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ABSTRACT1
Transportation system is becoming more complex and multi-modal thanks to novel transportation2
modes nowadays. A dispensable component of managing such complex multi-modal transporta-3
tion system is to estimate the dynamic multi-modal origin-destination (OD) demand given sparse4
data of observed vehicle and passenger flow. Previous work on the dynamic OD demand estimation5
(DODE) focused on the single mode and did not consider the presence of multiple modes. This6
paper aims to provide a data-driven framework for multi-modal dynamic origin-destination estima-7
tion (MMDODE) in large-scale networks. Three modes are considered: driving, bus transit, and8
mobility service with bus transit. The MMDODE problem is first formulated based on a compu-9
tational graph, in which the spatio-temporal demand and all intermediate features are represented10
with tensors. Then, a forward-backward algorithm is developed to efficiently solve the MMDODE11
problem on the computational graph. The proposed framework is tested on a small network as12
well as a real-world large-scale network. The experiment results indicate that this framework can13
yield satisfactory dynamic OD demand estimation results in terms of the car and truck flow. It14
also shows that accurately estimating the bus transit data can be challenging due to sparse bus and15
passenger flows and requires further research efforts.16

17
Keywords: O-D estimation, Machine learning, Dynamic networks, Multi-modal transportation18
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INTRODUCTION1
The rapid adoption of emerging technologies in vehicles, communications, and sensing is revo-2
lutionizing the way people travel. While people continue to choose the traditional transportation3
modes (e.g., driving and taking public transit) to complete their daily trips, more new transporta-4
tion modes are becoming competing alternative traveling options due to their flexibility and conve-5
nience. For example, novel mobility services, including micro-transit, car sharing service, fix- or6
flex-route shared mobility services, have been proposed and experimented in some U.S. cities in7
order to improve the mobility in low-density residential areas (1). The coexistence of such diversi-8
fied transportation modes results in a very complex multi-modal transportation system. Although9
this complex system may enable innovative ways to combat traffic congestion and enhance travel10
reliability, it also presents a big challenge for transportation practitioners and researchers: how11
to effectively estimate and manage the vehicle and passenger flows in this multi-modal system in12
order to improve the overall network operational efficiency. One of the critical components that13
help address this challenge is accurately estimating the dynamic multi-modal origin-destination14
(O-D) demand, which plays a key role in transportation planning, operation, and management. To15
the authors’ best knowledge, such studies are lacking in terms of understanding and estimating16
the dynamic OD demand for the multi-modal transportation network using sparse and partial flow17
observations. To fill this gap, this study presents a data-driven framework for multi-modal dynamic18
OD demand estimation (MMDODE) in large-scale networks. Based on the previous studies of one19
of the authors on the multi-modal dynamic user equilibrium (MMDUE) in (2) and the multi-class20
dynamic OD demand estimation (MCDODE) in (3), the MMDODE problem is formulated using a21
computational graph, and the forward-backward algorithm in (3) is further modified and extended22
to estimate the dynamic OD demand for the multi-modal transportation network efficiently and23
effectively.24

The dynamic OD demand for the multi-modal transportation network represents the time-25
varying number of travelers departing from an origin and heading to a destination. Only with ac-26
curate fine-grained demand information as input can dynamic multi-modal transportation network27
models produce realistic path/link flows, revealing the spatio-temporal mobility patterns. Such re-28
sults can help policymakers better understand the whole system from different perspectives such29
as departure/arrival patterns, mode choice of travelers, and public transit ridership. In addition,30
the dynamic OD demand is also beneficial for policymakers to evaluate the impacts of introducing31
new mode on the overall system and further devise appropriate operational strategies and pricing32
plans.33

Given the importance of the dynamic OD demand, the dynamic OD estimation (DODE) has34
attracted substantial research attention over the past decades. Traditionally, it is formulated as a bi-35
level optimization problem with the goal of finding the optimal dynamic OD demand to minimize36
the discrepancy between the observations from the real world traffic data (e.g, vehicle counts) and37
the simulation results. The upper level aims to adjust the OD demand given the observed and38
the simulated path/link flows while the lower level relies on dynamic traffic assignment (DTA)39
models to output the simulation results with the OD demand as input. A large body of literature40
on the bi-level structure is available (4–7). Researchers have also relaxed the bi-level problem to a41
single-level problem (8, 9).42

Methods to solve the DODE problem can be generally classified into two categories: gradient-43
free and gradient-based approaches. The gradient-free methods are usually meta-heuristics such as44
genetic algorithms (10–12) and simulated annealing (13). As for the gradient-based method, the45
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Simultaneous Perturbation Stochastic Approximation (SPSA) method has been widely adopted, in1
which the finite differences are used to approximate the gradients of OD demand (14–17). How-2
ever, researchers also pointed out that the aforementioned meta-heuristics and the SPSA method3
belong to general-purpose optimization algorithms and have certain drawbacks in tackling the4
DODE problem. One of the main issues is that these general-purpose algorithms can be computa-5
tional burdensome or even infeasible, especially in dealing with large-scale networks (3, 18). This6
is because they require multiple runs of expensive DTA models to generate sufficient information7
to drive the optimization. Research efforts have been devoted to the optimization algorithms with8
fewer DTA runs. For example, Lu et al. (8) derive the gradient of the link flow with respect to path9
flow using cumulative curves. Osorio (18) approximates the DTA model with a meta-model. In our10
past work, Ma et al. (3) proposes a novel computational-graph-based approach to linearly approx-11
imate the objective function with respect to the dynamic OD demand. Their method can not only12
deal with multiple vehicle classes and multi-source traffic data, but can also leverage multi-core13
CPUs or Graphics Processing Units (GPUs) to be efficiently applied to large-scale networks.14

However, it can be found that most existing literature on the DODE has mainly focused on15
the transportation network with single travel mode (e.g., driving only), neglected the presence of16
other modes, and thus yielded the estimated OD demand for single mode (e.g., dynamic OD vehicle17
demand for driving-only mode). Such single mode demand might not be sufficient to understand18
the whole transportation system since the real transportation can be multi-modal in nature. Mean-19
while, there also lacks sufficient research on the general framework for the large-scale multi-modal20
transportation modeling, which can explicitly include both passenger flow and vehicular flow and21
holistically consider heterogeneous traffic flow and various travel modes (e.g., solo-driving, car-22
pooling, ride-hailing, bus transit, railway transit, and park-and-ride) (2). Therefore, it remains a23
challenge to estimate the dynamic OD demand that matches multi-source spatio-temporal data and24
reflects the multi-modal traffic dynamics for a large-scale transportation network.25

In light of this, this paper aims to provide a general data-driven DODE framework for26
multi-modal transportation networks that incorporates the mode choice behavior of travelers and27
dynamic interactions among different modes in the network and facilitates further validation by28
emerging real-world data collected from the different components of the transportation system29
(e.g., roadway, public transit, and parking systems). Building on top of the MMDUE in (2) and30
the MCDODE in (3), this framework extends the computational graph approach to estimating31
the dynamic OD demand for multi-modal transportation networks with the advanced multi-modal32
DTA model capturing the underlying dynamics of both passenger flows and vehicular flows.33

The main contributions of this paper are summarized as follows:34
1. It proposes a general formulation for estimating dynamic OD demand for multi-modal35

transportation networks. The formulation is represented on a computational graph such36
that the MMDODE can be solved for large-scale networks with multi-source traffic data.37
The MMDODE formulation can handle different forms of traffic data, such as passenger38
and vehicle flow, speed or trip cost.39

2. It adopts a general simulation-based multi-modal DTA model to capture the flow dy-40
namics of a multi-modal transportation network. This model considers travelers’ mode41
choice and route choice behavior and explicitly models the propagation of mixed traffic42
flows including cars, trucks, buses, and passengers.43

3. It presents a novel forward-backward algorithm to solve for the MMDODE formula-44
tion on the computational graph with simulation-based multi-modal DTA models. It45
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transforms the MMDODE problem into a machine learning task which can be solved1
effectively and efficiently with gradient descent algorithms.2

4. It derives the gradient approximations of the objective function with respect to the dy-3
namic OD demand considering the effects of the coexistence of multiple modes.4

The remainder of this paper organized as follows. The modeling of multi-modal transporta-5
tion network and the multi-modal dynamic user equilibrium condition are first introduced. It then6
presents the formulation and the solution algorithm for the MMDODE problem, followed by two7
network examples to illustrate the effectiveness of the proposed framework. At last, conclusions8
are drawn.9

MULTI-MODAL DYNAMIC TRAFFIC ASSIGNMENT10
The DTA model is usually an essential part of the DODE problem. In the MMDODE, a simulation-11
based multi-modal DTA model based on the MMDUE condition proposed by (2) is adopted as the12
underlying DTA model to generate path/flow patterns given the dynamic traveler OD demand as13
input.14

Multi-modal transportation network15
Although the MMDUE framework by (2) can accommodate many different modes, this paper16
focuses on three modes: driving (DR), taking bus transit (BT), and using mobility service with bus17
transit (MSBT). For the MSBT mode, travelers will take the mobility service to arrive at middle18
points of their trips first and then take the public transit to reach their final destinations. The middle19
points are usually set as the main transit hubs. To this end, a multi-modal transportation network20
is established, which consists of an auto network, a virtual bus network, and parking facilities (as21
shown in Figure 1).22

The auto network is the roadway network used by vehicles. The reason the bus network23
is called virtual is that buses share the same roadway network with other vehicles, so the virtual24
bus network is a combination of part of the auto network and bus stops. Two types of bus stops25
exist here: physical and virtual. A physical stop (PS) is a real bus stop where bus passengers26
board/alight the buses, and multiple routes can traverse it. A virtual stop (VS), however, does not27
exist physically but is assumed here for the convenience of modeling and routing. A VS connects28
a PS to only one particular route and since a PS can be associated with multiple routes, a PS can be29
connected to multiple VSes. The links connecting a PS with a VS are called passenger boarding30
and alighting links. A virtual bus link is a link with endpoints being VSes and only corresponds to31
one particular route. A bus route is thus a sequence of one or more VSes (or virtual bus links). A32
bus follows a fixed route in this virtual bus network, but its travel cost/time is determined by the33
dynamic network loading (DNL) model with heterogeneous traffic flows, e.g., private cars, trucks,34
buses, and passengers. The parking facilities here refer to the near-destination parking lots/spaces.35
Travelers who choose the DR mode will drive all the way to their destination and have to park36
near their destinations and pay parking fees. In addition, the walking links are explicitly modeled37
to represent walking from origin to bus stops, from the middle destination to bus stops, transfer38
among bus stops, and from bus stops to the final destination.39

With this representation, a path for a traveler for any OD pair can be composed of multiple40
components from different parts of this multi-modal network, depending on his/her mode choice.41
For example, a path for a traveler choosing the MSBT mode consists of auto links and nodes for42
the mobility service part, walking links for the transfer part, and bus links and stops for the bus43



Zou, Qian, Detwiler, and Chhajer 6

FIGURE 1 Illustration of a multi-modal transportation network: O: OD node; A: auto node;
P: parking node; PS: physical bus stop; VS: virtual bus stop (2)

riding part.1

Generalized travel cost2
To make modal choices, travelers need to make trade-offs among traffic congestion, convenience,3
parking fare, and expenditures to pay for travel. A logit model is adopted here to describe the mode4
choice behavior. For any O-D pair rs, the generalized travel cost function of DR, BT, and MSBT5
for a traveler departing at time t and taking the path k are defined in Eqs. 1, 2, and 3, respectively.6

crs
dr,k,t = αwrs

k,t +max[γ(t +wrs
k,t − t∗),β (t∗− t −wrs

k,t)]+ pi/n+∆
rs
k,t(n)+ξ ,∀k ∈ Prs

dr (1)

crs
bt,k,t = αwrs

k,t +max[γ(t +wrs
k,t − t∗),β (t∗− t −wrs

k,t)]+δ
rs +σ

rs
k,t ,∀k ∈ Prs

bt (2)

crs
msbt,k,t = αwrs

k,t +max[γ(t +wrs
k,t − t∗),β (t∗− t −wrs

k,t)]+η
rs +ω

rs
k,t ,∀k ∈ Prs

msbt (3)
where Prs

dr , Prs
bt , and Prs

msbt denote the path sets for DR, BT, and MSBT from r to s, respectively;7
wrs

k,t denotes the actual travel time which might be the summation of driving time, possible transfer8
time, bus travel time, and all possible walking time during the trip; t∗ is the target arrival time (e.g.,9
standard work starting time); α is the unit cost of travel time; γ and β are the unit costs of time for10
arriving late and arriving early, respectively (this second term is also known as the schedule delay11
cost); pi in Eq. 1 is the parking fee at parking area of the destination; n in Eq. 1 is the number12
of pooled travelers; ∆rs

k,t(n) in Eq. 1 represents the carpooling impedance cost; ξ in Eq. 1 is an13
indicator of accessibility to a private car (if the traveler owns a car or has access to a private car14
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then it can be set to 0, otherwise it should be a large constant); δ rs in Eq. 2 represents the transit1
fare; σ rs

k,t in Eq. 2 is the possible perceived inconvenience cost of the transit mode associated2
with the crowding of transit route; ηrs and ωrs

k,t in Eq. 3 are the fare and the possible perceived3
inconvenience cost of the MSBT mode, respectively. More terms can be incorporated to achieve a4
higher model fidelity (e.g., fuel costs and vehicle depreciation).5

Multi-modal dynamic network loading6
The actual travel time wrs

k,t in Eqs. 1-3 is obtained from the DNL process and can be further de-7
composed into summation of more detailed terms:8

DR : wrs
k,t = wrs

k,t(car travel)+wrs
k,t ′(parking cruising)+wrs

k,t ′′(walking)

BT : wrs
k,t = wrs

k,t(walking)+wrs
k,t ′(transfer/waiting)+wrs

k,t ′′(bus travel)

+wrs
k,t ′′′(walking)

MSBT : wrs
k,t = wrs

k,t(car travel)+wrs
k,t ′(transfer/waiting)+wrs

k,t ′′(bus travel)

+wrs
k,t ′′′(walking)

(4)

where t < t ′ < t ′′ < t ′′′ indicates the sequence of start time of a trip component along a path.9

Car/bus travel time10
Since the cars and the buses share the same auto network, the car/bus travel time in Eq. 4 is11
extracted from the DNL process considering the heterogeneous vehicular flow (i.e., light-duty12
vehicles like private cars and heavy-duty vehicles like buses and trucks). A multi-class traffic flow13
model proposed in (19) is adopted here to capture the flow dynamics consisting of multiple classes14
of vehicles with distinct flow characteristics. Moreover, the multi-class cell transmission model15
(CTM) in (19) is further modified to incorporate the passenger pick-up and drop-off behavior for16
buses.17

Due to the size and the speed, buses are regarded as a special type of trucks in the DNL.18
Pi et al. (2) do not explicitly model buses but approximate buses with trucks in the traffic flow.19
This study extends their work by introducing the explicit bus modeling in the DNL. With the CTM20
link model, a bus stop (e.g., a PS and its associated VSes) is placed in one of the cells of the link21
depending on its geographic location. When a bus reaches the cell that contains a bus stop on its22
route, the bus will stop in this cell if either one or two of the following conditions are met: (1)23
there are in-vehicle passengers who will alight at this bus stop; (2) there are passengers at the bus24
stop who want to board and the number of in-vehicle passenger is less than the bus capacity. It is25
assumed that the bus stops in the bus bay of the bus stop, which separates the bus from the travel26
lanes of a roadway. In this way, the normal trucks behind the bus can pass the bus when the bus27
stops.28

Since the DNL module is a mesoscopic one and all vehicles and passengers are realized29
using agent-based modeling techniques, this truck passing the bus in the simulation simply means30
that the position of the bus and that of the truck behind it are swapped. However, the vehicle travel31
time is computed using the cumulative curves from the DNL and it means that the first-in-first-out32
rule needs to hold (2, 9, 19). To this end, different cumulative curves are set up for normal vehicles33
(cars and trucks) and buses separately. For each link in auto link, there are one pair of arrival and34
departure curves for cars and the other pair for trucks. Although buses are treated as trucks in the35
DNL, the cumulative curves for the auto link do not account for buses. Instead, buses are counted36



Zou, Qian, Detwiler, and Chhajer 8

using another pair of arrival and departure curves that are associated with the virtual bus link in the1
virtual bus network. So when the bus reaches or leaves a bus stop, the corresponding arrival and2
departure curves of the bus link will increase.3

Travel time of other modes4
Other travel time terms in Eq. 4 can be computed in a similar fashion with (2).5

The parking cruising time depends on the expected parking occupancy in the destination6
area: wrs

k,t(parking cruising) = εi/(1−ei(t)/Ei), where the parking area i is on path k, and the εi is7
the average parking time of a parking area when it is empty, Ei is the total capacity of the parking8
area, and ei(t) is the time-dependent parking occupancy which can be either determined based on9
the DNL or estimated using historical parking data.10

The transfer/waiting time wrs
k,t ′(transfer/waiting) can also be either determined based on the11

DNL or estimated using historical bus transit data.12
The walking time is set to be proportional to the walking distance. wrs

k,t(walking) = lrs
k,t/v̄,13

where v̄ is the average walking speed and lrs
k,t is the total walking distance in the route k at time t14

from r to s.15

Multi-modal dynamic user equilibrium16
In this study, given the traveler OD demand, the resultant path/flow pattern is assumed to reach the17
MMDUE condition, which read:18

crs
m,k,t −µ

rs
m,t = 0 if ∀k ∈ Prs

m , f rs
m,k,t > 0

crs
m,k,t −µ

rs
m,t ≥ 0 if ∀k ∈ Prs

m , f rs
m,k,t = 0

hrs
m,t

qrs
t

=
exp(−(αm +β1µrs

m,t)

∑m′ exp(−(αm′
+β1µrs

m′,t)

∀r,s, t,m

(5)

where µrs
m,t denotes the equilibrium cost of travel mode m from r to s departing at time t; f rs

m,k,t is19
the flow of path k in mode m from r to s departing at time t. hrs

m,t = ∑k∈Prs
m,t

f rs
m,k,t represents the flow20

of mode m from r to s departing at time t; qrs
t = ∑m∈{dr,bt,msbt} hrs

m,t represents the total flow from r21
to s departing at time t.22

The MMDUE can further formulated as a variational inequality (VI) problem and can be23
solved using the closed-form gradient projection method proposed in (2), which is more efficient24
than the existing projection-based methods for large-scale networks.25

To summarize, in the multi-modal dynamic traffic assignment model, with the dynamic26
traveler OD demand as input, the mode choice and route choice models yield the traveler path/flow27
based on initial network conditions. Then, the traveler path/flow is converted into vehicular and28
passenger flows based on their mode choices. The vehicular and passenger flows are further loaded29
onto the network, leading to updated network conditions (e.g., traffic states on links and at inter-30
sections, and waiting time at bus stops). The mode and route choices can be updated based on new31
network conditions, so do the passenger flow and vehicle flow. This procedure goes on until the32
equilibrium state is achieved. The whole process is shown in Figure 2.33
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FIGURE 2 The whole process of the multi-modal dynamic traffic assignment

MULTI-MODAL DYNAMIC ORIGIN-DESTINATION ESTIMATION1
With the multi-modal dynamic traffic assignment, this section discusses the MMDODE frame-2
work.3

Formulation4
The MMDODE aims to find the optimal dynamic traveler OD demand for the multi-modal trans-5
portation network to minimize the discrepancy between the observations from the real world traffic6
data and the simulation results. It is formulated as a bi-level optimization problem in Eqs. 6-23,7
which is an extension to the multi-class dynamic origin-destination estimation (MCDODE) in (3).8

min
{q,qtruck}

L =L1 +L2 +L3 +L4

=w1(∥y′vehicle −yvehicle∥2
2)

+w2(∥y′passenger −ypassenger∥2
2)

+w3(∥z′vehicle − zvehicle∥2
2)

+w4(∥z′bus − zbus∥2
2)

(6)

subject to
{wdr,wbt,wmsbt,cdr,cbt,cmsbt,ρρρdr

car,ρρρ
bt
passenger,ρρρ

msbt
car ,ρρρmsbt

passenger,ρρρ truck}
= Λ(fdr

car, f
bt
passenger, f

msbt
passenger, ftruck, fbus)

(7)

qm = umq ∀m ∈ {dr,bt,msbt} (8)

fm
i = pm

i qm

∀(m, i) ∈ {(dr,car),(bt,passenger),(msbt,passenger)}
(9)

ftruck = ptruckqtruck (10)

{udr,ubt,umsbt,pdr
car,p

bt
passenger,p

msbt
passenger,ptruck}

= (wdr,wbt,wmsbt,cdr,cbt,cmsbt)
(11)

xdr
car = ρρρ

dr
carf

dr
car (12)

xbt
passenger = ρρρ

bt
passengerf

bt
passenger (13)



Zou, Qian, Detwiler, and Chhajer 10

xmsbt
car = ρρρ

msbt
car fmsbt

passenger (14)

xmsbt
passenger = ρρρ

msbt
passengerf

msbt
passenger (15)

xtruck = ρρρ truckftruck (16)

xcar = xdr
car +xmsbt

car (17)

xpassenger = xbt
passenger +xmsbt

passenger (18)

yvehicle = ∑
i∈{car,truck}

Lixi (19)

ypassenger = Lpassengerxpassenger (20)

zvehicle = ∑
i∈{car,truck}

Miti (21)

zbus = Mbustbus (22)

q ≥ 0,qtruck ≥ 0 (23)
For the sake of notation brevity and further tensor manipulation, all variables in the MMDODE are1
represented using tensors and are explained in Table 1. Other notations are listed in Table 2.2

Eq. 6 is the objective function, which is to minimize the discrepancy between the observed3
traffic data and the estimated one. It consists of four parts: L1 and L2 are the losses related to4
traffic counts while L3 and L4 are the losses related to travel times. In addition to the vehicle-5
related data as in existing DODE literature, it also accounts for the bus transit data (i.e., passenger6
count and bus travel time). The parameters w1, w2, w3, and w4 are the weights to balance the scales7
of these four parts in the optimization.8

Eq. 7 represents the multi-modal DNL process described in Section 3.3. The DNL function9
Λ(·) takes the multi-modal and multi-class path flow as input and outputs the spatio-temporal10
network conditions and the DAR matrices.11

Eqs. 8 and 9 represent the mode choice and the route choice for travelers, respectively.12
Eq. 10 describes the route choice for trucks. It should be noted that the trucks serve as "back-13
ground" traffic in the MMDODE and form mixed traffic flows with cars in the DNL in order to14
capture more realistic flow dynamics. The truck demand is also estimated along with the traveler15
demand. The mode choice and the route choice are obtained from a generalized function Ψ(·) in16
Eq. 11 which takes in the path travel time/cost defined in Eqs. 1-3 and outputs the mode choice17
matrix and the route choice matrix. The Ψ(·) can be either determined by exogenous mode/route18
choice data or chosen to be analytical models such as logit or probit models (20).19

Eqs. 12-16 represent the link traffic flow as the multiplication of the dynamic assignment20
ratio (DAR) matrix and the path flow. The element of the DAR matrix describes the link ar-21
rival/departure information with respect to total number of travelers using a certain path traveling22
between a certain OD pair departing at a certain time (21). The DAR matrix is obtained from the23
DNL results and varies with different travel demand input. Since obtaining the DAR matrix is24
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often computationally challenging, the tree-based cumulative curves are adopted here to alleviate1
the computational burden to construct the DAR matrix (3).2

Eqs. 17 and 18 describe the contributions of different modes to the link traffic flow. Specif-3
ically, Eq. 17 indicates that the car flow on the auto link comes from both the DR mode and the4
MSBT mode while Eq. 18 shows that both the BT mode and the MSBT mode contribute to the5
passenger flow on the bus link.6

Eqs. 19 and 20 are the estimated flow for vehicles and passengers, respectively, while7
Eqs. 21 and 22 are the estimated travel time for vehicles and buses, respectively. It should be8
pointed out that Li and Mi represent different aggregation of the link-level data. For example, the9
observed path travel time can be expressed as a summation of the travel time of multiple links.10
These variables expand the framework’s flexibility to accommodate the observed data aggregated11
in various forms. More details and examples can be found in (3).12

Eq. 23 is the non-negativity constraint for the demand.13

TABLE 1: Tensors in MMDODE framework

Variable type Vector Dimension Type Description
OD demand q,qtruck RN|K| Dense Traveler OD

demand and
truck OD
demand

Path flow fdr
car RNΠdr

Dense Path flow for car
in DR mode

fbt
passenger RNΠbt

Dense Path flow for
passenger in BT
mode

fmsbt
passenger RNΠmsbt

Dense Path flow for
passenger in
MSBT mode

ftruck RNΠtruck Dense Truck path flow
fbus RNΠbus Dense Bus path flow

Link flow xdr
car RN|A| Dense Car link flow

from DR mode
xmsbt

car RN|A| Dense Car link flow
from MSBT
mode

xcar RN|A| Dense Car link flow
xtruck RN|A| Dense Truck link flow
xbt

passenger RN|B| Dense Passenger link
flow from BT
mode

xmsbt
passenger RN|B| Dense Passenger link

flow from MSBT
mode
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xpassenger RN|B| Dense Passenger link
flow

Link travel time tcar, ttruck RN|A| Dense Car and truck
link travel time

tbus RN|B| Dense Bus link travel
time

Path travel time
and cost

wdr,wbt,wmsbt RNΠm
Dense Path travel time

of three modes
cdr,cbt,cmsbt RNΠm

Dense Path travel cost
of three modes

Observed and
estimated flow

y′vehicle,
yvehicle

R|Ca| Dense Observed and
estimated car and
truck flow

y′passenger,
ypassenger

R|Cb| Dense Observed and
estimated
passenger flow

Observed and
estimated travel
time

z′vehicle,
zvehicle

R|Ta| Dense Observed and
estimated car and
truck travel time

z′bus, zbus R|Tb| Dense Observed and
estimated bus
link travel time

DAR matrix ρρρdr
car RN|A|×NΠdr

Sparse DAR matrix for
cars in DR mode

ρρρbt
passenger RN|B|×NΠbt

Sparse DAR matrix for
passengers in BT
mode

ρρρmsbt
car RN|A|×NΠmsbt

Sparse DAR matrix for
cars in MSBT
mode

ρρρmsbt
passenger RN|B|×NΠmsbt

Sparse DAR matrix for
passengers in
MSBT mode

ρρρ truck RN|A|×NΠtruck Sparse DAR matrix for
trucks

Mode choice
matrix

um RN|K|×N|K| Sparse Mode choice
matrix for each
mode

Route choice
matrix

pdr
car RNΠdr×N|K| Sparse Route choice

matrix for DR
mode
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pbt
passenger RNΠbt×N|K| Sparse Route choice

matrix for BT
mode

pmsbt
passenger RNΠmsbt×N|K| Sparse Route choice

matrix for MSBT
mode

ptruck RNΠtruck×N|K| Sparse Route choice
matrix for trucks

Observation/link
incidence matrix

Lcar, Ltruck R|Ca|×N|A| Sparse Observation/link
incidence matrix
for cars and
trucks

Lpassenger R|Cb|×N|B| Sparse Observation/link
incidence matrix
for passengers

Link travel time
portion matrix

Mcar,Mtruck R|Ta|×N|A| Sparse Link travel time
portion matrices
for cars and
trucks

Mpassenger R|Tb|×N|B| Sparse Link travel time
portion matrix
for passengers

TABLE 2 Other notations in MMDODE framework
A The set of all links of the auto network
B The set of all links of the bus network
K The set of all OD pairs
Ca,Cb The set of indices of the observed flow for auto

network and bus network
Ta,Tb The set of indices of the observed travel time

for auto network and bus network
Πm The number of all paths in mode m
Πtruck The number of all paths for trucks
Πbus The number of all paths for buses
N The total number of time intervals
i The index of vehicle class and passenger
m The index of mode

Solution algorithm1
In order to solve the MMDODE problem, the key is to obtain the gradients of the objective function2
with respect to the dynamic OD demands ∂L /∂q and ∂L /∂qtruck for the formulation above. The3
computational-graph-based approach proposed by (3) shows promising results in solving single-4
mode DODE problems on large-scale networks and is thus adopted here and further extended to5
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the MMDODE problem.1
First the MMDODE problem is cast into a computational graph representation, and Figure 32

describes the structure of the computational graph for MMDODE. A forward-backward algorithm3
running on the computational graph is used to obtain the gradients. The algorithm consists of two4
processes: the forward iteration and the backward iteration.5

The forward iteration solves for the network conditions when the OD demand is given,6
while the backward iteration updates the OD demand when the network conditions are fixed.7
The forward-backward algorithm resembles some heuristic methods that solve the upper level8
and lower level problem iteratively but it also explores the analogy of a MMDODE problem and a9
machine learning task (i.e., training neural networks).10

FIGURE 3 An illustration of the forward-backward algorithm

The forward iteration basically means solving the multi-modal DTA described in Section11
3 and obtaining the mode/route choices (i.e., um in Eq. 8, pm

i in Eq. 9, and ptruck in Eq. 10) and12
network conditions (i.e., , Λ(·) in Eq. 7).13

The backward iteration is responsible for obtaining the gradients of the objective function14
via the backpropagation method. Taking the derivative of the objective function step by step and15
based on the chain rule, the gradients of interest are showed in Sections 4.2.1 and 4.2.2.16

Gradients of flow-related losses17
For the flow-related losses L1 and L2:18

∂L1

∂xcar
=−2w1LT

car(y
′
vehicle − ∑

i∈{car,truck}
Lixi) (24)

∂L1

∂xtruck
=−2w1LT

truck(y
′
vehicle − ∑

i∈{car,truck}
Lixi) (25)
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∂L2

∂xpassenger
=−2w2LT

passenger(y
′
passenger −Lpassengerxpassenger) (26)

∂L1

∂xdr
car

=
∂L1

∂xcar
(27)

∂L1

∂xmsbt
car

=
∂L1

∂xcar
(28)

∂L2

∂xbt
passenger

=
∂L2

∂xpassenger
(29)

∂L2

∂xmsbt
passenger

=
∂L2

∂xpassenger
(30)

∂L1

∂ fdr
car

= ρρρ
dr
car

T ∂L1

∂xdr
car

(31)

∂L2

∂ fbt
passenger

= ρρρ
bt
passenger

T ∂L2

∂xbt
passenger

(32)

∂L1

∂ fmsbt
passenger

= ρρρ
msbt
car

T ∂L1

∂xmsbt
car

(33)

∂L2

∂ fmsbt
passenger

= ρρρ
msbt
passenger

T ∂L2

∂xmsbt
passenger

(34)

∂L1

∂ ftruck
= ρρρ truck

T ∂L1

∂xtruck
(35)

∂L1

∂qdr = pdr
car

T ∂L1

∂ fdr
car

(36)

∂L2

∂qbt = pbt
passenger

T ∂L2

∂ fbt
passenger

(37)

∂L1

∂qmsbt = pmsbt
passenger

T ∂L1

∂ fmsbt
passenger

(38)

∂L2

∂qmsbt = pmsbt
passenger

T ∂L2

∂ fmsbt
passenger

(39)

∂L1

∂qtruck
= ptruck

T ∂L1

∂ ftruck
(40)

∂L1

∂q
= udrT ∂L1

∂qdr +umsbtT ∂L1

∂qmsbt (41)

∂L2

∂q
= ubtT ∂L2

∂qbt +umsbtT ∂L2

∂qmsbt (42)

It is noted that due to the presence of multiple modes, the gradients involve more terms1
and more intermediate steps compared to those for the single-mode DODE problem in (3). For2
example, Eq. 33 and Eq. 34 describe that the traveler flow in MSBT mode contributes to both3
vehicle and passenger link flows.4
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Gradients of travel-time-related losses1
Similarly, for the travel-time-related losses L3 and L4:2

∂L3

∂ tcar
=−2w3MT

car(z
′
vehicle − ∑

i∈{car,truck}
Miti) (43)

∂L3

∂ ttruck
=−2w3MT

truck(z
′
vehicle − ∑

i∈{car,truck}
Miti) (44)

∂L4

∂ tbus
=−2w4MT

bus(z
′
bus −Mbustbus) (45)

∂L3

∂xcar
=

∂ Λ̄({xi}i)

∂xcar

∂L3

∂ tcar
(46)

∂L3

∂xtruck
=

∂ Λ̄({xi}i)

∂xtruck

∂L3

∂ ttruck
(47)

∂L4

∂xtruck
=

∂ Λ̄({xi}i)

∂xtruck

∂ tbus

∂ ttruck

∂L4

∂ tbus
(48)

∂L4

∂xpassenger
=

∂ tbus

∂xpassenger

∂L4

∂ tbus
(49)

∂L3

∂xdr
car

=
∂L3

∂xcar
(50)

∂L3

∂xmsbt
car

=
∂L3

∂xcar
(51)

∂L4

∂xbt
passenger

=
∂L4

∂xpassenger
(52)

∂L4

∂xmsbt
passenger

=
∂L4

∂xpassenger
(53)

∂L3

∂ fdr
car

= ρρρ
dr
car

T ∂L3

∂xdr
car

(54)

∂L4

∂ fbt
passenger

= ρρρ
bt
passenger

T ∂L4

∂xbt
passenger

(55)

∂L3

∂ fmsbt
passenger

= ρρρ
msbt
car

T ∂L3

∂xmsbt
car

(56)

∂L4

∂ fmsbt
passenger

= ρρρ
msbt
passenger

T ∂L4

∂xmsbt
passenger

(57)

∂L3

∂ ftruck
= ρρρ truck

T ∂L3

∂xtruck
(58)

∂L4

∂ ftruck
= ρρρ truck

T ∂L4

∂xtruck
(59)

∂L3

∂qdr = pdr
car

T ∂L3

∂ fdr
car

(60)
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∂L4

∂qbt = pbt
passenger

T ∂L4

∂ fbt
passenger

(61)

∂L3

∂qmsbt = pmsbt
passenger

T ∂L3

∂ fmsbt
passenger

(62)

∂L4

∂qmsbt = pmsbt
passenger

T ∂L4

∂ fmsbt
passenger

(63)

∂L3

∂qtruck
= ptruck

T ∂L3

∂ ftruck
(64)

∂L4

∂qtruck
= ptruck

T ∂L4

∂ ftruck
(65)

∂L3

∂q
= udrT ∂L3

∂qdr +umsbtT ∂L3

∂qmsbt (66)

∂L4

∂q
= ubtT ∂L4

∂qbt +umsbtT ∂L4

∂qmsbt (67)

Special attention should be paid to Eqs. 46-49. The Λ̄(·) is the dynamic link model, a1
part of the function Λ(·) in Eq. 7, and it takes the dynamic link flow as input and outputs the2
dynamic link travel time. It is assumed that the link travel time {ti}i is differentiable with respect3
to the incoming link flow. Most existing link models such as CTM, link queque model, and link4
transmission model are compatible.5

However, no closed form exists for the derivative Λ̄({xi}i)/xi. It is common practice6
to rely on approximation approaches (3, 8, 22). The approximation approach in (3) is adopted7
here. Specifically, Λ̄({xi}i)/xi is zero matrix when all links are not congested, and Λ̄({xi}i)/xi =8
diag(x̃−1

i ) when all links are congested. x̃−1
i is the element-wise reciprocal of x̃i, which is the9

flow exiting from the head of each link for different vehicles. diag(x̃−1
i ) is a square matrix with10

the diagonal elements being x̃−1
i and other elements being zero. In the implementation, each en-11

try of Λ̄({xi}i)/xi is chosen from either the zero matrix or diag(x̃−1
i ) depending on whether the12

corresponding link is congested or not.13
As for the bus link travel time in Eqs. 48 and 49, it assumes that each bus link travel time14

in tbus consists of the bus travel time and the dwelling time at the bus stop:15

tbus,b = ∑
a∈S (b)

rattruck,a + tdwelling (68)

where S (b) represents the set of auto links the bus link b covers and ra represents the portion of16
the overlapped length between the bus link b and the auto link a to the whole length of the auto17
link a. This is because the bus stop can be in the middle of the auto link, and each bus link can18
overlap with multiple auto links. Since buses are treated as trucks in the DNL, the actual time for19
bus traversing from one bus stop to the next one can be approximated by the corresponding truck20
travel time. The second term tdwelling considers the dwelling time for a bus at a bus stop due to21
passenger pick-up or drop-off. The derivative of tdwelling with respect to the passenger flow can be22
approximated as an additional boarding or alighting time incurred by an additional passenger.23

Therefore, according to the chain rule, the gradients of the objective function with respect24
to the OD demand can be written as:25
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∂L

∂q
=

∂L1

∂q
+

∂L2

∂q
+

∂L3

∂q
+

∂L4

∂q
(69)

∂L

∂qtruck
=

∂L1

∂qtruck
+

∂L3

∂qtruck
+

∂L4

∂qtruck
(70)

With the MMDODE formulation on a computational graph and the gradients above, the1
MMDODE problem can be solved as a machine learning/deep learning task with gradient descent2
methods. Ma et al. (3) only apply the stochastic gradient descent (SGD) and a handcrafted Adagrad3
in their work. The implementation of the optimization in this work is based on PyTorch (23) and4
enables the direct use of more off-the-shelf algorithms such as RMSProp, Adam, NAdam, and5
Adamax. The code is opensourced on Github1.6

NUMERICAL EXAMPLES7
The proposed MMDODE framework is illustrated using a small grid network and a real-world8
large-scale network in this section. All the experiments are conducted on a desktop with Intel Core9
i7-7700 K CPU 4.20 GHz × 8, 32 GB RAM, and 500 GB SSD.10

A small network11
The small grid network is depicted in Figure 4 and has 4 OD pairs and 3 bus routes. The node 16 is12
set as the middle point for the MSBT mode, namely, travelers can first reach node 16 via mobility13
services and then switch to the bus transit to get to their final destinations. The auto links (1, 3),14
(14, 3), (15, 5), (2, 5), (9, 12), (9, 17), (11, 13), and (11, 18) are OD connectors and are modeled15
using the point queue model while the rest of links are modeled with the CTM and the identical16
triangular fundamental diagram (FD). In the FD, the length of the auto links (3, 4), (5, 4), (7, 6),17
(7, 8), (10, 9), and (10, 11) is 0.15 mile, the length of the auto links (4, 7) and (7, 10) is 0.25 mile,18
and the length of the auto links (3, 6), (5, 8), (6, 9), and (8, 11) is 0.55 mile. The free flow speed19
is 35 miles/hour for car and 25 miles/hour for truck. The flow capacity is 2,200 vehicles/hour for20
car and 1,200 vehicles/hour for truck, and the holding capacity is 200 vehicles/mile for car and 8021
vehicles/mile for truck.22

The analysis horizon is 150 minutes and divided into ten 15-minute time intervals (i.e., N =23
10). To generate the ground truth data for training, the path flows for different modes fdr

car, fbt
passenger,24

fmsbt
passenger, and ftruck are randomly sampled from uniform distributions Unif(0, 800), Unif(0, 50),25

Unif(0, 100), and Unif(0, 50), for each time interval, respectively. The mode choice and route26
choice portions are also randomly generated and treated as unknown, then we run the DNL to27
obtain the “true” network conditions.28

The auto links (3, 4), (5, 4), (4, 7), (5, 8), (7, 6), and (7, 8) are chosen to generate the29
observed flow and travel time data for cars and trucks separately. All bus links are chosen to30
generate the observed passenger flow and bus travel time data. The observed data is then multiplied31
by 1+ ε to get the observed data with noise, where ε ∼ Unif(−ξ ,ξ ) and ξ ∈ [0,1) represents the32
noise level. In this example, the noise level ξ = 0.1. The NAdam algorithm in PyTorch is used.33

The change of loss L against the number of iterations is presented in Figure 5. To analyze34
the convergence of loss for cars, trucks, and passengers separately, the loss L is also decomposed35
into six components: car flow, truck flow, passenger flow, car travel time, truck travel time, and36

1https://github.com/psychogeekir/MAC-POSTS
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FIGURE 4 A small grid network
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bus travel time, which are depicted in Figure 6. Note the losses are normalized to be within [0, 1].1
The travel cost means the travel time. It can be seen that the total loss and the loss components all2
decrease as the iteration progresses.3

The R-squared metric is also used to measure the goodness of fit between the true flow/cost4
and the estimated flow/cost. The scatter plots are shown in Figures 7 and 8. It can be seen that the5
R-squared of all flow and cost is above 0.9, except for the bus link travel time. The R-squared for6
the bus link travel time is about 0.8. The reasons are twofold: (1) the bus flow is relatively low7
compared to the other vehicle flow (only one bus every 15 mins for each route). This means that the8
other vehicles can largely affect the bus traveling in the DNL, making the task of estimating the bus9
travel time matching the true bus schedule challenging. (2) the bus link travel time is approximated10
by the truck travel time and the derivative of link travel time Λ̄({xi}i)/xi is also approximated by11
simulation rather than an accurate closed form. Due to the discretization and the randomness of12
the DNL process, such approximations can be noisy.13

This small example shows that the proposed MMDODE framework yields accurate esti-14
mation of the dynamic OD demand for this small multi-modal network.15

FIGURE 5 Convergence curve for the loss for the small grid network

A large-scale network: central Ohio region16
The MMDODE framework is further applied to a large-scale network in central Ohio region (Fig-17
ure 9), with Columbus located in the center, to test its feasibility and scalability. The parameters18
for this network are listed in the Table 3. For the MSBT mode, a total of 13 locations, where mul-19
tiple bus routes cross, are selected as middle destinations. Due to data availability, only car, truck,20
and passenger flow data is used for the training. The traffic data is from multiple sources. The car21
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FIGURE 6 Decomposed convergence curve for the small grid network (normalized)

FIGURE 7 Estimated and “true” observed flow for cars, trucks, and passengers for the small
grid network (unit: number of vehicles / 15 minutes or number of passengers / 15 minutes)
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FIGURE 8 Estimated and “true” observed cost for cars, trucks, and passengers for the small
grid network (unit: second)

and truck flow data is from Ohio Department of Transportation (ODOT), where car traffic volume1
counts are measured for all passenger cars and truck traffic volume counts includes all kinds of2
trucks at the measured location. There are a total of 883 auto links with valid car or truck count3
data. The bus passenger counts are from the Central Ohio Transit Authority (COTA). The average4
waiting time for each bus stop is set as 15 minutes. All the traffic flow observations are aggregated5
to a single data sample to represent the traffic state of a typical day. The NAdam algorithm is used6
to solve the MMDODE.7

TABLE 3 Network parameters
Name Value
Studying period 5:00 AM - 9:00 AM
Simulation unit interval 5 s
Length of time interval 15 min
Number of time intervals 16
Number of auto links 26,357
Number of nodes 8,706
Number of O-D pairs 11,092
Number of bus routes 60
Number of physical bus stops 2,493
Number of virtual bus stops 3,284
Number of bus links 3,224
Number of walking links 7,979

The MMDODE framework runs for 40 iterations. Each iteration takes about 30 minutes8
so the whole process takes around 30× 40 = 1200 minutes. The convergence of the loss and9
the decomposed loss are shown in Figures 10 and 11, respectively. It can be observed that this10
proposed method converges fairly quickly for this large network.11

The comparisons for the observed flow are presented in Figure 12. The R-squared is 0.8112
and 0.84 for car and truck flow, respectively. But the R-squared for passenger flow is low, only13
0.20. This is because the passenger flow is rather low compared to the vehicle flow. Again, due to14
the discretization and the randomness of the DNL, it is challenging to estimate the low traffic flow15
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FIGURE 9 MORPC network in central Ohio

FIGURE 10 Convergence curve for the loss for 40 iterations for the network in the central
Ohio region
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FIGURE 11 Decomposed convergence curve for the network in the central Ohio region (nor-
malized)

accurately. It can be observed that the loss for the passenger flow in Figure 11 does decrease but1
not as much as those for vehicle flows. This indicates that the proposed framework can minimize2
the passenger flow loss towards the right direction. One possible strategy to improve this result3
is using more comprehensive bus transit data. Note that only the passenger flow data is used in4
the training, but the passenger flow can be highly dependent on the bus schedule. It is an ongoing5
effort to integrate the bus schedule data to improve the passenger flow estimation (as in the small6
grid network above).7

Overall, the results of the MMDODE framework is satisfactory for this large network in8
terms of the car and truck flow. Although the accuracy for the passenger flow estimation is not9
ideal, the loss function shows the correct decreasing trend, which means the proposed framework10
works to some extent but requires further improvement.11

CONCLUSION12
Despite that the transportation is becoming more complex and multi-modal, the existing DODE13
frameworks usually focus on the single-mode transportation network. This paper aims to develop14
a data-driven framework to estimate the dynamic OD demand for multi-modal transportation net-15
works. By formulating the MMDODE problem on a computational graph, the problem can be16
solved by a forward-backward algorithm. In the forward iteration, the multi-modal dynamic traffic17
assignment problem is solved and the network conditions are obtained. In the backward itera-18
tion, the OD demand is updated by the backpropagation method with gradients extracted from the19
result of the forward iteration. The proposed framework provides a new perspective to view the20
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FIGURE 12 Estimated and true observed flow for cars, trucks, and passengers for the net-
work in the central Ohio region (unit: number of vehicles / 15 minutes or number of passen-
gers / 15 minutes)

MMDODE problem as a machine learning task.1
The effectiveness of this framework is tested on a small grid network as well as a real-world2

large-scale network. The experiment results indicate that this framework can yield satisfactory3
dynamic OD demand estimation results in terms of the car and truck flow. It also points out that4
accurately estimating the bus transit data can be challenging due to sparse bus and passenger flows5
and requires further research efforts.6

In the future work, the estimation accuracy of the MMDODE framework can be enhanced7
in the following directions: (1) more bus transit data can be incorporated to improve the passen-8
ger flow estimation. Bus schedule can be embedded in the DNL to accurately simulate the bus9
arrival/departure; (2) the derivative of link travel time can be further improved by more accurate10
approximation methods, e.g., (24, 25).11
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