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ABSTRACT

We propose a vehicle-vibration-based indirect structural health monitoring (SHM)
framework that uses acceleration signals collected from within a moving vehicle to iden-
tify global modal and structural parameters of a full-scale and in-service bridge. Moti-
vated by many benefits of indirect sensing methods, such as low-cost, low-maintenance
and no interruption to traffic, researchers have in the past presented different algorithms
and evaluated them on several simulation and lab-scale datasets. However, the uncer-
tainties of the real-world vehicle-bridge interaction system and limited training data may
cause previous methods to fail on full-scale bridges. To address these uncertainties, we
1) cast the vehicle-bridge interaction system as a linear time-varying Gaussian state-
space model, which is not only able to estimate unobserved bridge responses but also
able to add a stochastic process for modeling uncertainties, and 2) propose a hybrid al-
gorithm that uses non-linear least squares and the expectation-maximization algorithm
to estimate modal and structural parameters of the bridge using partially observed data
(only the vehicle’s dynamic response is observed). We conducted field experiments on
a steel truss bridge carrying two rail lines across the Monongahela River in Pittsburgh,
Pennsylvania. For estimating the damage that is simulated by placing stationary trains
on the bridge, our proposed approach has a 36.3% error reduction compared to a fully
data-driven method. The results show that our proposed algorithm provides a potentially
practical approach for continuous monitoring of in-service bridges.

INTRODUCTION

The U.S. has 614,387 bridges, 9.1% of which were structurally deficient in 2016 [1].
As many bridges approach the end of their designed service life, the number of defi-
cient bridges continues to increase quickly. Hence, accurate and efficient bridge health
monitoring approaches are needed to improve the nation-wide bridge management.

Conventional bridge SHM techniques utilize sensing data directly collected from the
structure of interest to estimate the physical parameters (e.g.mode shapes, mass, etc).
These direct approaches pose some challenges including expensive sensing systems,
labor-intensive sensor deployment and maintenance, and unstable power supply [2].

Alternatively, indirect SHM of bridges collects vehicle-vibration signals when the
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vehicles pass through the target infrastructure [3–5]. The bridge’s physical parameters
are estimated by analyzing the changes of vehicle vibrations induced by the bridge. This
indirect SHM sensing system does not require intensive deployment and maintenance.
It has no interruption to the regular transportation service for initial instrumentation and
maintenance, and it can be powered by the vehicular electrical system. Despite its draw-
backs, such as higher uncertainties, indirect SHM has gained increasing popularity.

Previous work on indirect SHM concentrates on finding predictive features from
the dynamic response of the moving vehicle to diagnose bridge damage. These methods
mainly fall into two categories: modal analysis, and pure data-driven approaches. Modal
analysis focuses on extracting modal parameters including natural frequencies [3,6] and
mode shapes [7] of the bridge. Fully data-driven approaches use signal processing and
machine learning techniques to extract predictive features for diagnosing damage [8, 9].

However, both of these approaches have unsolved problems for achieving indirect
SHM of full-scale bridges. For the modal analysis methods, system and environmental
uncertainties make the identification and reconstruction of modal parameters difficult
and inaccurate [10]. To ensure adequate performance, data-driven indirect SHM ap-
proaches require a large set of training data, which is expensive to obtain in practice [9].
In addition, the limited physical interpretability of these approaches constrains the ap-
plication of the learned model on other bridges. We encountered these challenges in our
field experiment on a 100 years old truss bridge.

To address these challenges, we represent the dynamic vehicle-bridge interaction
(VBI) system as a state-space model. Conventionally, a dynamical system can be rep-
resented in four different ways: the state-space model, the differential equation model,
the impulse response model, and the transfer function model [11]. We choose the state-
space model for two reasons. First, the state-space representation of the VBI system
models system and environment noises as stochastic processes. This enables a robust
estimation of system parameters regardless of various uncertainties. Second, the state-
space representation embeds the physical understanding of the VBI system to model the
observed vehicle response and the unobserved bridge response as state variables. When
there is limited training data, using physical knowledge as regularization help improve
the estimation of bridge response and system parameters.

With the state-space representation, the objective of the indirect SHM becomes one
of parameter estimation of a stochastic dynamical system, which has been studied for
several decades [11]. Least squares methods [12] and artificial neural networks [13],
which minimize the error between observed system responses and estimated responses
have provided reasonable system identification results. Stochastic subspace identifica-
tion methods, which estimate jointly the state variables and system parameters using
observed state have been applied to extract bridge frequencies from the collected dy-
namic response of a moving vehicle [6]. However, when the model depends on unob-
served variables, the expectation-maximization (EM) algorithm which iteratively com-
putes maximum likelihood is more useful for system identification. This is because the
inference and learning processes of EM are optimal in a probabilistic sense [14].

In this paper, we first transform the differential equation model of an idealized VBI
system to a linear time-varying Gaussian state-space model with incomplete observa-
tions and structured transition matrices. Then, we propose a hybrid algorithm that uses
non-linear least squares to pre-estimate modal and structural parameters of the VBI sys-
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Figure 1. Model of a two-degree of freedom oscillator moving over a single-span, simply
supported beam with a constant velocity.

tem and updates the parameters and uncertainty co-variance matrices by using the EM
algorithm. In the maximization stage of EM, maximization of the likelihood function
has no closed-form solutions due to the time-varying property and structured transition
matrices of the VBI system. Also, due to the non-convex likelihood function, most
gradient-based optimization methods can get stuck on local optima. Hence, to elimi-
nate unrealistic local optima and accelerate convergence, we constrain the space of the
parameters by using the domain knowledge of the bridge. We then apply the proposed
methodology to an actual bridge-vehicle system. Though the EM algorithm with do-
main knowledge for system identification has been studied before, to the best of our
knowledge this is the first time that it is applied in the context of a VBI system and more
importantly, the first time that it is evaluated on a full-scale bridge under operation.

The rest of the paper consists of three sections: derivation of the state-space represen-
tation of the idealized VBI system; expectation-maximization algorithm with structural
domain knowledge for estimating bridge parameters of the VBI system; validation and
evaluation of the proposed algorithm on simulation data and a real-world dataset.

THE VEHICLE-BRIDGE INTERACTION SYSTEM

In this section, we first derive the differential equation model of the VBI system,
idealized as a sprung mass system traveling with a constant speed on a simple supported
beam. Then, we introduce a Gaussian state-space model of the VBI system based on the
differential equation model and characterize the properties of this state-space model.

Differential equation model of the VBI system
We derive the theoretical formulation of the VBI system with the following assump-

tions: the beam is of the Euler-Bernoulli type with a constant cross-section; the vehicle
wheel mass is zero; the wheel is always attached to the beam, which means that the
displacement of the wheel is equal to that of the beam at the contact location; for conve-
nience, the motion in physical coordinates is interpreted as a combination of the motions
in each natural mode; and for the homogeneous simply supported beam, the mode shapes
of the beam are sinusoidal functions.

The equations of motion for the VBI system (as shown in Figure 1) are:

mv z̈v(t) + cv żv(t) + kvzv(t) = kvzw(t) + cv żw(t),

EI
∂4ub(x, t)

∂x4
+ ρA

∂2ub(x, t)

∂t2
+ µ

∂ub(x, t)

∂t
= −Fc(t)δ(x− vt),

(1)

where t is time; x is the longitudinal coordinate of the beam with the origin at the left
support; mv, kv, cv, zv(t), zw(t), v are the mass, stiffness, damping coefficient, ver-
tical dynamic displacement of the vehicle chassis and the wheel, and vehicle velocity,



respectively; ρ, A, E, I, µ, ub(x, t) are the density, sectional area, Young’s modulus,
moment of inertia, damping coefficient, and vertical dynamic displacement of the beam,
respectively; δ(x− vt) is the Dirac delta function; and Fc(t) is the contact force:

Fc(t) = (mv +mw)g +mv z̈v(t) +mwz̈w(t), (2)

where g is the gravity acceleration.
Using modal superposition, we have

ub(x, t) =
∞∑
n=1

φn(x)qbn(t) =
∞∑
n=1

[√
2

ρAL sin nπx
L qbn(t)

]
, (3)

where n is the number of mode; φn(x) =
√

2
ρAL sin nπx

L , qbn(t) are the n-th mode shape
and dimensionless modal coordinate of the beam, respectively. Using Equations 2 and 3,
and the assumptions that mw = 0, zw(t) = ub(vt, t), Equation 1 can be re-written as:

mvz̈v(t) + cvżv(t) + kvzv(t) =kv

∞∑
n=1

φn(vt)qbn(t) + cv

( ∞∑
n=1

φ̇n(vt)qbn(t) +
∞∑
n=1

φn(vt)q̇bn(t)
)

q̈bn(t) + 2ξnωnq̇bn(t) + ω2
nqbn(t) = −φn(vt)(mvg +mvz̈v)

(4)

where ωn =
√

EI
ρA (

nπ
L )4, ξn = µ

2ωnρA
are the n-th mode natural frequency and damping

ratio of the beam, respectively.

State-space model of the VBI system
By rearranging Equation 4 and discretizing the continuous-time model by Euler’s

method [15], we obtain the following state-space representation of the VBI system:

zk+1 = Akzk + uk + εk

yk = Czk + ηk
(5)

where k ∈ {0, 1, 2, · · · , T} indicates the k-th sample (T is the total number of samples);
zk ∈ R(2n+2)×1, yk ∈ R2×1 and uk ∈ R(2n+2)×1 are the state, observation and input at
k, respectively; Ak ∈ R(2n+2)×(2n+2) and C ∈ R2×(2n+2) are the transition matrix and
observation matrix at k, respectively; εk ∼ N (0,Q) and ηk ∼ N (0,R) are Gaussian
process noise and Gaussian observation noise of the system. Q ∈ R(2n+2)×(2n+2) and
R ∈ R2×2 are covariance matrices.

In this work, we assume that the bridge vibrates in its fundamental mode allowing
the state-space model to be expressed as:


zv,k+1

żv,k+1

qb1,k+1

q̇b1,k+1

 =



1, ∆t, 0, 0
− kv
mv

∆t, 1− cv
mv

∆t, ∆t
(
kv
mv
φ1(vk) cv

mv
∆tφ1(vk)

+ cv
mv
φ̇1(vk)

)
,

0, 0, 1, ∆t
kv∆tφ1(vk), cv∆tφ1(vk), −ω1∆t+ ∆t

[
kvφ1(vk)2 1− 2ξ1ω1∆t

+cvφ1(vk)φ̇1(vk)
]
, +cv∆tφ1(vk)2



zv,k
żv,k
qb1,k
q̇b1,k



+


0
0
0

mvg∆tφ1(vk)

+ εk,

[
y1,k
y2,k

]
=

[
1 0 0 0
0 1 0 0

]
zv,k
żv,k
qb1,k
q̇b1,k

+ ηk

(6)



Equation 6 shows that the VBI system is a linear time-varying system where the
transition matrices depend on time and are defined by the vehicle and bridge properties.
Also, the observation matrix of the state-space representation of the VBI system is a non-
square matrix where the column rank is not full. Thus, the observation of the system only
contains the dynamic response of the moving vehicle.

EXPECTATION-MAXIMIZATION ALGORITHM WITH DOMAIN KNOWLEDGE
FOR ESTIMATING PARAMETERS OF THE VBI SYSTEM

As mentioned in the previous section, the state-space representation of the VBI sys-
tem depends on unobserved latent variables, which are the dynamic responses of the
beam. In this incomplete-data situation, the expectation-maximization (EM) algorithm
is commonly used to maximize the likelihood function to estimate parameters of the
state-space model. Each iteration of the EM algorithm consists of an expectation-step
(E-step) and a Maximization-step (M-step). In the E-step, the unobserved data are es-
timated given a current estimation of the model parameters and the observation. In the
M-step, the model parameters are updated by maximizing the likelihood function given
the observed data and estimated unobserved data [14].

For our problem, we want to estimate the bridge parameters (ω1, ρA and ξ1) given
observations (Y = y1:T ) and the vehicle’s parameters (mv, kv, and cv). The expected
likelihood function of the state-space model of the VBI system depends on Ez|y[zkz

T
k |Y],

Ez|y[zk|Y] and Ez|y[zkz
T
k+1|Y], which can be calculated by Kalman smoother [16] in the

E-step. Then, because the system is time-varying and has structured transition matrices,
updating the bridge parameters by maximizing the likelihood function does not have
a closed-form expression and local optima exist. To address these challenges, we use
least squares [12] to pre-estimate the parameters and constrain the parameters in ranges
informed by structural domain knowledge (i.e., ω1 ∈ [ωl, ωu], ρA ∈ [ρAl, ρAu], ξ1 ∈
[ξl, ξu]). For example, the damping ratio is greater than zero and smaller than one (ξ1 ∈
[0, 1]) as the bridge is under-damped. The proposed algorithm is presented in Table 1.

EXPERIMENTS AND RESULTS

In this section, we first validate the proposed algorithm on simulated data. We then
present details of a field experiment on a full-scale truss bridge and evaluate the proposed
algorithm on the field experimental data.

Simulation validation
To validate the ability of the proposed algorithm for identifying parameters of a VBI

system, we first used a finite element model to create the vertical displacement and veloc-
ity of an oscillator that moves across a simply supported beam. The physical properties
of the simulated VBI system are mv = 5.0× 104 kg, cv = 0 Ns/m, kv = 2.0× 106 N/m,
v = 8.0 m/s, L = 80.0 m, ω1 = 18.2 rad/s, ρA = 2.1 × 104 kg/m, ξ1 = 1.0 × 10−3.
Figure 2 shows the simulated vertical displacement and velocity and their fitted results
by our algorithm. The estimated bridge properties using our algorithm are ω̂1 = 17.8
rad/s, ρ̂A = 2.2× 104 kg/m, ξ̂1 = 1.0× 10−3, which are close to the true parameters.

Experimental setup and dataset
Our group conducted a field experiment on the Panhandle bridge that carries two rail



Algorithm 1 EM-algorithm with structural domain knowledge for indirect SHM
Require: Initialize known parameters: mv, kv, cv, v, L,∆t,C; structural domain con-

straints: ωl, ωu, ρAl, ρAu, ξl, ξu; unknown parameters: z0|0,Σ0|0, and R,Q.
1: Input: vertical displacement and velocity of the moving vehicle: y∗

2: Pre-estimate ω̂1, ρ̂A, ξ̂1 by non-linear least squares:

ω̂1,ρ̂A, ξ̂1 = arg min
ω̂1,ρ̂A,ξ̂1

T∑
k=0

‖y∗k −C
[
Akzk + uk

]
‖22

s.t. ω1 ∈ [ωl, ωu], ρA ∈ [ρAl, ρAu], ξ1 ∈ [ξl, ξu]

3: Construct Â1, · · · , ÂT and û1, · · · , ûT using ω̂1, ρ̂A, ξ̂1.
4: while expected log-likelihood does not converge do
5: E-step:calculate Ez|y[zkz

T
k |Y],Ez|y[zk|Y],Ez|y[zkz

T
k+1|Y] by Kalman smoother

6: M-step:

ω̂1,ρ̂A, ξ̂1 = arg max
ω̂1,ρ̂A,ξ̂1

Ez|y
[
logP(Z,Y|A1, · · · ,AT ,u1, · · ·uT ,Q,R)

]
s.t. ω1 ∈ [ωl, ωu], ρA ∈ [ρAl, ρAu], ξ1 ∈ [ξl, ξu]

7: end while
8: Return ω̂1, ρ̂A, ξ̂1
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Figure 2. Simulated vertical displacement and velocity of the moving vehicle (blue curves) and
the fitting results of them by the EM-algorithm (red curves).

lines of the Port Authority light rail system across the Monongahela River in Pittsburgh.
We used one or two trains as a proxy for change in the weight (or density) of the bridge
and positioned them along one of the tracks on the bridge. The other track was used for
running another train back and forth. Sensors were mounted on the running train.

The Panhandle Bridge is a steel truss bridge built more than one hundred years ago.
Our objective is to monitor the main span (112 meters) using the indirect SHM. Before
the main experiments, we did free vibration tests on the main span and the moving light
rail vehicle for obtaining their natural frequencies and damping ratios. The first dominant
frequencies of the main bridge span and the moving vehicle are 1.515 Hz and 1.945 Hz,
respectively, and the estimated damping ratios of the span and the vehicle are 0.008 and
0.188, respectively. We also know that the weight of the light rail vehicle is 5× 104 kg.

The experiment consist of three trials with different loading methods:
• Trial one: complete 10 runs at 20 mph with an unloaded track. For each run, the

instrumented light rail vehicle passed over the bridge at constant speed;
• Trial two: complete 10 runs at 20 mph, with a single train car located at 1/2 span

from the beginning of the main track span.
• Trial three: complete 10 runs at 20 mph, with two train cars located at 1/3 and 2/3

span from the beginning of the main track span.
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Figure 3. Picture of the experiment and an acceleration record collected from the vehicle while
was passing over the bridge. The second subplot shows the raw acceleration signal, and the

third subplot presents the amplitude spectrum of the acceleration. The vertical line in red and
yellow indicate the natural frequency of the vehicle and the bridge, respectively.

During the experiment, we collected 30 vertical acceleration records (10 records for
each trial) at the sampling rate of 2048 Hz from the light rail vehicle while it was moving
across the bridge. Figure 3 shows one example of the raw acceleration signal and its
amplitude spectrum. We do not observe large amplitude at the natural frequency of the
bridge, which suggests that traditional modal identification methods would fail.

Experimental results
We applied the proposed algorithm to the field experimental data. We converted

acceleration signals collected from the moving vehicle to velocity and displacement as
input to the proposed algorithm. Figure 4 shows the results of the proposed algorithm on
the bridge under no-loading (0 kg), one-car loading (5.0 × 104 kg) and two-car loading
(1.0 × 105 kg) conditions. For the no-loading experiments, the root mean squared error
(RMSE) for estimating the dominant frequencies of the bridge between the proposed
algorithm and the free vibration test (1.945 Hz) is 0.278 Hz. We note that because of
experimental noise, the estimation of bridge’s natural frequency with one-car loading
is not accurate and has large variance. Furthermore, by comparing the estimations for
no-loading and two-car loading experiments, we can observe that heavier loading cases
have larger density estimations and lower dominant frequency estimations, which agrees
with the approximate definition of the natural frequency of the bridge (ω1 =

√
EI
ρA

(
π
L

)4).
Because adding dead load simulates change in the unit length weight (or uniform den-
sity) of the bridge, we normalize the estimated unit length density and use it to estimate
the dead load on the bridge. The RMSE of the estimation using our algorithm is 3.5×104

kg. The RMSE of the estimation of the dead load by using a data-driven method [9] on
the same dataset is 5.5×104 kg. Compared to the data-driven indirect SHM method, our
algorithm reduces the estimation error by 36.3%.

CONCLUDING REMARKS

In this paper, we proposed an indirect SHM approach after casting the VBI system as
a linear time-varying Gaussian state-space model. To address the challenges of parame-
ter estimation of the VBI system with incomplete data, we used a hybrid algorithm that
uses non-linear least squares to pre-estimate the parameters and applies the expectation-
maximization algorithm to handle the incomplete-data situation. We evaluated the pro-
posed algorithm on a field dataset collected from a light rail vehicle that passed over a
full-scale steel truss bridge. Compared to a data-driven method, our proposed approach
improves the error of the bridge loading estimation by 36.3%.
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Figure 4. Evaluation results of our proposed approach. The first and the second subplots show
boxplots of the estimated dominant frequency and unit length density of the bridge. The red

dashed line indicates the natural frequency of the bridge estimated by free vibration tests.
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