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ABSTRACT

Hybrid systems are systems with interacting discrete and continuous dynamics. They
are models for understanding, e.g., computer systems interfacing with the physical en-
vironment. Hybrid systems have a complete axiomatization in differential dynamic
logic relative to continuous systems. They also have a complete axiomatization relative
to discrete systems. Moreover, there is a constructive reduction of properties of hybrid
systems to corresponding properties of continuous systems or to corresponding proper-
ties of discrete systems. We briefly summarize and discuss some of the implications of
these results.
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1. Overview

Hybrid (dynamical) systems [2,[7,[12] are dynamical systems that combine discrete
and continuous dynamics. They are important for modeling embedded systems and
cyber-physical systems. Hybrid systems are natural models for many application
scenarios, especially because each part of the system can be modeled in the most
natural way. Discrete aspects of the system, e.g., discrete switching, computing, and
control decisions can be modeled by discrete dynamics. Continuous aspects of the
system, e.g., motion or continuous physical processes can be modeled by continuous
dynamics. Hybrid systems combine both kinds of dynamics, not just side by side but
with interactions.

This flexibility makes hybrid systems very natural for system modeling. Even very
complicated systems can be modeled as hybrid systems by recognizing that some
parts of the system are simply discrete, others are simply continuous, and the systems
themselves are only complicated because both simple pieces interact in complicated
ways. Discrete and continuous aspects can be added to the system model on an as
needed basis without having to commit to a prior bias on all modeling elements having
to be purely discrete without room for continuous phenomena, or, vice versa, having

I This brief survey is based on an abstract for an invited talk at DCFS [31].
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to commit to purely continuous models of the world without discrete descriptions.
Unfortunately, reachability in hybrid systems is undecidable [12]. Even purely discrete
systems are already undecidable, as witnessed by the halting problem for Turing
machines. Even purely continuous systems are already undecidable [23] Theorem
2] as witnessed by a corollary to Godel’s second incompleteness theorem. Hybrid
systems are more useful for modeling purposes than either purely discrete or purely
continuous models. But how does the verification problem for hybrid systems compare
to that of purely discrete systems and to that of purely continuous systems? The
hybrid systems verification problem most certainly could not be any easier than that
for discrete systems (which is undecidable) or that for continuous systems (which
is undecidable as well). But is the analysis of hybrid systems fundamentally more
difficult than the analysis of purely discrete or that of purely continuous systems?
Or do hybrid systems only add natural ways of expressing system models without
causing additional complexities for verification that are fundamentally more difficult
to solve? Are hybrid systems more complex than discrete systems, i.e. more difficult
to verify? Are they more complex than continuous systems? And how do the two
special fragments of hybrid systems compare? Are continuous systems fundamentally
more complex or are discrete systems more complex for analysis purposes?

Hybrid systems combine two independent sources of undecidability, discrete and
continuous dynamics, because discrete dynamics alone causes undecidability (Turing
machines) and because continuous dynamics alone causes undecidability (periodic
functions) [5}/23]. Hence, the first intuition may be that hybrid systems should be
fundamentally more difficult than either of its two fragments and so higher up in the
respective recursive hierarchies. That turns out not to be the case, however, because
there are complete proof-theoretical alignments of the discrete dynamics, continuous
dynamics, and hybrid dynamics [23,/30]. In this paper, we explain a few of the
consequences of these results.

The results surveyed in this paper have been developed by leveraging differential
dynamic logic [22H24,|30], which is a logic for hybrid systems. For further back-
ground on logic for hybrid systems, we refer to the literature [23}[24L[26l/32]. Dynamic
logic |41] has been developed and used very successfully for conventional discrete pro-
grams, both for theoretical |[8H11}{13H15(18}20121./44] and practical purposes [41/10,42].
We refer to other sources for a more detailed exposition of dynamic logics for hybrid
systems [22H26130/32]. Logic of hybrid systems has been used to obtain interesting
theoretical results [22130}/33], while, at the same time, enabling the practical verifi-
cation of complex applications across different fields |3}[161/17,/19}/24},/26L[37,|39,/43] and
inspiring algorithmic logic-based verification approaches [24}26}35}36}38./40,{43]. Ex-
tensions to logic for distributed hybrid systems [27,/29] and logic for stochastic hybrid
systems [28] can be found elsewhere.

2. Differential Dynamic Logic

Differential dynamic logic dC [22H24L[301/32] is a dynamic logic [41] for hybrid sys-
tems [7,/12]. To set the stage for the results surveyed in this paper, we give a brief
introduction to dC. We refer to previous work [23}[2426,/30,132] for more details.
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Regular Hybrid Programs. Differential dynamic logic uses (regular) hybrid pro-
grams (HP) [23] as hybrid system models. HPs are a program notation for hybrid
systems. Their most important feature compared to conventional programming lan-
guages is that they allow differential equations to be used for describing the continu-
ous dynamics of a system, e.g., the movement of a car. Other distinguishing features
include the generalization of the semantics to that of real Euclidean spaces.

The atomic HPs are instantaneous discrete jump assignments x:=0, tests TH
of a first-order formulaﬂ H of real arithmetic, and differential equation (systems)
2’ = 60 & H for a continuous evolution restricted to the domain of evolution described
by a first-order formula H, where 2’ denotes the time-derivative of variable z. Com-
pound HPs are generated from these atomic HPs by nondeterministic choice (U),
sequential composition (;), and Kleene’s nondeterministic repetition (*). For the pur-
pose of this survey, we use polynomials with rational coefficients as terms, even if
more general terms are permitted in dC [26]. HPs are defined by the following gram-
mar (o, 8 are HPs, x a variable, 6 a term possibly containing x, and H a formula of
first-order logic of real arithmetic):

a,B = x:=0|"H |2 =0&H |aUB | ;8| a*

The first three cases are called atomic HPs, the last three compound HPs. These
operations can define all hybrid systems and all control structures for hybrid systems
[26]. For example, hybrid automata can be embedded into hybrid programs in the
same way how finite automata can be embedded into WHILE programs. We, e.g., write
2’ = 6 for the unrestricted differential equation z’ = 6 & true. We allow differential
equation systems and use vectorial notation. For various generalizations, e.g., to
hybrid systems with differential-algebraic equations [25] and for distributed hybrid
systems [29], we refer to the literature. That is also where extensions for special
functions can be found [25}33].

Unlike in conventional programming languages, a state is not an assignment of dis-
crete quantities to program variables, because the current state of a system includes,
e.g., positions from a continuous space. A state v is a mapping from variables to R.
Hence v(z) € R is the value of variable x in state v. The set of states is denoted S.
We denote the value of term 6 in v by v[0]. Each HP « is interpreted semantically
as a binary reachability relation p(«) over states, defined inductively by:

e p(z:=0) ={(v,w) : w = v except that w[z] = v[0]}

o p(2H) = {(,v) : v | H}

e p(z' =0& H) = {(¢(0),p(r)) : ¢(t) E 2’ =0 and p(t) = H forall 0 < ¢t < r for
a solution ¢ : [0,7] — S of any duration r}; i.e., with o(t)(z’) Lof %}”(t), ®
solves the differential equation and satisfies H at all times [23]

o p(aUpB) = p(a)Up(B)

o p(a; B) = p(B) o pla)

o pla*) = U p(a™) with "1 = a"; o and o = ?true.

neN

2 The test 7H means “if H then skip else abort”.
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We refer to our book [26] for a comprehensive background. We also refer to [23}26]
for an elaboration how the case » = 0 (in which the only condition is ¢(0) = H) is
captured by the above definition.

dC Formulas. Formulas of dC are used to specify and verify the relevant properties
of HPs. The formulas of differential dynamic logic (dL) are defined by the grammar
(where ¢, 1) are dC formulas, 61, 65 terms, z a variable, a a HP):

Y i= 20| =g | oAU | Vz o | [a]o

The satisfaction relation v |= ¢ is as usual in first-order logic (of real arithmetic) with
the addition that v |= [a]¢ iff w = ¢ for all w with (v,w) € p(a). The operator {«)
dual to [«] is defined by (a)¢p = —[a]-¢. Consequently, v |= (a)¢ iff w |= ¢ for some
w with (v,w) € p(a). Operators =, >, <, <, V,—, <>, Iz can be defined as usual in
first-order logic, e.g., 3z ¢ = Vo —¢. A dL formula ¢ is valid, written F ¢, iff v = ¢
for all states v.

Example 1 For instance, the dC formula
r>0Av>5Aa>2—a:=a—1;2" =v,v" =a|(z >0A0v>1) (1)

expresses that the position z will always be positive and the velocity v will always
stay greater or equal to 1 if, initially, x > 0 and v > 5 and the acceleration a is
initially greater than 2. The hybrid system dynamics in this formula simply first
decreases a by the instantaneous discrete assignment a :=a — 1 and then follows the
differential equation system z’ = v,v’ = a where the position x changes with time-
derivative v and the velocity v changes with time-derivative a. That is, x changes
continuously with acceleration a. The d£ formula is obviously valid, i.e., true for
all interpretations of its variables.

3. Verifying Hybrid Systems

Differential dynamic logic is not just useful as a specification language for properties
of hybrid systems, but also as a verification logic with which truth and validity of
properties of hybrid systems can be established. There is a sequent calculus [22}-24}26]
and a Hilbert calculus [30] for proving the validity of formulas of differential dynamic
logic. Both styles of proof calculi follow the same principles. The differences are only
that the sequent calculi are more tuned for automation, whereas the Hilbert calculus
is tuned for simplicity. The sequent calculi can be implemented directly in theorem
provers and have been implemented in KeYmaera [38], whereas the Hilbert calculus
allows more flexibility and is less goal-directed.

The proof calculi for d basically work by performing a symbolic execution and
perform a recursive structural decomposition of the dC formula and all its constituent
hybrid programs. That way, properties of more complex hybrid systems reduce to
properties of structurally simpler parts of the system. Because the systems become
simpler when performing those recursive decompositions, it is getting structurally
easier to verify them. Once a proof of each of the resulting pieces succeeds, the whole
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system has automatically been verified by an immediate composition of the proofs
about all its pieces. The proof calculi for dZ make this recursive decomposition precise
and ensure that all arguments in the reasoning process stay correct. It is very easy,
for example, to prove formula from Example in the proof calculus for dC just by
reduction to a property of the discrete assignment a:=a — 1 and a property of the
solution of the differential equation ' = v,v’ = a. In this case, the decompositions
that make this happen are completely trivial, because the system is so simple. In more
involved cases with actual control loops and repetitions, invariants play a similar role
to make the decompositions happen. Whether that is possible is what we discuss in
the next section.

4. Complete Relations

Even though hybrid systems are very expressive, they nevertheless have a complete
axiomatization in differential dynamic logic dC [23,/30] relative to elementary prop-
erties of differential equations. The completeness notions are inspired by those of
Cook [6] and Harel et al. |[11], yet different, because the data logic of hybrid systems
has a decidable validity problem (first-order real arithmetic) [45]. In classical program
cases, the data logic of first-order integer arithmetic, instead, is undecidable.

From Hybrid to Continuous. Using the proof calculus of dC, the problem of
proving properties of hybrid systems reduces to proving properties of elementary
continuous systems [23]. FOD is the first-order logic of differential equations, i.e., first-
order real arithmetic augmented with formulas expressing properties of differential
equations, that is, dC formulas of the form [z = ]F with a first-order formula F'. We
have shown that the dC calculus is a sound and complete axiomatization relative to
FOD.

Theorem 1 (Continuous relative completeness of dC [23,(30]) The dL calcu-
lus is a sound and complete axiomatization of hybrid systems relative to its continuous
fragment FOD, i.e., every valid dC formula can be derived from FOD tautologies:

= d) Zﬁ TautFOD - (i)

In particular, if we want to prove properties of hybrid systems, all we need to do is to
prove properties of continuous systems, instead, because the dC calculus completely
handles all other steps in the proofs that deal with discrete or hybrid systems. Of
course, one has to be able to handle continuous systems in order to understand hybrid
systems, because continuous systems are a special case of hybrid systems. But it turns
out that this is actually all that one needs in order to verify hybrid systems, because
the dC proof calculus completely axiomatizes all the rest of hybrid systems.

Since the proof of Theorem[l] is constructive, there is even a complete constructive
reduction of properties of hybrid systems to corresponding properties of continuous
systems. The df calculus can prove hybrid systems properties exactly as good as
properties of the corresponding continuous systems can be verified. One important
step in the proof of Theorem[l] shows that all required invariants and variants for
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repetitions can be expressed in the logic dC. Furthermore, the dC calculus defines
a decision procedure for dC sentences (i.e., closed formulas) relative to an oracle for
FOD |[30].

This result implies that the continuous dynamics dominates the discrete dynamics
since, once the continuous dynamics is handled, all discrete and hybrid dynamics can
be handled as well. Therefore, verification of hybrid systems is not more complex than
the verification of continuous systems. In particular, discrete systems verification is
not more complex than the verification of continuous systems. This is reassuring,
because we get the challenges of discrete dynamics solved for free (by the dZ proof
calculus) once we address continuous dynamics.

One way of doing practical proof search and generation of invariants has been
addressed in previous work [35,[36]. But many other ways could be useful to generate
invariants more efficiently in practice. In fact, in many circumstances, it is quite
obvious that significant advances can be made to the efficiency in practice.

From Hybrid to Discrete. In a certain sense, it may appear to be more compli-
cated to handle continuous dynamics than discrete dynamics. After all, most comput-
ers themselves are discrete, so mechanized proofs and any other verification technique
on computers will ultimately need to understand continuous effects from a purely
discrete perspective. If the continuous dynamics are not just subsuming discrete
dynamics and if they were inherently more, then that could be understood as an
indicator that hybrid systems verification is fundamentally impossible with discrete
means. Of course, if this were the case, the argument would not even be quite so
simple, because meta-proofs may still enable discrete finitary proof objects to entail
infinite continuous object-properties. In fact, they do, because finite dC proof objects
already entail properties about uncountable continuous spaces.

Fortunately, we can settle all worries about the insufficiency of discrete ways of un-
derstanding continuous phenomena once and for all by studying the proof-theoretical
relationship between discrete and continuous dynamics. We have shown not only that
the axiomatization of df is complete relative to the continuous fragment, but that
it is also complete relative to the discrete fragment [30]. The discrete fragment of
dC is denoted by DL, i.e., the fragment without differential equations. It is, in fact,
sufficient to restrict DL to the operators :=, * and allow either ; or vector assignments.

Theorem 2 (Discrete relative completeness of dC [30]) The dC calculus is a
sound and complete axiomatization of hybrid systems relative to its discrete fragment
DL, i.e., every valid dC formula can be derived from DL tautologies.

= ¢ Zﬁ TautDL F (b

Thus, the dC calculus can also prove properties of hybrid systems exactly as good
as properties of discrete systems can be proved. Again, the proof of Theorem[2 is
constructive, entailing that there is a constructive way of reducing properties of hybrid
systems to properties of discrete systems using the d calculus. Furthermore, the dC
calculus defines a decision procedure for dZ sentences relative to an oracle for DL [30].
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As a corollary to Theorems 1| and [2] we can proof-theoretically and constructively
equate

hybrid = continuous = discrete

Even though each kind of dynamics comes from fundamentally different principles,
they all meet in terms of their proof problems being interreducible, even construc-
tively. The complexity of the proof problem of hybrid systems, the complexity of
the proof problem of continuous systems, and the complexity of the proof problem of
discrete systems are, thus, equivalent. Any proof technique for one of these classes of
systems completely lifts to proof techniques for the other class of systems.

Since the proof problems interreduce constructively, every technique that is suc-
cessful for one kind of dynamics lifts to the other kind of dynamics through the dC
calculus in a provably perfect way. Induction, for example, is the primary technique
for proving properties of discrete systems. Hence, by Theorem[2] there is a corre-
sponding induction technique for continuous systems and for hybrid systems. And,
indeed, differential invariants |25,33] are such an induction technique for differential
equations that has been used very successfully for verifying hybrid systems with more
advanced differential equations [26}35-37,/39]. In fact, differential invariants had al-
ready been introduced in 2008 [25] before Theorem[2] was proved [30], but Theorem[?]
implies that a differential invariant induction technique has to exist. These results also
show that there are sound ways of using discretization for differential equations [30]
and that numerical integration schemes like, e.g., Euler’s method or more elaborate
methods can be used for hybrid systems verification, which is not at all clear a pri-
ori due to inherent numerical approximation errors, which may blur decisions either
way [34].

5. Conclusions and Future Work

We have summarized recent results about complete axiomatizations of hybrid systems
relative to continuous systems and relative to discrete systems. These axiomatizations
equate the proof problems for all three classes of systems and align the complexity
of the their proof problems. Practical consequences of this result include differential
invariants and the utility of discretization schemes, but many other consequences are
just waiting to be discovered.

At the same time, the complete axiomatizations open up interesting questions for
further study. The constructive proofs prove upper bounds for the complexity of the
respective interreductions, but do not provide lower bounds. In fact, a number of
improved upper bounds can be read off directly from the proof constructions for a
number of cases, including better bounds for fragments of the logic. This includes,
e.g., the case of closed properties proved for systems that do not even leave the
interiors of those regions, or for purely discrete parts of the transition dynamics. It is
an interesting question to study these cases in more detail. Identifying other practical
consequences of the constructive completeness results is another interesting question
for further research.
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Practical proof procedures have been devised that make the completeness results
practical by fixedpoint loops in proof search space. Yet, at the same time, significantly
more efficient procedures can be obtained in practice, which is a very important area
for future research.
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