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Motivation 
 

A smart driving system must consider two key elements to be able to generate 

recommendations and make driving decisions that are effective and accurate: The environment 

of the car and the behavior of the driver. Our long-term goal is to develop techniques for 

building internal models of the vehicle’s static environment (objects, features, terrain) and of 

the vehicle’s dynamic environment (people and vehicle moving in the vehicle’s environment) 

from sensor data, which can operate online and can be used to provide the information 

necessary to make recommendations, to generate alarms, or to take emergency action. Our 

overall approach is to combine recent progress in machine perception with the rapid advent of 

onboard sensors, and the availability of external data sources, such as maps. 

A comprehensive approach 
 

Understanding the environment of a vehicle can be envisioned at different levels of details 

from low-level signals that characterize the location of potential hazards to high-level 

descriptions that include semantic information such as recognizing specific types of objects, 

e.g., traffic signs, or specific patterns of motion, e.g., erratic pedestrian motion. Current safety 

systems already include systems in which sensors are able to produce a coarse map of obstacles 

in regions around the vehicle. These capabilities are limited to fairly coarse descriptions of the 

environment. A notable exception is in the area of people and car detection (e.g., the 

MobileEye1 system), in which a commercial product is already available. However, even in this 

case, interpretation of the sensor data is limited to the location and motion of the object but 

does not include higher-level predictive information about pattern of motion and future 

actions.   

 

We believe that now, given the availability of sensors that provide rich data, there is an 

opportunity to develop techniques that can generate far more complete and higher-level 
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descriptions of the vehicle’s environment than was ever possible before. Given input (images 

and 3D) from these sensors, the first component of our approach relies on recent development 

in the general area of scene understanding. Specifically, our approach is to extend state-of-the-

art machine perception techniques in three areas: 1) Scene understanding from images in 

which objects, regions, and features are identified based on image input; 2) Scene 

understanding from the type of 3D point clouds acquired from, for example, stereo of LIDAR 

systems; and 3) analysis of moving objects which includes the ability to predict likely future 

motions in addition to modeling the current trajectory. 

 

These machine perception elements have shown promising results, but they have major 

shortcomings that prevent their immediate applications to driving applications. Chief among 

them is the fact that their accuracy and computational efficiency are not at the level needed for 

use in driving applications. We believe that one major reason is that these tools have been 

developed in the context of unconstrained problems. However, this application is severely 

constrained by rules of the road, architectural and civil engineering constraints, and even by the 

knowledge of normal patterns of behaviors in the case of pedestrians.   

 

Accordingly, the second key component of our approach is to extend the machine perception 

techniques to incorporate a complete ensemble of constraints from this application and 

environments. The technical challenge is to combine data of a statistical and “continuous” 

nature such as sensor signals and low-level features with knowledge of a symbolic and discrete 

nature. We expect that the systematic use of context and domain constraints will boost the 

performance of machine perception approaches and bring it closer to the desired level of 

performance. 

 

Another key development in the automotive industry is the availability of massive amounts of 

data from a variety of external sources. For starters, some level of map data is continuously 

available to the system. Even the relatively coarse level of detail used in current systems 

(Garmin, Tomtom, etc.) would be able to focus the work of machine perception modules by 



providing regions of interest, predicting occurrence of classes of objects (e.g., expected density 

of buildings), and prior information about likely flow patterns of pedestrians. Direct and 

continuous access to Web sources is also on the horizon as a common feature of cars, which 

opens access to other sources of information, such as weather or traffic conditions. V2V 

communication and infrastructure communication would provide additional sources. 

 

From the point of view of machine perception, the availability of external sources of data is a 

unique opportunity to further constrain the perception process to increase performance. 

Accordingly the third component of our approach is to develop techniques to maximize the use 

of external sources of information. We start by using current map data from navigation systems 

to generate priors on distribution of features and objects in the environments, and to generate 

priors of pedestrian and tracking activity. The key technical challenge in this area is to design 

formal methods to meld the priors distribution predicted from the maps with the current 

machine perception algorithms.  

 

During the course of the work reported here, we have made progress towards the 

implementation of this approach. In particular, we have focused on the problem of improving 

the performance of algorithms for the semantic labeling of images through the use of 

information from street maps (Figure 1). This is an important step toward a realistic design of a 

perception system that is truly integrated with all the sources of information. 

Introduction 
 

With the rapid growth in computer vision research, algorithms for scene parsing, object 

recognition or pedestrian detection have become increasingly applicable in commercial 

products. However, due to adverse conditions such as poor illumination, bad weather, etc., the 

performance of these algorithms decreases when operating in the real world. In these cases, 

external knowledge about the scene--such as a street map--can provide a context that 

contributes to disambiguate pure visual perception and leverage the performance. Fortunately, 



intelligent transportation systems with access to external information such as maps, weather or 

traffic conditions can provide infrastructure support for various vision tasks. 

Algorithms for scene parsing, or semantic labeling, assign a class label (e.g., tree, sky, building, 

etc.) to each pixel of an image based on a set of visual and contextual features. In this project, 

we explore the use of external information such as a map to improve the accuracy of scene 

parsing algorithms. In particular, we propose a system that retrieves map information from an 

external database, systematically handles the uncertainty of external information, and 

incorporates such information into semantic labeling algorithms. 

This report is organized as follows: the following section reviews the related work. A 

subsequent section describes our system’s pipeline. The next section presents the evaluation of 

our system performance from experiments using images from real world scenes. Finally, the 

last section summarizes the results and discusses the lessons learned. 

 

Figure 1. Incorporating information from a street map to improve scene understanding. 



Related Work 
 

The use of different types of external knowledge has been explored in prior work on scene 

parsing, object detection, etc. Information in terms of context proves to be effective in priming 

object detection [8], [27]. In semantic segmentation problems, information in the form of 

motion/geometric features [25], [14], temporal consistency [10], [3], [22], or scene type with 

jointly inference [29] also proved beneficial. 

A series of work in label transfer [20], [30], [26], [7] uses an external image database as 

transferable knowledge, and demonstrate its effectiveness for scene parsing tasks. In our 

project, we explored using map information in the form of geo-contextual prior for scene 

semantic labeling. 

Related work using external knowledge such as geo-information in vision mainly addresses 

landmark recognition or visual localization problems. Researchers in [6] proposed a system that 

recognizes city-scale landmark from mobile phone images where geo-information such as GPS 

is used to constrain landmark image retrieval from a database. In [2], GPS is used to access geo-

contextual information such as the location of a point of interest, traffic and road information; 

such geo-contextual information then provides local context to select meaningful object 

hypotheses and prime recognition of landmarks. Different from their work, we do not attempt 

to recognize urban landmarks. Instead, we are interested in semantic labeling of outdoor 

scenes. 

A closely related work in the context of street scenes is [1], in which the author demonstrates 

an application of road detection using an external map database. In particular, the author uses 

GPS to retrieve road maps from an external database and combines them with visual cues to 

detect roads, showing the effectiveness of using external information to cope with difficult 

vision problems in real world scenarios. Similarly, we also use external information for the 

interpretation of scenes. Yet different from their work, we propose a general framework that 

can encode different types of prior information from external sources, e.g., not only roads but 

can also include high level knowledge and structures of the scenes. This allows us to answer 



more general scene understanding questions. One direct application is to provide the prior 

probability distribution for scene parsing. 

Further application can include improving object detection, pedestrian prediction, traffic 

forecast, etc. Another closely related work in the context of outdoor scene understanding using 

scene structure is from Geiger et al. [13], in which they jointly infer object location and 3D 

scene layout from a monocular camera. Their previous work [11] estimates 3D scene layout 

from dynamic traffic objects. In both cases, they are able to estimate scene layout using 

information such as traffic objects. Different from their work, we use external information to 

aid scene understanding problems such as scene parsing or object detection, where the scene 

layout can be directly modeled from an external database. 

 

System Description 
 

There are three major components in the system. The first component retrieves external 

information from an existing map database, and handles the uncertainty of camera pose given 

the GPS trace of the camera in a Kalman Filter manner. The second component encodes the 

external information in the form of semantic label probability distribution using a maximum 

entropy framework. The last one incorporates this prior information into scene parsing 

algorithm to improve recognition performance. 

Retrieving Map 

Vision systems for intelligent transportation have the advantage that the image sequences 

taken by on-board cameras can be GPS/time stamped. For each image, one can estimate the 

camera pose and use GPS index to directly access a map of the surrounding area from an 

external database, which can help understand the scene in the image. Thus, the first 

component of our pipeline retrieves map information from an existing Geographical 

Information Systems (GIS) database. 



We use OpenStreetMap2, an open sourced world-scale map database maintained by an active 

community. Unlike other GIS database such as Google Map/Latitude, from which the user can 

mostly access high level static information such as images of the map, OpenStreetMap 

database provides lower level and editable map information. For example, users can access 2D 

bird-view geometry of the map elements such as outlines of buildings and roads, as well as 

semantic tags of the map elements such as scene types or road conditions. 

Fig.2 illustrates the processing pipeline for integrating the map prior. First, a GPS stamp with 

the format of a bounding box (top-left-latitude, bottom-right-latitude, top-left-longitude, 

bottom-right-longitude) is used to index OpenStreetMap via its API, as illustrated in Fig.2.A; the 

returned data includes the geometry of the map in a 2D bird view in the format of points, lines, 

and polygons, each with its own Lat/Lon stamps. Then the conversion from Lat/Lon to Universal 

Transverse Mercator (UTM) coordinate system is performed to obtain the flat 2D map of bird 

view geometry, as shown in Fig. 2.B. For the purpose of generalization, our system has an 

interface to allow users to configure customized camera parameters. With the 2D map 

geometry and camera parameters, the system can then compute the perspective projection of 

the 2D map onto the image plane, as shown in Fig. 2.C. Finally, since OpenStreetMap objects 

and polygons include standard tags such as road type, building, scene type, our system can 

parse the projected map with semantic masks, as illustrated in Fig. 2.E. As a reference of the 

actual scene, Fig. 2.D is an example image of the same location obtained from Google Street 

View. 
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Figure 2. OpenStreetMap indexed by latitude/longitude (A); parsed map geometry in 2D, top view (B); perspective projection 
of map onto image plane (with estimated building height) (C); scene reference of the example (image obtained from Google 

Street View) (D); projection image masked with semantic labels from map (E). 

Note that although external maps can provide accurate geometry and some underlying 

semantic knowledge of the surrounding environments, it only models limited information of 

the scene, e.g., mostly static manmade structures, while actual scene images may contain much 

richer information such as natural elements (trees, grass) or dynamic objects (cars, 

pedestrians). However, we believe that accurate underlying contexts of the static scenes is the 

first step, and can be helpful to overall scene understanding. 

Depending on the accuracy of the GPS receiver, the recorded GPS trace can have inherent 

localization uncertainty, and it is likely that the projected map priors misalign with the actual 

objects in the image in the case of inaccurate localization. To minimize this effect, our system 

handles the localization uncertainty using a Kalman filter. In particular, we first apply the filter 

on a sequence of GPS stamps to estimate the uncertainty of each camera pose (location and 

heading direction); then we sample and aggregate multiple instances of the camera poses to 

model the belief of the location. With multiple samples projected in the image plane, we can 

obtain a “blurred” map prior that encodes the confidence. Fig. 3 shows such an example of the 

projected map prior with uncertainty, as well as the actual scene image overlaid with the prior. 



 

Figure 3. Map prior with position uncertainty (top); original image overlaid with prior (bottom). Buildings are indicated in 
red, and the roads in green. A higher color saturation indicates higher certainty, while lower saturation indicates higher 

uncertainty. 

 

Encoding External information as Prior 
 

Our goal is to infer the most likely probability distribution of semantic labels for each segment 

in the images. For a generic scene parsing algorithm that infers semantic labels using image 

features, our system provides additional cues and contexts using information from external 

sources, e.g., maps. In order to aid the semantic label inference, the system needs to encode 

various sources of external information into some prior probability distribution of semantic 

labels. For example, given that the external information indicates that an image segment is a 

street in a business district, the system needs to model the prior probability of the segment 

being the semantic label of road vs. vehicle. 

The maximum entropy framework is widely used in machine learning tasks for modeling 

posterior distribution discriminatively, with applications in natural language processing, inverse 

reinforcement learning, optimal control, etc. 



In computer vision it has been successfully applied as a discriminative model for classification 

and inference in object recognition of multi-class from multiple types of features [23], [31], 

[21], [18], and in modeling prior probability [17]. Intuitively, the maximum entropy principle 

states that one exploits all that is known, and assumes nothing that is unknown. In other words, 

given some training data, the model learned using the framework must be consistent with all 

empirical facts and constraints, but should be as uniform as possible otherwise. The property is 

particularly useful when modeling prior knowledge, where one should claim least commitment. 

In our case, we are modeling information from external sources as prior knowledge for 

semantic labeling. The maximum entropy model is used to obtain a prior distribution of 

semantic labels in the images. Mathematically, we denote    the random variable representing 

the label   of the pixel   in images,       the   features computed from external 

information  , e.g., map evidence. For example, one such feature of pixel   could be the map 

evidence indicating the label being road. Finally,          is the max entropy model we want to 

learn, which outputs the confidence of label    given map evidence. 

The maximum entropy distribution            that satisfies the empirical constrains has the 

exponential form 

             
       

           
 

where    is the vector of scalar weights for external evidence features   , and the vector of 

scalar weights          contains the parameters we want to learn. 

The learning of   is done by maximizing the entropy 

            

     

                    

where        is the empirical distribution computed from the training data. 

The Improved Iterative Scaling (IIS) technique [4] was initially explored to learn the parameters 

 , but we found that using optimization techniques such as Broyden-Fletcher-Goldfarb-Shanno 



(BFGS) method [5] performed better in terms of convergence and efficiency. Fig.4 shows the 

comparison of BFGS approach and initial IIS approach in modeling the prior distribution. The 

Euclidean distance between the prior distribution and the ground-truth distribution is used to 

measure how close the two approaches model the true label distribution. 

From Fig.4 one can see that the BFGS approach models the distribution closer to the true label 

distribution. 

 

Figure 4. The  y-axis measures the Euclidean distance of labels’ prior distribution to the ground-truth distribution. The x-axis 
represents the test image’s number. The red line indicates the prior learned using the IIS approach, while the blue line 

indicates the prior learned using the BFGS approach. Note that BFGS approach models the prior distribution more accurately, 
in terms of Euclidean distance. 

 

Incorporating Prior in Scene Parsing 
 

We explored several approaches to incorporating the prior distribution into the scene parsing 

algorithm as discussed below. 

 



1.- Simple log-linear discriminative model: 

 

Our first approach is to use a simple log-linear discriminative model to directly combine two 

probability distributions. Originally proposed in [16] as Product-of-Expert, it was also used in 

[24], [15] to combine the probability distributions of different components. In particular, it is of 

the form 

              
 

 
                    

  

Or equivalently in log-linear form: 

                 

                                 
 

where   is the relative confidence,            is the output of a generic scene parsing 

algorithm with image feature   ,            is the output of the prior system given external 

context features    computed from map information, and   is the normalization term. 

 

Figure 5. Sample label priors learned from data, mostly urban street scenes. Left, from top to bottom: sky, tree, building; 
right, from top to bottom: sidewalk, drive road, vehicles. 

This is a discriminative framework since it models conditionals               , and that 

               and               can also be treated as potential terms in Markov Random 

Field framework, feature terms in traditional log-linear classifier, or weak predictors in an 



ensemble classifiers setting. One advantage is that            and           , also 

discriminative components, can be learned independently. Thus, our map prior system which 

outputs            is compatible with an arbitrary vision system that is trained separately 

and outputs the discriminative label likelihood          .  

We tested this approach with a small data set. Fig. 6 shows an example of the scene parsing 

results before and after the map prior is combined. The approach is simple and fast, yet one 

drawback is that the relative confidence is set offline and is fixed when operating online; 

another drawback is that the direct combination is too simple in that it only considers 

           and            when inferring class     , while belief of other classes 

            and             where      may also contribute to the inference as context. 

As shown in Fig. 7, with this simple model, by increasing the relative confidence   on the prior, 

the accuracy increases and then decreases. It is because when the weight on map prior is small, 

building regions are recovered and the overall accuracy increases; however as the weight on 

the map prior increases, foreground objects such as trees tend to be incorrectly labeled as 

buildings, resulting in a decrease in accuracy. The underlying cause is that the map prior only 

models manmade structures such as roads and buildings, but does not model 

natural/foreground objects such as trees or vehicles. Thus, directly combining the map prior 

with the semantic label probability is not ideal. Also, the effect on the performance is minimal 

(within 1%), due to the limited presence of manmade structures in the images. Thus, we further 

explored other approaches to incorporate the map priors, as described subsequently. 



 

Figure 6. Example results of log linear model for combining probability; top-left: original image; top-right: original scene 
parsing results with per-pixel accuracy 89.80%; bottom-left: retrieved map prior (blue-unknown, red-building, yellow-road); 

bottom-right: scene parsing results combined with map prior using log linear model with accuracy 94.35%. 

 

Figure 7. Example results of log linear model for combining probability; note the accuracy improves and then decreases by 
increasing γ the relative confidence from 0 to 1. Also note that the influence of the prior probability is within 1%, due to the 

amount prior information that can be applied (mostly manmade structures such as buildings) and their presence in the 
images. 



2.- Re-weighting label distribution with prior context: 

 

Instead of directly combining probability distribution, we also attempted to post-process the 

output of a generic scene parsing algorithm with prior context. In particular, we implemented a 

simple procedure that re-weights the label probability distribution using prior contexts. 

Formally, taking the label likelihood, the output of a generic scene parsing algorithm, and other 

contexts as input, we train a classifier to re-weight the label probability distribution. 

Algorithm 1 below outlines the procedure.      is the label distribution of segment   in image   

computed from a generic scene parsing algorithm;         is the label distribution of  ’s 

neighboring regions      weighted by sizes,      is a vector of other context features including 

the map prior probability computed from external sources, relative location and size of the 

segment    in the image.       is the ground-truth label distribution. We tried logistic regression, 

and non-linear classifiers (ensembles of trees) for the re-weighting classifier   used to update 

the semantic label probability distribution given prior and contextual features. Results are 

presented in the Experiments section. 

 

Algorithm 1: Re-weighting with Prior Context 

Data:                        

Result: Re-weighted label probability distribution         

Training:                                           

              

                       

Testing:                                            

                   



3.- Appending prior as context feature in Scene Parsing algorithm:  

We also attempted to incorporate the prior distribution by appending the prior probability onto 

the feature stacks of Hierarchical Inference Machine [23], which in our experiments is the main 

scene parsing algorithm. 

The inference machine performs structure prediction on the semantic labels for each region in 

the image using visual and contextual features at multiple scales, and it achieves state-of-the-

art performance on many datasets. In our experiment, the priors are used as additional context 

features at each scale. 

We ran experiments in which the prior context features are used in training and testing, and 

compared it with the results that do not use the prior features. The KITTI dataset is used for 

evaluation. The results and discussions are presented subsequently. 

Experiments 
 

A. Dataset used 

The dataset we used in the experiment is from several image sequences of the KITTI benchmark 

raw data [12], taken from cameras mounted on top of a vehicle driving in urban and suburban 

area. Each image in the sequence is associated with a GPS stamp, allowing our system to 

retrieve corresponding map geo-information from a GIS database. We sparsely sampled the 

image sequence once every 50 frames to obtain training and testing image sets. 

B. Metrics used 

For evaluation, we used the semantic segmentation accuracy (SA) from the PASCAL Challenge 

[9], ”intersection over union”:  

   
             

                                           
 

The standard precision and recall metrics are also used. Since we have models trained with 

prior information and models trained without prior information, we also evaluated the pixels 

whose labels changed before and after prior is applied. 



C. Evaluation on appending prior as context feature in scene parsing algorithm 

As described in the previous section, we attempted to incorporate features by appending prior 

probability computed from external information onto the context feature stack of the Inference 

Machine [23]. Two sets of experiments were conducted: one with a small dataset of urban 

street scenes, and the other with a large dataset of natural/suburban scenes. In both 

experiments, we split the images into a training set and a testing set. We train a model that 

uses the prior map information and one that does not use the prior map information on the 

training set, and we apply both models on testing set to produce semantic label inference. 

 

Figure 8. Sample urban street scene. 



Small Set - Urban Street Scene: We first experimented with a small set of images that are 

mostly canonical urban street scenes with various illumination conditions as shown in Fig.8. 

Quantitatively, Fig.10 shows a comparison of the inference accuracy between the model 

trained with prior information and the one trained without prior information. 

The accuracies of most classes improve with prior information. Fig.9 shows examples of street 

scene semantic labeling using both the model without prior information (top of each pair) and 

the model with prior information (bottom of each pair). Note that regions such as building or 

sky are misclassified originally, but are corrected when prior information is applied. The prior to 

some extent imposes the spatial consistency of the label distribution in the street scene image, 

e.g. sky is above horizon, cars cannot be same height as building. This helps disambiguate the 

original inference, especially under adverse lighting conditions where textures of different 

objects are visually ambiguous. 

 



 

Figure 9. Example results for experiment in urban street scenes; for each pair: top - infer without priors, bottom - infer with 
priors; note the corrected segments such as building and sky when prior is applied. 

 

 

We also evaluated only the segments whose labels changed when prior information is used. 

Specifically, we counted the number of pixels in segments whose labels changed, and divided 

these changed pixels into three categories: corrected from incorrect class, misclassified from 

correct class, and remain incorrect in a different class. 



 

Figure 10. Label Accuracy for urban scene experiment; blue-without prior, red-with prior. 

As shown in Fig.11, segments of sky and building are mostly corrected with the prior 

information, and segments of tree or foreground objects such as vehicles, which are not 

modeled by the map or not representative in the dataset, are not as much corrected. 

 

 

Figure 11. Urban Scene Experiment - Number of pixels where labels changed after prior is applied; blue (”+”) refers to pixels 
corrected from incorrect labels; red (”-”) refers to pixels changed from correct labels to incorrect ones; yellow (”∼”) refers to 

pixels changed from incorrect labels to another incorrect ones. 



Large Set - Suburban/Residential Street Scene: We further evaluated the approach using a 

larger set of 200 sparsely sampled images. This set contains mostly suburban/residential scenes 

with unstructured and natural foreground objects such as trees occluding the underlying man-

made structures, as shown in Fig.12. A sample prior learned from this data set is shown in 

Fig.13. Note that compare to the prior learned from the urban scenes in Fig.5, trees are much 

more visible in the suburban scenes, while buildings are more visible in urban street scenes. 

 

 

Figure 12. Residential/Suburban Street Scene; note most underlying manmade structures such as buildings are fully occluded 
by foreground unstructured natural objects. 



 

Figure 13. Sample label priors learned from suburban/residential scenes. Left, from top to bottom: sky, tree, building; Right, 
from top to bottom: sidewalk, drive road, vehicles. Note trees are much more salient compared to priors of urban scenes in 

Fig.5. 

 

Table I and Fig.14 show the quantitative results with and without prior information. First of all, 

we notice that spatially consistent regions such as sky and floor are mostly improved with prior 

information. Vertical parts of the scenes usually consist of trees, buildings, and vehicles. We 

found in these segments that the model with prior information has more tendencies to label 

trees instead of buildings and vehicles, compared to the model without prior information, as 

illustrated in Fig.15, resulting in decrease in accuracy for these classes. Quantitatively, the bias 

to tree is shown with the increasing recall and decreasing precision of tree labeling in Table I. 

Also shown in the difference of Confusion Matrices (CM) Table II (computed by CM prior −CM 

no−prior), increasing number of building/vehicle segments are labeled as trees with prior 

information. 

 

 

 

 



Table 1: Metrics for Priors vs. No Priors 

Without Prior Sky Tree Floor Building Vehicle 

Accuracy 13.13% 55.67% 64.64% 33.68% 33.47% 

Precision 52.97% 64.97% 74.45% 55.07% 66.81% 

Recall 14.87% 79.54% 83.08% 46.45% 40.15% 

With Prior Sky Tree Floor Building Vehicle 

Accuracy 16.69% 54.08% 65.11% 27.56% 27.58% 

Precision 41.15% 61.64% 73.24% 56.05% 61.69% 

Recall 21.93% 81.51% 85.43% 35.16% 33.28% 

 

 

Figure 14. Label Accuracy for residential scene experiment; blue-without prior, red-with prior 

 

This reveals the limitation of the extent of external information one can use for scene parsing 

tasks. The current map information mostly models underlying manmade structures such as 

roads and buildings, etc., but does not model natural elements or foreground objects such as 

trees or vehicles, etc. However, in the task of scene parsing, an inference system makes 

decisions for each segment in the image considering all label classes. Therefore, a prior 

framework that does not model certain label classes should comply with the principle of least 

commitment for these label classes, and model these label classes as uniform as possible based 



on empirical distribution. The maximum entropy framework that we use to model the prior is 

one which optimally finds such label distributions. In this case, the empirical probability 

distribution of training data will heavily influence the resulting prior models, especially for 

those label classes not modeled in maps. We further investigate the specific image set used for 

training, and found that the ground truth label distribution is biased towards trees as shown in 

Fig.17. 

 

 

Figure 15. Example results for experiment in residential/suburban area where prior is biased to tree; for each pair: top - infer 
without priors, bottom - infer with priors; note that most vertical parts of the scenes are labeled as trees when prior is 
applied. 

 



Table 2: Difference of Prior Model Confusion Matrix and Non-Prior Model Confusion Matrix 

Infer → 

True ↓ 

Sky Tree Floor Building Vehicle 

Sky 54966 689 0 -55655 0 

Tree 103039 46038 62981 -207918 8429 

Floor 0 -39705 114069 6588 56942 

Building 14351 308097 -1957 -291403 -27671 

Vehicle 0 113811 50897 -14850 -37356 

 

Furthermore, due to the large number of images that are suburban scenes, most underlying 

manmade structures are occluded by foreground objects such as trees. As a result, the prior 

model learned from the training set is biased towards trees especially for vertical regions of the 

street scenes. 

 

Figure 16. Residential Scene Experiment - Number of pixels where labels changed after prior is applied; blue (”+”) refers to 
pixels corrected from incorrect labels; red (”-”) refers to pixels changed from correct labels to incorrect ones; yellow (”∼”) 
refers to pixels changed from incorrect labels to another incorrect ones. Note bias in tree labels lead to misclassification in 

building and vehicle. 

Examples can be seen in actual scene images Fig.12 or sample prior Fig.13. The issue of data 

bias has also been studied in the context of object recognition recently [19], [28]. Note that in 



our experiments it does not influence label classes such as sky and road significantly, which are 

distributed in relatively fixed spatial locations in the images. In fact, one can see from Fig.16 

that with priors the number of sky and floor segments that are corrected exceeds the number 

of misclassified ones. However, the vertical parts of the scenes suffer from the data bias issue 

since trees, buildings, and vehicles are mostly distributed in overlapping regions with occlusion. 

As analyzed before, with the biased prior, the inference is more likely to label tree over building 

and vehicle for such regions. 

 

Figure 17. Ground-truth label percentage (residential scene dataset); Note the large percentage of tree labels. 

 

It is reasonable because the inference machine is highly capable of empirical inference and fits 

data very well. Given relatively small (200 images) data set, it is not surprising that, by adding 

biased prior, the inference becomes more biased as well. 

D. Evaluation on re-weighting label distribution with prior context 

Fig 18 shows the performance of two approaches on incorporating priors: re-weighting using 

logistic regression and appending prior into the inference machine. The small data set of urban 

street scenes is used for this experiment. Note that the inference machine fits data by taking 

prior information as input features, while the re-weighting approach combines the output of 

scene parsing algorithm with prior information. Thus, appending prior approach in the 



inference machine has the advantage of aggressively using prior information in the structure 

prediction and fitting training data well in experiments, but on the downside might lead to bias 

and over fitting in practice. While the re-weighting approach has the advantage of generality 

since it can work with any generic scene parsing algorithms in practice, but on the downside 

might not match the performance of appending prior in the inference machine in experiments. 

 

Figure 18. Performances on two approaches of incorporating priors: re-weighting using logistic regression, and appending 
prior into inference machine. Dataset used: urban scenes. 

 

We also attempted to re-weight using a non linear classifier, boosted trees, and experimented 

on the relatively large data set of suburban/natural scenes. Fig 19 shows the performance, and 

not surprisingly, using prior also suffers from map limitation and data set bias issue, resulting in 

decreasing performance in several testing images. 



 

Figure 19. Performance of incorporating priors by re-weighting using boosting trees. The experiment is run on the relatively 
large data set of suburban/natural scenes. Note that using prior decreases performance on average given the dataset bias 

and limitation of map prior. Dataset used: residential scenes. 

 

Discussion 

A. Current Use of External Information 

The current use of map information could not model the whole complexity and richness of 

visual information in the images. It is shown from small experiments that in certain cases such 

as urban street scenes where the map information models the scene structures well, the prior 

information can improve the accuracy and enforce the invariance of inference at spatially 

consistent regions such as sky and roads. 

However, in cases such as natural/unstructured scenes, the current map prior has limitation in 

modeling and relies on empirical statistics, which leads to decrease in robustness depending on 

training data size. Given the limitation of the extent of map information, we believe richer 

representation of the scene prior such as 3D geometric features, or more extensive use of 

higher level knowledge can further help scene parsing. 



B. Label Confidence 

In most evaluations from the experiments, we used the label accuracy as the metric to analyze 

system performance. The accuracy is computed such that the label of highest inferred 

probability for each region is used to compare with ground-truth label. While the highest 

probability label is the one we used to label each region, the underlying label distributions may 

be a richer representation of the label confidence and belief for each region. This suggests that 

further metrics on probability distribution instead of label accuracy can potentially be used to 

evaluate the system performance and the effect of using prior. As an example, we attempted 

relative confidence to test how discriminative an inferred label is for each segment. It is defined 

as the difference between the highest probability and the second highest probability in the 

label distribution for each segment. 

As visualized in the Fig.20, C is the relative confidence of inferred label distribution from a 

model that does not use priors and D the one that uses the priors. Note in C without prior, the 

incorrect sky segment is uncertain, but in D with prior, it is corrected also becomes certain. The 

correct building segment also becomes more certain with prior applied. 



 

Figure 20. Label Confidence; top two are label inference results from models without prior (A) and with prior (B); bottom two 
are corresponding relative confidence (highest probability - 2nd highest probability) heat map (C-without prior, D-with 

prior); redder indicates more confident/discriminant about the labels, while bluer indicates more uncertain about the labels. 
Note the incorrect sky segment was uncertain without prior, but corrected with prior and was also certain; the correct 

building segment also becomes more certain with prior applied. 
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