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1. Project Description

The Intelligent Mobility Meter (IMM) is a portable data collection and analysis 
platform which will be able to collect fine-grained statistics on pedestrian, cyclist and 
vehicular traffic. The objective of the IMM project is to provide accurate and actionable 
data to government officials and transit advocates. The meter is an expansion of the UTC T-
SET funded project “Automatic Counting of Pedestrians and Cyclists”, which researched, 
developed and deployed a robust pedestrian and bike counting system. The deployed 
system was employed - in collaboration with the City of Pittsburgh - to collect usage data 
on Pittsburgh’s bike lanes. However current system capabilities are limited to counting 
pedestrians and bikes. To create a true mobility meter, this project expanded the analysis 
capabilities to counting motor vehicles. 

2. Introduction

Usage statistics have the capability to inform policy makers and transportation 
advocates on the best design for the infrastructure of the future. They also have the potential 
to help the current traffic engineers identify and resolve infrastructure problems. However, 
it is not feasible to place data collection devices everywhere. The Intelligent Mobility Meter 
(IMM) is a portable device that has the capability to collect fine-grained statistics on the 
behavior of all road participants in any key area. 

The IMM grew from a need to obtain statistics on usage of bike lanes, however it has 
now grown beyond that niche need to collect data for all road participants. Statistics about 
pedestrians, motor and non-motor vehicles provide important information for government 
officials to build safe infrastructures for walking, biking and driving. In addition to pedestrian 
and bicyclist data, having information about the number of motor vehicles can give key 
insights of the trade-offs when road space is re-assigned from motor to bike usage. 

3. Objectives

For purposes of obtaining the counts of objects moving in a given direction at a 
location, the problem statement is broken down into three different technical objectives: 

• Generate consistent detections of cars, pedestrians and bicycles in each frame
of the video as they move through the field of view of the camera. 

• Once detected, accurately track each of these objects - cars, bikes and
pedestrians by assigning a unique ID for each object as soon as the objects 
appear in the field of view of the camera. 

• Use all the tracks obtained by the detected objects to determine the total
counts of the objects passing through a location in different directions. 



4. Previously Developed System 

On the previous UTC T-SET funded project “Automatic Counting of Pedestrians and 
Cyclists”, we developed robust vision-based pedestrian and cyclist counting system (Figure 
1). This system consists of data collection hardware prototype system and an accurate 
computer vision based counting system. The presented method can work under different 
lighting and weather conditions. Approximately 50 hours of data was collected in different 
locations around CMU campus using the prototype. In order to label the pedestrians and 
the bikes in the recorded data, a web-based object labeling software was implemented. 
Unlike the existing object labeling tools in the images, our developed labeling tool includes 
novel properties to reduce the labeling time by incorporating spatial and geometric 
constraints between the frames of the videos. We labeled 10 hours of our recorded dataset 
(541 pedestrians and 111 cyclists) using this tool to train and test our counting method.  

  
FIGURE 1. Previously developed hardware prototype. 

4.1. Detection 

The previously developed system used the Faster R-CNN algorithm [1], which is one 
of the popular object detection algorithms at present. Its popularity stems from being one of 
the first detectors to get accurate detections while processing ~ 7 - 10 frames per second 
(fps), a great achievement towards making real-time object detection. Despite its popularity, 
the Faster R-CNN has quite a complex architecture involving many independent stages in 
its detection pipeline (see paper for details). The complexity in its architecture makes it a 
challenge to train the network as it can become difficult to isolate exactly at which stage 
and why the training process fails when setting up the training of the network. 

The Faster R-CNN implementation we used was pre-trained on the VOC dataset 
(2007 and 2012) [2], which spans images of 20 different classes including bikes, cars, 
pedestrians, which we aim to detect. Though performing reasonably on the video data we 
obtained, inability to train the network on custom data was putting the network at a 



disadvantage. Although, we were focused on detecting bikes, pedestrians and cars (all of 
which are included in the classes of the VOC dataset), our camera angle was different 
(slightly aerial), giving a different view of the pedestrian, bikes and cars, than the "direct" 
viewing angle of the images present in the VOC dataset, which the Faster R-CNN was pre-
trained on. As we further refine our algorithms, it became apparent that to improve detection 
accuracy and get consistent detections on our videos, we would need to train the network 
on our own images created from the videos we were provided. Due to the training 
limitations mentioned above, a decision was made to move to a novel and more recent 
detection methodology. 

4.2 Tracking 

The tracker used on the project was adapted from [3]. This tracker uses many 
different metrics like appearance similarity between objects, distance between bounding 
boxes of consecutive detections etc. to track a detected object as it moves across the field 
of view of the camera (consecutive frames). It is robust to occlusions and works as expected. 
Getting early and consistent detections for each frame would allow the tracker to assign a 
track ID to an object early and track it better as it moved “through” consecutive frames. 
With training of the detector, consistent and early detections of object can be achieved. 

4.3 Counting 

The counting strategy previously used was to estimate the start and end point of an 
object’s track and then fit the track using a polynomial curve fitting strategy. This fitted 
(extended) track allowed the algorithm to determine the start and end regions traversed by 
the object. The counting regions were drawn on the video as “masks” based on the different 
directions available to be traversed in a location (see Figure 2). The extended version of the 
track allowed us to get an estimate of the regions traversed by an object even in cases where 
the tracks were too short or when the tracks were not picked up early enough to “belong” 
to a start region. With this information we would update the total counts of the number of 
objects that traversed a region. 

 

FIGURE 2. Detections and Masks (Note Car 121 – light green track). 



Figure 2 highlights the masks drawn representing different regions (1, 2, 3, 4) in a 
location. Car 121 traversed regions 2 to 4 so the count of 2 to 4 was incremented from 25 
to 26 (Visible in the count matrix adjacent to the video going up from 25 to 26 for 2 to 4). 
In Figure 2, car 121 (121 is the unique ID assigned by the tracker to the car) is detected 
early enough to “start” from region 2. But often, the detector detects objects a few frames 
later than required. This can make the “start” region of the track uncertain because the start 
point of the object becomes ambiguous (i.e. if car 121’s start point was outside 2, we would 
not be able to determine its start point). To solve this problem, the polynomial curve fitting 
strategy was used to predict an extended track based on the shape of the entire track. Figure 
3 shows the polynomial curve fitting strategy applied to a car as it exits the field of view. 

 

FIGURE 3. Polynomial curve fit on the tracks of 121 (Red extensions at start and end) 

For tracks having a simple curve, the polynomial curve fitting strategy works well. 
However, for tracks representing objects traversing a complex curved path, the polynomial 
curve fitting strategy often miscalculated the fit and resulted in count increments for wrong 
regions. One example of this is shown in Figure 4, in which car 156 travels from region 3 
to region 4 (as seen by its track) whereas the polynomial curve fit however wrongly counts 
it as travelling from region 1 to region 4 (see the red extensions wrongly applied to the track 
in Figure 4).  

 

FIGURE 4. Limitations of the polynomial curve fitting strategy. 



5. Novel IMM System 

The novel IMM system was developed specifically to address the limitations of the 
detector and the counting technique used in the previous implementation. Specifically, the 
Faster R-CNN algorithm was replaced with a newer detection algorithm, SSD, and a new 
counting algorithm was implemented.  

5.1 Detection 

The Faster R-CNN algorithm was replaced with SSD: Single Shot MultiBox 
Detector [4], which proposes a much simpler network architecture, and avoids the 
complexity of having multiple different parts in the network architecture. The entire image 
is input to the network, and the localization and detection of the objects happens 
simultaneously in a single pass (hence the name “Single Shot”). In other words, both 
localization and detections of objects happen in a single forward pass through the network. 
The algorithm outputs the detection class and bounding box coordinates of all the detected 
objects in a frame. 

In Faster R-CNN the localization and detection happen separately at different stages 
making it more complex that SSD. SSD gives comparable performance (better in some cases) 
to the Faster R-CNN while taking away the complexity of the Faster R-CNN (See [4]). The 
simple architecture of SSD addressed the training limitation that we faced earlier, and we 
were able to train the detector on our custom data easily. An example of the result 
comparing the counts output by the two algorithms – SSD and Faster R-CNN are included 
below for different regions in a location. The true counts (counted manually) are also 
included to compare the performance of the two algorithms to the ground truth. 

In Figure 5 below: 

• TOTALS represent the true counts (counted manually). 
• FRCNN represents the Faster R-CNN network trained on just the VOC dataset 

(weights were provided in the implementation used). 
• SSD represents the SSD network trained on just the VOC dataset (weights 

were provided in the implementation used). 
• SSD_DATA represents the performance of SSD network trained on VOC 

dataset and on our custom data of around 400 images. 

 



 

FIGURE 5. Performance comparison of Faster R-CNN and SSD on our data. 

 

As is evident from the graphs in Figure 5, training the SSD network on our data helped 
the SSD perform better (compared to when untrained on our data) and provided comparable 
performance to the Faster R-CNN. With more training, the performance of SSD could 
significantly be improved.  

5.2 Counting 

The new counting technique utilizes the shape of the tracks in a different way 
compared to the previous polynomial curve fitting technique to determine the object counts. 
The details of this technique are discussed below: 

1. A few representative tracks are chosen and used as the standard to represent 
traversal of an object from point A to point B. For example, in the image below, 
the track of car 156 is one of the longest detected tracks for cars moving from 
region 3 to region 4, so it is one of the tracks that are used to represent tracks 
moving from 3 to 4. 



 

FIGURE 6. “Ideal” track for region 3 to 4. 

2. Three to five such representative tracks are selected to represent the traversal of 
an object for each combination of different start-end regions. Each point in the 
track has a (x, y) value. 

3. The tracks for all other objects, named candidate tracks, should now be classified 
into one of the different start-end combinations. This is done by comparing each 
track to one of the representative tracks. 

4. This comparison is done by using a binary occupancy matrix where each entry 
corresponds to a portion of the image. On this matrix, a 1 value represents an 
image area that was traversed during the track, whereas a 0 value represents an 
area that was not traversed. 

5. The binary occupancy matrix of each candidate track is matched to the 
representative track that has the closest occupancy matrix (as measured by the 
number of presence entries, i.e. 1s, at the same location in both matrices.in the 
binary occupancy matrix which lowest number of different entries in the binary 
matrix). 

Using this new counting technique, we solve the problem faced with the previously 
used polynomial curve fitting technique, which wasn't very accurate for tracks having 
complex curves. With the new technique, the complexity of the curve of the track does not 
affect our ability to predict which start-end region a given track belongs to. 



6. Counted Data 

As part of this project, a large body of data was counted for the Virginia Department 
of Transportation (VDOT). Using the methods described above, the team counted motor 
vehicle, cyclist and pedestrian traffic for approximately 140 hours of video collected by the 
Department. To ensure data accuracy the videos where counted automatically and then 
verified manually using spot checks. This large-scale effort contributes to a project by the 
VDOT to assess the effects of road diets on the traffic patterns. (VDOT point of contact: Peter 
Ohlms, AICP). 

7. Conclusions and Future Work 

This project allowed us to significantly expand the technical capabilities of our 
previous counting projects and create a true mobility meter than can identify, track and 
count all road users. The large-scale data counting conducted for the Virginia Department 
of Transportation demonstrated that the IMM is mature enough to tackle difficult real-world 
counting projects.  
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