
TSET-UTC 212 Final report: Visual Navigation with Android
Tablets

Kostas Daniilidis
University of Pennsyvlania

We implemented our monocular visual inertial odometry for several mobile platforms and made it
available in https://github.com/daniilidis-group/msckf_mono . Our implementa-
tion was tested in a 3rd party paper (A Benchmark Comparison of Monocular Visual-Inertial Odometry
Algorithms for Flying Robots. Demerico and Scaramuzza, ICRA 2017) and performed best regarding
platform universality.

We described in the following the filter and outlier rejection implemented.

1. State Estimation

Algorithm 1 State Estimation
Input

sensor state si, features {f}
IMU values I for t ∈ [Ti, Ti + dti]

Filter
Propagate the sensor state mean (1) and covariance (2)
Augment a new camera state
for each filter track to be marginalized do

Remove inconsistent observations
Triangulate the feature using GN Optimization
Compute the uncorrelated residuals r(j)0 (3)

Stack all of the r
(j)
0

Perform QR decomposition to get the final residual (4)
Update the state and state covariance

To estimate the 3D pose of the camera over time, we employ an Extended Kalman Filter with a
structureless vision model, as first developed in [4]. For compactness, we do not expand on the fine
details of the filter, and instead refer interested readers to [3] and [4]. At time Ti, the filter tracks the
current sensor state (??) as well as all past camera poses that observed a feature that is currently being
tracked. The full state, then, is:

Si := S(Ti) =
[
sTi q̄(Ti−n)T p(Ti−n)T . . . q̄(Ti)

T p(Ti)
T
]T

where n is the length of the oldest tracked feature.

1

1.1. Prediction Step

Between update steps, the prediction for the sensor state is propagated using the IMU measurements
that fall in between the update steps. Note that, due to the high temporal resolution of the event based
camera, there may be multiple update steps in between each IMU measurement. In that case, we use the
last IMU measurement to perform the propagation.

Given linear acceleration ak and angular velocity ωk measurements, the sensor state is propagated
using 5th order Runge-Kutta integration:

˙̄q(τk) =
1

2
Ω(ωk − b̂g(τk))q̄(τk)

ṗ(τk) = v(τk)

v̇(τk) = R(q̄(τk))T (ak − b̂a(τk)) + g

ḃa(τk) = 0

ḃg(τk) = 0
(1)

To perform the covariance propagation, we adopt the discrete time model presented in [2]. The IMU
error covariance is propagated with the discrete-time state transition matrix Φk and the discrete-time
system noise covariance Qk:

Pk+1|k =ΦkPk|kΦT
k +Qk (2)

Φk = exp(F · (τk+1 − τk))

Qk =ΦkGQkΦk · (τk+1 − τk)

where the linearization of the sensor error state s̃ is:
˙̃s =F s̃+Gns

1.2. Update Step

When an update from the tracker arrives, we augment the state with a new camera pose at the current
time, and update the covariance using the Jacobian that maps the IMU state to the camera state.

We then process any features that need to be marginalized. For any such feature fj , its past obser-
vations {fj(Ti)} and the camera poses at times {Ti} for each observation can be used to estimate the
3D position of the feature F̂j using Gauss Newton optimization, assuming the camera poses are known
[1]. The projection of this estimate into a given camera pose Ci :=

[
q̄(Ti)

T p(Ti)
T
]T can then be com-

puted. The residual, r(j), computed for each feature at each camera pose is then simply the difference
between the observed feature position and the estimated position. We then left multiply r(j) by the left
null space, A, of the feature Jacobian, HF , as in [4], to eliminate the feature position up to a first order
approximation:

r
(j)
0 =AT r(j)

≈ATH
(j)
S S̃ + ATH

(j)
F F̃j + ATn(j) := H

(j)
0 S̃ + n

(j)
0 (3)

The elimination procedure is performed for all features, and the remaining uncorrelated residuals, r(j)0 are
stacked to obtain the final residual r0. As in [4], we perform one final step to reduce the dimensionality
of the above residual. Taking the QR decomposition of the matrix H0, we can eliminate a large part of
the residual:

rn =QT
1 r0 (4)

H0 =
[
Q1 Q2

] [TH
0

]

The EKF update step is then ∆S = Krn.
When a feature track is to be marginalized, we apply a second RANSAC step to find the largest set of

inliers that project to the same point in space, based on reprojection error. This removes moving objects
and other erroneous measurements from the track.

You can see below the performance of our system (denoted msckf) compared with other competing
algorithms over several mobile platforms as presented in Demerico and Scaramuzza.

References
[1] L. Clement, V. Peretroukhin, J. Lambert, and J. Kelly. The battle for filter supremacy: A comparative study

of the multi-state constraint kalman filter and the sliding window filter. In Computer and Robot Vision (CRV),
2015 12th Conference on, pages 23–30, 2015. 2

[2] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis. Observability-constrained vision-aided
inertial navigation. University of Minnesota, Dept. of Comp. Sci. & Eng., MARS Lab, Tech. Rep, 1, 2012. 2

[3] A. I. Mourikis and S. I. Roumeliotis. A multi-state constraint kalman filter for vision-aided inertial navigation.
2006. 1

[4] A. I. Mourikis and S. I. Roumeliotis. A multi-state constraint kalman filter for vision-aided inertial navigation.
Technical report, 2007. 1, 2

