
AUTOPLUG: An Architecture for Remote
Electronic Controller Unit Diagnostics in

Automotive Systems

FINAL RESEARCH REPORT

Yash Vardhan Pant, Miroslav Pajic,
and Rahul Mangharam

University of Pennsylvania

Contract No. DTRT-12-GUTC-11

University of Pennsylvania
ScholarlyCommons

Real-Time and Embedded Systems Lab (mLAB) School of Engineering and Applied Science

2012

AUTOPLUG: An Architecture for Remote
Electronic Controller Unit Diagnostics in
Automotive Systems
Yash Vardhan Pant
University of Pennsylvania, yashpant@seas.upenn.edu

Miroslav Pajic
University of Pennsylvania, pajic@seas.upenn.edu

Rahul Mangharam
University of Pennsylvania, rahulm@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/mlab_papers

Part of the Controls and Control Theory Commons, and the Systems and Communications
Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/mlab_papers/49
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Yash Vardhan Pant, Miroslav Pajic, and Rahul Mangharam, "AUTOPLUG: An Architecture for Remote Electronic Controller Unit
Diagnostics in Automotive Systems", . January 2012.

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fmlab_papers%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/mlab_papers?utm_source=repository.upenn.edu%2Fmlab_papers%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/seas?utm_source=repository.upenn.edu%2Fmlab_papers%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/mlab_papers?utm_source=repository.upenn.edu%2Fmlab_papers%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=repository.upenn.edu%2Fmlab_papers%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=repository.upenn.edu%2Fmlab_papers%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=repository.upenn.edu%2Fmlab_papers%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/mlab_papers/49
mailto:libraryrepository@pobox.upenn.edu

AUTOPLUG: An Architecture for Remote Electronic Controller Unit
Diagnostics in Automotive Systems

Abstract
In 2010, over 20.3 million vehicles were recalled. Software issues related to automotive controls such as cruise
control, anti-lock braking system, traction control and stability control, account for an increasingly large
percentage of the overall vehicles recalled. There is a need for new and scalable methods to evaluate
automotive controls in a realistic and open setting. We have developed AutoPlug, an automotive Electronic
Controller Unit (ECU) architecture between the vehicle and a Remote Diagnostics Center to diagnose, test,
update and verify controls software. Within the vehicle, we evaluate observerbased runtime diagnostic
schemes and introduce a framework for remote management of vehicle recalls. The diagnostics scheme deals
with both real-time and non-real time faults, and we introduce a decision function to detect and isolate faults
in a system with modeling uncertainties. We also evaluate the applicability of “Opportunistic Diagnostics”,
where the observerbased diagnostics are scheduled in the ECU’s RTOS only when there is slack available in
the system. This aperiodic diagnostics scheme performs similar to the standard, periodic diagnostics scheme
under reasonable assumptions. This approach works on existing ECUs and does not interfere with current
task sets. The overall framework integrates in-vehicle and remote diagnostics and serves to make vehicle
recalls management a less reactive and cost-intensive procedure.

Keywords
ECU, Diagnostics, Stability Control, System Identification, Control Systems Diagnostics

Disciplines
Controls and Control Theory | Systems and Communications

This technical report is available at ScholarlyCommons: http://repository.upenn.edu/mlab_papers/49

http://repository.upenn.edu/mlab_papers/49?utm_source=repository.upenn.edu%2Fmlab_papers%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages

AUTOPLUG: An Architecture for Remote
Electronic Controller Unit Diagnostics in Automotive Systems

Yash Vardhan Pant Miroslav Pajic Rahul Mangharam
Department of Electrical & System Engineering

University of Pennsylvania
{yashpant, pajic, rahulm}@seas.upenn.edu

Abstract— In 2010, over 20.3 million vehicles were recalled.
Software issues related to automotive controls such as cruise
control, anti-lock braking system, traction control and stability
control, account for an increasingly large percentage of the
overall vehicles recalled. There is a need for new and scalable
methods to evaluate automotive controls in a realistic and open
setting. We have developed AutoPlug, an automotive Electronic
Controller Unit (ECU) architecture between the vehicle and a
Remote Diagnostics Center to diagnose, test, update and verify
controls software. Within the vehicle, we evaluate observer-
based runtime diagnostic schemes and introduce a framework
for remote management of vehicle recalls. The diagnostics
scheme deals with both real-time and non-real time faults, and
we introduce a decision function to detect and isolate faults in
a system with modeling uncertainties. We also evaluate the ap-
plicability of “Opportunistic Diagnostics”, where the observer-
based diagnostics are scheduled in the ECU’s RTOS only when
there is slack available in the system. This aperiodic diagnostics
scheme performs similar to the standard, periodic diagnostics
scheme under reasonable assumptions. This approach works on
existing ECUs and does not interfere with current task sets. The
overall framework integrates in-vehicle and remote diagnostics
and serves to make vehicle recalls management a less reactive
and cost-intensive procedure.

I. INTRODUCTION

The increasing complexity of software in automotive
systems has resulted in the recent rise of firmware-related
vehicle recalls due to undetected bugs and software faults.
In 2009, Volvo recalled 17,614 vehicles due to a software
error in the engine cooling fan control module [1]. According
to the NHSTA report, the error could result in engine failure
and could possibly lead to a crash. In August 2011, Jaguar
recalled 17,678 vehicles due to concerns that the Cruise
Control in those vehicles may not respond to normal inputs
and once engaged could not be switched off [2]. In Novem-
ber 2011, Honda recalled 2.5 million vehicles to update the
software that controls their automatic transmissions [3].

While there is a significant effort for automotive software
testing and verification at the design stage [4], not all pos-
sible runtime faults throughout the vehicle’s lifetime can be
detected. A systematic approach and infrastructure for post-
market runtime diagnostics for the control software is lacking
in current automotive systems. Once the vehicle leaves the
dealership lot, its performance and operation safety is a
blackbox to the manufacturers and the original equipment
providers. For the over 100 million lines of code and over
60 Electronic Control Units (ECUs) in a modern vehicle [5],
there are only about 8 standard Diagnostic Trouble Codes
(DTCs) for software, and those too are generic (e.g. memory
corruption)[6]. Out of the DTCs for software, none target the

control software in the ECUs even though control systems
like stability control, cruise control, and traction control are
safety-critical systems.

A. Runtime in-vehicle Diagnostics and Recalls Management

The current approach for handling vehicle recalls is reac-
tive where the manufacturers announce a recall only after the
problem occurs in a significant population of deployed vehi-
cles and all vehicles of that particular year/make/model are
recalled. A software recall involves the vehicle being taken
to service center and a technician either manually replaces
the ECU which contains the faulty code, or reprograms the
code onboard the ECU with the new version provided by
the manufacturer. One problem with this method is that
the decision to recall vehicles involves word-of-mouth or
manually logged information going from the service centers
to the manufacturer, which takes time and in the meanwhile
may result in a malfunction within a safety critical system.
This wait-and-see approach to recalls has a significant cost
in both time and money and has a negative impact on the
vehicle manufacturers reputation.

The above observations lead us to believe that there is
a need for systematic post-market in-vehicle diagnostics for
control systems software such that issues can be detected
early. The in-vehicle system would be responsible for data
logging of sensor values and runtime evaluation of controller
states. To complement this, a Remote Diagnostics Center
(RDC) would receive this data, over a network link, to
prepare an appropriate Fault Detection and Isolation (FDI)
response. This would normally be in the form of sending
a custom Dynamic Diagnostic Code which observes the
ECUs and controller tasks in question. Once sufficient data
is captured, the RDC, using a model of the plant is able
to execute a grey-box structured system identification to
build a plant model of the particular vehicle. Using this
vehicle-specific plant model, the RDC develops a fault-
tolerant controller for the issue and the vehicle is remotely
re-programmed via a code update. While this approach is
difficult in theory as it would require extensive runtime
verification of the patched controller, we present the early
design of such a system with AutoPlug.

B. Overview of AutoPlug

The AutoPlug automotive architecture aims to make the
vehicle recalls process a less reactive one with a runtime
system for diagnosis of automotive control systems and
software. Our focus is on the on-line analysis of the control

Diagnostic Data

Reformulated Code

• Fault Detection and Isolation
• Fault Tolerant Controllers
• Remote Code Update
• Runtime testing

• Data Analysis
• Code Reformulation
• Verification Profile Generation
• Remote Recalls Management

Deployed Vehicle Remote Diagnostics Datacenter

Fig. 1. Overview of the AutoPlug services

system and control software within the vehicle ECU network
and between the vehicle and the RDC (see Fig. 1). We
assume the network link between the two is available. The
runtime system within the vehicle is responsible for:

1) Fault Detection and Isolation (FDI): Sensor, actuator
and controller states are logged for the specific ECU.
This data is analyzed locally and a summary of the
states are transmitted to the RDC.

2) Fault Tolerant Controllers: Once a fault is detected,
the high-performance controller is automatically re-
placed with a backup controller.

3) ECU re-programming for remote code updates:
Upon reception of updated controller code from the
RDC, the runtime system re-flashes the particular
controller task(s) with the updated code.

4) Patched Controller runtime-verification: The up-
dated code is monitored with continuous checks for
safety and performance. We do not focus on this aspect
in this paper but consider it in future work.

While the on-board system provides state updates of the
specific controller, the Remote Diagnostics Center (RDC)
provides complementary support by:

1) Data analysis and fault localization: Using grey-box
structured system identification, a plant model of the
particular vehicle is created. The existing controller is
evaluated on this model to isolate faulty behavior.

2) Reformulating Control and Diagnostics Code: A
new controller is formulated for the specific plant
model and further diagnostics code is dispatched.

3) Recalls Management: Reformulated controller code
is transmitted to the vehicle.

4) Generating Controller Verification profiles: The up-
dated controller is probed for performance and safety.
We do not focus on this aspect in this paper.

A more descriptive view is provided in Fig. 2. Further
explanation of these services are presented in Section III.

C. Types of faults

Before the underlying analysis for the diagnostics scheme
are explained, it is worth noting the real-time and non-
real time faults targeted for detection and isolation in the
AutoPlug architecture.

I. Real-Time Faults
Timing issues which are of particular interest to automo-
tive controls are either introduced due to the Controller
Area Network (CAN) bus or with the sampling in the
sensors/controllers/actuators. These “bugs” are introduced in
the hardware-in-loop testbed for stability control, traction

control, anti-lock brake system and cruise control and are
discussed later.

1) Delay: Large delays in transmission of a packet over a
network may adversely affect the stability of a closed
loop controlled system.

2) Jitter: Time varying delay is much more difficult
to pinpoint than fixed delays and may also have an
adverse effect on the stability and runtime performance
of a system.

3) Incorrect sampling rates: Different sampling times
across the elements of the CAN may result in unchar-
acteristic behavior of the overall system.

II. System Faults
1) Stuck-at Faults: occur when a sensor value stays at the

maximum or minimum for a certain period of time.
2) Calibration Faults: Calibrating sensors for different

environments is a difficult task. Detecting calibration
at runtime is important in the context of safety critical
control systems.

3) Noise Faults: Due to environmental or other electrical
reasons, the noise variance in a sensors measurements
may be inordinately high and affect sensors/actuators.

The focus of this study will be on sensor faults, especially
sensors for lateral displacement, yaw and roll, which play a
crucial role in feedback systems for stability and traction
control.

The main contributions of this paper are: (a) We present
an architecture is introduced which uses both in-vehicle
and remote diagnostics for remote recalls management of
deployed vehicles; (b) We present a modification of the
traditional observer-based FDI scheme for in-vehicle oppor-
tunistic diagnosis, as well as an experimental thresholding
scheme for fault detection and isolation in presence of mod-
eling uncertainties; (c) Finally, we implement and evaluate
these schemes on real ECUs on the AutoPlug testbed for
Hardware-In-Loop simulation.

D. Organization of the paper

Section III explains the key components of the AutoPlug
architecture and their working. A simple example to explain
the diagnostics scheme and the underlying math is covered
in Section IV. The AutoPlug test-bed which is used for
the Hardware-In-Loop simulations to evaluate the scheme
is covered in Section V. Finally, Section VI presents a
stability control case-study on the test-bed to demonstrate
the and a dynamic thresholding scheme for the diagnosis
process along with implementations of both invasive and
opportunistic diagnostics.

II. RELATED WORK

General Motor’s OnStar, Ford’s MyTouch, BMW Assist,
Kia’s Uvo [7] are examples of basic diagnostic services for
remote vehicle monitoring and tracking. They are capable of
alerting users of safety and performance issues, but the final
diagnostics still has to be at the service center. While these
systems provide early warnings for issues with the vehicle’s
operation, they are built upon the limited OBD DTCs for
vehicle software and have no observability of the vehicle’s
control systems and control software.

Model	
 based	
 design	
 Run-­‐0me	

Diagnos0cs	

Remote	

Diagnos0cs	

Center	

Remote	
 Code	

Update	

Run-­‐0me	

Verifica0on	
 	

Controller/Diagnos0c	

Methods	

Model	
 Extrac-on	

System	
 Iden0fica0on	

(open-­‐loop)	

Observer	
 based	

Residual	
 genera0on	
 and	

threshold	
 func0on	

Fault	
 Tolerant	
 Controller	

Code	
 reformula-on	

Op0mal	
 Controller	
 with	

faulty	
 sensors	

Reprogram	
 ECUs	
 	

New	
 code	
 from	
 RDC	

Over	
 the	
 CAN	
 bus	

Verifica-on	
 Profile	

Simula0ons	
 with	

quadra0c	
 cost	
 func0on	

Performance	
 profile	

Comparison	
 with	
 stored	

verifica0on	
 profile	

Faulty	

Opera0on	

1

Design	
 Time	
 Post-­‐Market	
 –	
 Run0me	
 Remote	
 Diagnos0cs	
 and	
 Code	
 Update	

2 3 4 5

Fig. 2. Stages of the AutoPlug architecture

The use of event trace data which is logged at runtime
and analyzed at the lab aposteriori, is a common approach
called ’Record and Replay’ debugging. AVEKSHA [8] im-
proves upon this for tracing events in a real-time system
and diagnosing possible timing related bugs in embedded
software while the sensor node is deployed. In our previous
work [9], we used logged data from the AutoPlug testbed
to diagnose a PID Controller used as the Engine Idle-Speed
Controller. Our current work extend this to analyze control
systems between in-vehicle diagnostic data and the RDC.

On a different time scale, Pattipati et al. [10] use a data-
driven approach over years of fault data to detect and deter-
mine faults in automotive systems. Classical Fault Detection
and Tolerance methods in the context of aircraft control
are reviewed by Huo et al. [11]. For adaptive controllers,
ORTEGA [12] presents a state-space based approach to
switch between controllers from high-performance to less
performing but high-assurance controllers for fault tolerance
in real-time control systems. Our approach relies on the fault
diagnosis to decide which controller to switch to and also
provides reconfiguration of the controller that is not based
on a static set of faults.

NCSWT [13] is a software based tool for networked
control systems which can be used for accurate simulation
and evaluation of timing faults. While NCSWT is a general
tool, the AutoPlug test-bed (Section V) used for evaluation
in this paper is specifically for networked automotive control
systems and also employs hardware in the loop.

Finally, firmware over the air (FOTA) updates have
been introduced for infotainment systems in vehicles [14].
Firmware updates can be downloaded onto a smartphone
which can also connect to the vehicles communication
bus through the On-Board Diagnostics port (OBD). Similar
methods for update of control software or for the code in
any other safety critical ECU have yet to be developed and
tested. Internet Connectivity for a vehicle has been used for
personalized tuning of the vehicle in CarMA [15].

III. THE AUTOPLUG ARCHITECTURE

Regular firmware updates over a network for infotainment
systems in vehicles is now a rising trend [14]. A central node
keeps track of the firmware version for a large number of
cars and when a new version is ready to be launched, updates

the firmware code on each vehicle based on its difference
with the existing version on the vehicle. Similar methods
for the control systems and diagnostics code implemented
on board the ECUs of vehicles have yet to be developed and
implemented. This is because the safety-critical nature of the
control systems implemented on the ECUs makes the task of
coming up with these methods and proving their correctness
more exacting.

The working of the AutoPlug scheme can be divided
into five steps, as shown in Fig. 2. At the design stage, a
model for the automotive system is extracted and is used for
the controller formulation and the model-based diagnostic
methods. After the vehicle has been deployed, run-time
diagnostics onboard the vehicle detect and isolate faults, and
the knowledge of that is used to switch to a fault tolerant
controller. The diagnostic data logged in the vehicle is then
sent to the RDC where the new controller/diagnostics code is
formulated. The reformulated code, along with a verification
profile for run-time evaluation is sent to the vehicle and
reprogrammed onto the ECUs.

This section will explain the key parts of the AutoPlug
architecture shown in Fig. 3 and provide an overview of their
functions.

A. Vehicle Dynamics and Sensors/Actuators

Measurements, like yaw rate and roll angle, are available
as messages on the CAN bus through the corresponding
sensors during vehicle operation. Actuators (e.g. throttle,
brakes) can also be commanded by corresponding CAN mes-
sages. In addition, an approximation of the vehicle dynamics
(e.g. powertrain dynamics, lateral dynamics) is available at
the design stage. This knowledge of the vehicle dynamics
and the run-time sensor measurements from the vehicle and
actuation are used for the control and diagnostics onboard
the vehicle.

B. Bank of Controllers

Onboard the ECUs, multiple controllers are implemented
to achieve the same performance criteria while using dif-
ferent subsets of available sensors. Normal operation in-
volves the nominal controller using all the available (and
needed) sensors for feedback control, and the sensor status
is monitored by the diagnostics. Based on the status of

Vehicle	

Dynamics	

S	
 A	

Co	

Bank	
 of	
 Controllers	

Electronic	
 Controller	
 Unit	

Supervisor	

Diagnos;cs	

Deployed	
 Vehicle	
 Service	
 Datacenter	

Network	

Cf1	

Cf2	

Remote	
 Diagnos;cs	

Center	
 (RDC)	

Actuators	
 Sensors	

Dynamic	
 Diagnos;c	
 Trouble	
 Codes	

(DyDTCs)	

Fig. 3. The AutoPlug Architecture and its components

sensors, only one of the controllers is active at a time. This
bank of controllers aims to achieve the predefined control
objective despite a sensor or set of sensors providing faulty
measurements. Each individual controller corresponds to one
case of sensor fault(s) and is activated whenever that fault
or set of faults is detected. The control objective may be
met by these controllers through either Accomondation or
Reconfiguration [16].

In the case that one or more sensor outputs are unreliable,
one method of getting a fault tolerant feedback controller
is to change the controller structure in order to ignore
the outputs from the faulty sensors. This is called Fault
Accommodation. Reconfiguration involves a change in the
plant input-output structure while formulating the controller.
AutoPlug architecture supports a bank of pre-formulated
controllers which accommodate all combinations of sensor
faults or a subset (for which fault accommodation leads to
a stabilizing controller) of the combinations. Based on the
information from the Onboard Diagnostics, the Supervisor
Logic takes the original controller (for the no fault case) out
of the loop and switches to the corresponding fault tolerant
controller in run-time.

C. Onboard Diagnostics

Run-Time FDI is one of the principal components of the
AutoPlug architecture. The onboard diagnostics code can be
on a single ECU or distributed among different ECUs. The
scheme which forms the backbone of the onboard diagnostics
is tasked with monitoring sensor measurements and detecting
any sensor faults and isolating the fault(s) to one or more
sensors. A detailed explanation of the FDI scheme employed
is outlined in section IV-B.

Because of the safety-critical nature of many feedback
control systems in a vehicle and the related sensor data,
detecting sensor faults is one of the foremost tasks of the
onboard diagnostics system. Schemes for sensor FDI are
numerous have been extensively studied in [17]. The bank
of observers scheme [18] is a model based FDI scheme
which is well suited to multi-output linear systems, but the
Luenberger Observer is less than ideal for systems with noisy
outputs, which most real world systems invariably are. Using
the Kalman Filter, a standard residual generation scheme
[17] and a thresholding scheme we present in section VI,
we extend the FDI scheme. This scheme is applicable to
a noisy system with modeling uncertainty and is robust
in identifying and isolating multiple simultaneous faults.

Fig. 4. Profile for verification of controller with lane change maneuvers
of two different magnitudes of δ

In addition, we also modify the observer-based scheme
for a real-time system where diagnostics may not always
be scheduled periodically. This Opportunistic Diagnostics
scheme is outlined in Section IV-D and is evaluated in
section VI-F.

D. Supervisor

The supervisor in Fig. 3 is implemented onboard an ECU
to overlook the functioning of the fault-tolerant architecture.
The supervisor receives information from the onboard diag-
nostics module and switches between the original (no fault)
controller and the fault-tolerant controllers based on which
sensor or set of sensors is faulty. The supervisor is also
responsible for logging run-time sensor measurements, con-
trol inputs, and diagnostics information for a finite window
of time. This data logging continues for some time after
the fault is detected, and is then transmitted to the Remote
Diagnostics Center. In addition, after the remote controller
code update, the supervisor is responsible for monitoring the
performance of the new controller.

The run-time verification scheme is based on the fact
that a controller, e.g. the stability controller of section VI
is activated only for some particular maneuver, e.g. a lane
change or a double lane change. Considering that the lane
change is the maneuver we’re interested in for verification
purposes, a quadratic cost function (similar to that used for
the initial optimal controller formulation) is used to generate
a nominal operation profile from offline simulation. This
offline profile is then compared to a running cost when the
maneuver is being executed by the actual vehicle. It’s not
difficult to identify a lane change, and when the maneuver
is started, the running cost is evaluated (after the maneuver
is started) as

C(t) =
x′m(t)Qxm(t)

||xm(t)||δ
(1)

Figure 4 shows the cost-profiles for maneuvers of two
different magnitudes. Note that the profile generated from
Equation 1 is normalized for the magnitude, and that is
reflected in figure 4.

E. The Remote Diagnostics Center (RDC)

The RDC is a facility of the vehicle’s manufacturer that
is connected to all deployed vehicles and provides remote
recalls management. The RDC performs tasks that may be
autonomous or have a human in the loop. In the scope of this
paper, the RDC performs autonomous tasks like controller
reformulation and generation of a verification profile for
patched controller evaluation onboard the vehicle at run-
time. The RDC receives data from the vehicle whenever
the vehicle encounters a fault. The logged data from the
vehicle is used for the diagnostic tasks performed at the RDC
and the reformulated controller is sent to the vehicle to be
reprogrammed onto the ECUs.

After a fault has been detected in a sensor onboard the
vehicle, logged data (before and after the fault) about the
vehicle performance and the diagnostics (i.e. the observer-
based state estimates and residuals) are sent to the RDC. At
the RDC, the first and foremost task is to find out whether
the fault is indeed a sensor fault. The other possibility is that
wear-and-tear on the vehicle has led to changed parameters
in the car model (e.g. suspension stiffness, cornering coeffi-
cients). This possibility is verified or ruled out by simulating
the existing model with the logged inputs and comparing the
outputs of this simulation to the logged outputs. If there is
indeed a change in vehicle parameters, system identification
is performed using the structure of the original model and
the logged data to get a new plant model for that particular
vehicle. This model is then used to generate new controller
and diagnostics code for that vehicle. Irrespective of whether
there is a sensor fault or a change in vehicle parameters,
a new optimal controller is formulated and a performance
profile for that controller is generated. This new control
controller is coded and sent to the vehicle, along with the
performance profile for run-time verification of the new
controller.

IV. A SIMPLE EXAMPLE TO ILLUSTRATE THE
DIAGNOSTICS SCHEME

The model-based framework outlined in the previous sec-
tion lends itself well to the case of linear systems. Consider
a Linear Time Invaraint (LTI) discrete-system with n states,
m outputs and p inputs.

x(k) = Ax(k − 1) +Bu(k − 1) + w(k − 1), (2a)
y(k) = Cx(k) + v(k) (2b)

Here, x ∈ Rn is the state-vector, u ∈ Rp is the input-
vector and y ∈ Rm is the output-vector of the system. The
system has process noise w ∈ Rn and measurement noise
v ∈ Rm which are assumed [19] zero-mean Gaussian and
satisfy:

E[w(k)w′(k)] = Q;E[v(k)v′(k)] = R;E[w(k)v′(k)] = N (3)

A. The Linear Bicycle model

For example, consider the lateral dynamics of a vehicle
[20] represented by the continuous-time state space system
given in Eq. 4. This model is called the 2-Degree of Freedom
model or the Bicycle model and is popular in control
literature for analyzing the lateral stability of a vehicle. The
two degrees of freedom here are the vehicle lateral position
y and the vehicle yaw angle ψ (which are also the states

X

Y

Ψ

x

y

O

C.G.

Vehicle

Center of Rotation

Global Axis

Yaw Angle

Fig. 5. The Two Degree of Freedom model

TABLE I
VEHICLE PARAMETERS

Vehicle mass m 1670kg
Moment of Intertia Iz 2100 kgm2

Longitudinal Speed vx 27.78 m/s
C.G. to front wheel a 0.99 m
C.G. to rear wheel b 1.70 m

Cornering Coefficient(front) Ca1 -123190 N/rad
Cornering Coefficient(rear) Ca2 -104910 N/rad

Track width T 1.52 m

of the system). The vehicle is assumed to have a constant
longitudinal velocity vx. Eq. 4 shows the evolution of the
rate of change of the lateral position and the yaw angle
with braking force FBS and steering angle δ being inputs
to the system. As seen in Fig. 5, the vehicle lateral position
is measured along the lateral axis of the vehicle to the center
of rotation of the vehicle and the yaw angle is measured with
respect to the global x-axis.[

ÿ

ψ̈

]
=

[
Ca1+Ca2

mvx

−bCa1+aCa2−mv2
x

mvx
aCa1−bCa2

Izvx

a2Ca1+b2Ca2
Izvx

] [
ẏ

ψ̇

]
+

[−Ca1
m

0
−aCa1

Iz

T
2Iz

] [
δ

FBS

]
(4a)[

ẏ

ψ̇

]
=

[
1 0
0 1

] [
ẏ

ψ̇

]
(4b)

The vehicle parameters in Eq. 4 are enumerated in table
I. Assuming that both ẏ and ψ̇ are measurable (full state
feedback), the C matrix in Eq. 2 is identity and the D
matrix is a zero matrix. Values for the process noise and
measurement noise covariances are assumed to be Q = I ,
R = 0.05I and N is a zero matrix for simplicity.

To be consistent with a real digital implementation, we
discretize the continuous time system in Eq. 4 for a sampling
time of 0.002s and represent it as a discrete time state space
system in Eq. 5. Note that after discretization, the C matrix
is still an identity matrix and the D matrix is still a zero
matrix.[

ẏ(k)

ψ̇(k)

]
=

[
4.015 ∗ 10−5 −0.0004001
1.546 ∗ 10−5 −5.418 ∗ 10−6

] [
ẏ(k − 1)

ψ̇(k − 1)

]
+

[
−0.02235 −2.084 ∗ 10−7

0.007383 3.681 ∗ 10−8

] [
δ(k − 1)

FBS(k − 1)

]
(5a)

For the lateral stability controller, similar to [20], we
implement a Linear Quadratic Regulator (LQR) as the state
feedback controller. The aim of the stability controller is to
intervene with the vehicle steering in case of oversteer or
understeer, but only by using differential braking and not by

Sensor 1

Sensor 2

Kalman Filter 1

Kalman Filter 2

y1m

y2m

Residual

Residual

y1
1

y2
1

y1
2

y2
2

y1m

y2m

Threshold

Threshold

r>t

r>t

Plant Inputs

u

u

y2m

u

u

y1m

r1

r2

Alarm

Alarm

From
Plant

Fig. 6. The Fault Detection and Isolation Scheme. The redundant output
estimates are used to find any discrepancy, in the form of a residual function,
if a sensor is faulty. The threshold function acts as a decision function in
the FDI scheme.

affecting the steering angle δ. The brake force input to the
system is governed by the control law given:

FBS(k) = −106
[
−1.0260 −0.0562

] [ẏ(k)
ψ̇(k)

]
(6)

B. The Diagnostics Scheme explained

For the applicability of the schemes outlined in Section
III-C, we require the pair (A,Ci) to be observable ∀i =
1, 2..n, where Ci is the ith row of the C matrix. This is
because in the FDI scheme, there are n Kalman Filters, each
driven by only one of the n-sensor outputs of the system
and to estimate the states of the system from just the ith

sensor output requires (A,Ci) to be observable. The system
given by the Eq. 5 meets these requirements, and shall be
used throughout the section to illustrate the FDI scheme. The
key idea behind the FDI scheme is to generate an analytical
redundancy by having state estimates of the system from all
the sensor outputs individually. This in turn means that there
are now redundant output estimates (since ŷ = Cx̂) which
when compared to the actual sensor measurements will help
detect and isolate which sensor is faulty. Computationally,
individual comparison of estimated signals is unwieldy and
needs too many logical decision. To overcome this for the
implementation of the scheme, a residual signal is generated
as a function of the measurements and estimates. A fault is
detected and isolated to a particular sensor if the residual
crosses some threshold. Fig. 6 shows the overview of the
scheme and Section IV-C explains the terms, notations and
the working of the components of the figure.

C. The Kalman filter for residual generation

For a discrete time system given in Eq. 2, the Kalman
filter is the optimal estimator. Given the plant and noise
model in Eq. 2 and Eq. 3, the aim of the Kalman filter is to
construct a state-estimator which minimizes the steady state
error covariance [19]. The state update and measurement
update steps of the Kalman filter can be represented in the
form of a discrete state-space system:

z(k) = Aoz(k − 1) +Bo

[
y(k)
u(k)

]
(7a)

x̂(k) = Coz(k) +Do

[
y(k)
u(k)

]
(7b)

Here, z is the state of the Kalman filter, x̂(k) is the state
estimate from the Kalman filter driven by system output y
at time instant k given all measurements (output y and input

u) upto time instant k. The reader can refer to [19] for the
construction of matrices Ao, Bo, Co and Do.

For the 2-DOF model, the State and Output equations
corresponding to Eq. 7 for the Kalman filter driven by the
first output (lateral velocity ẏ, represented as y1) of the
system in Eq. 5 are:

z(k + 1) =

[
−0.0001034 −0.0004001
1.087 ∗ 10−6 −5.418 ∗ 10−6

]
z(k)

+

[
−0.02235 −2.084 ∗ 10−7 0.0001436
0.007383 3.681 ∗ 10−8 1.437 ∗ 10−5

][δ(k)
FBS(k)
y1(k)

]
(8a)

x̂1(k|k) =
[
0.1668 0
0.2752 1

]
z(k)

+

[
0 0 0.8332
0 0 −0.2752

][δ(k)
FBS(k)
y1(k)

]
(8b)

Here, x̂1(k|k) is the state estimate from the Kalman filter
driven by system output y1 at time k given all measurements
(output y1 and input u) upto time instant k. Output estimates
y1(k|k) can be calculated by simply multiplying the C
matrix of the system in Eq. 5, which is identity, with the
state estimate x̂1(k|k). With a similar formulation for the
Kalman filter driven by system output y2, output estimates
y21(k|k) and y22(k|k) are obtained. To reduce notational
clutter, estimates yji (k|k),∀i, j are simplified as yji (k).

If there’s no fault in the system, the output vector estimate
from each Kalman filter should be in close agreement with
the measurements. In case there’s a fault in one of the
sensors, the output estimate from that sensor will differ
from the measured sensor values. A residual function [17]
to represent this analytical redundancy for the Kalman filter
driven by system output j is:
rj(k) =

∏
l

|(yl(k)− ŷjl (k))|,∀l = 1, 2, ...m, l 6= j (9)

Fig. 7 shows the sensor measurements and the corre-
sponding residuals for normal operation. The jitter is mod-
eled as a time varying delay, which is Gaussian distributed
with a mean of three sampling periods and a variance of four
sampling periods. Introducing the jitter in sensor 1 (lateral
velocity) measurements, it’s easy to notice in Fig. 8 that the
residual for sensor 1 is now around three times higher than it
was for the no fault case. The flip-side to using this residual
scheme is that now the residual for sensor 2 (yaw rate) is

Fig. 7. No-fault Case: Measurements (on the left) and residuals (on the
right) for the case where no sensor is faulty. The residual is ideally small
in this case.

also higher (by around three times) than it was for the no
fault case, even though the fault is just in sensor 1.

The increase in residuals implies that fault detection with
this standard residual scheme is easy, but isolating the fault
to a particular sensor is not. This is because the residual
for the non-faulty sensor is also increasing. To remedy this,
we introduce a scheme in Section VI to generate thresholds
which are robust to faults in other sensors and make isolation
of faults easier.

D. Opportunistic Diagnostics

In a real-time operating system (for example, we use
nano-RK [21]) running on an ECU, control functions and
diagnostics are implemented as tasks. These tasks have a
period, execution time and a deadline. In the case of a
periodically sampled controller or observer, the period and
deadline is equal to the sampling period, while the execution
time has to be less than the sampling period in order for the
task to meet its deadline. Consider the brakes ECU of the
AutoPlug testbed in Section V. The ECU may have multiple
control tasks like the stability controller, ABS and traction
control and its utilization may be such that periodically
scheduling the observer based diagnostics may lead to some
control task missing its deadline. In this case, periodic
scheduling of diagnostics is infeasible since we do not want
the diagnostics to interfere with the safety critical control
systems.

The standard Kalman filter based residual scheme of
Section IV-C, when implemented on an embedded controller,
corresponds to the case of periodic execution of the observer
as a task. The LQR stability controller (Section IV) is also
a periodic task. On the AutoPlug testbed (Section V), the
LQR controller execution time was found to be 0.260ms,
while that for the Kalman filter was 0.740ms on the brakes
ECU, which is a HCS12 microcontroller. Since the testbed
has a sampling period of 2ms, the controller should finish
all its computations within that period in order to not
miss its deadline and the next measurement sample. With
the Kalman filter’s significantly higher execution time and
traction control and ABS adding a computational overhead,
it makes more sense for the Kalman filter based diagnostics
to be executed only when there is slack available [22] in the

Fig. 8. Faulty Sensor Case: Measurements (on the left) and residuals (on
the right) for jitter in sensor 1. The increased residuals indicate that there is
a fault, but due to the similar increase in residuals for both sensors, isolation
is difficult

Fig. 9. The AutoPlug testbed

ECU. This leads to an aperiodically executed Kalman filter
and we call this the Opportunistic Diagnostics scheme.

Since storing measurement samples at every period
doesn’t involve much computational overhead, we can use
the stored data and simply modify the Kalman filter to
account for the periods of non-execution as shown in Eq.
10. This modification essentially makes the Kalman filter
aperiodic in execution, but with periodically sampled data.
An alternative to storing all measurements is dropping them
in the periods that the Kalman filter is not executed in [23].
In this paper we, explore the simpler approach where all
measurements are stored.

z(k + p) = Apoz(k) +

p−1∑
j=0

Ap−1−jo Bo

[
y(n+ j + 1)
u(n+ j + 1)

]
(10a)

x̂(k + p) = Coz(k + p) +Do

[
y(k + p)
u(k + p)

]
(10b)

Here, k is the time instant in which the Kalman filter
was previously executed, and k+ p time periods is the time
instant at which the Kalman filter is executed next. A buffer
stores the measured outputs y and inputs u from time k
to time k + p. The generation of residuals is such that the
residual is zero when there is no execution and given by Eq.
9 when the diagnostics task is executed on the embedded
controller. This opportunistic diagnostics scheme is evaluated
with Rate Monotonic Scheduling in Nano-RK and the results
are presented in Section VI.

V. THE AUTOPLUG TESTBED

To test out the framework outlined in the previous sections
on a system with real hardware, we implement the FDI
scheme on the AutoPlug testbed (see Fig. 9) 1. The AutoPlug
testbed is a Hardware-In-The-Loop simulation platform for
ECU development and testing. The hardware is in the form
of a network of ECUs, on which we implement the control
and diagnostic algorithms. Each ECU runs the nano-RK
RTOS [21], a resource kernel with preemptive priority-
based real-time scheduling. Instead of a real-vehicle, our

1The test-bed was demonstrated at CPSWeek 2011

Plant Model
TORCS

Runtime
Monitor
MATLAB

Test Vehicle

TORCS-CAN
Gateway

Motor Drive
ECU

Engine ECU Brake ECU

MATLAB-CAN
Gateway

C
A
N

B
U
S

Steering
Driver I/O

Fig. 10. AutoPlug System Architecture

plant uses The Open-source Race Car Simulator (TORCS).
This provides physics-based high-fidelity vehicle models
and different road terrains. The testbed provides us with
the realism of using a real vehicle, and also has enough
flexibility to implement our own code. In addition, we can
introduce faults which are not covered by set of standard
Diagnostic Trouble Codes (DTC). We have tested out basic
control algorithms, running as real-time tasks on nano-RK,
for Anti-Lock Braking System (ABS), Traction Control,
Cruise Control and Stability Control to see that the testbed
indeed performs like a real vehicle would. AutoPlug is free
and open-sourced [24].

A. Testbed architecture

The AutoPlug testbed consists of three layers, Vehicle
Dynamics Simulation, ECU Network and the middleware
for control algorithms, runtime software/system diagnosis,
upgrade and verification. The simulation layer models the
dynamics of a vehicle (e.g. Toyota Corolla) on the physics-
based simulator (TORCS). The ECU network consists of
four embedded controllers (FreeScale HCS 12) networked
over an industry standard CAN bus. The middleware is a
small computer that provides a gateway protocol for vehicle
manufacturers to interface with the ECU network and
provides us with the simulated capabilities of a RDC. Fig.
10 shows a simplified view of the AutoPlug architecture.
The four ECUs on the testbed are:
(1) TORCS Gateway ECU: The simulation data (sensor
values) are sent from TORCS (running on a computer) to
the ECUs in real time over the CAN bus via this gateway.
The inputs to the simulation in TORCS, from the ECUs
and the user, are also received through the TORCS gateway
and sent to the simulator.

(2) Brakes ECU: This ECU controls the inputs to the brakes
of the vehicle in TORCS. Based on the user inputs (which
are sent over the CAN bus) and sensor values, the control
algorithm on the ECU calculates the brake force for the
individual wheels of the vehicle (generalized as the left or
the right side of the vehicle). This is sent as a message over
the CAN bus to the TORCS Gateway which in turn sends
the calculated inputs to the vehicle actuator in TORCS.

(3) Engine ECU: This ECU controls the acceleration, gear
and clutch inputs to the vehicle. Algorithms like Cruise
Control and Traction control are implemented onboard this
ECU and it’s tasked with modulating the user inputs to the
vehicle and sending the modulated inputs as a message to
the TORCS Gateway over the CAN bus.

(2) MATLAB Gateway: In order to log data from the
testbed and to monitor the vehicle parameters (like yaw rate
etc.) in real-time , the MATLAB gateway reads the TORCS
outputs, user inputs, and controlled inputs from the Brakes
and Engine ECU from the CAN bus and sends them to the
middleware. The middleware can also communicate with
the other ECUs over the CAN bus if needed.

B. Code updates

Reprogramming the ECUs over the CAN bus was one of
the features of the first generation AutoPlug framework [24].
A smartphone can connect to the vehicle’s CAN bus through
the Onboard Diagnostics (OBD) port and the code update can
be downloaded onto the smartphone. This downloaded code
can then programmed onto the ECU over the CAN bus. Once
a fault is detected onboard the vehicle, the Remote Diagnos-
tics Center receives information of that fault, and new code
is formulated at the RDC. The vehicle user then has a choice
to initiate a code update remotely. The downloaded code is
loaded in a secure manner from the owners smartphone into
the vehicle via a WiFi gateway interfacing the vehicles on-
board diagnostics (OBD) computer. This performance of this
code is then evaluated at runtime (Section III-E).

VI. CASE STUDY: VEHICLE LATERAL DYNAMICS ON
THE AUTOPLUG TESTBED

Electronic Stability Control (ESP) has been a safety
feature on vehicles for a number of years [25]. The stability
controller is tasked with maintaining the vehicle at the
desired yaw angle corresponding to the driver’s steering
input. A common way of doing this by using differential
braking which introduces a yaw rate corresponding to the
brake force applied to either the inner or outer wheels. This
yaw rate is used to steer the vehicle onto the desired track.
Pilutti et al. [20] compare the performance of three classical
control techniques (PID, LQ and pole-placement) applied as
stability controllers on a 2-DOF Bicycle vehicle model.

A. 3-DOF Linear model for vehicle lateral dynamics

TORCS, is a physics based vehicle dynamics simulator.
It is difficult to accurately represent the vehicle dynamics
modeled in TORCS with the simple Bicycle model. On the
other hand, higher order models [26] have been studied for
vehicle dynamics control, but their complexity makes them
a poor match for the Off-The-Shelf embedded controllers
used in a vehicle. D’Silva et al. [27] add another degree of
freedom, Roll, to the Bicycle model and introduce a 3-DOF
linear model for vehicle lateral dynamics. We add a slight
modification to 3-DOF model to include the effect of brake
forces to the left and right sides of the vehicle. The discrete-
time version of this model relating the lateral velocity, roll
angle and yaw rate dynamics is used as a reference for the
remainder of the text.

Controller	

FDI	
 1	

FDI	
 2	

FDI	
 3	

S

S
S

A

A

CA
N
	
 B
us
	

Roll	
 Angle	
 Sensor	

Yaw	
 Rate	
 Sensor	

Lateral	
 Velocity	
 Sensor	

LQR	

Yaw	
 Rate	
 Sensor	

Threshold/Residual	

Lateral	
 Velocity	
 Sensor	

Threshold/Residual	

Roll	
 Angle	
 Sensor	

Threshold/Residual	

Brake	
 (leF)	
 Actuator	

Brake	
 (Right)	
 Actuator	

Steering	
 Angle	

PosiIon	
 Sensor	

S

Fig. 11. Networked Control System View of the testbed

x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)

 =

β1 β2 0 β3
β4 β5 0 β6
β7 β8 β9 β10
0 0 β11 β12


x1(k)x2(k)
x3(k)
x4(k)


+

β13 0 0
β14 β15 β16
β17 0 0
0 0 0

[δ(k)Fl(k)
Fr(k)

]
(11a)


ẏ(k)

ψ̇(k)

φ̇(k)
φ(k)

 =

β18 0 0 0
0 β19 0 0
0 0 β20 0
0 0 0 β21


x1(k)x2(k)
x3(k)
x4(k)

 (11b)

Eq. 11 shows the structure of discrete-time 3-DOF linear
model for vehicle lateral dynamics. βi,∀i = 1, 2, ..., 21 are
the free parameters of this model which are dependent on the
characteristics (like mass, length etc.) of a particular vehicle,
the other parameters in the state-space model are 0. These
free parameters relate the dependence of the evolution of the
states of the system upon each other and the inputs to the
system. Here, x1, x2, x3, x4 are the 4 states of the vehicle,
scaled versions of which (by β18, β19, β20, β21) are the
lateral velocity ẏ, yaw rate ψ̇, roll rate φ̇ and the roll angle φ.

B. System Identification: 3-DOF Linear model from TORCS

TORCS is a physics based vehicle dynamics simulator
and is used in the AutoPlug testbed to provide the vehicle dy-
namics. In order to apply conventional control and observer
techniques on the testbed, a linear model for the vehicle
dynamics in TORCS is required. Since we’re interested in
stability control, we use the 3-DOF model for lateral dynam-
ics in Eq. 11 as a starting point and perform a structured
system identification to estimate the free parameters (βi) for
the vehicle dynamics in TORCS. Fig. 12 shows the measured
outputs from the testbed and those from the identified model
for the same set of inputs (also in the figure). Eq. 12 shows
the identified model (for a sampling time of 0.002s). Note
that the outputs from TORCS are only the lateral velocity
ẏ, yaw rate ψ̇ and the roll angle φ. To obtain the remaining
output, the roll rate φ̇[k], we take the difference of φ[k] and
φ[k − 1]. Fig. 11 shows a Networked Embedded Control
Systems (NECS) view of the setup for the case study.


x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)

 =


0.98893 0.0074715 0 −0.043095
−0.20552 0.95266 0 −0.089656
0.0047131 −0.00083028 0.71306 −0.071009

0 0 −0.56114 0.8176



x1(k)
x2(k)
x3(k)
x4(k)



+


−0.014049 0 0
0.068138 2.547e − 7 −2.5052e − 7

0.00088488 0 0
0 0 0


 δFl
Fr

 (12a)


ẏ[k]

ψ̇[k]

φ̇[k]
φ[k]

 =


−0.10859 0 0 0

0 1.231 0 0
0 0 −0.041089 0
0 0 0 0.5834



x1(k)
x2(k)
x3(k)
x4(k)

 (12b)

Similar to the approach in section IV, the stability con-
troller for the 3-DOF model is an infinite-horizon LQR.
The inputs to the plant from the controller follow the state-
feedback scheme:

[
Fl(k)
Fr(k)

]
= −

[
−1.5335 2.3662 7.2193 −3.7494
1.5081 −2.3269 −7.0995 3.6872

]x1(k)x2(k)
x3(k)
x4(k)


(13)

Note here, that the states can be obtained from the measure-
ments simply by dividing the measurements by the diagonal
elements of the C matrix of the identified model in Eq. 12.

x =
[

ẏ(k)
−0.10859

ψ̇(k)
1.231

φ̇
0.041089(k)

φ(k)
0.5834

]′
(14)

To simplify the notations, the state vector is x =[
x1 x2 x3 x4

]′
, input vector is u =

[
δ Fl Fr

]′
and

the output vector is y =
[
y1 y2 y3 y4

]′
where y1, y2,

y3 and y4 are ẏ, ψ̇, φ̇ and φ respectively.

C. Detecting and Isolating sensor faults

The scheme for detecting sensor faults for the ESP
implemented on the AutoPlug testbed follows the same steps
as in section IV. The Kalman filter driven by the lateral
velocity sensor is:

x̂
1
(k + 1|k) =


0.9871 0.007472 0 −0.0431
−0.1929 0.9527 0 −0.08966
0.004697 −0.0008303 0.7131 −0.07101

−2.747e − 005 0 −0.5611 0.8176

 x̂1(k|k − 1)

+


−0.01405 0 0 −0.01687
0.06814 2.547e − 007 −2.505e − 007 0.1158

0.0008849 0 0 −0.0001495
0 0 0 −0.0002529

 [u(k)y1

]
(15a)

[
ŷ11(k|k)
x̂1(k|k)

]
=


−0.1084 0 0 0
0.998 0 0 0

0.01278 1 0 0
1.781e − 006 0 1 0
−3.237e − 005 0 0 1

 x̂1(k|k − 1)

+


0 0 0 0.00195
0 0 0 −0.01796
0 0 0 0.1177
0 0 0 1.64e − 005
0 0 0 −0.0002981


[
u(k)
y1(k)

]
(15b)

The Kalman Filters for the two other measured outputs
(yaw rate and roll angle) can be formulated as in section IV-
C. The output estimates needed for generating the residuals
as in Eq. 9 can be obtained by multiplying the state estimates
by the C matrix of Eq. 12. The residual functions for the
three sensors are given in Eq. 16, where the notations have
the same meaning as in section IV-C.

r1 = |(y2 − y12)(y4 − y14)| (16a)

r2 = |(y1 − y21)(y4 − y24)| (16b)

r4 = |(y1 − y41)(y2 − y42)| (16c)

Fig. 12. Outputs from TORCS vs outputs from identified model for the same inputs. These results from the open loop system identification show a good
match between TORCS and the identified model.

D. Dynamic Thresholding of residuals
As is evident from Eq. 16 and Fig. 8, the residual for

a sensor increases in value even if there is a fault in one
of the other sensors. It’s also seen [17] that the modal
content of the residuals resembles that of the inputs. This
property is also seen from Fig. 7 where the steering angle
input is a sinusoid. In [17] this analysis was done for a
system with plant disturbances, or imperfect knowledge of
the system model. For the current case study, this holds as
the identified model is not perfect. The simple but innovative
thresholding scheme outlined in [17] is difficult to apply
to a system with measurement noise, in addition to plant
disturbances, as is generaly the case in a real world system,
and also in our setup. The thresholding function outlined in
this section is developed in order to allow for detection and
isolation of the fault to a particular sensor. Another advantage
with the scheme outlined here, with respect to a Networked
Architecture (Fig. 11) is that the decision of isolating a fault
to a particular sensor does not need shared knowledge of
other residual functions or observer estimates [27], and is
also applicable to the case of multiple simulataneous faults
while. Also, the scheme is computationally simple which
allows it to be implemented on off-the-shelif embedded
systems. For a system with m outputs and p inputs, the
proposed threshold function for the ith sensor is:
Ti(k) = |F(α,β, Ti,Ul,Yj , C,N)| (17a)
Ul = (ul(k), ul(k − 1), ..., ul(k −N)), ∀l = 1, ..., p, l 6= i

(17b)
Yj = (yj(k), yj(k − 1), ..., yj(k −N)), ∀j = 1, ...,m, j 6= i

(17c)

Here, α ∈ RN−1, β ∈ RN and C ∈ R. Fig. 8 suggests
that the residual of the non-faulty sensor follows a pattern
similar to the measurement from the faulty sensor. Eq. 9
shows that the residual is indeed dependent on the measure-
ments from other sensors. Combining this with the fact that

the residual also shares similarities with the uncontrolled
input (the steering angle) of the example in Section IV,
the threshold is made a function of both the input and the
measurements from other sensors. Based on the results seen
in the bicycle model example, and also from the AutoPlug
testbed, the threshold was also made a function of some
previous measurements Yj and inputs Ul, and also of some
previous threshold values Ti. This intuition leads to the
general formulation for the threshold function in Eq. 17.

The function F that we chose in this case study is an
Autoregressive model of order N , and the threshold function
is of the form:

Ti(k) = |
l=N∑
l=0

βl[u(k−l)+
j=m∏

j=1,j 6=i

yj(k−l)]−[
l=N∑
l=1

αlTi(k−l)]+C|

(18)

Appropriately choosing C, N , α and β results in a
decision function where a fault in sensor i is reported if
ri ≥ Ti for some k periods of time or occurs with a high
frequency in some time window. Here, k is another decision
variable to be chosen, one way to do which can be to
have a reasonably large value of k if the system is sampled
fast or a small value if the sampling rate is low. Note, the
threshold function is meant to detect and isolate faults which
manifest themselves for more than just a few instants, and
aren’t just outliers. So far the choice of C, N , α and β has
been done experimentally and has yielded reasonably good
results. The same parameters, once chosen, for one sensor
have worked well across different types of faults (stuck at,
noise, calibration, delay, jitter), and across a wide range of
input and measurement values. Some specific results of this
are provided in Section VI-E.

0 500 1000 1500 2000 2500
−0.1

0

0.1

0.2

0.3

Time Periods

La
te

ra
l V

el
oc

ity
0 500 1000 1500 2000 2500

−10

0

10

20

Time Periods

Y
aw

 R
at

e

0 500 1000 1500 2000 2500
−0.2

0

0.2

0.4

0.6

Time Periods

R
ol

l A
ng

le

0 500 1000 1500 2000 2500
−0.04

−0.02

0

0.02

0.04

Time Periods

R
ol

l R
at

e
(d

iff
.)

Fig. 13. System outputs (closed loop)

0 500 1000 1500 2000 2500
0

1

2
x 10

5

Time Periods

F
l

0 500 1000 1500 2000 2500
0

2

4
x 10

5

Time Periods

F
r

0 500 1000 1500 2000 2500
−10

0

10

Time Periods

S
te

e
r

A
n
g
le

Fig. 14. Inputs to the system. Note, the brake forces are regulated by a
feedback controller, while the steering input is from the vehicle driver.

E. Results from the Testbed

The no fault system measurements and control inputs are
shown in Fig. 13 and Fig. 14 respectively, note here that
the roll rate is not measured, but calculated by simply the
difference of the roll angle at time period k and k − 1. The
Kalman Filter estimates (from the lateral velocity sensor) for
the three measured outputs are shown in Fig. 15. Note, due
to limitations of space, only results from the diagnostics of
the the lateral velocity sensor are presented here.

1) Avoiding False alarms: To test the robustness of the
threshold function to faults in another sensor, we introduce
a calibration fault in the roll angle sensor. Fig. 16 shows the
residual and threshold in this case for the Lateral Velocity
Sensor, which is not faulty. The residual increases due to
fault in the roll angle sensor, and as expected, the threshold
also increases to accomodate that and not incorrectly isolate
the fault to the Lateral Velocity Sensor. The false alarms
when the residual does cross the threshold can be ignored by
correctly choosing an appropriate value for the time window
in which the fault should persist.

0 1000 2000 3000
−0.2

0

0.2

Time Periods

La
t V

el
 (

es
t.)

0 1000 2000 3000
−10

0

10

20

Time Periods

Y
aw

 R
t (

es
t.)

0 1000 2000 3000
−0.5

0

0.5

Time Periods

R
ol

l A
ng

le
 (

es
t.)

0 1000 2000 3000
0

0.5

1

Time Periods

R
es

id
ua

l

Fig. 15. Estimates from the Kalman Filter driven by sensor 1

Fig. 16. Residual and threshold for lateral velocity sensor, with fault in
roll angle sensor. Note how the threshold for sensor 1 increases to adapt to
the increase in the residual due to fault in sensor 4

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

Time Instants
R

es
id

ua
l a

nd
 th

re
sh

ol
d

fo
r

se
ns

or
 1

Residual
Threshold

Fig. 17. Residual and threshold for jittery Lateral Velocity sensor

2) Real-Time faults: We introduce jitter in sensor 1, with
the time varying delay (Gaussian distributed) having a mean
of 0.004s, variance of .02s and being bound between 0s
and 0.2s. These are reasonable delays, considering that the
sampling rate of the controller is 0.002s. Fig. 17 shows the
residual and threshold for sensor 1 in this case, where it is
evident that the fault is indeed in sensor 1.

3) System faults: To experimentally test out the scheme,
we introduced gain and offset (calibration) faults in the
sensors needed for the stability control of the vehicle.
Introducing a small gain and bias fault in the lateral velocity
sensor, as expected, blows up the residual (but not the
threshold), which results in the fault being detected (Fig.
18).

0 500 1000 1500 2000 2500
0

2

4

6

8

Time Instants

R
es

id
ua

l a
nd

 th
re

sh
ol

d
fo

r
se

ns
or

 1

residual
threshold

Fig. 18. Residual and threshold for lateral velocity sensor (calibration
fault)

F. Opportunistic Diagnostics

The opportunistic diagnostics scheme was evaluated with
the Nano-RK RTOS running on the ECUs. Of particular
interest to us is the brakes ECU, which is responsible for
the LQR stability controller, the ABS and traction control
and also the diagnostics for the lateral velocity sensor. The
control tasks are Rate Monotonic scheduled, which implies a
fixed priority for all tasks, with the stability controller having
the highest priority. The execution of the diagnostics task
is made dependent on the slack available. Fig. 19 shows
the time periods elapsed between two successive instants
of the Kalman Filter based diagnostics being executed.
Fig. 20 shows the residual for the lateral velocity sensor
with opportunistic diagnostics, and also with the periodic
diagnostics. It is seen that the same threshold function works
with the opportunistic diagnostics as well.

0 500 1000 1500 2000 2500
0

5

10

15

20

25

Time Instants

P
er

io
ds

 b
et

w
ee

n
su

cc
es

si
ve

 e
xe

cu
tio

ns

Fig. 19. Time periods elapsed between successive executions of the
opportunistic diagnostics. The red line at y=1 shows the case of periodic
execution.

0 500 1000 1500 2000 2500
0

1

2

3

4

Time Periods

R
es

id
ua

ls
 a

nd
 T

hr
es

ho
ld

Residual (periodic)
 Threshold
Residual (opportunistic)

Fig. 20. Residuals and threshold for lateral velocity sensor (no fault)

Introducing jitter (with the same characterstics as in
Section VI-E.2) in the lateral velocity sensor, Fig. 21 shows
the residual and threshold with the opportunistic diagnostics.
It can be seen that the fault is detected and isolated to the
lateral velocity sensor.

VII. CONCLUSION

In the paper, we introduce a framework for merging
onboard and remote diagnostics for Automotive Control
Systems which can potentially make vehicle recalls a less
reactive process. We also show a diagnostics scheme for a
feedback control system and evaluate it on the AutoPlug
testbed with reasonably good results. The overall scheme
is relatively new, and potentially risky, but it can initially
target non-critical control system, e.g. the vehicle body
control systems. One particular example which shows that

0 500 1000 1500 2000 2500
0

2

4

6

8

Time Instants

R
es

id
ua

ls
 a

nd
 T

hr
es

ho
ld

 Threshold
Residual (opportunistic)

Fig. 21. Residuals and threshold for lateral velocity sensor (with jitter in
sensor)

this scheme could be useful is the 936,000 vehicles that
Honda had to recall due to issues with the power window and
the automatic transmission [28]. Other possible issues may
arise with the safety of the Firware-Over-The-Air (FOTA)
approach for safety critical ECUs, where parties with ma-
licious intent may hack into the network and compromise
the safety of the vehicle by reprogramming the ECUs. So
far, this has not been a part of our study, but Koscher et
al. [29] have extensively studied the security of modern
automobiles. Also, security of Cyber Physical Systems (CPS)
[30], [31] is of growing interest. A logical extension of our
work is to focus on CPS security for networked automotive
control systems, a classification of possible attacks to look
at is presented in [32]. A more specific extension is to
formulate a method to tune the design parameters of the
threshold function in diagnostics scheme, which currently
are experimentally chosen.

REFERENCES

[1] NHTSA Campaign ID number:09V218000.
HTTP://WWW.SAFERCAR.GOV.

[2] Jaguar Software Issue May Cause Cruise Control to Stay On.
http://spectrum.ieee.org/riskfactor/green-tech/advanced-cars/jaguar-
software-issue-may-cause-cruise-control-to-stay-on.

[3] Honda recalls 2.5 million vehicles on software issue.
http://www.reuters.com/article/2011/08/05/us-honda-recall-
idUSTRE77432120110805.

[4] AUTOSAR Homepage. http://www.autosar.org/.
[5] J. Schaufalle and T. Zurawka. Automotive Software Engineering. SAE

International, 2005.
[6] On-board Diagnostic Codes. http://www.obd-codes.com.
[7] Hephaestus Books. Articles on Vehicle Telematics. 2011.
[8] M. Tancreti and M. S. Hossain and S. Bagchi and V. Raghunathan.

AVEKSHA: A Hardware-Software Approach for Non-intrusive Trac-
ing and Profiling of Wireless Embedded Systems. Proceedings of the
9th ACM Conference on Embedded Networked Sensor Systems, 2011.

[9] U. Drolia and Z. Wang and Y. Pant and R. Mangharam. AutoPlug:
An Automotive Test-bed for Electronic Controller Unit Testing and
Verification. Proceedings of the 14th International IEEE Conference
on Intelligent Transportation Systems, 2011.

[10] K. Pattipati, C. Sankavaram, B. Wang, P. Zhang, Y. Zhang, M. Howell,
and M. Salman. Fault Diagnosis and Prognosis in a Network of
Embedded Systems in Automotive Vehicles. Position Paper for NSF-
NIST-USCAR Workshop on Cyber-Physical Systems, 2011.

[11] P. Ioannou Y. Huo and M. Mirmirani. Fault-Tolerant Control and Re-
configuration for High Performance Aircraft: Review. CATT Technical
Report, 2001.

[12] X. Liu, K. Lee, Q. Wang, and L. Sha. ORTEGA: An Efficient and
Flexible Software Fault Tolerance Architecture for Real-Time Control
Systems. IEEE Transactions on Industrial Informatics, 2008.

[13] E. Eyesi and J. Bai and D. Riley and J. Weng and Y. Xue and X.
Koutsoukos and J. Sztipanovits. NCSWT: an integrated modeling and
simulation tool for networked control systems. Proceedings of the
15th ACM international conference on Hybrid Systems: Computation
and Control, 2012.

[14] Keep Connected Cars Up to Date with FOTA (Firmware Over-the-Air)
Technology. http://www.qnx.com/news/webseminars/fota.html.

[15] T. Flach and N. Mishra and L. Pedrosa and C. Riesz and R. Govindan.
CarMA: Towards Personalized Automotive Tuning. Proceedings of the
9th ACM Conference on Embedded Networked Sensor Systems, 2011.

[16] M. Blanke, C. W. Frei, F. Kraus, R. J. Patton, and M. Staroswiecki.
What is Fault Tolerant Control.

[17] R. Patton and P. Frank and R. Clark. Fault Diagnosis in Dynamic
Systems. Prentice Hall, 1989.

[18] D.C. Fosth R.N. Clark and V.M. Walton. Detecting Instrument
Malfunctions in Control Systems. IEEE Transaction on Aerospace
and Electronic Systems, 1975.

[19] G. Welch and G. Bishop. An Introduction to the Kalman Filter. 2006.
[20] T. Pilutti, G. Ullsoy, and D. Hrovat. Vehicle Steering Intervention

Through Differential Braking. Proceedings of the American Control
Conference, 1995.

[21] nano-RK Sensor RTOS. http://nanork.org.
[22] J. W. S. Liu. Real-Time Systems. Pearson Education, 2000.
[23] B. Sinopoli and L. Schenato and M. Franceschetti and K. Poolla and

M. I. Jordan and S. S. Sastry. Kalman Filtering With Intermittent
Observations. IEEE Transactions on Automatic Controls, 49(9):1453–
1464, 2004.

[24] AutoPlug: Open Architecture for Plug-n-Play Services.
http://www.autoplug.org/.

[25] H. E. Tseng, B. Ashrafi, D. Madau, T. A. Brown, and D. Recker. The
Development of Vehicle Stability Control at Ford. IEEE Transactions
on Mechatronics, 4(3):223–234, 1999.

[26] CarSim Vehicle Simulator. http://www.carsim.com/.
[27] S. DSilva, P. Sundaram, and J.G. DAmbrosio. Co-Simulation Platform

for Diagnostic Development of a Controlled Chassis System. SAE
World Conference, 2006.

[28] Honda Recalls 936000 More Vehicles for Electrical and Software
Fixes. http://spectrum.ieee.org/riskfactor/green-tech/advanced-
cars/honda-recalls-936000-more-vehicles-for-electrical-and-software-
fixes.

[29] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, and S. Savage.
Experimental Security Analysis of a Modern Automobile. IEEE
Symposium on Security and Privacy, 2010.

[30] A. A. Cardenas, S. Amin, and S. Sastry. Secure Control: Towards
Survivable Cyber-Physical Systems. 28th International Conference
on Distributed Computing Systems Workshops, 2008.

[31] L. Parolini and B. Sinopoli and B. Krogh and Z. Wang . A Cyber-
Physical-System Approach to Data Center Modeling and Control for
Energy Efficiency. Proceedings of the IEEE, special issue on Cyber-
Physical Systems, 2011.

[32] A. Teixeira and D. Huertas and H. Sandberg and K. H. Johansson.
Cyber-Security and Safety Analysis of Cyber-Physical Systems. 2012.

	Tier One Cover Page.pdf
	42 - TSET Sample Title and Inside Front Cover Pages.pdf

	261 - Remote DIagnostics -AUTOPLUG_ An Architecture for Remote Electronic Controller Unit D.pdf
	University of Pennsylvania
	ScholarlyCommons
	2012

	AUTOPLUG: An Architecture for Remote Electronic Controller Unit Diagnostics in Automotive Systems
	Yash Vardhan Pant
	Miroslav Pajic
	Rahul Mangharam
	Recommended Citation

	AUTOPLUG: An Architecture for Remote Electronic Controller Unit Diagnostics in Automotive Systems
	Abstract
	Keywords
	Disciplines

	tmp.1338922621.pdf.ZcsHf

