PedPal cloud server originally developed to provide “PedPal to Infrastructure” 
connectivity with the Surtrac traffic signal control system. 

The expanded PedPal cloud server protocols are illustrated graphically in Figure 3. As 
the PedPal+ app becomes within range of an intersection, it receives the standard MAP 
message from the cloud server, followed by a continuous stream of Signal Phase and 
Timing (SPaT) messages that are generated by the Surtrac process running at the 
intersection. The MAP message provides information on the intersection geometry 
(width of lanes, number of lanes, crosswalk IDs/locations, corner locations, etc.). Each 
SPaT message provides updated information about the intersection’s signal phases 
(e.g., currently active crossing phase, time until future crossing phases, etc.). When the 
pedestrian arrives at an intersection corner and selects the crossing direction, PedPal+ 
communicates a Signal Request Message (SRM) through the cloud server to the 
Surtrac process that specifies the amount of time needed for the pedestrian to cross 
when the desired crossing phase becomes active (given knowledge of the pedestrian’s 
travel speed and the geometry of the intersection). After responding to this request, 
Surtrac sends a Signal Status Message (SSM) back through the server to the app, 
indicating whether the crossing time was extended (i.e., that it was not the case that the 
requested extension results in violation of the maximum time constraint associated with 
the current active phase). 

 
Figure 3: V-to-I-to-PedPal+ Connectivity 
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To make PedPal+ aware of vehicles in the area that have real-time connectivity, we 
adopt the assumption that connected vehicles are incentivized to share their routes with 
the infrastructure and define a Vehicle Route Message (VRM).  Rationale for this 
assumption stems from previous research, which has shown that if a vehicle is willing to 
share their routes with a Surtrac controlled traffic network, this information can be used 
to move this vehicle through the network substantially faster than it would without 
sharing this information [Hawkes16, Smith21].1 As a connected vehicle enters a Surtrac 
controlled network, it communicates a VRM to the PedPal+ cloud server, providing a 
vehicle ID, a sequence of waypoints characterizing its planned route through the 
network and the vehicle’s current location. The server then uses the sequence of 
waypoints, together with travel speed information, to estimate the arrival times of the 
vehicle at each successive signalized intersection along its planned route. These 
predicted arrival times are stored locally for later use in determining the proximity of 
various connected vehicles to a given intersection at a particular future point in time.  

When the PedPal+ app informs a pedestrian waiting at an intersection corner that the 
crossing phase is now active and it is ok to cross, the app also communicates a newly 
defined Pedestrian Presence Message (PPM) to the cloud server, indicating the 
Intersection ID, Crosswalk ID, and Expected Arrival Time at the destination corner. 
Upon receipt of the PPM, the cloud server collects the set of connected vehicles whose 
predicted arrival times at the designated intersection are in proximity to the crossing 
pedestrian and relays the PPM to each of these vehicles. 

To demonstrate this capability, an API was developed to allow message passing 
between the PedPal+ cloud server and the cloud server used by Argo AI to maintain the 
routes and real-time status of their autonomous vehicle fleet as they drive around 
Pittsburgh neighborhoods. The above summarized handling of VRM and PPM message 
types was implemented on both sides of this API and experimental code for responding 
to the receipt of a PPM onboard a vehicle was created. This code was designed to 
command the vehicle to slow down and stop if necessary to avoid entry into the 
crosswalk during the specified pedestrian presence interval. For our testing purposes, a 
specific autonomous vehicle running this experimental code was then dispatched to 
drive a circular route that passed through our test intersection of Centre Avenue and 
Highland Avenue (see Figure 5 below). The route called for a right turn onto Centre 
from Highland. Once the vehicle was on site and driving this route, several pedestrian 
crosses of Centre Avenue were carried out, each starting from the southeast corner of 
the intersection as the Argo AI vehicle was either approaching the intersection or 
already stopped at the intersection waiting for the green. For those cases where there 

 
1 This reduction in travel time is on top of the benefit accrued from adopting Surtrac real-time adaptive 
control. 



10 

was temporal overlap in the presence interval and the vehicle’s right turn, it was verified 
by the person riding in the vehicle that the vehicle speed was reduced to eliminate the 
possibility of a collision. 

2.4 Integrating Accessible Routing 
 
Moving beyond the scope of the safe intersection crossing application, a final capability 
that was added to the PedPal+ app is the ability to generate and navigate accessible 
pedestrian routes. This extension was built directly on technology developed originally 
by pathVu for its wheelchair navigation app. This technology, at its core, is a cloud 
service for generating accessible routes. An accessible route is defined as one that 
promotes safe, unobstructed passage from point a to point b, in contrast to routing 
systems such as Google Maps, Waze or Apple Maps, which generate routes based on 
travel time objectives. To support the generation of “pedestrian friendly” routes, the 
pathVu generator relies on a continually maintained sidewalk database that is 
constructed by visually mapping neighborhood sidewalks for cracked, crumbling or no-
existent pavement, and then crowdsourcing transient obstructions such as pavement 
under construction or adjacent building work zones. The route generation algorithm 
combines this information with traffic volume and intersection geometry characteristics 
to evaluate alternative routes from origin point a to destination point b and select the 
most accessible. 
 

 
                           (a)                               (b)                               (c) 

Figure 4: Requesting an Accessible Route: (1) Select “+” from initial route view screen 
to trigger text dialog screen, (2) select microphone to dictate destination location, (3) 

select update to trigger route generator and display the result. 
 



11 

To exploit this service, an API was developed and implemented to interface PedPal+ 
with pathVu’s route generation cloud service. An additional route mode was added to 
PedPal’s original intersection and settings modes (see Figure 4.a below). From this 
base interface screen, it is possible to request a new accessible route. This brings up a 
text screen for expressing the desired origin and destination of the route (see Figure 
4.b). By default, the origin location is assumed to be the current location of the app. If 
the app user is vision impaired, Apple IOS’s native dictation capability is used to specify 
the intended destination. Once specified the remote route generator is invoked, and the 
returned route is displayed via Apple Maps (Figure 4.c). Along with the route, the 
generator also provides the computed route distance and the expected arrival time at 
the destination if the trip was initiated now (based on the users known travel speed, and 
an estimate of the delay to be encountered at each signalized intersection along the 
way). 
 

 
Figure 5: Crossing the street with PedPal+ 

Once underway, the app is designed to remain in route mode as the user begins to 
execute the route. As the user progresses, the app is designed to track progress and 
provide navigation advice. These capabilities remain under development at the point of 
this report. When it is detected that the user is within range of the next signalized 
intersection, the app shifts to intersection mode and, once MAP and SPaT messages 
are processed, begins presenting crossing options (see Figure 5.a, 5.b). The user is 
subsequently informed of arrival at intersection corner (as determined through 
interaction with the UWB beacon at the corner). Once the user makes a crossing 
selection, the app communicates the required crossing time to the traffic signal system 
and is informed whether the crossing time extension has been granted. If the selection 
is for a future crossing phase, the app signals for the pedestrian to wait (Figure 5.c). As 
the time until the crossing phase nears, the app begins to count down the time 
remaining to prepare the user for the cross. When the crossing phase commences, the 
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app announces that it is OK to cross (Figure 5.d) and begins to count down the time 
remaining in the phase. When the user is detected at the destination corner (again via 
interaction with the UWB beacon positioned at that corner), the app informs the user 
that the crossing is complete (Figure 5.3), and a new set of crossing options are 
presented. When the app detects that the user is moving away from the intersection, the 
interface reverts to route mode for navigation support. 

2.5 Towards a Wearable Version 
One use issue identified in the user pilot test of the original PedPal app stemmed from 
the fact that a smartphone app is difficult to take advantage of for pedestrians with 
certain types of disabilities. Wheelchair users, for example, have their hands occupied 
and would require some sort of mounting device to exploit PedPal (or PedPal+) 
assistance. Likewise, older pedestrians that travel by means of a walker or a rollator do 
not have their hands free to interact effectively with the app. 
 
To address this shortcoming, an initial port of the PedPal app to the Apple watch was 
undertaken. Given the reduction in screen size available on the watch, a wearable app 
design was produced that incorporates connectivity to the original smartphone app as a 
means of limiting the functionality provided by the wearable app to core support for 
navigating complete trips in urban environments. Specifically, settings mode is 
accessible only on the smartphone app, and the offline actions taken to configure and 
personalize the app for its user are retrieved by the wearable app when needed during 
operation. An initial version of the wearable app that provides basic street crossing 
functionality, depicted below in Figure 6, remains under development as of the writing of 
this report. 
 

 
 

Figure 6: An initial wearable version of PedPal+ 
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2.6 PedPal+ in Operation 
 
To debug and validate the extended capabilities developed over the course of the 
project, a series of live tests were conducted at the intersection of Centre Avenue and 
Highland Avenue in the East Liberty neighborhood of Pittsburgh, culminating in 
execution of the `complete trip’ demonstration scenario depicted in Figure 7. At a high 
level, the demonstration trip starts at a pedestrian’s “home” location on Highland 
Avenue, proceeds north across Centre Avenue, then crosses Highland Avenue, and 
finally proceeds north to the bus stop on the corner of Penn and Highland Avenues, the 
next signalized intersection. Both intersections are part of the City’s Surtrac traffic signal 
system deployment, and each corner of the intersection of Centre Avenue and Highland 
Avenue were additionally instrumented with iPhones serving as UWB beacons. 

 

 

Figure 7: Demonstration scenario. 

In more detail, the demonstration scenario was designed to incorporate the following 
progression of events: 



14 

1. The pedestrian first requests a route from his current location to the eastbound 
bus stop at Penn Avenue and Highland Avenue from the app. The app responds 
with the route shown in Figure 7 and an estimated travel time of x minutes (using 
its knowledge of how fast the user travels, how many signals need to be crossed, 
etc.).2 Once the route has been generated, the user confirms that there is 
sufficient time to get to the bus top before the next bus traveling east is expected 
to arrive and proceeds to start along the route.   

2. As the pedestrian approaches the intersection of Highland and Centre, the app 
recognizes the intersection corner (the southeast one in this case) through 
interaction with the Ultra-Wide Band (UWB) beacon positioned at the corner and 
presents the user with possible crossing options. Through interaction with the 
app (as indicated previously in Figure 5), the user crosses Centre Avenue 
moving north.  

3. As the pedestrian begins to cross Centre, the app broadcasts the user’s 
presence in the crosswalk to any approaching vehicles with connected vehicle 
capability. In the demonstration scenario, an ARGO AI vehicle synchronized to 
be traveling north on Highland from Shadyside and turning east onto Centre 
Avenue at the same time as the cross, receives the message that the user is in 
the crosswalk and slows down to allow the user to cross first. 

4. Once across to the northeast Corner, the pedestrian is presented with new street 
crossing options and prepares to cross Highland Avenue to get to the NW corner, 
again using the app screen progression in Figure 5 (or its voiceover equivalent in 
the case of a vision impaired individual). 

5. Although not yet operational, an anticipated short-term extension of the 
demonstration scenario will involve the user veering toward the intersection as he 
proceeds to cross Highland Avenue and stepping outside of the crosswalk, at 
which time the app sends a haptic signal to alert the user (e.g., single vibration if 
outside to the left, double vibration if outside to the right), and initiate course 
correction.  

6. Once across the street, the user turns right and heads up Highland Avenue 
toward Penn Avenue and the bus stop.  

 
For the final demonstration conducted at the end of the project, a blind individual was 
recruited to play the role of the pedestrian. A video recording of this demonstration can 
be found at <link to be added>. 
 

 
2 In actuality, the pathVu accessible routing procedure did not produce the route depicted in Figure 7. 
Instead, it judged the intersection to be too dangerous for the pedestrian to cross, and returned the route 
shown previously in Figure 4.c, which skirts the intersection and crosses at the next intersection traveling 
east bound on Centre Avenue, then follows a side street north to Penn Avenue and then heads west on 
Penn Avenue to the destination bus stop. To allow us to test and demonstrate at this more challenging 
intersection, we introduced an option to preload a route, and used it to preload the route depicted in 
Figure 7 for testing and the actual demonstration. 
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2.7 Next Steps 
 
Our immediate next steps are to refine and harden the PedPal+ technology and then 
pursue general deployment of it. One important prerequisite to deployment is maturation 
of the UWB beacon technology used for corner identification and pedestrian tracking. 
Substitution of newly available Estimote UWB beacons (or a suitable alternative) for the 
iPhone12 Minis used to validate the UWB technology solution to the localization 
problem will require some amount of reengineering. Specifically, use of iPhone Minis as 
UWB beacons allowed us to utilize cell phone connections to the PedPal+ cloud server 
to simplify the process of corner detection, which is not possible with independent UWB 
beacon technologies that do not have cellular communication capabilities. One short-
term objective will be to redirect this communication to the cloud server through the 
smartphone app itself.  
 
A second short-term focus will be demonstrating the mechanism we have developed for 
detecting pedestrian movement outside of the crosswalk during crossing in the field. We 
believe this is basically a matter of developing a `nearby interaction’ implementation of 
the pedestrian localization and reorientation algorithm summarized in Section 2.2 and 
should be straightforward once the transition to independent UWB beacon technology is 
complete. A final short-term focus will be development of a fully functional real-time 
route navigation system. The current app provides a rudimentary capability to track user 
progress but gives no pro-active auditory guidance to the user in navigating the route. 
 
Several avenues present themselves for subsequent deployment of the PedPal+ 
complete trip technology. The most likely paths will be through our deployment partners, 
and to promote this eventuality, all technology results produced under this effort have 
been designated as open source. This will allow PathVu to directly exploit the mobile 
app’s integration with their sidewalk mapping database, to further develop its integrated 
path planning and safe intersection crossing functionality, and to integrate the PedPal+ 
app into its current product offerings. Complementary progress with techniques for 
obstacle detection (see Section 3.2 below) will also give PathVu the option to further 
automate the collection of sidewalk data through adoption of robotic wheelchair sensing 
and obstacle detection technologies. 

Similarly, Rapid Flow Technologies is incentivized to incorporate PedPal+’s extended 
component capabilities for safe intersection crossing. Rapid Flow’s basic approach to 
deployment of the original PedPal technology (which we expect to be the same for 
PedPal+) is to provide it free of charge to municipalities who purchase the Surtrac traffic 
signal control system, on the assumption that municipalities could then offer the 
capability to their local disability community as a gesture of goodwill. 
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A final prospective path to deployment that we are pursuing is the concept of PedPal-
lite, a version of the smartphone app that does not require Surtrac traffic signal control 
and instead interfaces with a conventional traffic controller. In this case, the ability to 
dynamically extend the crossing phase if the pedestrian is moving slower than expected 
is given up, but the resulting smartphone app becomes much more broadly deployable 
and most other capabilities of PedPal+ remain available. We are initially targeting an 
NCTIP controller interface to maximize US deployment opportunities, and we envision a 
deployment strategy that combines a policy of free release of the app to any interested 
municipality with an optional service agreement for maintenance and upgrades. 

3. Autonomous Wheelchair Navigation using Learned Traversability Model 
 
The second major thrust of the `Complete Trip’ project has focused on the development 
of enabling technology for providing motorized wheelchair users of the PedPal+ app 
with the additional complementary capability to invoke autonomous driver-assist for 
traversing difficult route segments such as intersection curb cuts, sidewalks under 
repair, and potholes. To this end, a full-stack autonomous wheelchair (depicted in 
Figures 10 and 13 below) was developed as a research platform for investigating 
solutions to two core technical problems: outdoor navigation and dynamic obstacle 
detection. In this section, we summarize work performed to address the first problem. In 
Section 4, we describe technology that was developed to solve the second problem. 
 
Autonomous wheelchair navigation involves the notion of shared autonomy where 
wheelchair users expect vehicles to provide safe and comfortable rides while following 
users’ high-level navigation plans. To find such a path, vehicles negotiate with different 
terrains and assess their traversal difficulty. Most prior work models surroundings either 
through geometric representations or semantic classifications, which do not reflect 
perceived motion intensity and ride comfort in downstream navigation tasks. We instead 
focus on ride comfort explicitly in traversability analysis using proprioceptive sensing. In 
our approach, known here as Ride Comfort-Aware Visual Navigation (RCA), a self-
supervised learning framework has been developed to predict traversability cost map 
from first person-view images by leveraging vehicle states as training signals [Xinjie et. 
al 2022, Xinjie 2022]. Our approach estimates how the vehicle would “feel” if traversing 
over based on terrain appearances. We demonstrate that our navigation system 
provides human-preferred ride comfort through both experiments carried out on a 
prototype automated wheelchair and a human evaluation study.  In the following 
subsections we elaborate elements of the technical approach taken and summarize the 
technical results obtained. 
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3.1 Problem Formulation 
The target problem is that of predicting the navigation costs using first-person view, 
monocular camera images. Let ⟩t ∈ I denote an image input at time step t where I 
denotes the projection space of the monocular camera images. We aim to find a 
function that maps this projection space to a 2D cost map, denoted by Φ(I) → R2. Based 
on the intuition that traversability directly affects the vehicle state, we introduce vehicle 
state as an internal representation of cost and formulate this problem as one of finding 
two mapping functions. Let st denote the vehicle state at time t, consisting of the 3D 
robot pose including position, orientation, angular velocity, and linear acceleration. The 
first subproblem is to find a mapping function ΦI→S(I) → S that can predict vehicle states 
from input images, minimizing the error between the predicted and the true states. The 
second mapping function, ΦS→R(S) → R2, maps vehicle states to traversability costs, 
quantifying the traversability based on vehicle states. Using this formulation, our self-
supervised approach automatically generates training data in the form of an image and 
the corresponding traversability cost map. This training data can then be used to learn 
the mapping function from image to cost Φ(I) → R2.  

3.2 First-Person View Visual Navigation 
Figure 8 shows a high-level view of the first-person view navigation system where local 
planning determines the smoothness of a navigation path. As illustrated here, the terrain 
traversability analysis module uses first-person view camera images to generate a 
traversability cost map for the local planner to decide the actual navigation path. We 
compare our proposed RCA approach with two baseline approaches, namely 3D-based 
and Semantic-based approaches. 

 
Figure 8: A navigation system with the terrain analysis module. Our contributions center 

on the terrain traversability analysis module that provides guidance for local planning. 

3.3 Ride Comfort Aware (RCA) traversability analysis approach 
Figure 9 provides an overview of the RCA approach. During training, the vehicle 
experiences physical vibrations by traversing various types of terrains. Using recorded 
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vehicle states and first-person view images, the system learns to estimate traversability 
cost from images. Instead of manual labeling, we first use unsupervised learning to 
coarsely group vehicle states into clusters based on vehicle-terrain interactions. Next, 
with those clusters, we define a continuous cost function to reflect the traversability 
based on vehicle dynamics. Finally, we train a prediction model to associate terrain 
images directly to the traversability costs. During deployment, the learned model 
estimates a terrain cost map to support autonomous navigation. Each of these three 
steps are considered in more detail in the subsections below. 
 

 
 

Figure 9: An overview of the Ride Comfort Aware (RCA) Visual Navigation Approach 
 
3.3.1 Estimating Traversability Cost from Vehicle States 
Within the RCA framework, vehicle states are utilized only during training as 
intermediate learning signals and as indicated above, the first step is to use them to 
estimate traversability costs. By turning these learning signals into numerical costs, the 
principal learning algorithm to be applied subsequently can use these predicted costs, 
along with the images, for self-supervision, rather than utilizing vehicle states directly. 
Estimation of traversability costs from vehicle states is itself accomplished in two steps. 
First, an unsupervised learning method is used to generate coarse labels for vehicle 
state clusters. Second, the learned clusters are used to estimate a continuous cost 
function given a vehicle state input. 
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Step 1: Unsupervised Learning for Classifying Vehicle States. After input data 
preprocessing, we have image patches indicating traversal regions and frequency 
spectra describing experienced motions. As opposed to previous self-supervised 
approaches to vibration-based classification which have handcrafted features, we 
exploit the complementary information shared by the visual and vehicle state domains 
to extract latent features. To learn this association, we generally follow an existing 
unsupervised feature learning framework for classifying acoustic data [Zurn 2021]. In 
essence, this framework brings visually similar samples closer and visually distinct 
samples further away in the target space. We customize this framework for 
interpretation of riding comfort as follows. First, we extract image features using the 
Deep Encoding Pooling (DEP) network [Hue 2018], which is specialized for ground 
terrain recognition. Next, to ensure that negative samples are selected from different 
ground truth classes, we leverage semantic classes clustered in the visual feature 
space. Such prior knowledge serves as a reference for computing Euclidean distance 
and selecting negative samples. Based on the Principal Component Analysis (PCA) 
projection of the feature space, we perform k-Means clustering to obtain coarse labels 
for terrain classes. 
 
Step 2: Traversal Cost Generation. Wheelchair passengers are exposed to greater 
physiological risks and psychological barriers with drastic changes in the vehicle 
motions. Thus, we hypothesize that larger and more frequent movements along any of 
the three dimensions of roll, pitch, and Z should be avoided and assigned higher cost. 
The amplitude spectra show amounts of motion variations at different frequencies, and 
vehicle state clusters obtained in the previous step serve as a prior to show distinct 
vehicle dynamics. The traversal cost function is considered as a weighted average of 
roll, pitch, and Z, measuring similarity to the average amplitude spectrum of its vehicle 
state class. Different vehicle state classes are also magnified with a hyperparameter to 
offset from each other. Let Aid,k ∈ Rm denote the amplitude spectrum along dimension d 
from the vehicle state class k for the sample i. Nk describes the number of samples 
within the vehicle state class k. A traversal cost for sample i from vehicle state class k 
is,  

 
where ωk is a weight parameter of vehicle state class k, and where Md,k is the mean  
amplitude spectrum along dimension d from the vehicle state class k, i.e., 
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3.3.2 Self-supervised Traversal Cost Prediction 
 
With the traversal cost function, we associate terrain visual appearances with motion 
measurements. We implement an encoder-decoder network, to estimate amplitude 
spectra of vehicle states and to predict traversal costs. To align the visual feature space 
with the vehicle state feature space, terrain patches are first extracted by the same 
feature extractor. Then terrain visual features are further encoded. During training, two 
decoders trigger back propagation at different epochs. In early epochs, the encoded 
space is translated toward vehicle states and only weights from the auxiliary vehicle 
state decoder get updated. Then later, the traversal cost decoder joins and learns from 
the partially translated feature space. We use L2 loss and smooth-L1 loss for regressing 
amplitude spectrum and traversal cost, respectively.  

 
Define x = h(f(Ii)) − Ti as the difference between the traversal cost estimation and  
the computed traversal cost,  

 
The regression loss is written as,  

 
Given a camera image, it infers the traversal cost for each cropped patch and 
aggregates them as 2D cost maps. 

3.4 Results 
 
3.4.1 Experiment Design 
 
Dataset: We collected a training dataset in an urban area using a tracked vehicle (Fig. 
5.1a) that competently covered a variety of challenging terrains without posing risks to 
human operators. The camera captures frontal images at 5Hz with 1280 × 1024 
resolution. The state estimation module provides motion measurements at 200 Hz. Our 
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dataset includes 2 hours of operated driving at 1 m s−1 including variations of soft and 
hard surfaces with different elevations to ensure a broad spectrum of vehicle motion 
profiles. 
 
Evaluation: To evaluate the quality of RCA, we compared the performance with two 
baselines: a 3D-based approach [Cao 2021] and a semantic classification-based 
approach [Wu 2021]. To assess the performance of three terrain analysis approaches in 
actual navigation tasks, we conducted robot experiments with a wheelchair-based 
vehicle navigating various terrain conditions. To investigate the performance according 
to various factors determining ride comfort and to evaluate perceived motion profiles, 
we designed and conducted a human evaluation study. 
 

 
 

Figure 10: The wheelchair robot platform used in our experiments is equipped with a 
4.1 GHz i7 computer and a NVIDIA GTX 1660Ti GPU card. 

 
3.4.2 Robotic Wheelchair Performance 
 
The three navigation approaches identified above (RCA, 3D-base, semantic 
classification) were tested in five scenes including asphalt roads, grass, curbs, tactile 
pavings, gravels (see Figure 11, top row). The wheelchair starts at the same initial pose 
and attempts to reach the desired goal points (designated by a red cross). The bottom 
row of Figure 11 shows recorded wheelchair trajectories in a top-down view (our RCA in 
blue; semantic-classification in red; and 3D-based in green). In Figure 11.1, RCA 
detours away from the curb and uneven surfaces until it reaches the ramp. In Figure 
11.2 RCA takes a side way while avoiding the turbulence brought by tactile pavings. In 
Figures 11.3 and 11.4, RCA foresees the effect from sinking in the soft terrain and 
avoids the vegetation although going through it is the shortest path. In Figure 11.5, RCA 
keeps the wheelchair away from the vegetation and gravels. 
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Figure 11: Robotic wheelchair performance in the field. 
 
3.4.3 Perceived Motion Intensity versus Human Evaluation 
 
We designed an Amazon Mechanical Turk (AMT) study to assess human evaluation of 
the performances on five dimensions of ride comfort. During a session, workers first 
watched three videos showing different robot behaviors in the same scenario. The order 
of these three videos is randomized. The participants were then asked to rank the three 
videos from the most preferred (1) to the least preferred (3) according to the following 
five criteria:  

• Stability: A ride is considered stable when noticing few frame-to-frame jitters and 
gentle orientation changes.  

• Path normality: A ride is considered normal if the path matches with a human’s 
expectation.  

• Safety: A ride is considered as safe when observing continuously smooth 
motions, predictable paths, and avoiding obstacles at proper distance.  

• Trustworthiness: A ride is considered as trustworthy if a passenger could rely on 
the wheelchair to complete trips independently.  

A ride is most preferred when you would like to have a same wheelchair in your 
community. 
 
Table 1 below reports the Spearman Correlation scores between stability rankings and 
Perceived Motion Intensity (PMI) ranks [de Winkel 2020] along Z, Roll, Pitch, Yaw axes 
among all experiment runs with p < 0.01. It reveals strong positive correlations between 
human perceived stability scores and Perceived Motion Intensity computed from 
acceleration and jerk along Z, Roll, Pitch, Yaw axes. It further validates that our 
approach improves the perceived stability relatively by reducing motion intensity along 
Z, Roll, Pitch, Yaw axes.  
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Table 1: PMI versus Human Evaluation 

 
Figure 12 presents a vote breakdown in percentage received by each approach among 
all participants. Each vertical bar consists of three segments representing the 
percentage of samples voting an approach as the first (bottom, darker color), the 
second (middle, moderate color), the third (top, lighter color). Our approach marks as 
the blue bar, while the semantic-based baseline is in red, and the 3D-based baseline is 
in green. Across five evaluation criteria over five scenes, our approach is most 
frequently ranked as the top. The results show no clear difference between semantic-
based approach and 3D-based approach. The results also cast light on the positive 
correlation between objective factors (i.e., stability, safety) to subjective factors (i.e., 
trustworthy, preference). 

 
Figure 12: Percentage of samples ranking three approaches among five dimensions.  

 
3.4.4 Summary 
 
Based on human evaluation of 55 AMT workers, RCA is consistently ranked the highest 
when compared to the baseline approaches in terms of stability, path normality, safety, 
trustworthiness, and overall preference. We also recognize that RCA does not perform 
consistently well across all scenarios. Whereas RCA generally performs well by 
estimating the disturbing motions brought by uneven or soft terrains, the semantic-
based approach provides human-interpretive estimation in the pixel space and the 3D-
based approach provides robust and accurate geometric measurements of rigid objects. 
These findings lead to our future direction for unifying comfort-aware, semantic-based, 
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and 3D-based approaches towards the goal of supporting safe and comfortable rides for 
the wheelchair users.  

4. Dynamic Object Recognition for Real-Time Obstacle Avoidance 
A second challenge associated with autonomous wheelchair navigation is that of 
detecting and avoiding obstacles, some of which (e.g., other pedestrians) may be in 
motion and rapidly approaching. One final research thrust with the `Complete Trip’ 
project focused on the development and demonstration of a novel 3D adaptive safety 
sensor that enables dynamic obstacle detection and avoidance. This sensor technology, 
referred to as “Programmable Light Curtains”, was invented by the imaging group at 
Carnegie Mellon University. It is shown in Figure 13 below as the blue box mounted on 
the full-stack autonomous wheelchair mentioned earlier as our research platform. Over 
the course of the project, novel algorithms based on this sensing technology were 
developed for wheel-chair localization and odometry, mapping of the stationary scene, 
dynamic obstacle identification and avoidance and finally path planning for reaching the 
destination. The methods and system were developed by a PhD and a MS student and 
became important parts of their theses. The autonomous navigation that resulted was 
demonstrated in cluttered environments like the university labs, corridors, and 
cafeterias. 3 
 

 
 

Figure 13: Full-stack autonomous wheelchair with 
Programmable Light Curtain sensor attached. 

 
Most autonomous systems today rely on LIDARs for 3D perception. While these 
systems have been very successful, there are several important hurdles in broadly 

 
3 For further information about this technology, please see https://www.cs.cmu.edu/~ILIM/light_curtains 

https://www.cs.cmu.edu/%7EILIM/light_curtain
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using them. First, LIDARs are too expensive compared to the cost of a wheelchair. 
Second, they provide only low-resolution and low-framerate 3D information and may 
miss small obstacles that may be important to account for while navigating in cluttered 
environments. Third, they require large computing resources for obstacle detection, 
tracking and avoidance. Our novel sensor (shown in more detail below in Figure 14a) 
provides a cost-effective and reliable safety solution for wheelchair navigation in busy 
environments. Programmable light curtains (PLC) provide high resolution and high 
frame-rate 3D information. They can see through dust, fog, or rain, and provide direct 
and efficient obstacle identification capabilities. LIDAR based systems on the other 
hand are expensive, are typically low resolution missing small objects and low-frame 
rate. This safety sensor is now being commercialized by the company Phlux 
Technologies, a CMU start up. Discovery research and fellowship for the CEO of the 
startup was partially sponsored by US DOT funding. The example application visualized 
in Figure 14b shows the use of the light curtains between a street and a sidewalk that 
detects pedestrians that are about to step onto the street. No additional computation is 
required here. 
 

(a)                                                                 (b)         
Figure 14: (a) Programmable Light Curtain (PLC) sensor; (b) PLC detection of 

pedestrian movement from the sidewalk into the street. 
 

 
 

Figure 15: A sample navigation run through a cluttered indoor environment 
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The first stage in the autonomy stack is the localization and odometry computation of 
the wheelchair. We developed an approach that combines the visual features from the 
camera and the 3D information in the programmable light curtain (PLC). We 
demonstrated accuracy of localization to be within a few centimeters – rivaling the 
systems that use LIDARs. An example navigation run in a cluttered home environment 
is shown in Figure 15. The solid line depicts the path that the wheelchair took. Pictured 
in Figure 16 is a cluttered office corridor and the 3D map that is computed in real-time 
using our novel Simultaneous Localization and Mapping algorithm. The wheelchair 
successfully navigates in these environments. 
 

 
 
 
 
 
 
 
 
 

Figure 16: Navigation of the wheelchair in a narrow office corridor 
that is cluttered. Our system computes the map of the scene in 3D, 

localizes the wheelchair in the map and avoids any obstacles. 
 

Once the map of the scene is computed, the system uses it to identify dynamic 
obstacles, like people or vehicles and plans for a path that avoids collisions. The result 
on the right shows the wheelchair navigating in the presence of people. The obstacle 
avoidance unit produces multiple safe paths (illustrated in Figure 17 below), and the 
planner identifies the most efficient path to reach the goal. 
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Figure 17: The wheelchair navigating around a person in a corridor and 
an office cafeteria. The path planner identifies obstacles in real-time and 
identifies the most efficient path around the person. The programmable 
light curtain achieves this with minimal computations as compared with 

traditional approaches that use either cameras or LIDARs. 
 

5.  Publications and Presentations 

5.1 Publications 

• Ancha, Siddhartha, “Active Robot Perception using Programmable Light Curtains”, 
PhD thesis, The Robotics Institute, Carnegie Mellon, 2021. 

• Ancha, S., Pathak, G., Held, D, Zhang, J., Narasimhan, S. G., “Active Velocity 
Estimation using Light Curtains via Self-Supervised Multi-Armed Bandits”, 
Submitted for review to RSS 2023. 

• Hata, R. Isukapati, I., Rubinstein, Z.R., and Smith, S.F., “Blind Pedestrian 
Localization and Reorientation at Urban Crosswalks via Ultra-Wide Band 
Beacons, Proceedings 2022 CMU Robotics Institute Summer Scholars (RISS) 
Program, August 2022. 

• H-C Hu, G.J. Barlow, J. Zhou, and S.F. Smith, “CARIC: Connection-Based 
Scheduling for Real-Time Intersection Control”, unpublished working 
paper, November 2022 (submitted to ICAPS 2023) 

• Neiman, D., Z.B. Rubinstein, and S.F. Smith, “Dynamic Route Guidance in 
Vehicle Networks by Simulating Future Traffic Patterns”, unpublished working 
paper, November 2022 (submitted to ICAPS 2023) 

• Pathak, Gaurav, “Programmable light curtains for Safety Envelopes, SLAM and 
Navigation”, MS Thesis, The Robotics Institute, Carnegie Mellon, 2021. 

• Smith, S.F. “Routecast: Integrating Connected Vehicle Technology with Adaptive 
Traffic Signal Control to Revolutionize Urban Mobility”, Rapid Flow Technologies 
White Paper, February 2021. 

• Xinjie Yao, Ji Zhang, Jean Oh. “RCA: Ride Comfort-Aware Visual Navigation via 
Self-Supervised Learning”, 35th IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS’22), Kyoto, 2022.  

• Xinjie Yao, "RCA: Ride Comfort-Aware First-Person Navigation via Self-
Supervised Learning" MS Thesis, The Robotics Institute, Carnegie Mellon 
University, CMU-RI-TR-22-15, 2022.  

5.2  Presentations 

• Smith, S.F., “Connecting Pedestrians with Disabilities to Traffic Signal Control for 
Safe Intersection Crossing and Enhanced Mobility, Transportation Research 
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Board’s Traffic Signal Control Committee Annual Meeting, Wash DC, January 9, 
2022.  

• “Smith, S.F. “Smart Transportation Infrastructure”, First University Transportation 
Center Video Webinar, US Department of Transportation, February 24, 2022 
(https://youtu.be/L8p4pGYKrqw ) 

• Smith, S.F., Making Smart Signals Smarter and Safer through Connectivity with 
Travelers”, Transportation Research Board’s Traffic Signal Control Committee 
Mid-Year Meeting, Beckman Center, Irvine CA, July 6, 2022. 

• Smith, S.F., “Making Smart Signals Smarter and Safer through Connectivity with 
Travelers”, Invited talk, 2022 Intelligent Transportation Systems World Congress, 
Los Angeles, CA, September 18, 2022. 

  

https://youtu.be/L8p4pGYKrqw
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